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Quantum phases of two-component bosons on the Harper-Hofstadter ladder
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We study two-component bosons on the Harper-Hofstadter model with two legs. The synthetic magnetic fields
for the two types of bosons point to either the same direction or opposite directions. The bosons have hardcore
intraspecies interaction such that there can be no more than one boson of the same type on each lattice site. For
certain filling factors in the absence of interspecies interaction, each component realizes a vortex Mott insulator
with rung current or a Meissner superfluid without rung current. The system undergoes phase transitions to
other phases as interspecies interaction is turned on, which are characterized numerically using the density
matrix renormalization group method and supplemented with analytical studies when possible. The vortex Mott
insulator transits to a gapped Meissner phase without rung current and the Meissner superfluid transits to a
gapped vortex phase with rung current. In both cases, we observe gapped spin density wave states that break
certain Z2 symmetries.
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I. INTRODUCTION

In the past few years, great efforts have been devoted to cre-
ate synthetic gauge fields in artificial quantum systems such
as cold atoms, photonic crystals, and superconducting circuits
[1–3]. This is largely motivated by the interest on topological
phases as many of them require gauge fields to be realized.
The classical examples are quantum Hall states observed in
the 1980s [4,5], where a strong magnetic field is applied to
quench the kinetic energy and produce Landau levels for two-
dimensional electron gases. The rise of topological insulators
further boosts the interest in the physics community [6,7]. One
fundamental insight in this discovery is that symmetries are
needed to protect certain topologically nontrivial phenomena.
If the protecting symmetries are not respected in a system,
topological states may be destroyed without gap closing and
reopening. One pivotal element for realizing topological in-
sulators is spin-orbit couplings, which can be interpreted as
non-Abelian gauge fields at the theoretical level.

One model that has drawn widespread attention is the
Harper-Hofstadter model [8–12]. It was originally proposed
in the context of solid state systems to understand charged
particles moving in the presence of both magnetic field
and periodic potential. The tight-binding approximation is
adopted to address the periodic potential. If a particle executes
circular motion in a magnetic field, it would pick up a phase
that reflects the magnetic flux enclosed by its trajectory, which
is accounted for by complex hopping phases between lattice
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sites. The phases destroy the original lattice translational sym-
metry but magnetic translational symmetry is preserved if the
flux per plaquette is a rational number. In such cases, the
Bloch theorem is still applicable on the scale of magnetic
unit cells and energy bands can be defined as usual. The
Chern numbers of the energy bands are related to the flux per
plaquette and the Hall conductance via the Diophantine equa-
tion. This model was not very useful from an experimental
perspective for a long time [13–16] because the magnetic field
applied to solid state systems is not strong enough to make
lattice effects sufficiently important, as quantified by the ratio
between magnetic length

√
hc/(eB) and lattice constants. This

challenge has been overcome in van der Waals heterostruc-
tures [17–19], where lattice periodicity is substantially altered
due to the formation of a moire superlattice pattern.

The pursuit of the Harper-Hofstadter model in artificial
quantum systems has also been very fruitful [20–27]. While
most experiments are still limited in one way or another,
the advances along this direction are impressive and many
more interesting phenomena can be expected. The foremost
difficulty in such systems is the absence of particles that carry
electric charges and couple to the magnetic field. To this end,
synthetic gauge fields that mimic the effect of actual magnetic
fields but act on charge neutral particles have to be designed.
For cold atoms in optical lattices, the complex hopping phases
in the model can be achieved using laser-assisted tunneling,
but this also results in considerable heating that impairs the
stability of the system. In spite of such technical obstacles,
the topological Chern numbers of energy bands have been
measured in experiment [24].

Having succeeded in studying the physics of noninteract-
ing particles in the Harper-Hofstadter model, the natural next
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step is to explore the realm of strongly interacting systems.
The cold atom platforms are well prepared for this purpose
because strong correlations have been induced in many pre-
vious cases without synthetic gauge fields. The introduction
of strong interaction to photonic crystals and superconducting
circuits has also been a long-sought goal, but it has yet to
be demonstrated unambiguously in experiments. In the con-
text of Harper-Hofstadter model, Tai et al. have observed
interaction effects in a few body system using a quantum
gas microscope [26]. The route to larger systems is still
challenging (which is also the case in photonic crystals and
superconducting circuits), but we can be cautiously optimistic.

Numerous theoretical studies have been performed to
understand strongly interacting particles in optical lattices
with synthetic gauge fields. For two-dimensional Harper-
Hofstadter models, the low-lying energy bands can be
topologically nontrivial and very flat if the flux per plaquette
is chosen properly, which enables the realization of fractional
quantum Hall states [28–33]. An opposite limit is the lad-
der geometry where the system is extended in one direction
but only contains two or three legs in the other direction.
This quasi-1D setting also harbors a large variety of quantum
phases of bosons or fermions [34–48]. For one-component
bosons, five phases at different filling factors and flux values
have been identified: Meissner Mott insulator, Meissner su-
perfluid, vortex Mott insulator, vortex superfluid, and charge
density wave [36]. The Meissner and vortex states in the
noninteracting limit can be understood in analogy to type II
superconductors. For small flux values, there are chiral cur-
rents similar to the screening current in the Meissner phase of
type II superconductors but no local currents are observed on
the rungs. As the flux increases, finite rung currents emerge as
in the vortex phase of type II superconductors.

In this paper we study quantum phases of bosons with
an internal degree of freedom that may assume two possible
values (referred to as spin-up and spin-down for simplicity).
The magnetic flux per plaquette for the two types of bosons
are different in general. If there is no interaction between spin-
up and spin-down bosons, we have two independent states
for the two components by tuning various parameters. The
effect of interspecies interaction on different states is studied
numerically using the density matrix renormalization group
(DMRG) method. The physics is also analyzed using effective
spin theory in certain cases.

The rest of this paper is organized as follow. In Sec. II we
define the Harper-Hofstadter ladder of two-component bosons
and describe our numerical and analytical methods. In Sec. III
we present the results in several cases with different system
parameters. The paper is concluded in Sec. IV.

II. MODELS AND METHODS

The system that we study in this paper is depicted schemat-
ically in Fig. 1. There are two legs labeled as l = 1, 2 and L
rungs indexed by [r ∈ 1, 2, . . . , L]. The system contains two
types of bosons called spin-up and spin-down, which expe-
rience either the same or opposite synthetic magnetic fluxes.
The absolute value of the flux in each plaquette is a rational
number φ = 2π p/q. The creation (annihilation) operators for
the bosons are b†

σ,l,r with σ =↑,↓. The Harper-Hofstadter

FIG. 1. (a) Schematics of a two-leg Harper-Hofstadter ladder
with two-component bosons. The red (blue) dots represent spin-
up (spin-down) bosons. The synthetic magnetic fields for the two
components can have the same or opposite directions as reflected
by the hopping phases along the y direction. The absolute value of
the flux in each plaquette is a rational number φ = 2π p/q. U0 and
U↑↓ denote intra- and interspecies interaction strengths. Two repre-
sentative current patterns in the Meissner and vortex phases are also
shown. (b) Sketchy phase diagram at filling factors ν↑ = ν↓ = 1/2.
(c) Sketchy phase diagram at filling factors ν↑ = ν↓ = 1/4. The
acronyms are Meissner Mott insulator (M-MI), votex Mott insulator
(V-MI), Meissner superfluid (M-SF), vortex superfluid (V-SF), spin
density wave (SDW), and vortex spin density wave (V-SDW). The
question marks indicate that no phase transition is observed even for
very large U↑↓.

model for two-component bosons is

H = −tx
∑

σ=↑,↓

∑
l=1,2

∑
r

(a†
σ,l,raσ,l,r+1 + H.c.)

− ty
∑

σ=↑,↓

∑
r

(e−irφσ a†
σ,1,raσ,2,r + H.c.)

+ U0

2

∑
σ=↑,↓

∑
l=1,2

∑
r

nσ,l,r (nσ,l,r − 1)

+U↑↓
∑
l=1,2

∑
r

n↑,l,rn↓,l,r, (1)

where nσ,l,r = a†
σ,l,raσ,l,r is the particle number operator, U0 is

the intraspecies on-site repulsion, and U↑↓ is the interspecies
on-site repulsion. The total number of bosons in each compo-
nent are denoted as Nσ and the filling factor is defined as νσ =
Nσ /2L. If the two components have the same magnetic field,
φ↑ = φ↓ = φ. If the two components have opposite magnetic
field, φ↑ = φ and φ↓ = −φ. The model has an SU(2) symme-
try when φ↑ = φ↓ and U0 = U↑↓. In other cases, the model
has a Z2 symmetry that corresponds to interchange of the two
types of bosons (and change the signs of the hopping phases
if they are opposite).

The system with various choices of parameters are stud-
ied using the density matrix renormalization group (DMRG)
method [49–51]. This algorithm variationally searches for the
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ground state within the class of matrix product states (MPS).
It is best suited for open boundary conditions as we will adopt
throughout this paper. If the basis states for individual lattice
sites are denoted {|si〉}, a generic MPS has the form

|ψ〉 =
∑

s1

· · ·
∑

sL

Bs1
1 Bs2

2 · · · BsL
L |s1, s2, . . . , sL〉, (2)

where the Bsi
i ’s are matrices to be optimized iteratively by

sparse matrix eigensolver. The bond dimension D is defined
as the maximal dimension of the Bsi

i matrices. The compu-
tational resource needed for DMRG calculations is related
to the bipartite von Neumann entanglement entropy (EE).
For one-dimensional gapped system with short-range inter-
actions, the EE is bounded and the D required for accurate
simulation does not need to increase with the system size
[52,53]. In contrast, D needs to grow with the system size
if the system is gapless because EE exhibits a logarithmic
growth [54]. The maximal bond dimension that we have used
in this paper is D = 6000. This produces accurate results as
quantified by the energy variance 〈ψ |H2|ψ〉 − (〈ψ |H |ψ〉)2

that falls in the range of 10−4–10−7. For certain choices of pa-
rameters, the system can be studied using standard analytical
perturbative methods [55]. This helps us to understand the
superexchange process between lattice sites and produces
effective spin models where the spins correspond to singly
occupied lattice sites.

III. NUMERICAL RESULTS

The Hamiltonian contains five parameters tx, ty,
φσ , U0, U↑↓. For each set of parameters, one may study
various filling factors and choose the magnetic fluxes to be
the same or different for the two components. This makes it
rather difficult to perform an exhaustive study of the system,
so we shall focus on several specific choices of parameters
that are motivated by known results in one-component
systems [43,44]. The hopping parameters tx and ty are both
fixed at 1. The intraspecies interaction strength U0 is chosen
to be infinite, which forbids the presence of more than one
boson with the same spin on any lattice site. All numerical
results quoted below are for the L = 60 system.

A. Vortex Mott insulator and the same magnetic field

One representative phase of one-component hard-core
bosons is the gapless vortex Mott insulator at filling factor
1/2 and π/2 � φ � 3π/2 [43,44]. To understand this name
properly, we need to distinguish between two different gaps.
The mass gap is defined as

�Ema = 1
2 [Egs(N + 1) + Egs(N − 1)] − Egs(N ) (3)

and the excitation gap is defined as

�E ex = Eex(N ) − Egs(N ), (4)

where Egs(N ) [Eex(N )] is the ground state (first excited state)
energy in the subspace with N bosons. The state qualifies
as a Mott insulator since there is a mass gap but it is called
gapless as the excitation gap vanishes. This phase features an
average rung current and the scaling of its von Neumann EE
gives central charge 1. For concreteness, we focus on the case

FIG. 2. Numerical results at filling factor 1/2 + 1/2 where the
two types of bosons have the same magnetic field. (a) The charge
correlator �l (r1, r2) on the first leg. (b1), (b2), (b4), and (b5) The
particle density profiles for three choices of U↑↓. The red curves in
(b5) represent the boundary pinning potential (−1)l+rn↑,l,r on the
first and last rungs. (b3) The particle density profile of another state
that is degenerate with the one in (b2). In each subpanel, the top
(bottom) one is for spin-up (spin-down) bosons. (c) The absolute
difference of particle numbers on the first leg. (d1) and (d2) The
density difference correlator �l (r1, r2) on the first leg.

with ν↑ = ν↓ = 1/2 and φ↑ = φ↓ = 4π/5. If the interspecies
interaction U↑↓ is zero, the system would simply be two in-
dependent gapless vortex Mott insulators. Numerical results
suggest that two phase transitions occur as U↑↓ increases.

To begin with, we probe the system using the charge
correlator

�σ,l (r1, r2) = 〈a†
σ,l,r1

aσ,l,r2〉, (5)

which helps us to distinguish between superfluidity and
other phases. The Mermin-Wagner theorem dictates that
there is no true long-range order in one-dimensional systems
with short-range interactions [56,57]. Instead, the superfluid
state has a quasi-long-range order and the correlator decays
algebraically as

�σ,l (r1, r2) = f cos(q|r1 − r2|)|r1 − r2|−α. (6)

In contrast, the Mott insulating state has no quasi-long-range
superfluid order, so the correlator decays exponentially with
distance as

�σ,l (r1, r2) = f cos(q|r1 − r2|)e−α|r1−r2|. (7)

For the whole range of U↑↓ that we have checked, the charge
correlator �σ,l (r1, r2) for spin-up bosons on the first leg de-
cays quickly so there is not quasi-long-range superfluid order
[see Fig. 2(a) for the cases with U↑↓ = 0.1, 2.0, 6.0].

The expectation values of the particle number operator
nσ,l,r = a†

σ,l,raσ,l,r have also been computed. For small U↑↓,
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the two types of bosons spread evenly on the lattice sites
as shown in Fig. 2(b1). As U↑↓ passes ∼0.9, a clear den-
sity modulation emerges in Fig. 2(b2): if one lattice site has
n↑ < 0.5 < n↓, then its neighbor has n↓ < 0.5 < n↑. If U↑↓
further increases to ∼3.4, the particle density profile becomes
uniform again. The absolute difference of particle numbers on
the first leg, which is defined as

|n↑ − n↓| = 1

L

∑
r

|n1,r,↑ − n1,r,↓|, (8)

displays two apparent changes as shown in Fig. 2(c). Naively,
these observations appear to indicate that there are two phase
transitions at U↑↓ ∼ 0.9 and 3.4, respectively. However, a
closer inspection demonstrates that the phase transitions ac-
tually occur at U↑↓ ∼ 0.3 and ∼5.0.

The Z2 symmetry that corresponds to interchange of the
two types of bosons is broken in the density modulated phase.
In fact, if there is a state with the density profile of Fig. 2(b2)
(n↓,1,1 < 0.5 < n↑,1,1, n↑,2,1 < 0.5 < n↓,2,1, etc.), it is degen-
erate with another state that has exactly opposite density
profile shown in Fig. 2(b3) (n↑,1,1 < 0.5 < n↓,1,1, n↓,2,1 <

0.5 < n↑,2,1, etc.). The two degenerate states may be resolved
by DMRG in some cases, but it is also possible that numerics
fail to distinguish them, in which case the result is a super-
position of them and there is no explicit density modulation.
The presence of Z2 symmetry breaking can be probed more
accurately using the correlator

�l (r1, r2) = 〈δnl,r1δnl,r2〉 (9)

of the density difference δnl,r = n↑,l,r − n↓,l,r . The results
presented below are for the first leg, but using the other leg
would lead to the same conclusion. Because the Z2 symme-
try is a discrete one, the Mermin-Wagner theorem does not
preclude the existence of true long-range order. As shown in
Figs. 2(d1) and 2(d2), the long-range correlation of the den-
sity difference is evident at U↑,↓ = 0.5, 2.0, 4.0 but is absent
at U↑,↓ = 0.1, 6.0. By comparing �l (r1, r2) and the density
profile, we conclude that the DMRG calculations did not
differentiate the two degenerate states when 0.3 � U↑↓ � 0.9
and 3.4 � U↑↓ � 5.0. To further corroborate this interpreta-
tion [58], we add a boundary pinning potential (−1)l+rn↑,l,r

on the first and last rungs such that spin-up bosons are at-
tracted or repelled and the Z2 symmetry is explicitly broken
[59]. This term results in a density modulation at U↑↓ = 4
but does not cause such changes at U↑↓ � 0.3 or �5.0. The
effect of boundary pinning potential can also be seen in the
entanglement entropy (see below).

The local current patterns have different features in the
Meissner and vortex phases. In the Heisenberg equation of
motion for the particle number, we take expectation value on
both sides to yield〈

dnσ,l,r

dt

〉
= i〈[H, nσ,l,r]〉. (10)

On the other hand, the changing rate of nσ,l,r is determined by
the current flowing out from site〈

dnσ,l,r

dt

〉
= −

∑
(l ′,r′ )

jσ [(l ′, r′) → (l, r)], (11)

FIG. 3. Numerical results at filling factor 1/2 + 1/2 where the
two types of bosons have the same magnetic field. (a) The chiral
current and the average rung current of the spin-up bosons. (b1) and
(b2) The current pattern of the spin-up bosons. (c) and (d) The rung
current correlator �σ (r1, r2) of the spin-up bosons. The insets show
the results in log-log scale.

This allows us to compute current operators using the com-
mutator [H, nσ,l,r]. Based on this analysis, one can define a
leg current

j‖
σ,l,r = itx(a†

σ,l,r+1aσ,l,r − a†
σ,l,raσ,l,r+1) (12)

and a rung current

j⊥σ,r = ity(e−irφσ a†
σ,1,raσ,2,r − eirφσ a†

σ,2,raσ,1,r ). (13)

It is useful to define a chiral current

jC
σ = 1

2L

∑
r

〈
j‖σ,1,r − j‖σ,2,r

〉
(14)

to characterize the current encircling the ladder and an average
rung current

jR
σ = 1

L

∑
r

|〈 j⊥σ,r〉| (15)

to characterize interchain current flow. In the vortex phase, the
average rung current is nonzero and there are many possible
vortex configurations. In the Meissner phase, the average rung
current vanishes but a finite chiral current is present.

The chiral current JC
σ and average rung current JR

σ are
presented in Fig. 3. The spin-up component is used here,
but the spin-down component has no difference due to the
Z2 symmetry. As the system passes the first phase transi-
tion at U↑↓∼0.9, JR

σ decreases to zero but the chiral current
remains finite, yet no qualitative changes were observed at
the purported second phase transition [Fig. 3(a)]. Two current
patterns at U↑↓ = 0.1 and U↑↓ = 2.0 are shown in Fig. 3(b),
where one can clearly see vortex structures and chiral currents,
respectively. Furthermore, the rung current correlator

�σ (r1, r2) = 〈 j⊥σ,r1
j⊥σ,r2

〉 (16)

exhibits an algebraic decay at U↑↓ = 0.1 [Fig. 3(c)] but an
exponential decay at U↑↓ = 2.0 [Fig. 3(d)]. These behav-
iors indicate that the system transits from a vortex phase
to a Meissner phase as U↑↓ increases. The two phases with
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FIG. 4. Numerical results at filling factor 1/2 + 1/2 where the
two types of bosons have the same magnetic field. (a) The von Neu-
mann EE at the center of the system. (b) The von Neumann EE versus
subsystem size. The fitting parameters at U↑↓ = 0.1 using Eq. (18)
are c = 2.747 and g = 1.930. (c) The derivative of the ground state
energy with respect to U↑↓. (d) The expectation value

∑
l,r

〈n↑,l,rn↓,l,r〉.

different density profiles at U↑↓ � 0.3 are not different in their
current patterns.

The bipartition von Neumann EE is very useful for probing
quantum phases. The system is divided into two subsystems A
and B which have the first LA rungs and the other rungs, re-
spectively. The reduced density matrix ρA of the A subsystem
is computed by tracing out part B and the von Neumann EE is
defined as

SvN = −Tr(ρA ln ρA). (17)

The functional form of the von Neumann EE can be used to
check whether the system is gapless or gapped. If the low-
energy physics of a system (with open boundary condition)
is described by a conformal field theory (CFT), the von Neu-
mann EE has the scaling form

SvN = c

6
ln

[ L

π
sin

LA

L
π

]
+ g + · · · , (18)

where c is the central charge of the CFT, g is a constant, and
· · · represent other nonuniversal terms [54]. In contrast, the
von Neumann EE saturates to a constant value in the bulk
of a system when it is gapped (there is no CFT description
for such cases). The von Neumann EE at the center of the
ladder exhibits two discontinuities as shown in Fig. 4(a). This
is consistent with our previous conclusion that there should
be two phase transitions. For the two phases at intermediate
and large U↑↓, the von Neumann EE quickly saturates to
constant values as the subsystem size LA increases [Fig. 4(b)],
so they should be gapped phases. The strong oscillation in
the EE at very small U↑↓ makes it difficult to extract the
central charge, but direct fitting at U↑↓ = 0.1 gives a value
2.7 that is basically consistent with the expected value 2. In
previous works [43,44] it has been shown that the low-energy
theory for the one-component system at half-filling is a CFT
with c = 1. This means that we have a c = 2 CFT in the the
two-component system if U↑↓ = 0. If a small but finite U↑↓

TABLE I. The entanglement entropy at filling factor 1/2 + 1/2
where the two types of bosons have the same magnetic field. The
P (N) in parentheses means that boundary pinning potential is (not)
added. The presence of this potential substantially reduces the entan-
glement entropy in the Z2 symmetry breaking phase (U↑↓ = 0.5, 4.0)
but not in the large U↑↓ phase.

LA 30 40

U↑↓ = 0.5 (N) 3.0452 3.0384
U↑↓ = 0.5 (P) 2.2323 2.2329
U↑↓ = 4.0 (N) 1.8324 1.8157
U↑↓ = 4.0 (P) 1.1723 1.1718
U↑↓ = 6.0 (N) 1.2367 1.2360
U↑↓ = 6.0 (P) 1.2362 1.2354

does not gap out any degrees of freedom, the system should
still be described by the same c = 2 CFT. The entanglement
entropy also provides further support for our previous anal-
ysis about the Z2 symmetry breaking phase. If the boundary
pinning potential is present, the compute program is able to
pick out one state from two degenerate states. In contrast,
a superposition of the two degenerate states are obtained if
there is no boundary pinning potential. It is expected that
the entanglement entropy in the former cases is considerably
lower than that in the latter cases, which is confirmed by the
numerical results in Table I.

The derivative of the ground state energy with respect to
U↑↓ is shown in Fig. 4(c). It can actually be computed using
the Hellmann-Feynman theorem as

∂Egs

∂U↑↓
=

∑
l,r

n↑,l,rn↓,l,r (19)

and the result is also shown in Fig. 4(c). The absence of singu-
larities implies that the two phase transitions are continuous.

The density modulated state observed at intermediate U↑↓
should be a spin density wave (SDW). An intuitive picture
for this state is that U↑↓ disfavors the configurations with two
bosons occupying the same lattice sites. The superexchange
process between lattice sites select an antiferromagnetic order
in which two neighboring sites are occupied by opposite spins.
This gives rise to the density modulation as manifested by
oscillations of δnl,r . However, it is interesting that this picture
does not persist as U↑↓ → +∞. In the large U↑↓ limit, the
low-energy subspace of the model has exactly one boson per
site. In this subspace, the effective degrees of freedom are
spin operators denoted as Sl,r , which are described by the
Hamiltonian

Hspin = J
∑
l,r

Sl,r · Sl,r+1 + J
∑

r

S1,r · S2,r+1. (20)

with J = 4/U↑↓. It is well known that this spin ladder has a
spin gap [60], which is consistent with our results at large U↑↓.
The Appendix provides more details about how to derive this
Hamiltonian.

B. Vortex Mott insulator and opposite magnetic fields

The difference between this case and the previous one is
that the magnetic field for the spin-down bosons is reversed.
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FIG. 5. Numerical results at filling factor 1/2 + 1/2 where the
two types of bosons have opposite magnetic fields. (a) The charge
correlator �l (r1, r2) on the first leg. (b1) and (b2) The particle density
profiles. In each subpanel, the top (bottom) one is for spin-up (spin-
down) bosons. (c) The absolute difference of particle numbers on
the first leg. (d) The density difference correlator �l (r1, r2) on the
first leg.

The system still has a Z2 symmetry, but it corresponds to
exchange of the two types of bosons and reversal of their
respective magnetic fields at the same time. Numerical results
suggest that there is one phase transition as U↑↓ increases. The
state at large U↑↓ is a gapped Meissner phase that breaks the
Z2 symmetry.

The charge correlator on the first leg as shown in Fig. 5(a)
also indicates the absence of any superfluid order. The particle
density profile is uniform at small U↑↓ but it gets modulated
when U↑↓ � 0.9 [Fig. 6(b)] and remains so up to the largest
value that we have checked. This is also reflected in the
absolute difference of particle numbers on the first leg, which
changes only once from zero to nonzero as shown in Fig. 5(c).
As in the previous subsection, the density difference correlator

FIG. 6. Numerical results at filling factor 1/2 + 1/2 where the
two types of bosons have opposite magnetic fields. (a) The chiral
current of both types of bosons and the average rung current of the
spin-up bosons. (b1)–(b3) The current pattern of the spin-up bosons.
(c) and (d) The rung current correlator �σ (r1, r2) of the spin-up
bosons. The insets show the results in log-log scale.

FIG. 7. Numerical results at filling factor 1/2 + 1/2 where the
two types of bosons have opposite magnetic fields. (a) The von Neu-
mann EE versus subsystem size. The fitting parameters at U↑↓ = 0.1
using Eq. (18) are c = 2.615 and g = 1.979. (b) The derivative of the
ground state energy with respect to U↑↓.

�l (r1, r2) on the first leg reveals that the Z2 symmetry is
already broken when U↑↓ � 0.3 [Fig. 5(d)]. Based on similar
arguments as used before, we believe that the system enters a
spin density wave phase at U↑↓ � 0.3. It is interesting to note
that DMRG is always able to distinguish the two degenerate
states with opposite particle density profiles for large U↑↓.

The chiral current JC
σ and average rung current JR

σ are
presented in Fig. 6. The spin-up and spin-down components
have exactly opposite chiral currents as required by the Z2

symmetry. The average rung current vanishes after passing
the phase transition. As shown in Fig. 6(b), vortex structures
and chiral currents are observed at U↑↓ = 0.1 and U↑↓ =
2.0, respectively. The rung current correlator also changes
from an algebraic decay at U↑↓ = 0.1 [Fig. 6(c)] to an ex-
ponential decay at U↑↓ = 2.0 [Fig. 6(d)]. In contrast to the
previous two cases, the chiral currents gradually decrease
to zero and then change their directions. The scaling of the
von Neumann EE versus the subsystem sizes at large U↑↓
suggests that the spin density wave is gapped [Fig. 7(a)]. The
derivative of the ground state energy with respect to U↑↓ also
implies that the phase transition is continuous [Fig. 7(b)]. It is
also possible to analyze the large U↑↓ limit using perturbation
theory, but this leads to a very complicated spin model from
which no useful information can be obtained since it has never
been investigated before.

C. Meissner superfluid and the same magnetic field

For one-component hard-core bosons with ν = 1/4 and
φ = 2π/5, it has been shown that the ground state is a gapless
Meissner superfluid [43,44]. This phase features quasi-long-
range superfluid order, a chiral current, and central charge 1.
The two-component system has the same Z2 symmetry as in
the first subsection. Numerical results suggest that there is one
phase transition as U↑↓ increases. The state at large U↑↓ is a
gapped vortex phase that breaks the Z2 symmetry.

The charge correlator �σ,l (r1, r2) decays algebraically
when U↑↓ � 18. For the U↑↓ = 5.0 case in Fig. 8(a), the
curve can be fitted using Eq. (6) with q = 0.627. In con-
trast, �σ,l (r1, r2) displays an exponential decay when U↑↓ is
sufficiently large. This implies that the superfluid order is
destroyed by a phase transition. This transition is also accom-
panied by the emergence of density modulation as shown in
Fig. 8(b), which persists up to the largest U↑↓ that we have
checked. The absolute difference of particle numbers on the
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FIG. 8. Numerical results at filling factor 1/4 + 1/4 where the
two types of bosons have the same magnetic field. (a) The charge
correlator �l (r1, r2) on the first leg. (b1) and (b2) The particle density
profiles. In each subpanel, the top (bottom) one is for spin-up (spin-
down) bosons. (c) The absolute difference of particle numbers on
the first leg. (d) The density difference correlator �l (r1, r2) on the
first leg.

first leg is shown in Fig. 8(c). The Z2 symmetry breaking at
U↑↓ = 20 is manifest from the density difference correlator
�l (r1, r2) in Fig. 8(d).

The chiral current JC
σ and average rung current JR

σ are
presented in Fig. 9. A nonzero JR

σ appears when the system
passes the phase transition. Two current patterns at U↑↓ =
5.0 and U↑↓ = 20.0 are shown in Fig. 9(b), where one can
clearly see chiral currents and vortex structures, respectively.
The rung current correlator �σ (r1, r2) exhibits an exponential
decay at U↑↓ = 5.0 [Fig. 9(c)] but features long-range order
at U↑↓ = 20 [Fig. 9(d)]. These behaviors indicate that the
system transits from a Meissner phase to a vortex phase as
U↑↓ increases. The scaling of the von Neumann EE versus the
subsystem sizes at U↑↓ � 18 suggests that the vortex phase is
gapped [Fig. 10(a)]. The derivative of the ground state energy

FIG. 9. Numerical results at filling factor 1/4 + 1/4 where the
two types of bosons have the same magnetic field. (a) The chiral
current and the average rung current of the spin-up bosons. (b1) and
(b2) The current pattern of the spin-up bosons. (c) and (d) The rung
current correlator �σ (r1, r2) of the spin-up bosons.

FIG. 10. Numerical results at filling factor 1/4 + 1/4 where the
two types of bosons have the same magnetic field. (a) The von Neu-
mann EE versus subsystem size. The fitting parameters at U↑↓ = 5.0
using Eq. (18) are c = 0.828 and g = 1.151. (b) The derivative of the
ground state energy with respect to U↑↓.

with respect to U↑↓ also implies that the phase transition is
continuous [Fig. 10(b)].

D. Meissner superfluid and opposite magnetic fields

As we have seen before, changing the fluxes for the two
components to be opposite altered the behavior at ν↑ = ν↓ =
1/2. This also turns out to be the case at ν↑ = ν↓ = 1/4. In
fact, we find that there is no phase transition if the two com-
ponents have opposite magnetic fields. The quasi-long-range
superfluid order gets weaker, but the density profile remains
uniform up to U↑↓ = 50. The amplitude of the chiral current
decreases but the average rung current remains zero and there
is no long-range correlation in the rung current.

IV. CONCLUSION

In summary, we have studied quantum phases of two-
component bosons on two-leg Harper-Hofstadter ladders at
filling factors 1/2 + 1/2 and 1/4 + 1/4. The two types of
bosons have either the same or opposite magnetic fields.
The properties of the system are investigated by com-
puting charge correlator, density profile, density difference
correlator, particle currents, particle current correlators, en-
tanglement entropy, and energy derivative. For the 1/2 + 1/2
filling in both scenarios, the system transits to a gapped Meiss-
ner phase with spin density wave order as U↑↓ increases. This
state disappears at very large U↑↓ if the two components have
the same magnetic fields. For the 1/4 + 1/4 filling, there is a
phase transition to a gapped vortex phase if the two compo-
nents have the same magnetic fields but no phase transition
is observed if the two components have opposite magnetic
fields. This work suggests that adding an internal degree of
freedom to particles on the Harper-Hofstadter lattice can pro-
duce interesting results. We hope many other phenomena in
multi-component system would be revealed in future works.
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APPENDIX: DETAILS ABOUT THE EFFECTIVE SPIN MODEL

This Appendix explains in detail how to derive the effective spin-1/2 model in Eq. (20) of the main text. The hopping term and
the interaction term in Eq. (1) are denoted as H0 and Hint. The projection operator into the singly occupied subspace is defined as
P0 and its complement is P1 = 1 − P0. The two basis states of the spin-1/2 model are | ↑〉 and | ↓〉. The effective model can be
constructed by computing the matrix elements for two neighboring sites along the leg direction and the rung direction. In both
cases, the two sites are labeled as I and II. The hopping strength is denoted as T , which would be tx for two sites on the same leg
and tye−irφ if they are on the same rung. The matrix elements in second-order perturbation theory are

〈a|H (2)
eff |b〉 = 〈a|H0P1

1

E (0) − Hint
P1H0|b〉

=
∑

σ=↑,↓
〈↑,↑ |(Ta†

σ,Iaσ,II + T ∗a†
σ,IIaσ,I )P1

1

E (0) − Hint
P1(Ta†

σ,Iaσ,II + T ∗a†
σ,IIaσ,I )| ↑,↑〉, (A1)

where |a〉 and |b〉 is one of the four states | ↑,↑〉, | ↑,↓〉, | ↓,↑〉, | ↓,↓〉 and the zeroth order energy E (0) is actually zero. Explicit
calculations result in

〈↑,↑ |H (2)
eff | ↑,↑〉 = −4|T |2

U0
, 〈↑,↓ |H (2)

eff | ↑,↓〉 = −2|T |2
U↑↓

,

〈↑,↓ |H (2)
eff | ↓,↑〉 = −2|T |2

U↑↓
, 〈↓,↓ |H (2)

eff | ↓,↓〉 = −4|T |2
U0

. (A2)

The two-site effective Hamiltonian can be written as

H (2)
eff =

⎛
⎜⎜⎜⎜⎝

− 4|T |2
U0

− 2|T |2
U↑↓

− 2|T |2
U↑↓

− 2|T |2
U↑↓

− 2|T |2
U↑↓

− 4|T |2
U0

⎞
⎟⎟⎟⎟⎠

= −|T |2 1

U↑↓
(σ x ⊗ σ x + σ y ⊗ σ y) − 2|T |2

(
1

U0
− 1

2U↑↓

)
σ z ⊗ σ z − 2|T |2

(
1

U0
+ 1

2U↑↓

)
σ 0 ⊗ σ 0 (A3)

in the basis {| ↑,↑〉, | ↑,↓〉, | ↓,↑〉, | ↓,↓〉}. The spin-spin interaction along the leg is

Hleg = −J
∑
l=1,2

∑
r

(
Sx

l,rSx
l,r + Sy

l,rSy
l,r

) + J
∑
l=1,2

∑
r

Sz
l,rSz

l,r, (A4)

and that along the rung is

Hrung = −J
∑

r

(
Sx

1,rSx
2,r + Sy

1,rSy
2,r

) + J
∑

r

Sz
1,rSz

2,r (A5)

with J = 4|T |2/U↑↓. The effective Hamiltonian in Eq. (20) is obtained after a sublattice rotation

leg 1 : Sx
l=1,2 j−1 → −Sx

l=1,2 j−1, Sy
l=1,2 j−1 → −Sy

l=1,2 j−1, Sz
l=1,2 j−1 → Sz

l=1,2 j−1;

leg 2 : Sx
l=2,2 j → −Sx

l=2,2 j, Sy
l=2,2 j → −Sy

l=2,2 j, Sz
l=2,2 j → Sz

l=2,2 j . (A6)
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