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Propagation of light through an amplifying honeycomb photonic lattice
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We consider light propagation through a ballistic amplifying photonic honeycomb lattice below the lasing
threshold. Two sublattices of the system are formed by waveguides with different complex dielectric permittiv-
ities, which results in the non-Hermitian Dirac equation for electromagnetic fields. We reveal that there exists a
critical length of the amplifying region for which the photonic lattice exhibits an amplifier-to-generator transition.
The transmission and reflection probabilities at the normal angle of incidence are strongly enhanced at a critical
length of the system. We also comment on the sensitivity of amplification to the direction of incident light and
the thickness of the amplifying region.
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I. INTRODUCTION

A two-dimensional (2D) photonic lattice (PhL) [1,2] has
emerged as a versatile platform in engineering the optical
analogs of most of the interesting quantum phenomena related
to the nontrivial band topology occurring in 2D condensed
matter systems [3–6]. In particular, it was first noted that
a periodic array of parallel waveguides, forming a triangu-
lar lattice, can split the dispersion curves by an absolute
gap in frequency [1]. Tamm surface waves were shown to
exist at frequencies within the band gap for certain lattice
terminations [7]. It was later shown that photonic crystals
might have Dirac points in the band structure at certain
frequencies [1,2]. Analogs of the quantum Hall effect and
of the anomalous quantum effect have been proposed by
utilizing the interplay of broken spatial inversion and time-
reversal symmetries and the band-structure topology at the
Dirac point [2,8]. Reviews on the optical analogs of the elec-
tronic band structure and transport properties can be found in
Refs. [5,9–12].

Let us specify that the scattering phenomena in a Dirac
material such as graphene differ fundamentally from the elec-
tronic system described by a quadratic band structure [13,14].
In a certain regime of parameters, the Dirac electron can fully
tunnel through the potential barrier without any reflection, a
phenomenon known as Klein tunneling. A photonic analog of
Klein tunneling was also investigated in PhL and a transition
from unit transmission to full reflection of the electromagnetic
(EM) wave with respect to the band-structure deformation
was found [15]. The effects of the interfacial coupling be-
tween air media and a PhL on the EM wave transmission
through a PhL was also investigated [16]. The possibility of
a negative refractive index has recently been predicted by
studying EM wave transmission though the driven-dissipative
background [17].

However, detailed studies of the Klein tunneling process of
an EM wave through a 2D honeycomb PhL with an amplify-

ing background are lacking. The effect of such a background
on the EM wave transmission through photonic crystals has
already attracted intense research interests after the theoretical
proposals of a parity-time (PT ) symmetric laser absorber [18]
and a laser as a coherent perfect absorber [19]. This has further
been boosted by a series of works which are reviewed, for
example, in Ref. [11]. Very recently, several artificial tech-
niques of imparting non-Hermiticity in the 2D honeycomb
PhL have been reported, which opened up the possibility of
an experimental realization of Klein tunneling through a loss
or gain medium [5,11,12].

Here, we take this advantage to investigate the EM wave
propagation through an amplifying PhL at the vicinity of a
Dirac point in the spectrum of a wave. The amplification
background is attributed to the imaginary part of the dielectric
constants of the waveguides. We find that there exists a critical
length of the amplifying region for which the transmission
and reflection probabilities diverge, i.e., resonance does occur.
Above the threshold, there exists a generator solution. For
the limiting case of the scattering problem for an imaginary
delta-function potential, the resonance condition is related to a
critical strength of the barrier. We also comment on the effect
of an imaginary gauge field on the transmission probability,
which is known to exponentially suppress transmission in
preferred directions of light propagation [20,21].

II. NON-HERMITIAN HAMILTONIAN

We consider a 2D PhL in an x-y plane formed out of
cylindrical waveguides aligned parallel to the z axis. These
waveguides are arranged in a way to form a hexagonal cross
section, mimicking the graphene geometry by replacing each
sublattice point with a waveguide. The 2D cross section of the
PhL is described by a frequency-dependent dielectric constant
εω(x, y) which is periodic in the x-y plane. We consider a
simple setup which consists of two regions with positive and
real dielectric permittivities (regions I and III) separated by an
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amplifying region II of length Lx. The interior of the waveg-
uides in region II has a complex dielectric permittivity, which
describes the response of oscillating dipoles of frequency ω0.

Here, in order to derive the wave equation for the prop-
agation of an EM field in a photonic honeycomb lattice, we
follow Refs. [1,22] for explicit derivations. Let us start with
the Helmholtz equation for the z component of the EM field
∼Ez(x, y)e−iωt , passing through the PhL, as[

ε−1
ω (x, y)∇2 + ω2/c2]Ez(x, y) = 0, (1)

where c is the speed of light. In regions I and III, the pe-
riodic arrangement of waveguides allows us to employ the
Bloch theorem. The field component Ez on the honeycomb
lattice can be written using irreducible singlet and doublet
representations for two sets of inequivalent corners of the
hexagonal first Brillouin zone. The doublet states form a Dirac
point, while nondegenerate singlet states are well separated in
frequency from the Dirac points and will be ignored. One can
show that the field satisfies the Dirac-like eigenvalue equation
(see Ref. [5] for a review)

(� + ivσ · ∂)E = 0, (2)

where � = (ω2 − ω2
D)/ωD in which ωD is the frequency of

the band touching point, v is the velocity term, and σx,y,z

are the Pauli matrices. Note that the above Dirac-like band
structure appears for both modes [6]: the transverse electric
(TE) mode (Ez = 0, H �= 0) and the transverse magnetic (TM
mode) (Ez �= 0, Hz = 0), but at different frequencies (ωD)
with a different velocity parameter (v).

The optical medium with a loss and gain background
might be described by a non-Hermitian Dirac Hamiltonian,
whose unique feature is the emergence of exceptional points
or lines, where the complex frequency eigenvalues coalesce
[11,23–25]. In region II, the complex dielectric constant inside
the waveguides results in complex additive terms in the wave
equation as (for details of the derivation, see, for example,
Ref. [22])

(�̃ + ivσ · ∂ + i� + iγ σz + iεσx )E = 0, (3)

where �̃ = (ω2 − ω̃2
D)/ω̃D denotes the frequency of the band

touching point in region II, ω̃D �= ωD. The negative (positive)
values of � determine the overall gain (loss) in the system,
while γ describes the difference in the amplification (dis-
sipation) between the two sublattices. Note that while the
imaginary term iγ σz violates both spatial inversion symme-
try as well as time-reversal symmetry, the i� breaks only
the latter. The last term, iεσx, is the imaginary gauge field
which might stem from an imaginary magnetic flux [20]. In
what follows, we consider an amplifying system � < 0 with
|�| > |γ |, |ε| and shall comment further on the other cases.

III. SCATTERING THROUGH AMPLIFYING MEDIA

Let us now discuss how the amplifying background affects
the ballistic transmission of an EM wave through a PhL. We
consider the standard scattering problem by seeking for trans-
mission and reflection probabilities of the incident radiation
in the geometry, as shown in Fig. 1. We shall assume that
the wave vector parallel to the interfaces is conserved as well
the radiation frequency at the Dirac point, namely ω = ω̃D.

FIG. 1. Schematic sketch of the device. Two different colors are
used to denote the A and B sublattice (here, waveguides). The waveg-
uides in region II, of length Lx , are embedded into a non-Hermitian
background for which different colors are used. Regions I and III are
considered to be identical and quite longer than region II. In region
II, the waveguides are filled with media described by a complex
dielectric permittivity.

The problem is analogous to the scattering problem through a
rectangular potential barrier in graphene [13,14], except that
the real potential barrier is replaced by a complex one.

The eigenstates in regions I and III corresponding to Eq. (2)
can be written, respectively, as

E1(x, y) = [nχ+eikxx + rχ−e−ikxx]eikyy,

E3(x, y) = tχ+ei(kxx+kyy), (4)

where the spinor part is given by χ± = [1, v(±kx + iky)/�]T .
The reflection and transmission amplitudes are denoted by r
and t . The wave vector can be parametrized with the angle of
incidence as vkx = |�| cos θ and vky = |�| sin θ .

Inside the amplifying region II, the propagation of light is
dominated by the evanescence mode at ω = ω̃D. The eigen-
state corresponding to Eq. (3) can be written as

E2(x, y) = [aψ+e−κx + bψ−eκx]eikyye−εx/v, (5)

where the spinor part of the solution is given by ψ± =
[1, v(±κ + ky)/(� − γ )]T and κ can be determined from

vκ =
√

v2k2
y + �2 − γ 2. The effect of γ on backscattering at

the normal angle of incidence can be seen from the spinor
structure of the solution.

Note that unlike the case of a Hermitian scattering problem,
here the energy of the incident flux is not conserved. It is
rather amplified or absorbed which can be expressed by the
continuity equation as [26,27]

∂ j

∂x
+ ∂N

∂t
= 2E†

2 (� + γ σz + εσx )E2. (6)

Here, j and N denote the energy flux density and the wave
intensity density of the EM wave, respectively. The right-hand
side of the above equation defines the increase or decrease
of incident flux density while passing through region II. The
degree of amplification can be quantified by a coefficient
[26,27] as

α(θ ) = jt − jr
ji

− 1 = 2

v cos θ

∫ Lx

0
E†

2 (� + γ σz + εσx )E2dx,

(7)

where ji, jr , and jt are the incident, reflected, and transmitted
flux densities, respectively.
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Using the continuity condition for the wave function across
the interfaces at x = 0 and x = Lx, one has

nχ+ + rχ− = aψ+ + bψ−,

aψ+e−κLx + bψ−eκLx = tχ+eikxLx eεLx/v. (8)

The above two equations can be solved to obtain the transmis-
sion probability T = tt∗/n2 as

T (θ ) = [vκ cos θ/ sinh(κLx )]2e−2εLx/v

[� + vκ cos θ coth(κLx )]2 + �2 sin4 θ
. (9)

The reflection probability R = rr∗/n2 is given by

R(θ ) = �2 sin2 θ + (γ cos θ + � sin θ )2

[� + vκ cos θ coth(κLx )]2 + �2 sin4 θ
. (10)

Taking the difference of energy flux between the left and right
regions, one notes α(θ ) = T (θ ) + R(θ ) − 1.

Let us discuss the behavior of the transmission and reflec-
tion probabilities. At γ = 0 and normal incidence of light, the
reflection probability is zero, while the transmission through
amplifying media increases compared to unity, respectively,
as T (0) = e2(|�|−ε)Lx/v . The backscattering effect of γ can
be seen in the appearance of the resonance in transmission
probability at the normal angle of incidence. This is in contrast
to the electron Klein tunneling problem in graphene [13,14].
Indeed, in the amplifying media at � < 0, one obtains

tanh
(Lx|�|

v

√
1 − γ 2/�2

)
=

√
1 − γ 2/�2. (11)

The solution of the above equation describes the situation
of the generator threshold, at which region II acts as a
source of the radiation in the absence of the incident field,
i.e., at n = 0. At |�| � |γ | the threshold length of the sys-
tem logarithmically diverges with the decrease of |γ | as
Lx,cr ≈ (v/|�|) ln |2�/γ |, while at

√
�2 − γ 2Lx/v � 1 one

has Lx,cr ≈ v/|�| and the transmission probability at the nor-
mal angle of incidence is enhanced as

T (0) = e−2ε/|�|

(1 − |�|Lx/v)2
. (12)

The reflection probability at the normal angle of incidence
is strongly increased at the vicinity of threshold R(0) =
(�/γ )2/(1 − |�|Lx/v)2, which is opposite to the reflection-
less Klein tunneling through graphene lattice in the Hermitian
case. The system becomes a generator if Lx > Lx,cr, so that
there are finite solutions for R(0) and T (0) at vanishing inci-
dent radiation.

We plot the transmission and reflection probabilities in
Fig. 2 under an amplification background at the vicinity of the
critical length. Both T (θ ) and R(θ ) are enhanced at the critical
length as show in Figs. 2(a) and 2(b), respectively. Moreover,
notice that R(θ ) is not symmetric with respect to the angle of
incidence due to the term iγ σz in Eq. (3), which indicates that
the reflected wave picks up an additional phase from the small
imbalance in loss and gain between two waveguides. This
asymmetry in reflection probability is a direct manifestation
of inversion symmetry breaking. The asymmetry decreases
with reducing the length Lx and the frequency �, which can
be seen from Eq. (10). Changing the sign of γ leads to a
mirror symmetric plot of the angle dependence of reflection
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FIG. 2. (a) Transmission and (b) reflection probabilities as a
function of the angle of incidence θ under an amplification back-
ground. The different lengths are taken in units of Lcr = v/|�| and
�/|�| = 5 and ε = 0. The case with negative γ is described by the
mirror symmetric plots.

probability. So far we study the case �̃ = 0. We note that
the deviation of �̃ from the zero value inside the amplifying
region suppresses the amplitude of the resonance as shown in
the plots of T (�̃, θ ) and R(�̃, θ ) in Fig. 3.

Finally, the amplitude of the transmission probability is
sensitive to the direction of the incident wave due to the
complex term ε [20,21]. Note that expressions in Eq. (9) are
obtained for the wave incident from the left side. To find
the transmission probability of the wave incident from the
right, one has to substitute e−2εLx/v → e+2εLx/v in Eq. (9).
At |ε|Lx/v > 1, one of the two scattering processes shall be
exponentially suppressed, although the resonance condition
Eq. (11) is independent on ε.

The peak in T (θ ) and R(θ ) gets split into two with a further
increase of length beyond the critical value. This case cannot
be described by the solution of the linear equation and the
saturation has to be taken into account. The dielectric con-
stant depends on the photon flux density i� → i�(1 − E†ηE ),
where the components of the matrix η describe saturation of
the stimulated emission [5,11]. Let one keep γ and ε fixed
and tune the pump |�| over the threshold value |�cr| defined
by Eq. (11). Above the threshold, the field in the middle region
is given by E2 = aψ , with

ψ =
{
ψ+e−κx + |�|

γ
[
√

1 − γ 2/�2 − 1]ψ−eκx

}
eikyy−εx/v,

(13)
where the weak nonlinearity 0 < E†ηE < |γ /�| determines
the amplitude of the solution,

|a|2 = (1 − |�cr/�|)
∫ Lx

0 dx|ψ |2∫ Lx

0 dx|ψ |2(ψ†ηψ )
, (14)

FIG. 3. (a) Transmission and (b) reflection probabilities are
shown in the plane of (�̃/|�| − θ ) at the length Lcr = v/|�|. All
other parameters are the same as in Fig. 2.
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FIG. 4. Resonance in (a) transmission and (b) reflection prob-
abilities. Here, dcr ∼ v/|�| and all other parameters are same as
in Fig. 2.

where |�/�cr| are the coefficients of the excess of the pump
over the threshold value.

IV. THIN SCATTERING REGION

Let us also comment on the case when the amplifying
region is very thin Lx → d and strong so that |�|, |γ | � |�̃|,
where d = v/� is the short-range cutoff with the frequency
width �, within which the model of a Dirac-like spectrum
is valid. This can be realized by plugging all the waveguides
along the y direction at x = 0. Here, the transmission proba-
bility is given by

T (θ ) =
[ vκ cos θ/ sinh(dκ )

� + vκ cos θ coth(dκ )

]2

e−2εd/v, (15)

and the reflection probability (for ε = 0) can be obtained as

R(θ ) = �2 sin2 θ + γ 2 cos2 θ

[� + vκ cos θ coth(dκ )]2
. (16)

The resonance survives in the thin limit Lx → d , pro-
vided the condition d|�|/v ∼ 1 is satisfied. However, apart
from the normal incidence, the resonance can also be seen
for any arbitrary angle, provided vκ cos θc = � tanh(dκ ) for
the amplifying background. The amplitude of the solution
inside the thin region can also be obtained by incorporating
the above-mentioned limits. We plot the transmission and re-
flection probabilities in Fig. 4, which shows that the resonance
can occur at a normal angle of incidence as well as away
from the normal incidence for different parameters. It is also
interesting to note that the width and height of the resonance
peak are much sharper in contrast to the wide junction case
[see Fig. 2], which is attributed to the extra term �2 sin4 θ in
the denominator of Eq. (9). It can also be clearly seen that
the effects of the imaginary gauge field (ε) remain insensitive
to the thickness of the junction. The reflection probability is
fully suppressed at normal incidence without inversion sym-
metry breaking, γ = 0.

V. DISCUSSION

We shall also comment on the propagation of the radiation
through the photonic honeycomb lattice with dissipation at
� > |γ |, |ε|. Suppose that the incident light is coming on the
dissipative media from both regions I and III. The resonance
condition at which the amplitude of the reflecting waves van-
ishes can be understood from the fact that the divergence of
T (0) in Eq. (9) depends on the sign of � cos θ . Note that

the spinor of the wave incident on the media from the right
side acquires a sign reversal of cos θ → cos(π − θ ). Hence
the pole in the amplitude of the incoming waves takes place
at positive �. In this case the system acts as an absorber of
the radiation above the threshold Eq. (11) with an absorption
coefficient −1 < α < 0.

The interplay of non-Hermiticity and topology in 2D PhL
has been extensively considered in the last decade [5,12] in-
cluding the PT -symmetric case with balanced loss and gain
(see, for example, Refs. [22,28]). However, resonances in the
ballistic transmission of light through a honeycomb PhL with
such a background have been overlooked so far. We consider a
honeycomb PhL under a uniform amplification or dissipation
to each waveguide, i.e., a broken PT -symmetric lattice. The
PhL can provide emission or perfect absorption of light above
a certain threshold length. Here, the resonant feedback is
due to an inversion symmetry breaking term in the Dirac-like
wave equation. We should also mention that the imaginary
gauge field has no impact on the generator threshold in our
model, although it leads to an exponential enhancement or
suppression of the transmission probability, which is sensitive
to the direction of incident light. The effect of the imaginary
gauge field remains robust to the thickness of the amplifying
junction.

It is also instructive to consider the effect of multiple
light scatterings at a pointlike defect, which is described by
a potential iγ σzδ(r − ri ) at a position r = ri. The Green’s
function of Eq. (3) at ε = 0 and under the substitution iγ σz →
iγ σzδ(r − ri ) in the presence of the single impurity satisfies
an equation

[�̃ + i� + iγ σzδ(r − ri ) + ivσ∂r]G(r, r′) = δ(r − r′),
(17)

where the Green’s function is normalized to ω2
D/c. To

obtain the possible localized or trapped states, we solve
the impurity scattering problem by computing the poles
of the T matrix, which can be found from the equation
det[1 + iγ σzG(ri, ri )] = 0, where the bare Green’s function is
given by

G(ri, ri ) = − �̃ + i�

4πv2
ln

�2

(� − i�̃)2
. (18)

One obtains two equations for the poles,

(� − i�̃) ln
�2

(� − i�̃)2
= ±4πv2

γ
. (19)

At the Dirac point, in the limit of a large potential |γ | �
v2/�, the poles for both amplifying and dissipative media are
given by � = ±2πv2/γ ln |γ�/2πv2|.

Finally, besides the resonant feedback, it has been long
known that disorder might provide a feedback for generation
of light [29]. The properties of the random laser have been
extensively studied (for a review, see Ref. [30]). It would be
interesting to extend the above results to the light propagation
through disordered amplifying photonic honeycomb lattices.

VI. CONCLUSION

To conclude, we investigate the propagation of the elec-
tromagnetic wave through an amplifying region in a photonic
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honeycomb lattice. We reveal that there exists a critical length
of the amplifying region for which the transmission and re-
flection probabilities of the wave diverge at a normal angle of
incidence. The condition for the generator threshold is deter-
mined by the parameters associated with the lattice structure
and amplification background. The amplification is sensitive
to the direction of the incident wave in the presence of an
imaginary gauge field in the amplifying region. We also com-
ment on the resonant states in a thin scattering region. The
possible existence of localized states in the presence of a sin-

gle impurity is also discussed. Our investigation on resonance
might be realized in realistic setups, designed in honeycomb
photonic or plasmonic lattices [28,31], where such feedback
has been artificially imparted.
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