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Q-switching stability limits of Kerr-lens mode locking
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Q-switching instability restricts pulse shortening in Kerr-lens mode-locked lasers (KLMLs). However, Q-
switching suppression in KLMLs has not been discussed to date because of the difficulty of treating the Kerr-
lens effect theoretically. We investigated parameter ranges for stable Kerr-lens mode locking (KLM) against Q
switching theoretically and experimentally. We found the parameters and ranges required to suppress Q switching
in hard- and soft-aperture KLMLs. In soft-aperture KLMLs, both intracavity power and spatial mode matching
between a pump beam and a cavity mode were found to be critical. These findings were verified experimentally
using an Yb:Y2O3 KLML. Our results provide cavity design criteria for stable KLMLs against Q switching.
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I. INTRODUCTION

Passively mode-locked femtosecond lasers have been used
in fields including materials science, metrology, and laser
materials processing. Most of these applications require pulse
train stability in both the short term and the long term.
Q-switching instability is a fundamental phenomenon that
destabilizes the energy of the pulse train, as illustrated in
Figs. 1(a) and 1(b). Haus showed that this instability origi-
nated from a fluctuation of the population inversion that was
caused by a nonlinear optical loss [1]. Although the theory
was used successfully to derive the stability limit for mode
locking in general, the detailed mechanisms of the nonlinear
effects involved, such as saturable absorption, nonlinear polar-
ization rotation, and the Kerr-lens effect, were not discussed.

Kärtner et al. and Hönninger et al. developed Q-switching
theory for passively mode-locked lasers that use semicon-
ductor saturable absorber mirrors (SESAMs) [2–5]. They
derived simple and comprehensive criteria for suppression of
Q-switching instability. These criteria have since been used
to design state-of-the-art lasers including high-repetition-rate
femtosecond lasers [6,7], sub-100-fs lasers [8,9], and high-
power thin-disk lasers [8,10]. In the derivation of their criteria,
the authors assumed a flat-topped beam profile. However, this
assumption is only valid when the spatial beam effect is neg-
ligible; therefore, their theory does not include the Kerr-lens
effect.

Kerr-lens mode-locked lasers (KLMLs) are passive mode-
locked lasers that are based on the Kerr-lens effect. These
lasers generate pulses with the shortest duration among mode-
locked lasers because of the instantaneous nature of Kerr
lensing [11]. Recent progress in the development of KLMLs
has extended their parameter ranges toward higher repetition
rates [12–14], shorter pulse durations [11,15,16], and higher
pulse energies [17–19]. In this laser development stage, some
KLMLs have tended to show Q-switching instability. How-
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ever, to the best of our knowledge, there is no clear insight
available about the parameter ranges required to stabilize
Kerr-lens mode locking (KLM) against Q switching. This
lack of knowledge is caused by the difficulty in considering
the dynamic changes of a spatial beam profile affected by
the Kerr-lens effect theoretically. Consequently, exploration
of stable KLMLs to date has been reliant on experience alone.

In this paper, we derive simple criteria to suppress Q
switching in KLMLs. The dynamic changes in Kerr lensing
and their effects on a cavity mode were treated using a ba-
sic ABCD matrix formalism. This paper considers two types
of KLML: hard- and soft-aperture KLMLs. Our theoretical
approach shows that the Q-switching instability restricts the
pulse-shortening capability of the KLMLs. In addition, we
found that this pulse-shortening limitation can be suppressed
by increasing the intracavity power or improving the spatial
mode matching between a pump beam and a cavity mode
in the case of the soft-aperture KLMLs. These insights are
summarized in a stability diagram with axes representing the
averaged power and the pulse duration, as shown in Fig. 1(c).
This diagram represents the possible pulse waveforms within
a given cavity configuration. As a general perception, the peak
power is the critical parameter required to start and sustain the
KLM. This threshold peak power is drawn as a proportional
relationship in the stability diagram. Our findings show that
there is another threshold that limits the pulse shortening
due to passive Q switching. Furthermore, we found that the
stability region against Q switching could be extended by
improving the spatial mode matching between the pump beam
and the cavity mode. To verify our theoretical predictions,
we performed experiments and plotted the resulting data in
the stability diagram. Our theoretical results showed good
agreement with our experimental results.

II. THEORY

A. Basic equations

Q-switching instability in a passive mode-locked laser was
first discussed by Haus [1]. This phenomenon was described
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FIG. 1. Illustration of Q-switched mode locking. (a) Stable mode locking. (b) Q-switched mode locking. (c) Stability diagram of the
Kerr-lens mode-locked laser for a given cavity configuration.

using the following two rate equations:

d

dT
P = 1

TR
[g − l − q(P)]P, (1)

d

dT
g = − 1

τinv
(g − g0) − P

Esat
g, (2)

where T is the timescale of the pulse evolution during the
cavity round trips, TR is the round trip time, and P is the
average power. Here g is the gain per round trip, l is the
linear loss per round trip, q is the nonlinear loss per round
trip, τinv is the upper state lifetime, g0 is the small signal
gain per round trip, and Esat = hνπwg

2/2σem is the saturation
energy of the gain. wg is the beam radius of the cavity mode
in the gain medium and σem is the emission cross section of
the gain medium. Equation (1) is a simple master equation
for the average power in a cavity. Equation (2) is a master
equation for the gain that is based on a rate equation for the
population difference in a four-level system. These equations
are based on the following assumptions. First, it is assumed
that the changes in the power, gain, loss, and nonlinear loss
are all small (<20%). Second, it is assumed that the changes in
the temporal shapes of the pulse during a single cavity round
trip are negligible; Eq. (1) thus does not include terms for the
dispersion and self-phase modulation. These assumptions are
all reasonable because the timescale for Q switching is long
when compared with that of the cavity round trip time TR.

Assume that these equations have steady-state solutions
denoted by (P̃, g̃). The stability of the steady-state solutions
can be discussed using a linearized stability analysis, giving
the following criterion against Q-switching instability [1–3]:

1

τinv
+ P̃

Esat
> − P̃

TR

dq

dP

∣∣∣
P̃
, (3)

where 1/τinv is the decay rate of the population difference and
P̃/Esat is the stimulated transition probability. The left-hand
side of Eq. (3) can be interpreted as the effective rate of gain
recovery. The right-hand side represents the rate of change of
the nonlinear loss. Therefore, the appearance of the Q switch-
ing is decided by the conflict between the gain recovery and
the nonlinear loss. The mode locking remains stable when the
gain recovery rate exceeds the rate of change of the nonlinear
loss. In other words, the nonlinear loss must be suppressed

because it acts as positive feedback to any fluctuation. Note
that this theoretical approach only clarifies whether or not
the intracavity power remains stable against the Q-switching
disturbance. The temporal profile of the Q-switched pulse
train is not identified as part of this theory.

B. Overview for inclusion of the Kerr-lens effect

To derive a criterion for stable KLM, we rewrote the right-
hand side of Eq. (3) to include the Kerr-lens effect and its
spatial modulation explicitly. In the original equation given
in Ref. [1], the derivative of the nonlinear loss is a function
of the intracavity average power. However, the peak power is
the most important physical quantity for Kerr lensing, which
subsequently induces the change in the cavity loss. These
processes are included explicitly as follows:

dq

dP

∣∣∣
P̃

= P̃pk

P̃

dw

dPpk

∣∣∣∣
P̃pk

dq

dw

∣∣∣
w̃
, (4)

where w is the beam radius on the aperture, Ppk = PTRβ/τ is
the peak power, τ is the pulse duration, and β is a numerical
factor that is dependent on the pulse shape. The calculation
of the two derivatives on the right-hand side is not straight-
forward because they are strongly dependent on the cavity
design. In this paper, we made the following assumptions
about the cavity design to simplify the discussion. First, an
optical element that causes the nonlinear loss (aperture) is
placed on the beam waist. In addition, this beam waist is
located inside the Kerr medium, as shown in Fig. 2. These
assumptions mean that the gain medium and the Kerr medium
are the same in the case of the soft-aperture KLM. In this
cavity configuration, Eq. (4) can then be rewritten as

dq

dP

∣∣∣
P̃

= β
TR

τ

dw0

dPpk

∣∣∣∣
P̃pk

dq

dw0

∣∣∣
w̃0

, (5)

where w0 denotes the beam radius at the beam waist inside the
Kerr medium. In the following sections, we consider the two
derivatives shown in Eq. (5).

C. Beam mode change via the Kerr-lens effect

The spatial mode of the cavity with Kerr lensing was
discussed by Haus et al. [20]. We modified their theory to
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FIG. 2. Cavity geometry. We assumed that the Kerr medium
is placed on one edge of the cavity. Our analysis fits the use of
both plane and curved mirrors for the end mirror. (a) Hard-aperture
KLML. (b) Soft-aperture KLML.

fit with our discussion (see the Appendix). Here, we express
the peak-power dependence of the beam radius explicitly as
w(Ppk ). The beam radius at the beam waist that is modulated
by the Kerr-lens effect can be expressed as

w0(Ppk ) =
√

1 − α
Ppk

Pcr
w0, (6)

α = 2

1 + ( z0
L )2

(
1 − B2 − z2

0A2

2LAB

)
, (7)

where Pcr = λ2/4πn0n2 is the critical power of the Kerr effect,
and n0 and n2 are the linear and nonlinear refractive indices
of the Kerr medium, respectively. λ is the cavity mode wave-
length, L is the length of the Kerr medium, z0 = πn0w

2
0 (0)/λ

is the Rayleigh length, and α is a cavity-design-dependent
factor of the Kerr strength, where A, B, C, and D represent
the matrix elements of a half-round trip of the linear cavity.
In the case where the cavity is monolithic, α = 1. In deriv-
ing these equations, we made the assumption that the peak
power was small when compared with the critical power (i.e.,
Ppk/Pcr < 10%).

From Eqs. (3), (5), and (6), we derived a basic criterion for
the Q-switching instability in the KLML:

TR

τinv
+ F̃

Fsat
> α

P̃pk

Pcr

w̃0

2

dq

dw0

∣∣∣
w̃0

, (8)

where F is the pulse fluence inside the gain medium and
Fsat = hν/σem is the saturation fluence of the gain. Here, we
have assumed that αPpk/Pcr � 1. The output power becomes
stable against Q switching when the KLML satisfies the con-
dition above, which means that strong decay of the population
inversion when compared with the nonlinear loss is preferred
to stabilize the mode locking. Note that the pulse duration
only affects the peak power in Eq. (8) and that the shorter
pulse duration is not preferred for stable KLM. This insight
is reasonable because a strong nonlinear loss increases the
fluctuation. As we discuss later, stable KLM with shorter
pulse durations can be realized by minimizing dq/dw0. The
derivative is dependent on the structure of the optical element
that causes the nonlinear loss. We discuss two types of optical
elements here: a hard aperture and a soft aperture.

FIG. 3. Effective nonlinear loss characteristics of the soft aper-
ture. (a) Calculated gain and effective nonlinear loss. wp = 6 μm,
Pabs = 500 mW, Isat = 50 kW/cm2, andP/Isat = 104 μm2. (b) Intra-
cavity average power dependence of the derivative of the effective
nonlinear loss.

D. Hard aperture

KLM using a hard aperture is an established method. This
technique is based on the loss difference between continuous-
wave lasing and the mode locking caused by a spatial aperture
in a cavity. The nonlinear loss is induced by the mechanical
iris, as illustrated in Fig. 2(a). The loss is then calculated as
follows:

Pq(H ) = 2P

πw2

∫ ∞

wa

e−2( r
w )2

2πrdr = Pe−2( wa
w )2

, (9)

where q(H ) is the nonlinear loss induced by the hard aperture
and wa is the radius of the hard aperture. Here, we assume
that the hard aperture is located on the beam waist, as men-
tioned earlier. Using Eqs. (8) and (9), we can then derive the
Q-switching criterion for hard-aperture KLM as follows:

TR

τinv
+ F̃

Fsat
> 2α

P̃pk

Pcr

(wa

w̃0

)2
e−2( wa

w0
)2

. (10)

Equation (10) indicates that a small beam radius when
compared with the aperture radius can greatly extend the
mode-locking stability range because of the exponential func-
tion on its right-hand side. In other words, the nonlinear loss
from the hard aperture must be small to prevent Q switching.
In contrast, a small nonlinear loss is disadvantageous for in-
duction of mode locking [21,22]. In this sense, there is thus
an appropriate nonlinear loss to both start the hard-aperture
KLM and suppress the Q-switched KLM.

E. Soft aperture

A soft aperture is an effective aperture induced using the
spatial gain profile, so we must therefore take the spatial
beam profile into account in Eqs. (1) and (2). To simplify the
discussion, we assume cylindrical Gaussian profiles for both
the pump beam and the cavity mode inside the gain medium.
We also assume an ideal four-level system, so the small signal
gain can be written as g0(r) = τinvσinvIpexp(−2r2/w2

p )/hνp,
where νp is the wave number of the pump beam, wp is
the pump beam radius, Ip = 2Pabs/πw2

p is the absorbed
pump intensity, and Pabs is the absorbed power [23]. Under
these assumptions at the steady state, the gain can then be
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FIG. 4. (a) Experimental setup. LD, laser diode; SMF, single-mode fiber; HWP, half-wave plate; DM, dichroic mirror; FS, fused silica;
CM, chirped mirror. (b) Optical spectra for various pulse durations. (c) Pump-power dependence of the optical spectrum. (d) Snapshots of the
pulse train during both stable and Q-switched operations. (e) Radio-frequency spectra of both the stable and the Q-switched pulse trains.

written as

Pg(w) =
∫ ∞

0

g0(r)

1 + I (r)τinv
Fsat

I (r)2πrdr

= P
hν

hνp

Ip

Isat

∫ 1

0

u
w2

w2
p

1 + 1
Isat

2P
πw2

du,

(11)

where ν is the wave number of the cavity mode and
Isat = Fsat/τinv is the saturation intensity. We substituted u =
exp(−2r2/w2) for the integration variable to simplify the
calculations.

Our discussion above is based on the nonlinear loss. Here,
we rewrite the gain as

g(w) ≡ gm − q(S)(w), (12)

where gm ≡ g(wp) denotes the gain when the pump beam
and the cavity mode are perfectly matched and q(S)(w) is the
effective nonlinear loss, which is the amount of mismatch
between the pump mode and the cavity mode. We assumed
that the gain medium and the Kerr medium are the same, so
the beam radius wg in the gain medium is same as the beam
radius w0 in the Kerr medium. Under these conditions, the
Q-switching stability limit can be derived as follows:

TR

τinv
+ F̃0

Fsat
> α

P̃pk

Pcr

w̃0

2

dq(S)

dw0

∣∣∣∣
w̃0

, (13)

dq(S)

dw0

∣∣∣∣
w̃0

= − hν

hνp

Ip

Isat

d

dw0

∫ 1

0

u
w2

0
w2

p

1 + 1
Isat

2P
πw2

0

du

∣∣∣∣∣∣∣
w̃0

, (14)
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TABLE I. Experimental parameters.

Parameter Value Reference

wp 6 μm Measured
Pabs 250 mW Measured at the intracavity power of 11 W
n0 1.9 Ref. [25]
n2 2.52 × 10−15cm2/W Ref. [25]
λ 1075 nm Measured
λp 976 nm Measured
σem 0.3 × 10−20cm2 Ref. [26]
τinv 0.85 ms Ref. [27]
β 0.88 Pulse shape of sech2
R 20 mm Curvature of the concave mirrors
L 0.5 mm Half length of the gain medium
l1 100 mm Length between concave mirror and end mirror
l2 l2 ∼ R/2 − L/n0 Length between concave mirror and gain medium(

A B
C D

) (
1 l1

0 1

)(
1 0

−2/R 1

)(
1 l2

0 n0

)(
1 0
0 n0

)(
1 L
0 1

)
Matrix elements

where F0 is the fluence inside the gain-Kerr medium. In spe-
cific cases where one of the terms on the left-hand side of
Eq. (13) is negligible, Eq. (13) can then be simplified to read

Pcrτ > αβτinvP̃
hν

hνp

Ip

Isat

w̃2
0w̃

2
p

(w̃2
0 + w̃2

p )2

(
Ĩ0

Fsat
� 1

τinv

)
, (15)

Pcrτ > αβFsat
πw̃2

0

2

w̃0

2

dq(S)

dw0

∣∣∣∣
w̃0

(
Ĩ0

Fsat
� 1

τinv

)
, (16)

where Ĩ0 = 2P̃/πw̃2
0 is the intensity inside the gain-Kerr

medium. Equation (15) is applicable where the population-
difference decay rate is dominant when compared with the
stimulated transition probability, while Eq. (16) is applicable
under the opposite condition.

In general, well-established lasers tend to follow Eq. (16)
because of its parameter ranges (i.e., the large σem − τinv

product of the gain medium and the high intracavity average
power). Because it is difficult to solve the integration given in
Eq. (14) analytically, we calculated the gain and the effec-
tive nonlinear loss numerically, as shown in Fig. 3(a). The
nonlinear loss curve has a minimum point near the perfect
beam-matching condition. In this situation, the cavity satisfies
the conditions of Eq. (16) easily, meaning that stable mode
locking with shorter pulse durations is then possible. The
spatial mode matching between the pump beam and the cavity
mode can be improved by optimizing the cavity design and the
alignment.

The integral in Eq. (14) includes the intracavity average
power. This parameter also plays a significant role because
it changes the function form of the effective nonlinear loss.
Figure 3(b) shows the intracavity average power dependence
of the derivative of the nonlinear loss. The data show that a
high average power makes this derivative much smaller. This
means that a high intracavity average power tends to stabilize
mode locking against Q switching in the case of Eq. (16).
Interestingly, the intracavity average power and the beam
mode matching in Eq. (15) show the opposite trend to that
in Eq. (16), so we must therefore select both the intracavity

power and the pump beam matching carefully, depending on
the condition of the gain medium.

F. KLM with saturable absorbers

Some laser systems with saturable absorbers have demon-
strated the Kerr-lens effect inside a laser crystal [24]. In this
case, the Q-switching stability limit of the laser must include
the effects of both the Kerr-lensing behavior and the saturable
absorber. Here, we express the nonlinear loss from Eq. (1)
as q + qA, where qA is the nonlinear loss caused by the
saturable absorber. Assuming that SESAMs can be regarded
as saturable absorbers, the Q-switching stability limit for
SESAM-based mode-locked lasers can be derived as follows:

TR

τinv
+ Ẽ

Esat
> α

P̃pk

Pcr

w̃0

2

dq

dw0

∣∣∣
w̃0

+ 	R
Esat,A

Ẽ
, (17)

where E is the pulse energy, 	R is the maximum change in
the nonlinear reflectivity, and Esat,A is the absorber saturation
energy [3]. It is clear that one of the terms on the right-hand
side is negligible in most laser systems. In the case where
the Kerr-lens effect is negligible, Eq. (17) then corresponds to
the Q-switching stability limit of SESAM-based mode-locked
lasers given in Ref. [3].

III. EXPERIMENTS AND DISCUSSION

We constructed a soft-aperture KLML to verify our theory.
The experimental setup is shown schematically in Fig. 4(a).
To investigate the boundary of the Q-switching instability,
we selected the 3 at. % Y2O3 ceramic as the gain medium;
this medium shows a strong Kerr effect because of its high
nonlinear refractive index (see Table I). The pump source
was a wavelength-stabilized 976-nm laser diode that was cou-
pled into a single-mode fiber, thus enabling high-beam-quality
focusing. Two dichroic mirrors with identical curvatures of
20 mm were used and two flat mirrors with negative chirps
(550 fs2 and 650 fs2) were placed at the edge of the cavity.
Both mirrors were placed at the same optical length from
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the curved mirror to simplify the calculations. A prism pair
was also inserted to vary the pulse duration without changing
the other cavity parameters. After cavity optimization, KLM
was achieved. The output beam was coupled to a single-mode
fiber that was connected to the measurement instruments.
The repetition rate of the pulse train was measured to be
600 MHz using a radio-frequency (RF) spectrum analyzer
(FSV, 40 GHz, Rohde & Schwarz). Table I lists the parameters
of our cavity. Within these parameter ranges, the stimulated
transition probability is dominant when compared with the
population-difference decay rate, meaning that Eq. (16) is
appropriate for comparison with our results.

According to Eq. (8) or Eq. (16), KLM with shorter
pulse durations causes the Q switching. We confirmed this
prediction by varying the insertion length of the prism,
which enables pulse duration tuning because the net cavity
dispersion is varied. Figure 4(b) shows the output optical
spectra obtained for various prism insertion lengths that were
measured using an optical spectrum analyzer (AQ6373, Yoko-
gawa). As the insertion length of the prism increased, the
optical spectrum broadened in tandem, which indicates that
the pulse duration in the cavity was shortened. When the pulse
duration reached 70 fs, the mode locking became unstable,
thus following the calculations using Eq. (16). Under this un-
stable condition, we varied the intracavity power by changing
the pump power. Figure 4(c) shows the pump-power depen-
dence of the optical spectrum. Increasing the pump power
caused the mode locking to become stable. This behavior is
also well matched with our calculation results, as shown in
Fig. 3(b). The timing of the pulse train and its RF spectrum
were measured to verify the time scale of the instability, with
results as shown in Figs. 4(d) and 4(e). We observed envelope
fluctuations due to Q switching with a timescale of a few hun-
dred kHz. This timescale corresponds to the typical timescale
for Q switching [5]. Note that each pulse train cannot be
observed in Fig. 4(d) because we used an oscilloscope with
a resolution bandwidth of 70 MHz, which lies below the pulse
repetition frequency of 600 MHz.

It is clear that the experimental data show the same trends
as our theory. We also compare the experimental data with
the results from the theory quantitatively. Three parameters,
i.e., the pulse duration, the intracavity power, and the spatial
mode matching between the pump beam and the cavity mode,
play significant roles in the laser stability when the cavity
configuration has been determined. Using these important
parameters, we drew a stability diagram for the soft-aperture
KLML using Eq. (16), as shown in Fig. 5. Here, we assumed
that Pabs ∝ P. The experimental data mentioned above were
also plotted in Fig. 5. As mentioned earlier, spatial mode
matching between the pump beam and the cavity mode ex-
tends the parameter range for stable mode locking. Therefore,
optimization of the cavity design and the alignment are among
the most important factors in stabilization of mode locking.
Note that it is difficult to determine the cavity mode diameter
accurately from the cavity geometry alone because the KLM
occurs near the edge of the cavity stability point. If the radius
ratio between the pump beam and the cavity mode w0/wp is
close to 1.5, our theory then explains the results well. These
results prove that KLM with shorter pulse durations can be
achieved by increasing the intracavity power or improving the
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spatial mode matching between the pump beam and the cavity
mode.

IV. CONCLUSIONS

In conclusion, we have investigated Q-switching instability
in KLMLs. We derived simple criteria for both hard and
soft apertures to suppress Q switching. The theory shows
that Q switching restricts the pulse shortening of the mode-
locked lasers. In a hard-aperture KLML, we found that the
nonlinear loss must be low to suppress Q switching. In the
well-established soft-aperture KLML, we found that high
intracavity average power was preferred for stable mode lock-
ing. Furthermore, spatial mode matching between the pump
beam and the cavity mode expands the parameter ranges for
stable mode locking, which means that both the design and
the alignment of the cavity are key factors for stabilization of
the mode locking. Our research contributes to the design and
control of various types of KLMLs, including high-repetition-
rate, high-pulse-energy, and short-pulse-duration lasers.

ACKNOWLEDGMENTS

S.K. acknowledges support from a Japan Society for
the Promotion of Science (JSPS) Grant-in-Aid (Grant No.
18J21520) and from the New Energy and Industrial Technol-
ogy Development Organization (NEDO).

APPENDIX: CAVITY BEAM MODE WITH THE
KERR-LENS EFFECT

The cavity spatial modes that are affected by Kerr lensing
were discussed by Haus et al. [20]. We assume that the cavity
geometry is as shown in Fig. 2. The complex beam parameter
at the reference cross section (0) in Fig. 2 is q0 = jz0, where
z0 = πnw2

0/λ is the Rayleigh range. In the absence of the Kerr
effect, the q parameter at the reference cross section (cav) can
be written as

qcav = Aq0 + B

Cq0 + D
, (A1)
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where A, B, C, and D are the matrix elements of the half-round
trip of the linear cavity.

The q parameter when passing through a Kerr medium with
thickness L can be represented as [20]

qK
L = q0 + L + δqK , (A2)

δqK = −K
2z0L

z2
0 + L2

(z0 − jL), (A3)

where K = P/Pcr is the Kerr strength. By assuming the input
q parameter to be qK

0 = q0 + δqK , we can then treat the Kerr
effect using a standard ABCD matrix analysis.

The beam curvature at the reference cross section (cav)
should be equal to the curvature of the end mirror (1/R).
Therefore, the following boundary condition should hold:

1

R
= Re

[
1

qcav + δqK
cav

]
= Re

[
1

qcav

]
− Re

[
1

q2
cav

δqK
cav

]
,

(A4)
where δqK

cav represents the change in the q parameter at the
end mirror. Because Re[1/qcav] = 1/R, the second term on the
right-hand side of the equation must be zero. This condition
can be described as

0 = Re

[
1

q2
cav

dqcav

dq0

(
δqK + jδz0

)]
, (A5)

This means that the Kerr-induced change must be compen-
sated by changing the cavity mode z0. Using Eqs. (A3) and
(A5), we found that the Kerr-induced change in the cavity
mode, δz0, can be described as

δz0

z0
= −αK, (A6)

α = 2

1 + ( z0
L )2

(
1 + z0

L

Re
[

1
q2

cav

dqcav

dq0

]
Im

[
1

q2
cav

dqcav

dq0

]
)

, (A7)

Using Eq. (A1), Eq. (A7) can be written as Eq. (7) in Sec. II C.
If the end mirror is a plane mirror, then Eq. (7) can be written
using the relation z2

0 = −BD/AC as

α = 2

1 + ( z0
L )2

(
1 − AD + BC

2LAC

)
, (A8)

The expressions in Eqs. (A6) and (A8) are very similar to the
equations given in Ref. [20].

There are three differences between our formalism and that
given in Ref. [20]. First, we considered the beam radius w0

inside the Kerr medium rather than outside the Kerr medium.
Second, δqK represents a pure Kerr-lensing effect, whereas the
insertion of a bulk Kerr medium was considered in Ref. [20].
Third, we considered the end mirror with an arbitrary radius
of curvature, and not a plane mirror alone. These features are
helpful in the development of our theory.
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