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Bogoliubov excitations of Bose-Einstein condensates in optical lattices may possess band topology in anal-
ogous to topological insulators in class AII of fermions. Using the language of the Krein-space theory, this
topological property is shown to be protected by a pseudo-time-reversal symmetry that is pseudo-antiunitary
and squares to −1, with the associated bulk topological invariant also being a Z2 index. We construct three
equivalent expressions for it, relating to the Pfaffian, the pseudo-time-reversal polarization, and most practically
the Wannier center flow, all adopted from the fermionic case, defined here with respect to the pseudo inner
product. In the presence of an additional pseudo-unitary and pseudo-Hermitian inversion symmetry, a simpler
expression is derived. We then study two toy models feasible on cold atom platforms to numerically confirm the
bulk-boundary correspondence. The Krein-space approach developed in this work is a universal formalism to
study all kinds of symmetry-protected topological bosonic Bogoliubov bands.
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I. INTRODUCTION

Topological band theory [1–3] is originally developed to
characterize nontrivial topology of electronic bands in solids.
One milestone work in the early years along this direction
is the tenfold-way classification of topological insulators and
topological superconductors according to three nonspatial
symmetries: time-reversal, particle-hole, and chiral symme-
try [4,5]. Soon after, it is found that, with additional spatial
symmetries, topological invariants may have simplified ex-
pressions [6], or even the topological classification is enriched
[7]. Recently, topological properties of dynamical [8–11] and
open quantum-mechanical systems [12–15] are also studied
extensively.

Since Haldane pointed out that topological band theory is
not tied to fermions, but essentially wave effects [16], there
are many works focusing on topological phenomena in other
physical systems, such as magnonic crystals [17–19], pho-
tonic crystals [20–22], phononic crystall [23–25], and even
coupled pendula [26]. Here we will focus on topology of
collective modes in the weakly interacting ultracold bosonic
atoms loaded in an optical lattice. It has been known that
wave functions of the excited modes above Bose-Einstein con-
densates (BEC) can exhibit a topological structure [27–29].
However, all of these previous works focus on systems break-
ing time-reversal symmetry, which have a nonvanishing first
Chern number in two dimensions that is in one-to-one cor-
respondence with the number of chiral edge states dictated
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by the bulk-boundary correspondence. This type of excitation
band topology is analogous to the Chern insulators in class A.

It is well known that there is a topological phase protected
by the odd time-reversal symmetry in two and three dimen-
sions due to Kane and Mele [30], namely the topological
insulators in class AII. This topological phase possesses a
pair of helical edge states propagating in opposite directions,
whose presence or absence is characterized by a Z2 index,
which has many equivalent definitions, e.g., relating to the
Pfaffian [30], the time reversal polarization [31], and the Wan-
nier center flow [32]. The last one is of the most practical use,
since it does not involve any gauge-fixing problems that occur
in the previous two definitions. One natural question to ask is
whether a similar topological structure exists in the excitation
spectrum of a bosonic superfluid; if so, what type of symmetry
protects them, how to define the associated bulk topological
invariant, and whether the bulk-boundary correspondence still
holds or not.

In this work, we show that a AII-class-like topological
structure indeed exists in the Bogoliubov excitations of a BEC
in an optical lattice, which is protected by a pseudo-time-
reversal symmetry that is pseudo-antiunitary and squares to
minus one. The corresponding bulk topological index is also
a Z2 number, and three equivalent definitions used in the
fermionic case all have counterparts here.

To address the problem in a systematical way that can be
generalized easily for various kinds of symmetry-protected
topological bosonic Bogoliubov bands, we review the prob-
lem of quadratic bosons in Sec. II, where we also introduce
the Krein-space theory to reformulate the problem in a way
that has the closest connection to its fermionic counterpart.
In Sec. III, we show that a pseudo-time-reversal symmetry,
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which is pseudo-antiunitary and squares to minus one, guar-
antees the bosonic Kramers’ pair, which in turn protects a
AII-class-like topological excitation spectrum. We then go on
discussing three equivalent characterizations of the associated
bulk Z2 topological invariant. Moreover, with an additional
inversion symmetry, a simpler formula for it is derived. In
Sec. IV, two toy models feasible in cold atom experiments are
studied, and the bulk-boundary correspondence is confirmed
numerically. In Sec. V we conclude the paper and give a
discussion.

II. PRELIMINARY

A. Quadratic boson

Consider loading ultracold bosonic atoms in an optical
lattice. In the weakly interacting region, atoms condense in
the single-particle ground state. By employing the standard
Bogoliubov–de Gennes approximation, the excitation of the
condensate can be well described by a bosonic quadratic
Hamiltonian, whose most general form in real space reads

H =
∑
r,r′

∑
αβ

a†
rαArα,r′βar′β

+ 1

2

∑
r,r′

∑
αβ

(a†
rαBrα,r′βa†

r′β + arβB∗
rα,r′βar′α ), (1)

where the bosonic creation (annihilation) operators a(†)
rα , la-

beled by an external index r (assuming total M unit cells)
and an internal index α ∈ 1, 2, . . . , N , satisfy the canoni-
cal commutation relations (CCRs) [arα, a†

r′β] = δrr′δαβ and

[arα, ar′β] = [a†
rα, a†

r′β] = 0. Using a single index, one can
write a and a† as MN-dimensional arrays and A and B as
MN × MN matrices. We then have A = A† due to Hermiticity
of H and BT = B due to Bose statistics. Further introducing
the Nambu spinor α = ( a

a† ) and α† = (a† a), we can write
Eq. (1) as

H = 1

2
α†HBdGα, HBdG =

(
A B
B∗ AT

)
, (2)

where a constant term trA is omitted and the block matrix
HBdG is called the Bogoliubov–de Gennes (BdG) Hamil-
tonian. Because of the particle-hole constraint of Nambu
spinor α = �1(α†)T , where throughout this paper we denote
�i = σi ⊗ IMN , with σi (i = 1, 2, 3) being the standard Pauli
matrices and IMN being the MN × MN identity matrix (in
momentum space it becomes IN ), the BdG Hamiltonian enjoys
a particle-hole “symmetry” (PHS), CHBdGC−1 = HBdG, where
C = �1K and K is the complex conjugation. In the presence
of translation symmetry, i.e., Arα,r′β = Ar−r′,αβ and similarly
for B, Eq. (2) can be written in momentum space as

H = 1

2

∑
k

α
†
kHBdG(k)αk, HBdG(k) =

(
Ak Bk

B∗
−k AT

−k

)
, (3)

where the 2N-dimensional arrays are defined by

α
†
k = (a†

k1 . . . a†
kN a−k1 . . . a−kN ),

αk = (ak1 . . . akN a†
−k1 . . . a†

−kN )T . (4)

The N × N Hermitian matrix Ak has entries [Ak]αβ =∑
r Ar−r′,αβeik·r and similarly for the symmetric matrix Bk.

The PHS now reads CHBdG(k)C−1 = HBdG(−k). In this rep-
resentation, CCRs take a compact form

[αka, α
†
k′b] = [�3]abδk,k′ . (5)

Equation (3) [and similarly for Eq. (2)] is solved by a
Bogoliubov transformation

βk = Tkαk, (6a)

β
†
k = βT

−k�1 = α
†
k�1T T

−k�1, (6b)

where the second equality in Eq. (6b) results from Eq. (6a).
The transformation is assumed as follows. (i) To be canonical,
i.e., the CCRs are preserved (double indices imply summa-
tion),

[�3]ab = [βka, β
†
kb]

= [Tk]aa′[αka′ , α
†
kb′ ]

[
�1T T

−k�1
]

b′b

= [
Tk�3�1T T

−k�1
]

ab

⇒ i�2 = Tki�2T T
−k. (7)

Note the real space version of Eq. (7) is i�2 = Ti�2T T ,
where �2 and T are MN × MN matrices in this case. Hence
the Bogoliubov transformations in real space form a complex
symplectic group Sp(2NM,C) [33]. (ii) To be unitary, i.e.,

(βka)† = β
†
ka,

α
†
ka′[T

†
k ]a′a = α

†
ka′

[
�1T T

−k�1
]

a′a

⇒ Tk = �1T ∗
−k�1. (8)

Combining Eq. (8) and Eq. (7), we further obtain

Tk�3T †
k �3 = �3T †

k �3Tk = I2N . (9)

Matrices satisfying Eq. (9) are called paraunitary
by Colpa [34]. (iii) The transformed Hamiltonian
H = 1

2β
†
k�3Tk�3HBdG(k)T −1

k βk is diagonal, i.e.,

Tk�3HBdG(k)T −1
k

= diag[E1(k), . . . , EN (k),−E1(−k), . . . ,−EN (−k)],
(10)

with E1(k) � · · · � EN (k). In this paper, we assume HBdG

is positive semidefinite, so that all eigenvalues are real [35].
Equation (10) indicates that one has to solve an eigenproblem
of a generally non-Hermitian matrix [here only HBdG(k) itself
is Hermitian by definition]

H eff
k = �3HBdG(k), (11)

with a PHS,

CH eff
k C−1 = −H eff

−k,

which guarantees that eigenvalues always come in pairs
as shown in Eq. (10): for each eigenstate |u+

n (k)〉 with
nonnegative eigenvalue En(k), called the particle excita-
tion, we have another eigenstate, |u−

n (k)〉 := C|u+
n (−k)〉 =

�1|u+
n (−k)∗〉, called the hole excitation, with nonpositive

eigenvalue −En(−k).
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One may alternatively arrive at the effective Hamiltonian
by examining the Heisenberg equations of motion for the
operator αk(t ) [36–38],

i
d

dt
αka(t ) = [αka(t ), H] = [�3HBdG(k)]aa′αka′ (t ),

where Eq. (5) is used in the second equality. Hence the dynam-
ics of the system is indeed generated by the non-Hermitian
matrix Eq. (11).

B. Krein space formalism

Here we review the basics of the Krein-space theory and re-
formulate the problem of quadratic boson using this language
[39–41].

A Krein space (K, J ) is a Hilbert space K with a fundamen-
tal symmetry J which is a linear operator satisfying J2 = 1 and
J = J†. Equivalently, operator J is a fundamental symmetry if

J2 = 1, 〈Jφ, Jψ〉 = 〈φ,ψ〉, ∀φ,ψ ∈ K,

where 〈·, ·〉 is the usual inner product in the Hilbert space K.
A Krein space becomes real if there is a real structure and a
real unitary Q which squares to ±1 and (anti)commutes with
J [42].

We define the pseudo inner product as

〈〈φ,ψ〉〉 := 〈φ, Jψ〉. (12)

It then follows that all familiar concepts defined with respect
to the usual inner product have a pseudo-inner-product ver-
sion. First of all, the pseudo-adjoint is defined by A	 = JA†J ,
which by definition satisfies 〈〈A	φ, ψ〉〉 = 〈〈φ, Aψ〉〉. Then the
pseudo-Hermitian means A	 = A, namely, Hermitian with re-
spect to the pseudo inner product. Pseudo-unitary means A	 =
A−1, namely, its pseudo-adjoint equals its inverse. Pseudo-
antiunitary is antilinear with respect to the pseudo inner
product, i.e., 〈〈Aφ, Aψ〉〉 = 〈〈φ,ψ〉〉∗ = 〈〈ψ, φ〉〉. The pseudo-
orthogonal projector is an operator that squares to itself and is
pseudo-Hermitian, 
2 = 
 = 
	, which implies that 
 and

† are related by a similarity transformation.

Unlike Hermiticity, pseudo-Hermiticity does not guarantee
reality of the spectrum. Nevertheless, the Krein-spectral oper-
ator H , defined by

H̃ = UHU −1 = UHU 	 = H̃ 	 = H̃†,

has real spectrum. Operators that are non-negative with re-
spect to the pseudo inner product are automatically Krein
spectral [34,39].

For the bosonic BdG system studied in this paper, we
have the real Krein space of kind (1,−1) [42] by setting
J = �3 and Q = �1. The effective Hamiltonian Eq. (11)
is pseudo-Hermitian with a real symmetry. The Bogoliubov
transformation matrix Tk Eq. (6) is pseudo-unitary with a real
symmetry.

Equation (9) can be rewritten using the pseudo inner prod-
uct as

〈〈u±
n (k), u±

m (k)〉〉 = ±δmn,

〈〈u±
n (k), u∓

m (k)〉〉 = 0,
(13)

where |u±
n (k)〉 is the right eigenstate of H eff

k with eigenvalue
±En(±k). The pseudo-orthogonal projector, which is pseudo-

Hermitian and generally non-Hermitian, then takes the form


n,k = ±|u±
n (k)〉〈u±

n (k)|�3. (14)

From here on, unless otherwise stated, we will focus on the
particle space since the hole excitations are just copies of the
former due to PHS. To prevent cluttering, the superscript “+”,
indicating states in particle space, will be omitted.

We briefly mention how to deal with the so-called Nambu-
Goldstone (NG) modes in the context of topological band
theory before proceeding further. The NG mode is a gapless
mode due to spontaneously breaking a continuous symmetry.
There are several types of NG modes; they may or may not
satisfy the orthonormal conditions Eq. (13) [43,44]. Never-
theless, this type of mode can always be removed by adding
an infinitesimal external field that explicitly breaks the corre-
sponding symmetry. For example, the gapless phonon modes
can open an infinitesimal gap by shifting the chemical poten-
tial in the negative direction, μ → μ − 0+. For simplicity, in
this paper, we assume that the NG mode will have an infinites-
imal gap. In fact, as will be discussed in the end of the next
section, when considering the bulk-boundary correspondence
to determine the helical midgap edge states, one may com-
pletely avoid discussing the topology relating to the lowest
particle bands and highest hole bands (also see Ref. [27]).

III. Z2 INVARIANT ASSOCIATED WITH
PSEUDO-TIME-REVERSAL SYMMETRY

A. Pseudo-time-reversal symmetry

For a bosonic system, the conventional time-reversal sym-
metry squares to +1 [45]. We define a pseudo-time-reversal
(PTR) operator T = PK that squares to −1. Here P is a
k-independent pseudo-unitary matrix. By definition, T is
pseudo-antiunitary [46].

A bosonic BdG system is said to respect the pseudo-time-
reversal symmetry (PTRS) if

T H eff
k T −1 = H eff

−k. (15)

Implications of PTRS for bosons resemble that of odd TRS for
fermions: for every eigenstate |un(k)〉 of H eff

k , due to Eq. (15),
T |un(−k)〉 is also an eigenstate with eigenvalue E (−k).
At the pseudo-time-reversal-invariant momenta (PTRIM) �,
these two states have the same eigenenergy and are orthogonal
with respect to the pseudo inner product [19]. The orthog-
onality can be seen by considering 〈〈T φ, T ψ〉〉 = 〈〈ψ, φ〉〉,
which, upon setting |ψ〉 = |un(�)〉 and |φ〉 = T |ψ〉, has to
vanish separately on both sides due to T 2 = −1, leading to
the orthogonality of the bosonic Kramers’ pair, |un(�)〉 and
T |un(�)〉.

B. Pfaffian approach

Analogous to Kane and Mele’s construction of the Z2

invariant [30], consider the matrix of overlaps with respect
to the pseudo inner product 〈〈un(k), T um(k)〉〉, which is an-
tisymmetric because T is pseudo-antiunitary and squares to
−1. Assuming no other degeneracies, it is a 2 × 2 matrix and
can be written as

〈〈un(k), T um(k)〉〉 = εnmP(k), (16)
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with P(k) the Pfaffian of the matrix

P(k) = Pf[〈〈un(k), T um(k)〉〉]. (17)

Under a U(2) transformation |un(k)〉 → Rnm(k)|um(k)〉, the
Pfaffian becomes P(k) → det[R∗(k)]P(k) [cf. Eq. (A11)].
Thus P(k) is invariant under a SU(2) rotation but not U(1),
since the latter induces an overall phase factor. Nevertheless,
|P(k)| is U(2) gauge invariant. At PTRIM �, due to the
existence of a bosonic Kramers’ pair, the off-diagonal element
has unit modulus, namely |P(�)| = 1. We further define the
unitary sewing matrix B(k) that relates the PTR companion of
an eigenstate at k to another eigenstate at −k,

|um(−k)〉 = B∗
mn(k)T |un(k)〉, (18)

which leads to P(−k) = det[B(k)]P∗(k) [cf. Eq. (A9)]. Thus
whenever the Pfaffian vanishes at one momentum, so does the
one at the opposite momentum with opposite “vorticity.” It
then follows that the number of pairs of zeros of the Pfaffian
is a Z2 invariant in the presence of PTRS, due to the same
reason as in the fermionic case [30]. We hence conclude that
the winding of the phase of P(k) around a loop enclosing half
the first Brillouin zone (1BZ),

I = 1

2π i

∮
C

dk · ∇k ln[P(k)],

is a Z2 invariant associated with PTRS for the bosonic BdG
systems. It can be seen easily [cf. Eq. (A10)] that the Pfaffian
in the particle bands and their hole companion has the same
number of zeros, i.e., Iparticle = Ihole.

C. Pseudo-time-reversal polarization

One can also define a pseudo-time-reversal polarization to
characterize this Z2 invariant in analogous to Fu and Kane
[31], which is also a straightforward generalization of the
symplectic “charge” polarization constructed by Engelhardt
and Brandes [47] for the bosonic BdG systems. Consider an
effective one-dimensional (1D) system with k2 (regarded as
time t) fixed at k2 = 0 or π (t = 0 or T/2), and set k1 = k.
Assuming no other degeneracies, N particle bands can be
grouped into N/2 PTR pairs. The λth (λ = 1, 2, . . . , N/2) pair
for particle excitations are denoted by |u(l )

λ (k)〉, with l = 1, 2
labeling the two states of the pair. Due to PTRS, for each pair,
the PTR companion of an eigenstate with l = 2 at k equals
the eigenstate with l = 1 at −k up to a phase factor [31]∣∣u(1)

λ (−k)
〉 = −eiχk,λT

∣∣u(2)
λ (k)

〉
, (19a)∣∣u(2)

λ (−k)
〉 = eiχ−k,λT

∣∣u(1)
λ (k)

〉
, (19b)

where the second equation results from the first one. We define
the partial polarization for the λth pair by

P(l )
λ = 1

2π

∫ π

−π

dk A(l )
λ (k),

with the Berry connection [17]

A(l )
λ (k) = i

〈〈
u(l )

λ (k), ∂ku(l )
λ (k)

〉〉
. (20)

The sum of two partial polarizations is the symplectic gener-
alization of “charge” polarization [47]. Here we consider their

difference,

P̃λ = P(1)
λ − P(2)

λ ,

as the symplectic generalization of time-reversal polarization
introduced by Fu and Kane [31], which satisfies (see Ap-
pendix B)

(−1)P̃λ =
√

det[Bλ(0)]

Pf[Bλ(0)]

√
det[Bλ(π )]

Pf[Bλ(π )]
, (21)

where Bλ(k) = B(k, 0) or B(k, π ) is the sewing matrix de-
fined in Eq. (18) for the λth pair, and the sign ambiguity of
the square root is fixed by requiring that

√
Bλ(k) is continu-

ous for k ∈ [0, π ]. Following the discussion in Ref. [31], the
change in the PTR polarization during half the cycle, which
physically tracks the difference between positions of the pairs
of Wannier states, defines a Z2 invariant (i.e., whether the
Wannier states “switch partners” or not),

�λ = P̃λ(T/2) − P̃λ(0) mod 2. (22)

Using Eq. (21), we may equivalently write Eq. (22) as

(−1)�λ =
4∏

i=1

√
det[Bλ(�i )]

Pf[Bλ(�i)]
. (23)

It is easily seen that �λ is the same for particle bands and its
hole companion, i.e., �

particle
λ = �hole

λ [cf. Eq. (A4)].
Incidentally, by enforcing the pseudo-time-reversal con-

straint [31], ∣∣u(1)
λ (−k,−t )

〉 = T
∣∣u(2)

λ (k, t )
〉
,∣∣u(2)

λ (−k,−t )
〉 = −T

∣∣u(1)
λ (k, t )

〉
,

the Z2 invariant can also be interpreted as an obstruction. The
resulting formula in terms of the Abelian Berry connection,

Aλ(k) =
∑
l=1,2

i
〈〈
u(l )

λ (k),∇ku(l )
λ (k)

〉〉
, (24)

and the Abelian Berry curvature,

Fλ(k) =
∑
l=1,2

[∇k × A(l )
λ (k)

]
z,

has recently been proposed by Kondo et al. [19], which is
defined by

�̃λ = 1

2π

{∮
∂HBZ

dk · Aλ(k) −
∫

HBZ
d[2]kFλ(k)

}
mod 2,

(25)

where HBZ and ∂HBZ denote half the 1BZ and its boundary
that does not have any two points related by PTRS. The
proof that �̃λ = �λ and their equivalence to the Pfaffian ap-
proach can be obtained similarly as given in the Appendix of
Ref. [31].

D. Z2 invariant as Wannier center flow

All equivalent definitions of the Z2 invariant discussed so
far suffer from the gauge-fixing problem. Here we generalize
a practical Wilson loop approach proposed by Yu et al. [32].
It is extremely useful for numerics because it does not require
any gauge-fixing condition.
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Again consider the effective 1D system (with fixed k2), we
define the position operator X̂ = ∑

iα eiδ1·ri |iα〉〈iα| as usual
[48], where |iα〉 = |i〉 ⊗ |α〉 = a†

riα
|0〉 and δ1 = b1/N1, with

b1 the primitive reciprocal vector and N1 the number of unit
cells for the effective 1D system. The Wannier states are given
by the eigenstates of the position operator restricted in the
occupied bands [49], X̂P = P̂X̂ P̂. Here the projection operator
for the occupied subspace is [cf. Eq. (14)]

P̂ =
∑

n�nmax,k1

|ψn(k)〉〈ψn(k)|�3,

where |ψn(k)〉 = |k〉 ⊗ |un(k)〉 is the Bloch eigenstate and
|k〉 = M−1/2 ∑

i e−ik·ri |i〉. Using

〈〈ψn(k), X̂ψn′ (k′)〉〉 = δk+δ1,k′ 〈〈un(k), un′ (k + δ1)〉〉,
the projected position operator can be written as

X̂P =
∑

n,n′�nmax

∑
k1

[〈〈un(k), un′ (k + δ1)〉〉

× |ψn(k)〉〈ψn′ (k + δ1)|�3].

We then raise X̂P to the N1th power,

X̂ N1
P =

∑
m,n�nmax

∑
k1

[Wk]mn|ψm(k)〉〈ψn(k)|�3,

where the so-called Wilson loop operator Wk is defined by

Wk = M (k,k+δ1 )M (k+δ1,k+2δ1 ) . . . M[k+(N1−1)δ1,k], (26)

with [M (k,k+δ1 )]mn = 〈〈um(k), un(k + δ1)〉〉. In the limit |δ|1 →
0, we have [M (k,k+δ1 )]mn → e−i[A1(k)]mndk1 with the non-
Abelian U(nm) gauge field defined by

[A1(k)]mn = i
〈〈
um(k), ∂k1 un(k)

〉〉
, (27)

and Eq. (26) becomes the U(nm) Wilson loop, Wk =
P exp [

∫ π

−π
−iA1(k)dk1] [50].

The eigenvalues of Wk are independent of k1 and gauge
invariant under a U(nm) gauge transformation of |un(k)〉 (see
Appendix D). They are explicitly denoted by wn = |wn|eiθn ,
for n = 1, . . . , nmax with θn ∈ (−π, π ]. The eigenvalues of
X̂P, as the N1th roots of wn, read as wn, j = exp[iθn/N1 +
i2π j/N1 + (ln |wn|)/N1] for j = 1, . . . , N1. Finally, the Wan-
nier centers are identified with the phase of wn, j ,

〈x〉n, j = N1

2π
arg wn, j = 〈x〉n + j, 〈x〉n = θn/2π,

which is defined only up to a lattice translation.
Due to PTRS, eigenvalues of the Wilson loop operator at k2

and −k2 are the same; moreover, at PTRIM, eigenvalues are at
least doubly degenerate (see Appendix D). Thus, starting from
k2 = −π , each Wannier center pair will split and recombine
at k2 = 0; and for k2 > 0, the behavior is just the mirror of
the former with respect to the k2 = 0 plane. Due to the same
reason as in the fermionic case [32], the sum of winding
numbers for all nmax/2 Wannier center pair is a Z2 invariant.
The equivalence of this definition to all previous ones can be
obtained, although tedious, similarly as given in the Appendix
of Ref. [32].

E. Simplifications from inversion symmetry

Lastly, we show that, with an additional inversion symme-
try (IS), the Z2 invariant Eq. (23) takes a simple form,

(−1)�λ =
∏

i

ξλ(�i ), (28)

where ξλ(�i ) is the parity eigenvalue of one of the λth pair
of bands at the PTRIM �i. Analogous to the fermionic case
discussed by Fu and Kane [6], we explicitly construct a glob-
ally continuous transverse gauge where Aλ(k) = 0, and derive
Eq. (28) in this gauge in the following.

A bosonic BdG system is said to respect IS, if there exists
an inversion operator P , such that

PH eff
k P−1 = H eff

−k.

Here, P is assumed to be independent of k, pseudo-unitary,
pseudo-Hermitian [cf. Eqs. (A6) and (A7)], square to +1, and
commute with T . By definition, we have

PT H eff
k (PT )−1 = H eff

k ,

i.e., all energy bands are at least doubly degenerate at each
k. It is also straightforward to show that, at PTRIM, each
Kramers’ pair has the same inversion eigenvalue; hence there
is no ambiguity in choosing which one of the parity eigenval-
ues for the λth pair in Eq. (28). Another immediate fact is that
the Berry curvature Fλ(k) must vanish since it is both odd and
even in k due to PTRS and IS, respectively. Now we define
the unitary and antisymmetric sewing matrix C in an arbitrary
gauge by

|um(k)〉 = −C∗
mn(k)PT |un(k)〉. (29)

Assuming no other degeneracies, it is a 2 × 2 matrix labeled
by λ. The Pfaffian of Cλ(k) has unit magnitude and the gradi-
ent of its phase is related to the Berry connection Eq. (24) by
(see Appendix C)

Aλ(k) = − i

2
tr[C†

λ (k)∇kCλ(k)] = −i∇k ln Pf[Cλ(k)]. (30)

By setting Pf[Cλ(k)] = 1 via a suitable gauge transformation,
the Berry connection vanishes. Due to [cf. Eq. (A8)[

Cλ(−k) = Bλ(k)C∗
λ (k)BT

λ (k), (31)

and Pf[XAX T ] = Pf[A] det[X ], this gauge also guarantees that
det[Bλ(k)] = 1. Finally, from Eq. (A1), we have

[B(�i )]ll ′ = 〈〈
ψ

(l )
λ (�i ),P (PT )ψ (l ′ )

λ (�i )
〉〉
, (32)

where |ψ (l )
λ (�i )〉 = ei�i ·r|u(l )

λ (�i )〉 is the Bloch eigenstate.
Since [H,P] = 0, |ψλ(�i )〉 is also the eigenstate of P
with eigenvalue ξλ = ±1. Then using Eq. (A5), Eq. (32)
leads to Bλ(�i ) = ξλ(�i )Cλ(�i ), which gives Pf[Bλ(�i )] =
ξλ(�i )Pf[Cλ(�i )] = ξλ(�i ) in the transverse gauge. All in all,
we have

√
det[B�(�i )]/Pf[B�(�i )] = ξ�(�i ), and Eq. (28)

then follows from Eq. (23).
Finally, we note that, according to the bulk-boundary corre-

spondence, the helical midgap edge states crossing at PTRIM
is present (absent) if the Z2 index equals one (zero). For the
case that the gap is between nth and (n + 1)th particle bands,
the corresponding Z2 index is obtained by considering all
bands below the (n + 1)th band, including all hole bands.
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Since it has been shown that a pair of particle bands and its
hole companion have the same Z2 index, one can equiva-
lently sum all contributions above the nth particle bands. An
additional merit of this treatment is that we hence avoid the
ambiguity relating to the lowest particle bands (and highest
hole bands), where the presence of Goldstone modes leads to
undefined points in the Brillouin zone [27].

IV. TOY MODELS

We examine the topological properties of the excitation
spectrum by calculating the bulk Z2 invariant in two ways (as
an obstruction and as the Wannier center flow), and numer-
ically verify the bulk-boundary correspondence for two toy
models that are feasible in cold atom systems: the bosonic
version of (1) the Kane-Mele model and (2) the Bernevig-
Hughes-Zhang model. The former has PTRS but breaks IS
in general, while the latter always preserves both. When IS
exists, we also explicitly verify Eq. (28).

A. Bosonic Kane-Mele model

Our first example is a bosonic version of the Kane-Mele
(BKM) model [30], which is a time-reversal-symmetric gen-
eralization of Haldane’s honeycomb lattice model [51]. Since
the latter has been realized in a cold atom experiment by
Esslinger’s group [52], we expect this model is ready for
implementation. The noninteracting part of the Hamiltonian
reads

H0 = −t
∑
〈i, j〉

a†
i a j − iλs

∑
〈〈i, j〉〉

vi ja
†
i s3a j − λv

∑
i

ξia
†
i ai, (33)

where a(†)
i is the bosonic annihilation (creation) operators at

site i, with pseudospin index omitted. The first term describes
the nearest-neighbor hopping; the second term describes the
next-nearest-neighbor (NNN) complex hopping for both pseu-
dospin sectors with an overall opposite sign between them
(see Fig. 1). Here si (s0), i = 1, 2, 3, is the standard Pauli
(two-by-two identity) matrix acting on the pseudospin space.
vi j = sgn(di × d j )z = ±1, with di and d j along the two bonds
constituting the next-nearest neighbors. The last term is a
staggered sublattice potential ξi = 1(−1) for i ∈ A(B), which
breaks IS of the system. The interacting part takes the form

Hint = U

2

∑
j

∑
s=↑,↓

a†
jsa

†
jsa jsa js, (34)

where the interspecies interactions are neglected for simplic-
ity.

Using a primitive lattice vector as shown in Fig. 1, we write
Eq. (33) in momentum space as H0 = ∑

k a†
kh(k)ak, where

ai := (aiA↑, aiA↓, aiB↑, aiB↓)T and the 4-by-4 Bloch Hamilto-
nian reads

h(k) = d1(k)�1 + d2�2 + d12(k)�12 + d15(k)�15, (35)

with the Clifford algebra generators

�a = (σ1 ⊗ s0, σ3 ⊗ s0, σ2 ⊗ s1, σ2 ⊗ s2, σ2 ⊗ s3), (36)

and �ab = 1
2i [�a, �b], where σi (σ0), i = 1, 2, 3, are the Pauli

(two-by-two identity) matrix acting on the sublattice space.

FIG. 1. Kane-Mele model on a honeycomb lattice. Two sublat-
tices, highlighted in yellow, are denoted as A and B, with a unit
cell indicated by the gray rectangle. a1 and a2 are the Bravais lat-
tice vectors. The gray line denotes the NN hopping amplitude −t ,
while the NNN hopping matrix of Haldane’s type are shown in red
and blue with the arrow implying the hopping direction. Note the
relative minus sign between two species of bosons are captured by
the standard Pauli matrix s3 acting on the pseudospin space.

All real parameters are listed in Table I. In this representation
we have T̃ �aT̃ −1 = �a and T̃ �abT̃ −1 = −�ab, with

T̃ = i(σ0 ⊗ s2)K = −i�35K. (37)

Hence da (dab) is even (odd) in k dictated by the odd TRS:
T̃ h(k)T̃ −1 = h(−k).

The single-particle band minimum obtained from Eq. (35)
is the same as the Haldane model studied by Refs. [27,54]: for
|λs| < t/

√
3, the band bottom locates at �, while for larger

|λs|, the minimum jumps to the corners KA and KB of the first
Brillouin zone (1BZ). Here we focus on the former case where
the condensation is expected to occur at �. Then, by taking
a general ground-state wave function ansatz and minimizing
the corresponding Gross-Pitaevskii (GP) energy functional
(see Appendix E), the superfluid order parameter is found
to be 〈aiA↑〉 = 〈aiA↓〉 = cos(θ̄/2)

√
n/2 and 〈aiB↑〉 = 〈aiB↓〉 =

sin(θ̄/2)
√

n/2, with θ̄ as a function of λv/t and Un/t (cf.
Fig. 7).

Applying the standard Bogoliubov theory (see Ap-
pendix E), we obtain the effective Hamiltonian [note it is
non-Hermitian due to the presence of imaginary i in the first
line on the right-hand side (RHS)],

H eff
k = τ0 ⊗ [d15(k)�15] + iτ2 ⊗ (d̃0�0 + ˜̃d2�2)

+ τ3 ⊗ [d0�0 + d1(k)�1 + d̃2�2 + d12(k)�12], (38)

TABLE I. Parameters used in Eq. (35) are given in the first two
rows and extra parameters used in Eq. (38) are given in the last two
rows, with x = √

3kxa/2 and y = 3kya/2. Note θ̄ itself is a function
of λv/t and Un/t ; see Fig. 7.

d1 −t (1 + 2 cos x cos y) d2 −λv

d12 2t cos x sin y d15 4λs(cos x − cos y) sin x

d0 λv cos θ̄ + 3t sin θ̄ + 1
4 nU sin2 θ̄ d̃0

1
4 nU

d̃2 −λv + 1
2 nU cos θ̄ ˜̃d2

1
4 nU cos θ̄
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FIG. 2. Bogoliubov excitation spectrum (blue dots) under full periodic boundary conditions along high symmetric lines in the 1BZ (shown
in the inset of the left figure) for (left) λv/t = 0.10, (middle) λv/t = λ�

v/t ≈ 0.36, and (right) λv/t = 0.70. The noninteracting bands (shifted
upwards by nU/2 − μ) are also plotted in gray solid lines. As shown in the inset of the middle figure, when the gap of Bogoliubov excitation
spectrum just closes, the corresponding gap of the noninteracting band has already reopened again. Other relevant parameters: nU/t = 1 and
λs/t = 0.06.

where �0 = σ0 ⊗ s0 and all real parameters are listed in Ta-
ble I. One can easily see that this effective Hamiltonian has
PTRS with the PTR operator

T = τ0 ⊗ T̃ .

Diagonalization of Eq. (38) leads to the Bogoliubov excitation
spectrum shown in Fig. 2 along the high symmetric lines. In
the low energy limit, there are two Goldstone modes result-
ing from the spontaneous breaking of two U(1) symmetries
corresponding to particle number and s3 conservations, re-
spectively.

For the noninteracting Hamiltonian, Eq. (35), the system is
gapped for a general λv at half filling. The gap-closing-and-
reopening transition occurs at two corners KA and KB when
λv = ±3

√
3λs [30]. This behavior is smoothly carried over to

the Bogoliubov excitation spectrum, with the only difference
that now λv = λ�

v �= ±3
√

3λs. By calculating eigenvalues of
H eff

KA
(or equivalently H eff

KB
) and equating the second and third

eigenvalues, the critical value λ�
v is found to be a function of

λv/t and nU/t , which is plotted as blue dots in Fig. 3(a). For
the case with λs, nU � t , it takes the form

λ�
v ≈ 3

√
3λs +

√
3

2
λsnU/t, (39)

which indeed returns to the noninteracting case by setting
U = 0. Using Eq. (25) with the numerical method of Fukui
and Hatsugai [53], for the higher pair of particle bands, we
find �̃2 = 1 for |λv| < λ�

v , corresponding to the Z2 topolog-
ical region, and �̃2 = 0 for |λv| > λ�

v , corresponding to the
Z2 trivial region. We also calculate the Wannier center flow
for the higher pair of particle bands [Figs. 3(d) and 3(e)],
and the Bogoliubov excitations in a one-dimensional zigzag
strip [Figs. 3(b) and 3(c)], which confirms the equivalence
of two definitions of the Z2 invariant, and the bulk-boundary
correspondence (i.e., the presence or absence of helical edge
states for the Z2 topological or trivial region).

For λv = 0, we have θ̄ = π/2, and the effective Hamilto-
nian enjoys IS with the inversion operator P = τ0 ⊗ �1. At
four PTRIM, we find

(ξ00, ξ01, ξ10, ξ11) = (−1,−1,−1, 1),

where ξi j is the eigenvalue of P for the second pair of particle
bands at PTRIM k = ib1/2 + jb2/2. Equation (28) then indi-

cates that the case with λv = 0 is in the Z2 topological region,
as expected.

As seen both from Eq. (39) (in a specific limit) and from
Fig. 3(a), the Z2 topological region becomes larger with
increasing the interaction strength (or the particle number
density). To understand why this is the case physically, we first
note that the large λv limit corresponds to the “atomic limit”
[55], where all atoms are tightly located at one of the two
sublattices, corresponding to an extreme sublattice imbalance,
and is of course Z2 trivial. By turning on a large |λv| from
zero (i.e., from the Z2 topological region), one encounters a
gap-closing-and-reopening transition. Effects of the repulsive
interaction, on the other hand, suppress the sublattice imbal-
ance induced by λv , since it favors a uniform configuration.
As a result, to reach the critical value of sublattice imbalance,
one needs a larger λv .

B. Bosonic Bernevig-Hughes-Zhang model

Our second example is a bosonic version of the Bernevig-
Hughes-Zhang (BBHZ) model, which is a time-reversal-
symmetric generalization of the Chern insulator on the
square lattice. Motivated by a scheme proposed by Liu
et al. [56], which has been experimentally realized by
Pan’s group [57,58], we consider two copies (labeled by
η = A, B) of pseudospin-1/2 (labeled by s =↑,↓) bosons
on the square lattice, with the tight-binding Hamiltonian
(Fig. 4)

H0 = − t
∑
〈i, j〉

a†
i (η0 ⊗ s0)a j − mz

∑
i

a†
i (η0 ⊗ s3)ai

− ts
∑
〈i, j〉

a†
i hi j

s a j, (40)

where a(†)
iηs is the annihilation (creation) operator of η boson

with pseudospin s at site ri and ai := (aiA↑, aiA↓, aiB↑, aiB↓)T .
ηi (η0) and si (s0), i = 1, 2, 3, are Pauli (two-by-two iden-
tity) matrices acting on boson-copy space and pseudospin
space, respectively. t denotes pseudospin-conserved hopping;
mz is a constant Zeeman term. The pseudospin-flip hopping
matrix hi j

s is shown explicitly in Fig. 4. Note the relative
minus sign, i.e., the presence of η3, between two copies of
bosons when they hop along the x direction, makes Eq. (40)
odd time-reversal symmetric [59]. The interacting part of the
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(a)

(c)(b)

(d) (e)

FIG. 3. (a) Z2 index, calculated using Eq. (25) and the numer-
ical method of [53], for the higher two particle bands in the BKM
model with nU/t = 1 and λs/t = 0.06. The boundaries, shown in
blue dotted lines, are obtained via a full numerical calculation [ex-
plained above Eq. (39)]. Red solid lines are obtained from the series
expansion, Eq. (39). Comparing with the black dashed vertical lines
(corresponding to the noninteracting case) shows that the Z2 topolog-
ical region becomes larger. In (b) λv/t = 0.1 and (c) λz/t = 0.7, we
zoom in around the midgap of the Bogoliubov excitation spectrum of
particle bands in a strip geometry of 64 unit cells (each with 64 sites)
with zigzag edges. Red (green) points correspond to edge modes,
whose wave functions have more than 80% weight on the leftmost
(rightmost) unit cell. Panels (d) and (e) are the corresponding Wan-
nier center flow of the second pair of particle bands by treating k2 as
the time.

Hamiltonian takes the same form as Eq. (34) for each copy of
boson.

After a gauge transformation a jη↓ → (−1) ja jη↓ [56], the
momentum-space Bloch Hamiltonian is

h(k) = η0 ⊗ {[−2t (cos kx + cos ky) − mz]s3

− 2ts sin kxs2} + η3 ⊗ (−2ts sin kys1), (41)

which resembles the four-band model for HgTe introduced
by Bernevig, Hughes, and Zhang [60]. This single-particle

FIG. 4. Bernevig-Hughes-Zhang-like model on a square lattice.
It is a straightforward generalization of the scheme proposed by
Liu et al. [56]. The pseudospin-flip hopping matrix hi j

s along x
(y) direction, used in Eq. (40), are shown in blue (red), with the
arrow indicating the hopping direction. There is a relative minus sign
between dashed lines and solid lines of the same color. Hence, in the
original gauge, the unit cell contains two sites (denoted as A and B
with yellow background), with the corresponding Bravais primitive
lattice vector a′

1,2 shown in gray [61]. Only after performing a clever
gauge transformation ajη↓ → (−1) ja jη↓ [56], all lines become solid,
and it is then valid to use a1,2 shown in black, as the two Bravais
lattice vectors, and the unit cell contains only a single site.

Hamiltonian has both odd TRS

T̃ h(k)T̃ −1 = h(−k), T̃ = iη2 ⊗ s0K,

and IS

P̃h(k)P̃−1 = h(−k), P̃ = η0 ⊗ s3.

Instead of Eq. (36), it is convenient to choose the Dirac matri-
ces to be even under P̃T̃ [6],

�a = (η0 ⊗ s3, η0 ⊗ s2, η1 ⊗ s1, η2 ⊗ s1, η3 ⊗ s1).

Then T̃ = −i�35K , P̃ = �1, and the commutators are odd
under P̃T̃ , i.e., P̃T̃ �ab(P̃T̃ )−1 = −�ab. Due to �1 = P̃ , we
further have

T̃ �aT̃ = P̃�aP̃ =
{+�a for a = 1,

−�a for a �= 1.

Equation (41) is then recast into

h(k) = d1(k)�1 + d2(k)�2 + d5(k)�5, (42)

with all real coefficients listed in Table II. As shown in
Ref. [6], the Z2 invariant for this noninteracting model can be
identified using the same formula as Eq. (28). The representa-
tion of Dirac matrices has been chosen such that, at the four
TRIM, only d1 can be nonzero, i.e., h(�) = d1(�)P̃ . Hence
one can directly obtain all eigenvalues of P̃ for the occupied
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TABLE II. Parameters used in Eq. (42) are given in the first two
rows and extra parameters used in Eq. (44) are given in the last two
rows.

d1 −2t (cos kx + cos ky ) − mz d2 −2ts sin kx

d5 −2ts sin ky

d̃1
nU
2 + d1 d0

nU
4

d̃0 4t + mz

bands,

(ξ00, ξ01, ξ10, ξ11) = (−4t − mz,−mz,−mz, 4t − mz ), (43)

which shows that the noninteracting system is in the Z2

topological region for |mz| < 4t , and in the Z2 trivial region
otherwise.

Single-particle bands of Eq. (41) are the same as the
Chern insulator with a twofold degeneracy dictated by P̃T̃
symmetry. For |ts| < t�

s , where t�
s =

√
2t2 + mzt/2, the band

minimum locates at � (M) if mz > 0 (mz < 0). For |ts| > t�
s ,

this single minimum splits into four points, (±k0,±k0) with
k0 = arccos mzt

2(t2
s −2t2 ) . Here we will focus on the former case,

and assume bosons condense only at �, by taking a sufficiently
large positive mz. Then, using a general ground-state wave-
function ansatz and minimizing the corresponding GP energy
functional (see Appendix E), the superfluid order parameter is
found to be 〈aiA↑〉 = 〈aiB↑〉 = 1/

√
2 and 〈aiA↓〉 = 〈aiB↓〉 = 0,

for the physically relevant region (cf. Fig. 9).
Using the Bogoliubov theory, we obtain the effective

Hamiltonian (note it is non-Hermitian due to the presence of
imaginary i in the first line on the RHS) (see Appendix E),

H eff
k = d5τ0 ⊗ �5 + id0τ2 ⊗ (�0 + �1)

× τ3 ⊗ (d̃0�0 + d̃1�1 + d2�2), (44)

with �0 = η0 ⊗ s0 and all real parameters listed in Table II. It
is straightforward to check that this effective Hamiltonian has
both PTRS with the PTR operator

T = τ0 ⊗ T̃ (45)

and IS with the inversion operator

P = τ0 ⊗ P̃ . (46)

Diagonalization of Eq. (44) leads to the Bogoliubov excita-
tion spectrum shown in Fig. 5, which is doubly degenerate

dictated by PT symmetry. In the low energy limit, there are
two Goldstone modes due to the spontaneous breaking of
two U(1) symmetries associated to particle number and η3

conservations, respectively.
For the noninteracting Hamiltonian Eq. (42), the gap-

closing-and-reopening transition occurs at M when mz = 4t
for mz positive [cf. Eq. (43)]. This behavior is again smoothly
carried over to the Bogoliubov excitation spectrum, with the
only difference that now mz = m�

z �= 4t . By calculating eigen-
values of H eff

M and equating the two relevant ones, we find

m�
z =

√
2t (8t + nU ) + nU

4
, (47)

which indeed returns to the noninteracting case by setting
U = 0. Using Eq. (25) with the numerical method of Fukui
and Hatsugai [53], for the higher pair of particle bands, we
find �̃2 = 1 for mz < m�

z , corresponding to the Z2 topological
region, while �̃2 = 0 for mz > m�

z , corresponding to the Z2

trivial region. We also calculate the Wannier center flow for
the higher pair of particle bands, and the Bogoliubov excita-
tions in a strip geometry as shown in Fig. 6, which confirms
the equivalence of two definitions of the Z2 invariant and the
bulk-boundary correspondence.

Since this model always has IS, we may simply examine
the parity eigenvalues at the PTRIM. Because the gap closes
only at M, the parity eigenvalues can only change there. We
thus consider the eigenvalues of two relevant particle bands
with the corresponding eigenstates at M (note El+1 = El , for
l = 1, 2):

E1(M) =
√

8t (8t + nU ), E3(M) = 2mz − nU

2
,

|u1(M)〉 ∝
(

0, 0,−16t + nU + 4
√

2t (8t + nU )

nU
,

0, 0, 0, 1, 0

)T

,

|u3(M)〉 = (0, 0, 0, 1, 0, 0, 0, 0)T .

which are obviously also the eigenvectors of inversion opera-
tor with parity 1 and −1, respectively. Hence the topological
transition occurs at the degeneracy point E1(M) = E3(M)
which leads again to Eq. (47). To determine the presence or
absence of helical edge modes between the first and second
pair of particle bands, one has to find out all four eigenvalues

FIG. 5. Bogoliubov excitation spectrum (blue dots) under full periodic boundary conditions along high symmetric lines in the 1BZ (shown
in the inset of the right figure), for (left) mz/t = 2.10, (middle) mz/t = m�

z/t ≈ 4.48, and (right) mz/t = 5.10. The noninteracting bands (shifted
upwards by nU/2 − μ) are also plotted in gray lines. As shown in the inset of the middle figure, when the gap of Bogoliubov excitation
spectrum just closes, the gap corresponding to the noninteracting band has already reopened. Other relevant parameters: nU/t = ts/t = 1.
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FIG. 6. Bogoliubov excitation spectrum of particle bands in a
strip geometry of 64 unit cells (each containing 64 sites) for mz/t =
2.1 (left top) and mz/t = 5.1 (right top). Green points correspond to
edge modes, whose wave functions have more than 80% weight on
the rightmost unit cell. Edge modes on the leftmost unit cell com-
pletely overlap with the green points due to IS. The corresponding
Wannier center flow of the second pair of particle bands by treating
k2 as the time is shown in the bottom. Other relevant parameters:
nU/t = ts/t = 1.

of P for the second pair of bands at PTRIM,

(ξ00, ξ01, ξ10, ξ11) = (−1, 1, 1, 1), for mz < m�
z .

Equation (28) then indicates that mz < m�
z corresponds to the

Z2 topological region, while mz > m�
z is the Z2 trivial region,

as expected.
Lastly, we note that the Z2 topological region of the

BBHZ model also becomes larger with increasing the inter-
action strength (or the particle number density), as seen from
Eq. (47). Similar to the BKM model, physically speaking, the
repulsive interaction favors a uniform configuration, which
suppresses the pseudospin imbalance induced by mz. In turn,
to reach the critical value of pseudospin imbalance, one needs
a larger mz, i.e., the Z2 topological region becomes larger.

V. CONCLUSION AND DISCUSSION

In this article, we studied topological Bogoliubov excita-
tions in BEC in optical lattices protected by a PTRS that is
analogous to topological insulators in class AII of fermions.
The bulk topological Z2 invariant is shown to be characterized
by the Pfaffian, the pseudo-time-reversal polarization, and
the Wannier center flow. The last definition is most useful
because it is gauge independent. With an additional inversion
symmetry, this Z2 invariant can be identified by examining
the inversion eigenvalues of the “occupied” states at PTRIM.
In two simple and experimentally feasible examples, we con-

firmed the bulk-boundary correspondence numerically, and
found in both cases that the topological region is enlarged
by the interaction or the particle number density, since the
repulsive interaction favors a uniform configuration which
suppresses the effects of sublattice (pseudospin) imbalance
induced by λv (mz), which will lead a transition to the topo-
logical trivial region. Effectively, this topology becomes more
“robust.”

Similar to the fermionic case discussed in Ref. [62], we
expect that the topological properties discussed in this paper
should be robust against weak disorder that (1) respect the
PTRS and (2) are sufficiently weak so that topological excita-
tion band gap does not close and the system does not enter into
the Bose glass phase (where the topology of excitation spec-
trum could change dramatically). Of course, a more serious
study should be carried out in the future.

The bulk-boundary correspondence guarantees that a non-
trivial Z2 index implies the existence of topological edge
states which can be experimentally detected in cold atom
experiments [63–66]. We expect the topological helical edge
modes discussed here can be probed in a similar manner.
To experimentally measure the topological properties of the
Bogoliubov excitations, one can also coherently transfer a
small portion of the condensate into an edge mode using
Raman transitions [67], and a density wave should be formed
along the edge due to an interference with the background
condensate [27].

One straightforward generalization of our work is to
consider a AII-class-like excitation band topology of BEC in
three dimensions [68,69]. Using the language of Krein-space
theory developed in this paper, one may also consider various
(symmorphic or nonsymmorphic) crystalline-symmetry-
protected excitation band topology of weakly interacting
BEC in optical lattices in the superfluid phase, analogous to
its fermionic counterpart [70]. One may also study excitations
in the Mott insulator phase, where similar topological
structure is expected to occur [54,71].

Lastly, we note that, despite the well-known effectiveness
of the Bogoliubov theory to the weakly interacting bosons, it
is interesting to go beyond this approximation and consider
higher-order quantum corrections, by using either exact nu-
merical methods or many-body perturbation theory. The fate
of PTRS and the associated topological properties could be
studied further in the future.
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APPENDIX A: PROPERTIES OF TWO SEWING
MATRICES AND PFAFFIAN

For the sewing matrix B defined in Eq. (18), one can find
its explicit matrix elements as follows:

〈〈um(−k), T un(k)〉〉 = −〈〈un(k), T um(−k)〉〉
= 〈〈un(k), Bml (k)ul (k)〉〉
= Bmn(k). (A1)
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It then follows that B is unitary (double indices imply summa-
tion),

Bmn(k)B∗
ln(k) = 〈〈um(−k), T un(k)〉〉〈〈ul (−k), T un(k)〉〉∗

= 〈〈un(k), T um(−k)〉〉〈〈T ul (−k), un(k)〉〉
= 〈T ul (−k)|�3|un(k)〉〈un(k)|�3|T um(−k)〉
= 〈〈T ul (−k), T um(−k)〉〉
= 〈〈um(−k), ul (−k)〉〉
= δml , (A2)

and has the property Bmn(k) = −Bnm(−k) since

Bmn(k) = 〈〈um(−k), T un(k)〉〉
= −〈〈un(k), T um(−k)〉〉
= −Bnm(−k). (A3)

The sewing matrix for hole bands is related to its particle
companion by

[Bhole]mn(k) = 〈〈�1u∗
m(k), T �1un(−k)∗〉〉

= ±〈〈um(k), T un(−k)〉〉∗
= ±B∗

mn(−k), (A4)

where ± corresponds to P = τ3 ⊗ M or τ0 ⊗ M with τi (τ0),
i = 1, 2, 3, the standard Pauli (two-by-two identity) matrix,
and the Hermitian matrix M satisfying MM∗ = −1. In partic-
ular, for the two examples studied in Sec. IV, the minus sign
is picked.

For the sewing matrix C defined in Eq. (29), one can find
its explicit matrix elements as follows:

〈〈um(k),PT un(k)〉〉 = −〈um(k)|�3Cnl (PT )2ul (k)〉
= Cnl〈〈um(k), ul (k)〉〉
= Cmn. (A5)

It then follows that C is unitary,

Cmn(k)C∗
ln(k) = 〈〈um(k),PT un(k)〉〉〈〈ul (k),PT un(k)〉〉∗

= 〈〈Pun(k), T um(k)〉〉〈〈T ul (k),Pun(k)〉〉
= 〈T ul (k)|�3P|un(k)〉〈un(k)|P�3T |um(k)〉
= 〈T ul (k)|�3T |um(k)〉
= 〈〈um(k), ul (k)〉〉
= δml , (A6)

where we used pseudo-unitarity of P , and C is antisymmetric,

Cmn(k) = 〈〈um(k),PT un(k)〉〉
= −〈〈Pun(k), T um(k)〉〉
= −〈〈un(k),PT um(k)〉〉
= −Cnm, (A7)

where we used pseudo-Hermiticity of P . One can relate C at k
and −k using B:

Cmn(−k) = 〈〈um(−k),PT un(−k)〉〉
= Bml (k)〈〈T ul (k),PT 2ul ′ (k)〉〉Bnl ′ (k)

= Bml (k)〈〈ul (k),PT ul ′ (k)〉〉∗Bnl ′ (k)

= Bml (k)C∗
ll ′ (k)[BT (k)]l ′n, (A8)

which leads to Eq. (31). Similarly, one can relate the Pfaffian
P at k and −k using B:

P(−k) = Pf[〈〈un(−k), T um(−k)〉〉]
= Pf[Bnl (k)〈〈T ul ′ (k), ul (k)〉〉Bml ′ (k)]

= Pf[B∗
nl (k)〈〈ul (k), T ul ′ (k)〉〉B∗

ml ′ (k)]∗

= det[B(k)]P∗(k). (A9)

The Pfaffian for the hole bands is also related to its particle
companion,

Phole(k) = Pf[〈〈�1u∗(−k), T �1u∗
m(−k)〉〉]

= ±Pf[〈〈u∗(−k), T u∗
m(−k)〉〉]

= ±Pf[〈〈u(−k), T um(−k)〉〉]∗
= ±P(−k)∗

= ± det[B(k)]∗P(k), (A10)

where again ± corresponds to P = τ3 ⊗ M or τ0 ⊗ M.
Lastly, considering a gauge transformation only in particle

space |un(k)〉 → Rnm(k)|um(k)〉, to preserve the orthonormal
condition with respect to the pseudo inner product, R has to
be unitary. It then follows that the Pfaffian becomes

P(k) → Pf[R∗
nl (k)〈〈ul (k), T ul ′ (k)〉〉R∗

ml ′ (k)]

= det[R∗(k)]P(k). (A11)

The sewing matrix B becomes

Bmn(k) → [R∗(−k)]mlBll ′ (k)[R†(k)]l ′n (A12)

and the sewing matrix C becomes

Cmn(k) → [R∗(k)]mlCll ′ (k)[R†(k)]l ′n. (A13)

APPENDIX B: PROOF OF EQ. (21)

We first relate the Berry connection between two states of
the λth pair using Eq. (19),

A(1)
λ (−k) = −i

〈〈
∂kT u(1)

λ (−k), T u(1)
λ (−k)

〉〉
= −i

〈〈
∂ku(2)

λ (k), u(2)
λ (k)

〉〉 + ∂kχk,λ

= A(2)
λ (k) + ∂kχk,λ. (B1)

Then the partial polarization for l = 1 can be written as

P(1)
λ = 1

2π

∫ π

0
dk

[
A(1)

λ (k) + A(1)
λ (−k)

]
= 1

2π

[∫ π

0
dk Aλ(k) + (χπ,λ − χ0,λ)

]
, (B2)

where Aλ(k) = A(1)
λ (k) + A(2)

λ (k) is the full (Abelian) Berry
connection. Using the sewing matrix B and the representation
Eq. (19), we have Pf[Bλ(π )]

Pf[Bλ(0)] = e−iχπ,λ+iχ0,λ ; hence Eq. (B2) be-
comes

P(1)
λ = 1

2π

[∫ π

0
dk Aλ(k) + i ln

(
Pf[B(π )]

Pf[B(0)]

)]
. (B3)

Under a U(1) gauge transformation |u(l )
λ (k)〉 → eiχ̃ (k)|u(l )

λ (k)〉,
both terms on the RHS of Eq. (B3) induce 2χ̃ (π ) − 2χ̃ (0)
with opposite sign, thus canceling each other. By writing the
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full Berry connection as the trace of the U(2) non-Abelian
Berry connection [cf. Eq. (27)], Aλ(k) = TrAλ(k), the first
term on the RHS of Eq. (B3) is manifestly invariant under a
SU(2) gauge transformation |u(l )

λ (k)〉 → Ull ′ (k)|u(l ′ )
λ (k)〉; for

the second term, due to Eq. (A12), the Pfaffian at the PTRIM
transforms as Pf[B(k)] → Pf[B(k)] det[U ∗] and is also invari-
ant. We conclude that P(1)

λ is U(2) invariant analogous to

the fermionic case [31]. Similarly, one can find that P(2)
λ =

1
2π

[
∫ 0
−π

dk Aλ(k) − i ln ( Pf[B(π )]
Pf[B(0)] )]; hence the symplectic gen-

eralization of charge polarization reads

Pλ = P(1)
λ + P(2)

λ = 1

2π

∫ π

−π

dk Aλ(k). (B4)

Using the sewing matrix B, we massage Eq. (B4) at k2 = −π ,

Pλ(k2 = −π ) = i

2π

∫ π

−π

dk
2∑

l=1

〈〈
u(l )

λ (k,−π ), ∂ku(l )
λ (k,−π )

〉〉

= − i

2π

∫ π

−π

dk
2∑

l=1

〈〈
u(l )

λ (−k,−π ), ∂ku(l )
λ (−k,−π )

〉〉

= 1

2π

∫ π

−π

dk Tr
[
B∗

λ(k, π )Aλ(k, π )BT
λ (k, π )

] + i

2π

∫ π

−π

dk Tr[B†
λ(k, π )∂kBλ(k, π )]

= Pλ(k2 = π ) + i

2π

∫ π

−π

dk ∂k ln det Bλ(k, π )

= Pλ(k2 = π ). (B5)

Hence the change of charge polarization under a cycle of k2 from −π to π vanishes, which is nothing but the fact that the Chern
number vanishes for a 2D PTR symmetric system. We then consider the symplectic generalization of PTR polarization,

P̃λ = P(1)
λ − P(2)

λ = 1

2π

{∫ π

0
dk Aλ(k) −

∫ 0

−π

dk Aλ(k) + 2i ln

(
Pf[B(π )]

Pf[B(0)]

)}
. (B6)

We massage the middle term on the RHS of Eq. (B6) using the sewing matrix B,∫ 0

−π

dk Aλ(k) = − iξλ

2π

∫ π

0
dk

2∑
l=1

〈〈
u(l )

λ (−k), ∂ku(l )
λ (−k)

〉〉

= 1

2π

∫ π

0
dk Tr

[
B∗

λ(k)Aλ(k)BT
λ (k)

] + i

2π

∫ π

0
Tr[B†(k)∂kB(k)]

= 1

2π

∫ π

0
dk Aλ(k) − 1

2π i

∫ π

0
dk ∂k ln det B(k). (B7)

Hence Eq. (B6) becomes

P̃λ = 1

π i

[∫ π

0
dk ∂k ln

√
det[B(k)] − ln

(
Pf[B(π )]

Pf[B(0)]

)]
, (B8)

which leads to Eq. (21).

APPENDIX C: PROOF OF EQ. (30)

We directly massage the definition of Berry connection
using the sewing matrix C,

Aλ(k) = i
∑
l=1,2

〈〈
u(l )

λ (k),∇ku(l )
λ (k)

〉〉

= i
∑
l=1,2

Cll ′ (k)〈〈PT ul ′ (k),∇kPT ul ′′ (k)〉〉C∗
ll ′′ (k)

+ i
∑
l=1,2

Cll ′ (k)〈〈PT ul ′ (k),PT ul ′′ (k)〉〉∇kC∗
ll ′′ (k)

= −trC∗A∗
λ(k)CT − i trC†(k)∇kC(k)

= −Aλ(k) − i trC†(k)∇kC(k),

which leads to the first line of Eq. (30). The second line
then follows from the identity ∇ ln det[U ] = tr[∇ ln U ] =
tr[U †∇U ], valid for any unitary matrix U .

APPENDIX D: PROPERTIES OF WILSON
LOOP OPERATOR

Suppose |w〉 is an eigenvector of the Wilson loop operator
Wk with the eigenvalue w, i.e., Wk|w〉 = w|w〉. For any k′,
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which satisfies k′ = nδ1 + k (without loss of generality 0 �
n � N1), we have

wM[k′−N1δ1,k′−(N1−1)δ1]M[k′−(N1−1)δ1,k′−(N1−2)δ1]

. . . M[k′−(n+1)δ1,k′−nδ1]|w〉
= M[k′−N1δ1,k′−(N1−1)δ1]M[k′−(N1−1)δ1,k′−(N1−2)δ1]

. . . M[k′−(n+1)δ1,k′−nδ1]Wk|w〉
= Wk′M (k′,k′+δ1 )M (k′+δ1,k′+2δ1 ) . . . M (k−δ1,k)|w〉.

Hence Wk′ also has the same eigenvalue w. Namely, eigenval-
ues of Wk are independent of k1.

One may write the Wilson loop operator in terms of a non-
Hermitian projector,

Wk = 
0
1 . . . 
N1 ,

where 
l = ∑
n�nmax

|un(k + lδ1)〉〈un(k + lδ1)|�3 is the pro-
jector to the occupied subspace and the entries of Wk are
given by [Wk]mn = 〈〈um(k),Wkun(k)〉〉. It is therefore mani-
festly U(nm) gauge invariant.

Since eigenvalues of Wk are independent of k1, without
loss of generality, we may consider a particular Wilson loop
operator

Wk2 = 
−k1/2,k2
−k1/2+δ1,k2 . . . 
k1/2,k2 ,

where 
k1,k2 = ∑
n�nmax

|un(k1, k2)〉〈un(k1, k2)|�3. Using the
sewing matrix B, we have


−k1,−k2 =
∑

n�nmax

|un(−k1,−k2)〉〈un(−k1,−k2)|�3

=
∑

n,l,l ′�nmax

B∗
nl (k)P|u∗

l (k1, k2)〉〈u∗
l ′ (k1, k2)|P†�3Bnl ′

= P
∗
k1,k2

P−1

= P�3

T
k1,k2

�3P−1, (D1)

where we used the unitarity of B and the pseudo-unitarity of
P. It follows that the Wilson loop at −k2 and at k2 are related,

W−k2 = 
−k1/2,−k2
−k1/2+δ1,−k2 . . . 
k1/2,−k2

= P�3

T
k1/2,k2


T
k1/2−δ1,k2

. . . 
T
−k1/2,k2

�3P−1

= P�3W
T

k2
�3P−1. (D2)

Since eigenvalues remain the same under both the transpose
and the similarity transformations, the Wilson loop at ky and
−ky have the same eigenvalues.

At k2 = 0 or π , the 1D effective Hamiltonian is PTR sym-
metric; therefore, each eigenstate |ψ〉 has a PTR companion
T |ψ〉 with the same energy and that are orthogonal with
respect to the pseudo inner product,

〈〈ψ, T ψ〉〉 = 〈ψ |�3PKψ〉 = 0. (D3)

These states are also the eigenstates of the Wilson loop W =
W0 or Wπ . Using Eq. (D2) and pseudo-unitarity of P, we have

w|ψ〉 = W |ψ〉
= P�3P†�3W P�3P†�3|ψ〉
= P�3W

T P†�3|ψ〉.

Multiplying both sides from the left by P∗, then taking the
complex conjugation, we have

w∗PK|ψ〉 = �3W
†(P−1)†�3K|ψ〉

⇔ w∗�3PK|ψ〉 = W †�3PK|ψ〉, (D4)

where we used PP∗ = −1 and again pseudo-unitarity of P.
Since Eq. (D4) shows that the Wilson loop W has a left
eigenvector with eigenvalue w∗ which is orthogonal to |ψ〉
due to Eq. (D3), the right eigenvalue w must be at least twice
degenerate at k2 = 0 or π .

Lastly, we note that the Wilson loop operator for the
hole bands is related to its particle companion, W hole

k =
�1(W particle

−k )∗�1 = �1P∗(W particle
k )(P∗)−1�1, where in the

second equality we used Eq. (D1). Thus they have the same
Wannier center flow structure.

APPENDIX E: DETAILS ON MEAN-FIELD THEORY AND
SYMMETRY ANALYSIS

In this Appendix, we present a detailed mean-field calcu-
lation for two models discussed in the main text. Especially,
we consider a more general interaction term with Eq. (34) as
a special case. The requirement of the form of interaction in
order to get a BdG system with PTRS is examined.

1. BKM model

We start from the full Hamiltonian, with a generic repulsive
interaction, written in momentum space,

H =
∑

k

a†
kh(k)ak

+ 1

2M

∑
k,p,q,σ ss′

Uss′a†
k+q,σ sa

†
p−q,σ s′ak,σ s′ap,σ s, (E1)

where h(k) is given in Eq. (35), M is the total number of unit
cells, U↑↑ = U↓↓ = U > 0, U↑↓ = U↓↑ = λU , and λ > 0 is
the interspecies anisotropy. Assuming bosons condense at �,
the ground-state wave-function ansatz is

|ψ〉 = 1√
N !

(√
N

∑
σ s

ψσ sa
†
�σ s

)N

|0〉,

where N is the total boson number and four complex numbers
φσ s satisfy

∑
σ s |ψσ s|2 = 1. Using the following parametriza-

tion:

(ψA↑, ψA↓, ψB↑, ψB↓) = (ρ1eiφ1 , ρ2eiφ2 , ρ3eiφ3 , ρ4eiφ4 ),
(E2)

the Gross-Pitaevskii (GP) energy functional density becomes

EGP = 〈ψ |H |ψ〉
N

= − 6t[cos(φ1 − φ3)ρ1ρ3 − cos(φ2 − φ4)ρ2ρ4]

− λv

(
ρ2

1 + ρ2
2 − ρ2

3 − ρ2
4

)
+ nU

2
− nU

(
ρ2

1 + ρ2
2

)(
ρ2

3 + ρ2
4

)
− nU (1 − λ)

(
ρ2

1ρ2
2 + ρ2

3ρ2
4

)
, (E3)
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FIG. 7. Mean-field solution of θ = 2 arctan(ρ3/ρ1) for the BKM
model as a function of sublattice imbalance λv for interaction
anisotropy λ = 0.3 (left) and λ = 1.5 (right), obtained by both
minimizing Eq. (E3) numerically using the method of simulated
annealing (dots) and minimizing Eq. (E4) (left) or Eq. (E5) (right) an-
alytically (solid lines). Note, although θ̄ behaves similarly for λ > 1
and λ < 1, they correspond to different ground states, i.e., Z-ferro
and XY -ferro, respectively. Other relevant parameters: λs/t = 0.06.

where n = N /M is the particle number density. Its mini-
mization fixes φ1 = φ3 and φ2 = φ4 [two phases left arbitrary
dictated by two U(1) symmetries of the system]. For λ < 1,
we expect the XY -ferro state is favored. By setting ρ1 = ρ2

and ρ3 = ρ4, the GP energy functional simplifies to

EGP|λ<1 = − 12tρ1ρ3 − 2λv

(
ρ2

1 − ρ2
3

)
+ nU

2

[
1 − 4ρ2

1ρ2
3 − 2(1 − λ)

(
ρ4

1 + ρ4
3

)]
, (E4)

with the constraint ρ2
1 + ρ2

3 = 1/2. Further introducing
(ρ1, ρ3) = (1/

√
2)(cos θ

2 , sin θ
2 ), then minimizing Eq. (E4) fi-

nally fixes θ = θ̄ . For λ > 1, we expect the Z-ferro state is
favored. By setting ρ2 = ρ4 = 0 (without loss of generality,
assuming λv > 0), the GP energy functional simplifies to

EGP|λ>1 = −6tρ1ρ3 + λv

(
ρ2

3 − ρ2
1

) + nU
(

1
2 − ρ2

1ρ2
3

)
. (E5)

Further introducing (ρ1, ρ3) = (cos θ
2 , sin θ

2 ), then minimiz-
ing Eq. (E5) finally fixes θ = θ̄ . The above analysis has been
confirmed by minimizing Eq. (E3) directly using the method
of simulated annealing, as shown in Fig. 7. The mean-field
analysis shows that θ̄ decreases (increases) from π/2 when
turning on a positive (negative) sublattice potential λv , which
physically means that more bosons will condense into the A
(B) sublattice. The repulsive interaction suppresses this sub-
lattice imbalance, since it favors a uniform configuration. We
note θ̄ is a monotonically decreasing function of λv , but never
reaches its extreme values, 0 or π , for any finite |λv|.

After obtaining the ground state, we then follow the
number-conserving approach [72] to the Bogoliubov theory.
Making the substitution

a(†)
�σ s →

(
N −

∑
k �=�,σ s

a†
k,σ sak,σ s

)1/2

ψ (∗)
σ s ,

FIG. 8. Bogoliubov excitation spectrum near the middle gap of
particle bands for the BKM model in a strip geometry of 64 unit
cells (each containing 64 sites) with zigzag edges for λ = 0.3 (left)
and λ = 1.3 (right). Red (green) points correspond to edge modes,
whose wave functions have more than 80% weight on the leftmost
(rightmost) unit cell. For both cases, the bosonic Kramers’ pair is
gone. Other relevant parameters: nU/t = 1, λs/t = 0.06, and λv/t =
0.1.

Eq. (E1) can be written, up to the quadratic order in operators,
as

HBog. = NEGP +
∑
k �=�

a†
kAkak + (a†

kBa†
k + H.c.), (E6)

where

Ak = h(k) − μI4 + h1, (E7)

μ =
∑

σ s,σ ′s′
ψ∗

σ s[h(k)]σ s,σ ′s′ψσ ′s′ (E8)

+ n
∑
σ ss′

Uss′ψ∗
σ sψ

∗
σ s′ψσ s′ψσ s, (E9)

[h1]σ s,σ ′s′ = nδσ,σ ′Uss′ (ψσ sψ
∗
σ s′ + ψ∗

σ s′ψσ s′ ), (E10)

and

Bσ s,σ ′s′ = n

2
δσ,σ ′Uss′ψσ s′ψσ s. (E11)

We plug the mean-field ground-state solution into Eq. (E6),
and rewrite it into a BdG form as discussed in Sec. II A. For
1 > λ > 0, the effective Hamiltonian is found to be

H eff
k |λ<1 = H eff

k |λ=0 + λnU

8

{
iτ2 ⊗ (cos θ̄�13 + �45)

+ τ3 ⊗
[

sin2 θ̄

2
�0 + cos θ̄ (�2 + �13) + �45

]}
.

(E12)

For the PTRS operator defined in Eq. (37), the presence of
�13 and �45 results in a BdG system without PTRS for any
1 > λ > 0, while, for λ > 1, the effective Hamiltonian turns
out to be

H eff
k |λ>1 =H eff

k |λ=0+ λnU

4
τ3 ⊗ [�0 + cos θ̄ (�2−�15) − �34].

(E13)

Due to the presence of �15 and �34, the BdG system
does not possess PTRS either. In Fig. 8, we show the ab-
sence of a bosonic Kramers’ pair for both 0 < λ < 1 and
λ > 1. In conclusion, the interspecies interactions break the
PTRS.
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FIG. 9. Mean-field solution of θ = 2 arctan(ρ2/ρ1) for the
BBHZ model as a function of nU for λ = 0.3, obtained by both
minimizing Eq. (E15) numerically using the method of simulated
annealing (dots) and minimizing a reduced equation analytically
after using the substitution ρ1 = ρ3 = (1/

√
2) cos θ̄

2 and ρ2 = ρ4 =
(1/

√
2) sin θ̄

2 (solid lines). Note for the weakly interacting region,
i.e., for U/t small, we always have θ̄ = 0.

2. BBHZ model

The full Hamiltonian, with a generic repulsive interaction,
in momentum space reads

H =
∑

k

a†
kh(k)ak + 1

2M

×
∑

k,p,q,ηη′ss′
Uηs,η′s′a†

k+q,ηsa
†
p−q,η′s′ak,η′s′ap,ηs, (E14)

with h(k) given in Eq. (41), Uηs,η′s′ = U if η = η′ and s = s′,
and Uηs,η′s′ = λU otherwise. Physically speaking, we are con-
sidering on-site, density-density interaction between all four
kinds of bosons (two types × two pseudospins); this is differ-
ent from the BKM model, since the latter has two sublattices.
Assuming bosons condense at �, which is possible for mz

sufficiently large and positive, the ground-state wave-function
ansatz is

|ψ〉 = 1√
N !

(√
N

∑
ηs

ψηsa
†
�ηs

)N

|0〉,

with four complex numbers satisfying
∑

s |ψηs|2 = 1. Using
again the parametrization Eq. (E2), the GP energy functional
density then becomes [73]

EGP = − (4t + mz )
(
ρ2

1 − ρ2
2 + ρ2

3 − ρ2
4

)
+ nU

[
1
2 + (λ − 1)

(
ρ2

1ρ2
2 + ρ2

1ρ2
3

+ ρ2
1ρ2

4 + ρ2
2ρ2

3 + ρ2
2ρ2

4 + ρ2
3ρ2

4

)]
. (E15)

For 0 � λ < 1, Eq. (E15) is minimized by setting ρ1 = ρ3 =
(1/

√
2) cos θ̄

2 and ρ2 = ρ4 = (1/
√

2) sin θ̄
2 with θ̄ plotted in

Fig. 9. Note in the region of the weak-coupling limit, i.e.,
U/t is small, we always have θ̄ = 0, which is assumed to be
the case in the following discussion. For λ > 1, Eq. (E15) is

FIG. 10. Bogoliubov excitation spectrum near the middle gap of
particle bands for the BBHZ model in a strip geometry of 64 unit
cells (each containing 64 sites) for λ = 0.3 (left) and λ = 1.3 (right).
Red (green) points correspond to edge modes, whose wave functions
have more than 80% weight on the leftmost (rightmost) unit cell.
Note, for the former case, the left (right) edge modes are completely
overlapped due to IS. For both cases, the bosonic Kramers’ pair is
gone. Other relevant parameters: nU/t = ts/t = 1 and mz/t = 2.1.

simply minimized by setting ρ1 = 1 and ρ2 = ρ3 = ρ4 = 0
(or exchange ρ1 and ρ3 due to symmetry).

Again, based on the mean-field ground state obtained, we
take into account fluctuations by using the Bogoliubov theory.
We make the following substitution in Eq. (E14):

a(†)
�ηs →

(
N −

∑
k �=�,ηs

a†
k,ηsak,ηs

)1/2

ψ (∗)
ηs .

Up to the quadratic order in operators, the Bogoliubov Hamil-
tonian takes the same form as Eq. (E6), with EGP given in
Eq. (E15) and A, B matrices given by

Ak = h(k) − μI4 + h1, (E16)

μ =
∑

ηs,η′s′
ψ∗

ηs[h(k)]ηs,η′s′ψη′s′ (E17)

+ n
∑

ηs,η′s′
Uηs,η′s′ψ∗

ηsψ
∗
η′s′ψη′s′ψηs, (E18)

[h1]ηs,η′s′ = nUηs,η′s′ (ψηsψ
∗
η′s′ + ψ∗

η′s′ψη′s′ ), (E19)

and

Bηs,η′s′ = n

2
Uηs,η′s′ψη′s′ψηs. (E20)

Plugging the mean-field ground-state solution into Eq. (E14),
for 1 > λ > 0, the effective Hamiltonian is found to be

H eff
k |λ<1 = H eff

k |λ=0 + λnU

4
τ3 ⊗ (−�23 + �45 + 3�0 − �1)

+ λnU

4
iτ2 ⊗ (−�23 + �45). (E21)

Noting that, for the PTRS operator defined in Eq. (45), we
have [for P defined in Eq. (46), the plus and minus signs on
the RHS are exchanged]

T [τi ⊗ �ab]T −1 =
{ +τi ⊗ �ab for a = 1 or b = 1,

−τi ⊗ �ab for a �= 1 and b �= 1.
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Hence the presence of �23 and �45 results in a BdG system
without PTRS (but still IS) for any 1 > λ > 0, while, for λ >

1, the effective Hamiltonian turns out to be

H eff
k |λ>1 = H eff

k |λ=0 + λnU

4
τ3 ⊗ (−�34 + �25 + 3�0 − �1).

(E22)

Again, due to the presence of �34 and �25, the BdG system
does not possess PTRS either (but still has IS). In Fig. 10, we
show the absence of a bosonic Kramers’ pair for both 0 < λ <

1 and λ > 1. In conclusion, the interspecies interactions again
break the PTRS.
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