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Correlations in few two-component quantum walkers on a tilted lattice
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We study the effect of intercomponent interactions on the dynamical properties of quantum walkers. We con-
sider the simplest situation of two indistinguishable noninteracting walkers on a tilted optical lattice interacting
with a walker from a different component. The mediated effect of the third particle is then analyzed in the
backdrop of various controlling parameters. The interaction-induced two-particle correlations are shown to be
nontrivially affected by the particle statistics, choice of initial states, and tilt configurations of the lattice. Our
analysis thus offers an overall picture and serves as a starting point of a study of interacting multicomponent
quantum walkers.
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I. INTRODUCTION

The continuous-time quantum walk, where the particle
moves on a lattice under the action of a time-independent
Hamiltonian [1], has attracted a lot of attention in recent
years, especially due to its application in quantum informa-
tion processing and quantum computation [2]. Recently it has
also generated interest as a possible candidate as a quantum
simulator of dynamics of magnon excitations in ferro- or
antiferromagnetic solid-state systems [3–5]. Experimental re-
alizations of quantum walks are therefore of great importance
and form the basis of interesting real-world applications. For a
single walker, this has been realized in various setups, such as
spin systems [6,7], photonic systems [8,9], trapped ions [10],
and with neutral cold atoms in optical lattices [6,7,11]. The
last system is of pertinent interest as it provides a clean, coher-
ent, and controllable way to investigate quantum many-body
properties [12,13]. The optical lattices are nowadays a viable
candidate for simulating condensed matter systems [12–14],
which have been instrumental in studies of strongly corre-
lated many-body systems [15–22]. Microscopic control of
the Hamiltonian parameters via external fields in these se-
tups allows precise probing of more interesting situations
when instead of a single quantum walker, a larger number
of particles is considered [23,24]. It was argued that in the
presence of interparticle interactions, a many-particle quan-
tum walk may affect quantum interference depending on the
particle statistics [25] and therefore it also may have some
applicability in universal quantum computation schemes [26].
This path of exploration is even more intriguing when the
quantum walk is realized in the tilted lattice, i.e., when lo-
cal single-particle energies vary linearly with the site index.
Starting from the famous theoretical paper by Bloch [27],
it is known that on the single-particle level the lattice tilt
may lead to a counterintuitive and quite spectacular effect
of spatial oscillations of a single-particle density (known as
Bloch oscillations). As argued in [27], whenever transitions to
higher bands are significantly suppressed by energy conserva-
tion arguments, action of the linear force results in oscillation

of the single-particle quasimomentum distribution in the first
Brillouin zone. These oscillations are reflected in analogous
oscillations of the particle wave-packet position. This predic-
tion was awaiting experimental confirmation over 60 years
and was first demonstrated for electrons moving in a semi-
conductor superlattice [28]. Subsequent realizations in optical
lattice experiments were first performed with noninteracting
neutral atoms [29,30]. Quite recently, the Bloch oscillations
phenomena has been used for precision measurements of
force [31–34] and in coherent matter wave transport [35–37].
The role of interparticle interactions between indistinguish-
able walkers in the tilted lattice has been deeply explored in
the literature [38–47]. However, some questions still remain
open and appropriate analysis is required. An important one of
them is related to the problem of quantum walk realized in the
tilted lattice by a multicomponent system and to the nonob-
vious interplay between quantum statistics, initial state, tilt
structure, as well as intra- and intercomponent interactions. To
make the first step to fill this gap, in our work we focus on the
simplest multicomponent system capturing all these features,
i.e., the case of three particles: Two indistinguishable fermions
or bosons belonging to the component A and a third particle
of fundamentally distinguishable flavor B. We study differ-
ent dynamical properties of the system by focusing mostly
on quantum correlations between noninteracting A particles
induced by interactions with a third B walker. In this work
we focus solely on the tilted lattice in which the dynamics is
restricted to a finite spatial range. This dynamically induced
confinement leads, in contrast to a ballistic spread in a uniform
lattice case, to more pronounced effects of interactions and
particle statistics.

This paper is organized in the following way. We provide
the details of the system and the Hamiltonian in Sec. II. In
Sec. III we analyze the dynamics of two identical particles
localized initially in distinct sites and highlight the differences
forced by quantum statistics. Then in Sec. IV we introduce
an additional particle of different components and study its
impact on the dynamics. Here we also look for the effects of
particle statistics in the two-particle sector and uncover a role
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of the initial state. Next, in Sec. V we show that interparticle
correlations may crucially depend on the tilt structure. Finally,
we summarize and conclude in Sec. VI.

II. THE SYSTEM STUDIED

In our work we consider the system of three quantum
walkers experiencing the same one-dimensional tilted lattice
potential. We assume that two of them are indistinguishable
(bosons or fermions) and belong to component A, while the
third one belongs to the other component B. In the simplest
case, when particles move in the lowest band of the lattice,
the Hamiltonian of the system can be written in the tight-
binding approximation as the following single-band Hubbard
Hamiltonian [48,49]:

Ĥ =
∑

i

[ − Ji(â
†
i âi+1 + b̂†

i b̂i+1 + H.c.) + Ei(n̂Ai + n̂Bi )
]

+ U
∑

i

n̂Ain̂Bi + UA

2

∑
i

n̂Ai(n̂Ai − 1), (1)

where Ji and Ei characterize lattice geometry and determine
single-particle tunnelings and on-site energies, respectively.
Since we consider the simplest scenario of a tilted lattice,
in the following we set tunneling amplitudes Ji = J as site
independent. On the contrary, the local energies, although
component-independent, are linear in the site index, Ei =
F × i. The tilt parameter F being under experimental control
can be viewed as a constant force acting along the lattice.
By definition, operators âi and b̂i annihilate particles at site
i belonging to components A and B, respectively. Depending
on the quantum statistics, they obey intracomponent commu-
tation or anticommutation relations. At the same time, any
two operators acting in subspaces of different components do
commute. Since in our work we consider systems containing
only a single B particle, all the results presented are insen-
sitive to the intracomponent quantum statistics of operators
b̂i. For convenience, we introduced local number operators
n̂Ai = â†

i âi and n̂Bi = b̂†
i b̂i.

In our work we assume that the interaction part of the
Hamiltonian is dominated by local terms. This assumption
is particularly well justified for ultracold atomic systems in-
teracting mainly via short-range intra- and intercomponent
interactions. Note, however, that in the case of fermionic A
particles, a double occupation at any site cannot occur due
to the Pauli exclusion principle (nAi ∈ {0, 1} for any i). Thus
intracomponent interaction terms controlled by UA rigorously
vanish and only the intercomponent terms (controlled by U )
remain in play. In the case of bosonic A particles, additional
intracomponent interactions controlled by UA are possible. In
most of the cases studied here, we are interested in the case of
noninteracting A particles (UA = 0). In view of these remarks,
the Hamiltonian (1) is appropriately written for bosonic as
well as for fermionic particles.

III. DYNAMICS OF TWO PARTICLES

To make further analysis clearer, let us first make some
observations on the dynamics of two identical particles be-
longing to the component A initially occupying two different

sites near the center of the lattice, i.e., as the initial state
we take |�0〉 = â†

0â†
d |vac〉, where d �= 0 denotes the distance

between occupied sites. In this case the Hamiltonian (1) is
reduced to the single component and has the following form:

Ĥ =
∑

i

[−J (â†
i âi+1 + â†

i+1âi ) + F i n̂Ai]. (2)

It is very instructive to note that for the initial state considered
here, the time evolution of a whole single-particle density
matrix,

ρi j (t ) = 〈�(t )|â†
i â j |�(t )〉, (3)

where |�(t )〉 = e−iĤt/h̄|�0〉 is independent of the statistics,
i.e., it is identical for noninteracting bosons and fermions.
Indeed, the commutation relation

[Ĥ , â†
i â j] = J

[
â†

i (â j+1 + â j−1) − (â†
i+1 + â†

i−1)â j
]

+ F (i − j)â†
i â j (4)

is the same for both noninteracting particles. The expectation
values of this commutator and all the higher-order commu-
tators with the Hamiltonian in the localized initial state |�0〉
are insensitive to the particle statistics. Therefore, the single-
particle density matrix ρi j (t ) evolves identically for bosons
as well as for fermions. This means that any single-particle
measurement is not able to capture any dynamical difference
between both statistics if at the initial moment particles do
not occupy the same site. This result is quite counterintuitive,
since it is clear that tunneling to an already occupied neighbor-
ing site is blocked only for fermions. In Fig. 1 we display the
time evolution of the single-particle density profile γAi(t ) =
〈�(t )|n̂Ai|�(t )〉 [diagonal part of ρi j (t )] for two different tilt
values of the lattice and initial distance d = 2. Clearly visi-
ble characteristic spatial oscillations are exactly the same for
bosons and fermions, and their frequency depends only on
the tilt strength. Half of the oscillation period is given by
T1/2 = π h̄/F , and this is when the particles reach the farthest
part of the lattice. Note that this maximal distance from the
initial position decreases with increasing tilt strength, which
is in full agreement with previously obtained results [39].

The dynamical difference between bosonic and fermionic
systems is, however, well captured by higher-order correla-
tions. In the case of two-particle systems, one of them is

FIG. 1. Evolution of the single-particle density profile γAi for
two different tilt values of the lattice and initial distance between
occupied sites d = 2. Horizontal dashed lines indicate half time of
Bloch oscillation period T1/2. As argued in the main text, these results
are independent of the quantum statistics of A particles. Time is
measured in the natural unit of the problem, h̄/J .
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particularly important since it can be obtained directly by re-
peated instant-time measurements of particles’ positions—the
two-particle density profile

�i j (t ) = 〈�(t )|n̂Ain̂A j |�(t )〉. (5)

In this case the commutation with the Hamiltonian would
again have an identical operator form for bosons and fermions,
namely,

[Ĥ , n̂Ain̂A j] = J[â†
i (âi+1 + âi−1) − (â†

i+1 + â†
i−1)âi]n̂A j

+ Jn̂Ai[â
†
j (â j+1 + â j−1) − (â†

j+1 + â†
j−1)â j].

(6)

Subsequently, the evaluation of �i j (t ) requires determina-
tion of expectation values of this commutator (and its higher
orders), consisting of different two-particle operators generi-
cally having the following form:

â†
i âi′ â

†
j â j′ = â†

i â j′δi′ j ± â†
i â†

j âi′ â j′ , (7)

where the top and bottom signs are used for bosons and
fermions, respectively. It implies that whenever �i j is eval-
uated, normal-ordered two-particle operators will typically
generate different contributions in the localized initial state
for different statistics. This can be checked straightforwardly,
for example, by simply looking at the case i = j′ = 0, i′ =
j = d . As a consequence, the total initial expectation val-
ues are not the same anymore. It is also clear at this point
that for different initial states, i.e., for different distances d ,
different higher-order terms will interfere constructively or
destructively and thus will produce a specific d-dependent
correlation pattern. The pattern can be treated therefore as a
peculiar fingerprint of the initial distance d and the quantum
statistics. These different dynamical behaviors are clearly vis-
ible when two-particle profiles are compared at the half time
of a Bloch oscillation period, T1/2 (see Fig. 2). The effect of
particle statistics is also clear as, independent of the initial
distance d , two-particle densities are essentially different, not
only close to the diagonal of the doublon occupancy, which
is forbidden for fermions, but also in a whole spatial range
accessible to particles. At this point it is worth noting that
such a two-particle correlation dynamics has been extensively
studied for various other aspects in literature. For example,
in [25] the effects of particle statistics and next-neighbor in-
teractions were studied in absence of tilt, while the hard-core
boson counterparts with d = 1 in a tilted lattice were studied
recently in [5].

This significant difference between bosonic and fermionic
particles can be quantified with another quantity that is
important from a measurement point of view—the mean
distance between particles, D(t ) = ∑

i j |i − j| �i j (t ). The
bosonic enhancement results in a smaller mean distance be-
tween noninteracting bosons when compared to the fermionic
case. In Fig. 3 we present the mean distance D(t ) for the
particular initial state with d = 2. For a complete picture,
we also display the bosonic distance D(t ) when the on-site
repulsion term in the Hamiltonian controlled by UA is present.
For smaller values of UA, the interparticle interaction dephases
the Bloch oscillations [50], and the time at which the bosons
are maximally separated starts moving to the right. However,
this time of maximum separation starts decreasing again for

FIG. 2. Two-particle density profile �i j at the half time of a
Bloch oscillation period T1/2 with tilt value F/J = 0.2 for a system
of two noninteracting bosons (left) and fermions (right) initially pre-
pared in the state |�0〉 = â†

0â†
d |vac〉. Note that regardless of the initial

distance d , the distributions are significantly distinct for different
statistics.

stronger values of UA, as the dynamics starts to be dominated
by a single-particle physics again. It is clear that as the interac-
tion increases the mean distance for the bosons approaches the
fermionic case. In the limiting scenario of hard-core bosons
(UA/J → ∞) both statistics display the same behavior.

FIG. 3. Time dependence of mean distance D(t ) between non-
interacting A particles prepared in the state |�0〉 = â†

0â†
d |vac〉 with

d = 2 in the presence of tilt strength F/J = 0.2. Due to the bosonic
enhancement, bosons spread slower than fermions and only in the
limit of hard-core interactions (UA/J → ∞) are both statistics in-
distinguishable by this quantity. Note that for finite nonvanishing
interactions between particles the Bloch oscillations are slightly
slowed down and the system does not return exactly to the initial
state after the Bloch period.
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IV. INFLUENCE OF THE THIRD PARTICLE

After discussing the dynamical consequences of statistics
for indistinguishable particles, we now focus on a system of
three particles. In the following we assume that two particles
belonging to the A component (bosons or fermions) do not
interact with each other but their dynamics is affected by a
third B particle via an on-site interaction term of the form
U

∑
i n̂Ai n̂Bi. In this way we want to figure out how the dy-

namical features of two-particle correlations described above
are affected by the presence of an additional, fundamentally
different particle.

The role played by the third particle crucially depends not
only on interaction strength U but also on its initial state.
Therefore we consider a whole family of initial states of the
form of Gaussian wave packets localized exactly between A
particles. The initial configuration of the two Ap articles is
same as in the previous case. All it means is that the initial
state of the whole system reads

|�0〉 = N â†
0â†

d

(∑
i

e−|i−d/2|2/2σ 2
b̂†

i

)
|vac〉, (8)

where N is the normalization factor and σ determines width
of the component B wave packet. The limit of an ideally
localized B particle (σ = 0) is well defined only for even d
(the B particle is localized exactly at site i = d/2). Therefore
to capture also this limiting case, we focus mainly on the
d = 2 case in the following.

At this point it should be noted that in absence of interac-
tions, the dynamics of the Gaussian wave packet is reduced to
simple oscillations without change of the shape, provided that
the width σ is larger than the periodicity of the lattice [39,45].
On the contrary, when intercomponent interactions are present
(U �= 0), any nonzero σ introduces finite initial interaction
energy to the system.

Exactly as in the case of two particles, we inspect the
dynamics of the system during one Bloch oscillation (Fig. 4).
First, differences caused by the B particle are visible already
in the single-particle distribution of the A component γAi(t )
and the analogous quantity γBi(t ) = 〈�(t )|n̂Bi|�(t )〉 for B
particle [Fig. 4(a)]. However, distinctions between fermionic
and bosonic A particles are still not substantial. Therefore we
capture the differences caused by interactions and quantum
statistics at the moment when they become the largest, i.e.,
at the half time of the Bloch oscillation period T1/2 with the
tilt strength fixed at F/J = 0.2. The two-particle density pro-
file �i j (t ) and the intercomponent density correlation 	i j (t ),
defined as

	i j (t ) = 〈�(t )|n̂Ain̂B j |�(t )〉 (9)

at T1/2 in the case of strong intercomponent interactions
U/J = 10 and delocalization σ = 5, are shown in Fig. 4(b).
We compare this with �i j (t ) and 	i j (t ) at T1/2 computed for
the case when the B particle is perfectly localized (σ = 0) in
Fig. 4(c).

Depending on the quantum statistics of A particles and
the width of the Gaussian packet σ , different correlations
are enhanced. When the B particle is precisely localized
[σ = 0, Fig. 4(c)], there is no significant difference be-

FIG. 4. (a) Evolution of the single-particle density profiles for a
system of two bosonic (left) and fermionic (right) A particles initially
localized at distant d = 2 and interacting with B particle (U/J =
10) being delocalized with σ = 5. (b) Corresponding two-particle
density profile �i j of A particle and the intercomponent correlation
	i j at the half time of a Bloch oscillation period T1/2 for the same
conditions. (c) For contrast, �i j and 	i j at T1/2 when the B particle
is initially perfectly localized (σ = 0). Note that for delocalized B
particles a specific “crosslike” structure in �i j is enhanced together
with the appearance of partial pairing. Compare with Fig. 5 for other
initial distances d . In all plots tilt strength F/J = 0.2.

tween bosonic and fermionic particles. It means that strong
interaction with the B particle localized exactly between the
A particles changes the behavior considerably, even in the
absence of initial interaction energy. Significant differences
caused by the statistics, which was observed previously (com-
pare with Fig. 2), are almost completely blurred. In both cases
the probability of finding particles on opposite sides of the
central site is the largest. On top of this clear correlation,
one finds also a very weak “crosslike” structure emerging
in the density profile. It uncovers additional enhancement of
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FIG. 5. Two-particle density profile �i j at the half time of a
Bloch oscillation period T1/2 with tilt strength F/J = 0.2 for a system
of two bosons (left) and fermions (right) interacting (U/J = 10) with
the B particle initially delocalized with σ = 5. The initial distance
between localized A particles is d = 1 and d = 3 (top and bottom
rows, respectively). Compare with Fig. 4 for other initial delocaliza-
tion σ of the B particle.

probability of finding one particle near the center site with the
second particle smeared over a whole available space.

The situation is significantly different when the B particle
is initially delocalized over several sites [σ = 5, Fig. 4(b)].
For both statistics of A particles we observe a noticeable
enhancement of the “crosslike” structure in the distribution.
Moreover, the intercomponent repulsion causing strong con-
finement of the intercomponent density correlation, 	i j (t ),
supports the pairlike formation of A particles towards the left
edge of the lattice (direction favored by the tilt of the lattice).
We checked that this effect remains the same if the sign of
intercomponent interactions is changed to attractions. It is
also independent of the initial distance between particles d ,
provided that the width σ is large enough to make mediation
between A particles possible (see Fig. 5). This result evi-
dently shows that a specific attraction between noninteracting
particles is dynamically induced when particles do interact
with other particles, which necessarily needs to be sufficiently
delocalized.

To get a better understanding of these nontrivial
correlations appearing in the system, besides computing the
two-particle density profiles �i j , we also consider the density
profile of doublons ηi(t ). This is given by the probability
density of finding at least one A particle and B particle together
at the same site. In the case of fermionic particles it can be cal-
culated straightforwardly as ηi(t ) = 〈�(t )|n̂Ain̂Bi|�(t )〉, i.e.,
it is the diagonal part of the intercomponent density 	i j (t ).
For bosons, due to possible double occupancy of A particles,
the definition is slightly modified and in the case studied can
be expressed as ηi(t ) = 〈�(t )|nAinBi(3 − nAi )/2|�(t )〉. It is
important to note that due to a well-known halving of the
time period of the Bloch oscillation for doublons [40,41],
the doublon density is particularly very straightforward at
time T1/2. Exactly at this moment, when the single-particle
density peaks are maximally distant from the origin, the
doublon density ηi is nonzero only in the vicinity of the

FIG. 6. Density distributions for the strongly interacting system
(U/J = 10) initially prepared in the state (8) with d = 2 and σ = 2
(top row), σ = 5 (bottom row), and at the half time of Bloch period
T1/2 with tilt strength F/J = 0.2. The dashed green line and red solid
lines correspond to the single-particle density of A particles γAi and
the doublon density ηi, respectively.

central site. In Fig. 6 we illustrate this effect for d = 2
and different initial widths σ of the B-particle wave
packet and different statistics of A particles (solid red
lines for doublon density ηi and dashed green lines for the
single-particle density γAi). This specific composition of
the doublon density and the single-particle profile results
in the final two-particle correlation of A particles. The
“crosslike” structure is triggered mostly by the doublon,
while the remaining part at the edges of the system comes
from the distribution of the remaining A particle. The height
of the peak in the central region, for the doublon density ηi(t )
as well as for the single-particle density γAi(t ), is dependent
on the initial overlap of A- and B-particle distributions, which
is the highest at around σ = 2 for this particular initial state
(d = 2). Therefore, for larger values of σ these peaks get
diminished.

V. ROLE OF THE TILT STRUCTURE

As we have shown, the two-body correlations between
noninteracting A particles forced by the presence of the
additional particle depends crucially on the initial state. In-
terestingly and quite counterintuitively, these correlations are
less sensitive to the initial distance between particles and their
statistics provided that intercomponent interactions are strong
enough. For completeness, we will now focus on the role of
tilt structure in these correlations. One possible way of this
occurring during a realization can come from inhomogeneity
in the slope of the linear potential arising from experimental
imperfections. To provide a concrete example, let us consider
a one-dimensional lattice that is not homogeneously tilted but
the tilt becomes inverted around the center of the initial state,
i.e., a lattice having local energies of the form Ei = −F |i −
i0|. Such an exotic tilt, although simple for theoretical consid-
eration, may be demanding for experimental manufacturing.
However, in view of recent progress in creating very different
lattice configurations, it is not impossible. One particular way
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of achieving a change of the slope could be engineered by
initiating the particles at the center of a symmetric confine-
ment. Then the dynamics can studied after quenching the
trap to an inhomogeneous double-well setting where the slope
changes strongly near the center. Another possibility is to use
the standard magnetic field gradient [44] but with additional
microscopic spatial dependence of the field that has been used
in the past for imaging [51]. At this point it is worth pointing
out that our arguments on the dynamics of two noninteracting
particles presented in Sec. III remain valid: At any moment,
any single-particle quantity persists insensitive to the quantum
statistics provided that initially particles are localized in two
different sites of the lattice.

As the simplest example, we focus on the three-particle ini-
tial state (8) with d = 2 and σ = 5 centered exactly around the
middle point of the lattice (i0 = 1) with intercomponent inter-
action U/J = 10 and tilt strength F/J = 0.2. The dynamical
situation of such a configuration is presented in Fig. 7. Exactly
as previously, columns correspond to different statistics of A

FIG. 7. Dynamics for a lattice that is tilted in opposite directions
(Ei = −F |i − i0| with F/J = 0.2), with two A particles localized
on both sides of the center (d = 2), interacting with the B particle
centered around the middle (U/J = 10, σ = 5). Evolution of the
single-particle density profiles γAi and γBi are shown in the first two
rows. The next three rows respectively show the two-particle density
profile �i j , the intercomponent correlations 	i j , and the doublon
density ηi (red line) with the single-particle density γAi (dashed green
line) at the characteristic time T1/2.

particles. The single-particle density profiles, respectively for
A and B particles, are displayed in the first two rows. The third
row presents the two-particle density profile �i j at the half
time of a Bloch oscillation period T1/2. It is clear that, exactly
as in the previous case, all the features of the system are
almost the same for both statistics. However, the two-particle
correlation is strongly influenced by the change of the lattice
configuration—breaking of the lattice supports the “crosslike”
structure with a magnification of density exactly in the center
of the system. This increased concentration of A particles in
the center is also clearly visible in the single-particle density
profile (bottom row, dashed green line). Note that in this
case it is not triggered by the existence of doublons, which
is highly suppressed (red line), but confined in the center,
as is the intercomponent density correlation 	i j (t ). As the
two-particle correlations are substantially different from the
previous case (see Figs. 4 and 5), we systematically change
the tilt configuration from the uniform structure (consid-
ered in the preceding sections) to the “broken” configuration
(reported in this section) and compute the correlations. As
the correlation pattern changes, we see the doublon peak
gradually diminishing at the center of the lattice, where the
single-particle density consequently increases. Although not
displayed here, this behavior is confirmed in our calculations.

VI. CONCLUSION

We have analyzed the dynamics of the simplest system
of two-component quantum walkers on a tilted optical lat-
tice and studied the effect of particle statistics, interaction,
choice of initial states, and tilt structure, which lead to three
main findings. First, single-particle measurements cannot dis-
tinguish the quantum statistical nature of two noninteracting
walkers during evolution from initially localized states. One
must perform two-particle measurements to differentiate be-
tween the particle statistics. Second, interaction with the third
walker from a different distinguishable component can in-
duce nontrivial correlations between two walkers which can
be controlled by changing the initial states. As our third
and final result, we show that the two-particle correlations
can also be significantly modified by changing the tilting
structure of the lattice. Implementation of a nontrivial tilt
is a challenging task; however, with the ever-growing stan-
dard of ongoing optical lattice experiments with a controlled
number of cold atoms, all the results presented in this work
can be realized and benchmarked. Although the three-particle
results presented in this study are numerical in nature, ex-
tensions can be made in the future to gain some analytical
insights within perturbative approach in the strong inter-
action limit. Furthermore, this study can be expanded to
probe the effect of intracomponent interactions, next-neighbor
interactions (both inter- and intracomponent in nature), single-
particle state preparations, and a generalized study of the
dynamics of multicomponent quantum walkers, to name
a few.
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