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Simulating cosmological supercooling with a cold-atom system
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We perform an analysis of the supercooled state in an analog to an early universe phase transition based
on a one-dimensional, two-component Bose gas. We demonstrate that the thermal fluctuations in the relative
phase between the components are characteristic of a relativistic thermal system. Furthermore, we demonstrate
the equivalence of two different approaches to the decay of the metastable state: specifically a nonperturbative
thermal instanton calculation and a stochastic Gross-Pitaevskii simulation.
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I. INTRODUCTION

In its early stages, our universe was filled with hot, rel-
ativistic plasma that cooled through all of the major energy
thresholds of fundamental particle physics, undergoing sev-
eral changes of phase between different physical regimes. At
the most extreme, the universe may have undergone first-order
transitions, characterized by metastable, supercooled states
and the nucleation of bubbles. Bubbles of a new matter phase
would produce huge density variations, and unsurprisingly
first-order phase transitions have been proposed as sources of
gravitational waves [1,2] and as sources of primordial black
holes [3,4]. Despite the importance of this phenomenon, we
have no experimental test of the basic theory. In this paper,
we propose that a thermal supercooled state, analogous to a
relativistic system, can be realized in a Bose gas experiment.

Phase transitions in fundamental particle physics can be
associated with a Klein-Gordon field in an effective potential.
At high temperatures, the field fluctuates about the mini-
mum value of the potential representing a high-temperature
phase. As the temperature drops, the minimum of the po-
tential changes to represent the low-temperature phase, but
the field can become trapped in a metastable state. Extreme
supercooling can even lead to a zero-temperature metastable
“false vacuum” state.

The idea of using analog systems for cosmological pro-
cesses comes under the general area of modeling the “universe
in the laboratory” [5,6]. So far, analog systems have mostly
been employed to test ideas in perturbative quantum field
theory [7,8], but the nonperturbative phenomenon of false
vacuum decay has recently been discussed, with theoretical
descriptions of vacuum decay of atomic [9] and relativistic
systems [10] at zero temperatures. Among possible analog
systems, (quasi-)one-dimensional (1D) ultracold Bose gases
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have emerged as an outstandingly versatile experimental plat-
form for probing many-body quantum dynamics [11–13].

Fialko et al. [14,15] proposed an actual experiment to
simulate the relativistic vacuum decay in a cold-atom system.
Their system consists of a Bose gas with two different spin
states of the same atom species in an optical trap. The two
states are coupled by a microwave field. By modulating the
amplitude of the microwave field, a new quartic interaction
between the two states is induced in the time-averaged theory
which creates a nontrivial ground-state structure as illustrated
in Fig. 1.

In this paper we introduce thermal effects into the model
of Fialko et al. [14,15] to better replicate the conditions
relevant to the very early universe. We take their time-
averaged potential and study the physics of supercooling for a
metastable state in the thermal “cross-over” regime of a quasi-
one-dimensional Bose gas. We demonstrate that the bubble
nucleation dynamics of the first-order phase transition are
correctly reproduced by numerical modeling using a stochas-
tic projected Gross-Pitaevskii equation (SPGPE) [17–21]. We
show that the stochastic approach agrees with semiclassical
predictions based on nonequilibrium thermal field theory of a
relativistic Klein-Gordon system. This agreement applies not
only to the correlation functions, but also to the nonperturba-
tive decay rate of a metastable state.

This paper also sets up further work, extending the results
to oscillating potentials which we hope to present in due
course. Braden et al. have shown that oscillating potentials
lead to a parametric instability on small wavelengths which
causes a classical decay of the metastable state [10,16]. In or-
der to produce a supercooled system, some form of dissipative
mechanism would have to act on small scales to damp out the
parametric resonance, and we propose that thermal damping
may be the solution.

II. SYSTEM

Our system is a one-dimensional, two-component Bose gas
of atoms with mass m. The two components are different
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spin states of the same species, coupled by a time-modulated
microwave field. The Hamiltonian is given by

H =
∫

dx

{
− h̄2

2m
ψ†∇2ψ + V (ψ,ψ†)

}
, (1)

where the field operator ψ has two components ψi, i = 1, 2.
Fialko et al. [14,15] described a procedure whereby averaging
over timescales longer than the modulation timescale can lead
to an interaction potential of the form

V = g

2

∑
i

(ψ†
i ψi )

2 − μψ†ψ − με2ψ†σxψ

+ g

4
ε2λ2(ψ†σyψ )2, (2)

where σ{x,y} are Pauli matrices. The potential includes the
chemical potential μ, equal intracomponent s-wave interac-
tions of strength g between the field operators (we assume
intercomponent s-wave interactions are negligible), and a
microwave-induced interaction with strength με2. The final
term comes from the averaging procedure, and introduces a
new parameter λ, dependent on the amplitude of the modula-
tion. The trapping potential used to confine the condensate has
been omitted in order to isolate the physics of vacuum decay.
In principle, a quasi-one-dimensional ring trap experiment
could realize the uniform system we study.

The terms proportional to ε2 are responsible for the dif-
ference in energy between the global and local minima of
the energy, and we require ε to be small. The global mini-
mum represents the true vacuum state and the local minimum
represents the false vacuum. The true vacuum is a state with
ψ1 = ψ2 and the false vacuum is a state with ψ1 = −ψ2. The
condensate densities of the two components at the extrema
are equal to one another, and given by 〈ψ†

1 ψ1〉 = 〈ψ†
2 ψ2〉 =

ρ0(1 ± ε2), in terms of the mean density ρ0 = μ/g.
Throughout this paper, we will make use of the healing

length ξ = h̄/(mgρ0)1/2 and the sound speed c = h̄/(mξ ). To-
gether, these define a characteristic frequency ω0 = c/ξ . The
dimensionless form of the potential constructed from these
parameters becomes V̂ = V/(h̄ω0ρ0). If we now introduce
the relative phase ϕ between the spin components, such that
ψ1 ≈ ρ0eiϕ/2 and ψ2 ≈ ρ0e−iϕ/2, then the potential becomes

V̂ ≈ −2ε2 − 2ε2 cos ϕ + ε2λ2 sin2 ϕ, (3)

as shown in Fig. 1, with 
V = 4h̄ω0ρ0ε
2.

In the experimental proposal, the system is initially pre-
pared in the metastable phase at a temperature T . In one
dimension, the physics of Bose gases critically depends on
the dimensionless interaction strength parameter ζ = (ρ0ξ )−2

and the temperature [22–25]. We consider the weakly inter-
acting case, ζ � 1. A phase-fluctuating quasicondensate, in
which density fluctuations are suppressed, appears at temper-
atures below the cross-over temperature:1

TCO = h̄cρ0

kB
. (4)

1Note that our definition omits a numerical factor 2 often found
elsewhere [22–24].
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FIG. 1. The field potential V plotted as a function of the relative
phase of the two atomic wave functions, ϕ. The metastable phase is
at the minimum ϕ = π and the stable phase is at the global minimum
ϕ = 0. The difference in energy density between these phases is 
V .

The gas remains degenerate up to a temperature of order TD =
ζ−1/2TCO > TCO.

III. STOCHASTIC GROSS-PITAEVSKII EQUATION

Stochastic Gross-Pitaevskii equations (SGPEs) are widely
used for modeling atomic gases at and below the conden-
sation temperature [17–20,26,27]. Here, we use the simple
growth SPGPE [19,20], which has been successfully used
to model experimental phase transitions [28,29]. Extension
of the SPGPE to spinor and multicomponent condensates is
described in Ref. [21].

For convenience, from this point in the paper we use ξ

as the length unit and ω−1
0 as the time unit. We also rescale

the wave function by replacing ψ → ρ
1/2
0 ψ , and measure the

temperature in units of TCO. In these units, the form of SPGPE
we use is

i
∂ψ j

∂t
= P

{
(1 − iγ )

(
−1

2
∇2ψ j + ∂V̂

∂ψ
†
j

)
+ η j

}
. (5)

Here the complex fields ψ j describe the well-occupied, low-
momentum modes of the system (the c-field region), and the
projector P eliminates modes above the momentum cutoff
kcut = √

2ρ0ξT . We also considered other values of kcut, to
ensure our results were not overly sensitive to the choice of
momentum cutoff. The noise source η is a Gaussian random
field with correlation function

〈ηi(x, t )η j (x
′, t ′)〉 = 2γ T δ(x − x′)δ(t − t ′)δi j, (6)

and the potential

V̂ = 1

2

∑
i

(ψ†
i ψi − 1)2 − ε2ψ†σxψ + 1

4
λ2ε2(ψ†σyψ )2.

(7)

Typically, we set the dimensionless dissipation rate γ = 10−2.
Values of γ from O(10−4) to O(10−2) have been used in
previous work that made direct comparisons to experiment
[28–31], making this a reasonable choice. We comment on
the effect of γ later in the text. Our SPGPE simulations
use a one-dimensional grid of size L = 240ξ with periodic
boundaries and spacing 
x = 0.4ξ . We set ρ0ξ = 100. Our
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simulations were executed using the software package XMDS2
[32]. Averaged quantities were calculated over 1000 stochas-
tic realizations.

Some care should be exercised when applying the SPGPE
in reduced dimensions, since a three-dimensional thermal
cloud is assumed [33]. For a gas confined in a transverse
harmonic trap of frequency ω⊥, the simple growth SPGPE
above is valid in one dimension with dimensionally reduced
interaction strength g = 2h̄asω⊥ provided h̄ω⊥ � kBT and, in
principle, μ � h̄ω⊥. In practice μ � h̄ω⊥ is sufficient: 1D
S(P)GPE equilibrium states were investigated in Refs. [34,35]
and shown to be an excellent match to quasi-1D atom-chip
experiments in this regime [36,37].

We will be running at some fraction of the cross-over
temperature TCO which is larger than the temperature, Tφ =
h̄2ρ0/(mkBL), at which phase coherence is attained across the
entire system. Crucially, however, the relative phase ϕ has an
effective potential barrier that assists phase coherence in the
relative phase at higher temperatures than Tφ , as we shall see
in the following results.

IV. RESULTS

A. Equilibrium correlations

The correlation functions for fluctuations about the stable
and metastable phases provide an essential check on the valid-
ity of the numerical modeling, and also elucidate the relation
between fluctuations in the SGPE and the Klein-Gordon field
ϕ. As shown in Appendix, small fluctuations in the relative
phase ϕ of the two components induced by the SGPE have a
thermal Klein-Gordon correlation function:

〈ϕ(x, t )ϕ(x′, t )〉 = T

mϕ

e−mϕ |x−x′| + T

2
δ(x − x′), (8)

where the Klein-Gordon mass mϕ = 2ε(λ2 ± 1)1/2, for the
stable and metastable phases, respectively.

The correlation function about the stable phase computed
from SPGPE simulations is shown in Fig. 2. As expected, at
low temperatures we have complete agreement with the Klein-
Gordon result. At higher temperatures, nonlinear effects are
increasingly important, until the state becomes completely
phase incoherent, in analogy to symmetry restoration in fun-
damental particle physics. At intermediate temperatures, we
can restore the agreement against the theoretical result by
introducing an “effective” coupling λeff , as shown in the inset
in Fig. 2.

B. Bubble nucleation

In a first-order regime, we expect to see exponential decay
of the metastable state, triggered by bubble nucleation events.
In this section we present numerical results which confirm
this prediction, and we show agreement with a semiclassical,
nonperturbative instanton approach.

In order to model bubble nucleation using the the SPGPE,
we must initialize the system in the metastable state. In most
runs we do this by placing the fields ψ j in the fluctuation-free
metastable state at time t = 0, allowing the noise term in
the SPGPE [Eq. (5)] to rapidly build up thermal fluctuations.
We also verified that equivalent results are produced by first
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FIG. 2. The correlation function for the relative phase, g(|x −
x′|) = 〈ϕ(x, t )ϕ(x′, t )〉, at different temperatures in a potential with
λ = 1.4 and ε = 0.1. The SPGPE results agree with the correla-
tions of a thermal Klein-Gordon field at the lower temperatures,
but nonlinear effects start to cause a difference as the temperature
increases. Nonetheless, better agreement can be achieved at higher
temperatures by fitting an effective value of λeff at each temperature
(inset).

allowing the fields to thermalize with a high potential barrier
(λ = 1.8) and then instantaneously reducing λ, since this latter
procedure is closer to a likely experimental protocol. A signa-
ture of bubble formation in an individual trajectory is given by
the spatial average 〈cos ϕ〉 exceeding −1 + 
, where 
 = 0.2
is chosen to be larger than the typical fluctuations of 〈cos ϕ〉
due to thermal noise in the system. An example is shown in
Fig. 3. Running many stochastic trajectories and computing
the probability, P, of remaining in the metastable state results
in an exponential decay curve, also shown in Fig. 3. A fit to
the exponential form P = ae−�t over the time intervals seen
to be exhibiting exponential decay yields the decay rate �.
Figure 4 shows the decay rate � for several values of T and λ.
Uncertainties on �, reflecting the statistical uncertainty arising
from the trajectory averaging, are computed by a bootstrap
resampling approach [38].

The semiclassical model of bubble decay is based on
an instanton calculation, where the equations are solved in
imaginary time τ to give an instanton solution ψb. For ther-
mal scenarios, the imaginary-time coordinate is taken to be
periodic, with period β = h̄/(kBT ). The instanton solution
approaches the metastable state at large distances, and for a
purely thermal transition the solution is independent of τ .

The full expression for the nucleation rate of vacuum bub-
bles in a volumeV is [39,40]

� ≈ VA0B1/2e−B, (9)

where B denotes the difference in action between the instanton
and the metastable state divided by h̄. The prefactor A0 de-
pends on the change in the spectra of the perturbative modes
induced by the instanton. This should only depend mildly on
temperature, so we will treat this term as an undetermined
constant.

The exponent is explicitly

B = ρ0

∫ ∞

−∞
dx

∫ β

0
dτ

{
ψ

†
b

∂ψb

∂τ
+ 1

2
ψ

†
b ∇2ψb + V̂

}
. (10)
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FIG. 3. Top: An example of bubble nucleation for λ = 1.4 and
T = 0.03TCO. Bottom: The natural logarithm of the probability, P,
of remaining in the metastable state. In this case the system was first
allowed to equilibrate at λ = 1.8, a barrier large enough that bubble
nucleation was negligible, after which the barrier was reduced to λ =
1.4. Inset: The spatial average of cos ϕ for ten different runs. The
nucleation time is taken to be when 〈cos ϕ〉 > −1 + 
, where 
 =
0.2 in this example.

In the Klein-Gordon approximation, the decay exponent sim-
plifies to

B = α(λ)ε

T
, (11)

where the factor α(λ) is defined by

α(λ) = 1

4ε

∫ ∞

−∞
dx

{(
∂ϕb

∂x

)2

+ 4V̂

}
. (12)

Note that the ε dependence in (12) disappears if we rescale
x → x/ε and use Eq. (3).

The values of α(λ) for a Klein-Gordon model have been
obtained recently in Ref. [41]. A comparison between the
instanton and stochastic approaches is shown in Fig. 4. They
agree very well in the region where � < γ , which we interpret
as the nucleation rate having to be less than the relaxation rate
of the thermal ensemble. Remarkably, the two approaches also
agree over a wider range if we replace the coupling λ by an
effective value λeff .

Finally, we note that we repeated a sample of our SPGPE
simulations with lower dissipation rate γ = 5 × 10−3. We find
that the rate � is dependent on γ . However, the results are still

0.000

0.002

0.004

0.006

0.008

0.010

Γ
/ω

0

λ
1.4
1.5
1.6

0.015 0.02 0.025 0.03
0.00

0.02

0.04

0.06

0.08

0.10

T/TCO
Γ
/ω

0

λ
1.2
1.3
1.4

FIG. 4. A comparison between the decay constant obtained from
the SPGPE (data points) and the instanton method (lines) as a func-
tion of temperature. These plots are for ε = 0.1, interaction strength
ζ = 10−4, and dissipation γ = 10−2. There is good agreement when
the decay constant � < γ , and this can be extended to higher � by
using an effective coupling λeff (lower plot).

well fitted by the instanton approach, but with a different pre-
factor A0, as would be expected from the theory of dissipative
tunneling in quantum mechanics [42].

V. CONCLUSION

The quasicondensed thermal Bose gas described above
would serve as a laboratory analog to an early universe,
supercooled phase transition. We show that the SPGPE can
be used to model the system, and that where overlap with
instanton calculations is possible there is agreement between
the predictions of the two approaches.

As an example experimental configuration, we consider
one of the experimental setups proposed by Fialko et al.
[15], which is based on tuning the interactions between two
Zeeman states of 7Li.2 The interactions can be tuned using
a Feshbach resonance to achieve the required close-to-zero
inter-component scattering length [15]. Based on the average
intracomponent scattering length, suitable experimental pa-
rameters would be 5 × 104 atoms in a quasi-1D optical trap
[43] of length 90μm and transverse frequency 2π × 66 kHz.
The interaction strength ζ = 10−4 (as in Fig. 4), and the cross-
over temperature TCO = 215μK. In this context the results in

2In this example the intracomponent scattering lengths of the spin
states are asymmetrical and the potential (2) has to be slightly modi-
fied [15].
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Fig. 4 correspond to temperatures from around 3.2 to 6.4μK,
where bubble nucleation should be observable.

Interestingly, the phase correlation length at the temper-
atures of interest is less than the length of the gas, but the
relative phase correlation length is larger than the system. This
is because the phase of an individual atom is not constrained
by the interactions; in the language of particle physics it is
a “Goldstone mode.” On the other hand, the relative phase
develops a potential and behaves as a massive Klein-Gordon
field with correlation length fixed by the mass, as shown in
Fig. 2.

In future work, we will investigate a modulated (i.e., time
varying) potential in order to investigate the effects of thermal
damping on parametric instabilities. The semiclassical model
of bubble nucleation used here is no longer applicable for
a modulated potential, but the SPGPE will apply provided
that kBT is larger than the maximum energy per mode h̄ωk .
Parametric resonance sets in on wavelengths a little less than
the correlation length ξ [10,16], and kBT > h̄ωk in the pa-
rameter ranges discussed in the present paper. The parametric
resonance has a fixed growth rate and it will be damped out
given sufficiently large thermal damping. It is important to
determine the exact degree of thermal damping required to
see if this is physically realistic.

Also in future work, we will extend our results to two
dimensions and include realistic trapping potentials. There
is a possibility that the boundaries of the trap affect bubble
nucleation, as we found in Ref. [38], and this requires further
theoretical investigation before two-dimensional simulations
of vacuum decay and supercooling are constructed.

Data supporting this publication are openly available under
a Creative Commons CC-BY-4.0 license [44].
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APPENDIX: KLEIN-GORDON REDUCTION OF THE SGPE

Reduction to a Klein-Gordon system starts from

ψ1 = eχ/2eσ/2eiϕ/2eiθ/2, (A1)

ψ2 = eχ/2e−σ/2e−iϕ/2eiθ/2, (A2)

in an approximation where χ , σ , ∇, and ∂t are all O(ε). When
these are inserted into Eq. (5) of the main text, the system
reduces at leading order in ε to

ϕ̇ = −2σ + ηϕ, (A3)

σ̇ = − 1
2∇2ϕ − 2γ σ + ∂ϕV̂ + ησ , (A4)

θ̇ = −2χ + ηθ , (A5)

χ̇ = − 1
2∇2θ − 2γχ + ηχ , (A6)

where the noise terms have a Gaussian distribution with co-
variance 2γ T .

For small ϕ, these are a set of stochastic equations for the
Bogoliubov modes. In this limit, with V̂ = m2

ϕϕ2/4, they can
be solved using Green’s-function techniques. The linearized
equations for the transforms ϕ̂(k, ω) and σ̂ (k, ω) are( −iω 2

−ω2
k/2 −iω + 2γ

)(
ϕ̂

σ̂

)
=

(
η̂ϕ

η̂σ

)
, (A7)

where ω2
k = k2 + m2

ϕ . The inverse of the operator matrix is the
Green’s function G:

G = 1




(
iω − 2γ 2
−ω2

k/2 iω

)(
ϕ̂

σ̂

)
, (A8)

where 
 = ω2 + 2iγω − ω2
k . The stochastic correlator of the

relative phase fluctuations is related to the Green’s function by

〈ϕ̂(k, ω)ϕ̂(k′, ω′)〉 = δωω′δkk′2γ T (GϕϕG∗
ϕϕ + Gϕσ G∗

ϕσ ).
(A9)

Inverting the Fourier transform in t gives the phase-space
correlator:

〈ϕ̂(k, t )ϕ̂∗(k′, t )〉 = 4 + ω2
k

2ω2
k

T δkk′ . (A10)

The first term in the denominator reproduces the thermal cor-
relator for a free Klein-Gordon field, which has an energy of
T per Fourier mode. In position space,

〈ϕ(x, t )ϕ(x′, t )〉 = T

mϕ

e−mϕr + T

2
δ(r), (A11)

where r = |x − x′|. The mass is given by mϕ = 2ε(λ2 ± 1)1/2

for the stable and metastable states, respectively.
The result is valid for linearized theory. Including higher-

order terms makes a difference at higher temperature. The
next order in perturbation theory introduces T 2 terms, or using
resummation modifies the mass m2

ϕ → m2
ϕ + κT , where κ

depends on regularization.
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