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Experimental conditions for obtaining halo p-wave dimers in quasi-one-dimension
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We calculate the binding energy and closed-channel fraction of p-wave Feshbach molecules in quasi-one-
dimension (quasi-1D) by examining the poles of the p-wave S matrix. We show that under the right experimental
conditions, the quasi-1D p-wave molecule behaves like a halo dimer with a closed-channel fraction approaching
0 at resonance and a binding energy following the universal relation Eb ∼ 1/a2

1D, where a1D is the 1D scattering
length. We calculate these experimental conditions for both 6Li and 40K over a range of transverse confinements.
We expect that in this halo dimer regime the three-body loss associated with the p-wave Feshbach resonance will
be greatly suppressed, potentially allowing for a stable p-wave superfluid to be created. For an easy comparison
between the three-dimensional and the quasi-1D cases, we provide the same pole analysis of the Feshbach
molecules applied to the three-dimensional p-wave resonance and show that there is a qualitative difference
between the two.
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I. INTRODUCTION

Ultracold dilute Fermi gases near p-wave Feshbach reso-
nances are of great interest due to the rich phases of matter
associated with p-wave pairing. p-wave pairing is character-
ized by a more elaborate order parameter than s-wave pairing
due to the different projections of the nonzero (l = 1) angular
momentum. The distinct symmetries of the different angular
momentum projections allow for sharp phase transitions be-
tween qualitatively different ground states as one tunes across
the p-wave Feshbach resonance from the BEC side to the
BCS side [1–5]. The s-wave BEC-BCS crossover, in contrast,
features a smooth transition with no qualitative differences on
either side of the resonance.

Experimentally, a dilute Fermi gas in three dimensions
(3D) with controlled, resonant, p-wave interactions can
in principle be realized with an optically trapped gas of
fermionic alkali atoms (e.g., 6Li or 40K) magnetically tuned
near a p-wave Feshbach resonance. Such a gas would, at zero
temperature, feature the sharp phase transitions mentioned
above. Furthermore, by changing the trap configuration, p-
wave pairing may be explored in reduced dimensions. In
two dimensions, a px + ipy topological superfluid is expected
[1,6–8], and in one dimension a fermionic Tonks Girardeau
gas is predicted [9–14]. Furthermore, p-wave interactions on
a one-dimensional lattice should reproduce the classic Kitaev
chain model, which predicts the long sought after Majo-
rana fermions [15]. However, despite significant experimental
advancements in characterizing and manipulating p-wave
Feshbach resonances [16–20], little progress has been made
in stabilizing any of these novel phases. This is because unlike
s-wave Feshbach resonances, p-wave Feshbach resonances
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are accompanied by significant three-body and two-body loss
[21–24].

While two-body loss can be mitigated in cases where the
p-wave resonance occurs for atoms in their lowest hyper-
fine state, three-body loss is unavoidable. Three-body loss
occurs when three particles are involved in a collision and
subsequently two of the particles form a deeply bound dimer
molecule, while the third particle allows for the conserva-
tion of energy and momentum in the exothermic reaction
[28]. This loss mechanism can be enhanced by a Feshbach
resonance through a process where a Feshbach molecule res-
onantly formed in the continuum collides with a third particle
and subsequently decays to a more deeply bound molecular
state. It is therefore important to understand the nature of Fes-
hbach resonances and their underlying Feshbach molecules
[29–31].

Resonant scattering occurs when a molecular bound state
of the interacting particles is brought close to the continuum
of free particle states (e.g., by application of a magnetic field).
This connection between bound states and resonant interac-
tions is seen most readily in the scattering S matrix, where
the molecular bound states exist as poles of the S matrix
[32]. For s-wave collisions near threshold and tuned close to
resonance, the bound state associated with the Feshbach res-
onance is a halo dimer with a binding energy Eb = h̄2/(ma2),
which only depends on the scattering length a. This is the
so-called universal regime where, regardless of the specific
atomic species, the only length scale governing the molecular
state is the scattering length. The spatial wave function of this
molecule is proportional to ψl (r) ∼ e−r/a, indicating that the
molecular state becomes extremely delocalized as the scatter-
ing length diverges. This extremely delocalized molecule has
virtually no wave function overlap with more deeply bound
molecular states, thus effectively suppressing three-body loss.
Conversely, due to the centrifugal barrier, p-wave resonances
in 3D feature no such universal regime [20]. The underlying
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p-wave Feshbach molecular state is well localized, with sig-
nificant overlap with the more deeply bound molecular states,
resulting in a very high likelihood of three-body loss.

In the coupled-channel picture, the Feshbach molecule is a
dressed state

|ψmol〉 = Z|ψclosed〉 + (1 − Z )|ψopen〉, (1)

which is a superposition of a free particle scattering state ψopen

and a bare molecular state ψclosed. It is largely the closed-
channel fraction |Z|2 which leads to the three-body loss, as
the closed-channel wave function has significant overlap with
more deeply bound molecular states. In the two-body limit in
3D, the closed-channel fraction, |Z|2, tends towards 0 as one
approaches an s-wave Feshbach resonance. In contrast, as one
approaches a p-wave Feshbach resonance, the closed-channel
fraction, |Z|2, remains significant and stays approximately
constant. In the actual BEC-BCS crossover of an ultracold
Fermi gas, many-body effects modify the Feshbach resonance
[33–42]: in particular, even for s-wave resonances the closed-
channel fraction has been shown to be nonzero, albeit very
small and density dependent, at unitarity on through to the
BCS side [37–42].

Recently, several studies have investigated ways to sup-
press three-body loss associated with p-wave resonances by
considering scattering in lower dimensions [43–46]. Zhou and
Cui, for example, have shown that in quasi-one-dimension
(quasi-1D) the p-wave molecular wave function is signifi-
cantly more delocalized than in 3D, suggesting that quasi-1D
is a promising method for suppressing three-body loss [46].
Motivated by this work, our group as well as others has begun
to study p-wave Fermi gases in quasi-1D. In a previous work
we measured the three-body loss in lithium in quasi-1D [47];
while a significant suppression was observed, it is not clear
that it is sufficient to stabilize the gas for an adequate time to
reach equilibrium.

Here we expand on the results of Zhou and Cui [46]. By
examining the poles of the S matrix we show that in quasi-1D
a p-wave halo dimer exists in the two-body limit. We see that
p-wave resonances in quasi-1D behave similarly to narrow
s-wave resonances. We go on to characterize the 1D resonance
for 40K and 6Li to determine the temperature, field stability,
and transverse confinement needed to reach the halo dimer
regime. Further, we determine the closed-channel fraction of
the Feshbach-dressed molecule in quasi-1D and compare it
to that in 3D. All of our calculations are in the two-body
limit; while it is known that many-body effects will change
the details of the resonance for an ultracold Fermi gas, it is
our hope that the two-body physics presented here captures
enough of the picture to serve as an effective guide for future
experiments.

For the calculations in this paper related to 6Li we
consider the p-wave resonance between atoms in the
|F = 1

2 , m f = + 1
2 〉 state. For calculations related to 40K

we consider the p-wave resonance between atoms in the
|F = 9

2 , m f = + 7
2 〉 state with orbital angular momentum pro-

jected onto ml = 0. The resonance parameters we use are
reported in Table I.

TABLE I. p-wave scattering properties for 6Li and 40K
[1,18,19,22,25–27].

Vbg (units of a3
0) �B (G) re (units of a−1

0 ) Bres (G) δμc (μK/G)

6Li −70 × 103 −40 −0.182 159.1 142
40K −10.49 × 105 −21.95 −0.0416 198.9 11.7

II. PHYSICAL SIGNIFICANCE OF POLES

Here we present a brief discussion relating the poles of the
S matrix to bound states of the molecular potential [32]. Con-
sider a partial-wave scattering state ψl (k, r) that is the solution
to a radial interacting potential. The asymptotic behavior of
ψl (k, r) is

ψl (k, r) → i

2r
[e−i(kr−l π

2 ) + Sl (k)ei(kr−l π
2 )]. (2)

For any such state, there exists a corresponding regular solu-
tion given by ϕl (k, r) = Fl (k)ψl (k, r) behaving as

ϕl (k, r) → i

2r
[Fl (k)e−i(kr−l π

2 ) + Fl (−k)ei(kr−l π
2 )], (3)

where Fl (k) is the Jost function and is related to the S matrix
by Sl (k) = Fl (−k)/Fl (k). It is clear that 0’s of the Jost func-
tion are poles of the S matrix for which we consider solutions
extended into the complex momentum plane. Consider a pole
of the S matrix [corresponding to a 0 of Fl (k)] where the pole
is purely positive imaginary, k = i

h̄

√
m|Eb|. Then the regular

solution, ϕl (k, r) ∼ e−|k|r , is a true bound-state solution of the
Schrödinger equation with energy Eb. Conversely, a purely
negative imaginary pole, k = −i

h̄

√
m|E |, results in ϕl (k, r) ∼

e|k|r : a solution that cannot be normalized, which we call
a virtual state. This state, while unphysical, still affects the
underlying scattering process. Finally, a complex pole results
in a state with complex energy, Epole = Er − i�/2. This cor-
responds to what we call a resonance, a quasistable state with
energy Er and lifetime τ = 1

�
[1,26]. It is this quasistable state

embedded in the continuum which is thought to resonantly
enhance three-body loss.

The poles of the scattering matrix thus give us direct access
to the energy of the molecular bound state and the resonant
state that is involved in three-body loss. Furthermore, we
may use the dressed-state energy, Eb, to calculate the closed-
channel amplitude as Z = ∂ (−Eb)/∂ (Ec), where Ec is the
energy of the closed-channel molecular state [27,29,31].

III. POLE ANALYSIS OF P-WAVE RESONANCES IN 3D

To elucidate the problems leading to three-body loss near
p-wave resonances we begin by examining the p-wave reso-
nance in three dimensions. In all of the following we make
the usual assumptions that the interatomic forces are short
range and isotropic. We also assume that we are within the
neighborhood of a p-wave resonance. The scattering process
is then well described by an l = 1 partial-wave S matrix [1],

S = − 1
w

+ 1
2 rek2 + ik3

− 1
w

+ 1
2 rek2 − ik3

, (4)
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FIG. 1. Colored lines show the poles of the S matrix moving on
the complex momentum plane in (a) 3D and (b) quasi-1D. Arrows
show the direction in which the poles move as the magnetic field is
tuned from the BEC side to the BCS side of the resonance. Stars
show the locations of the poles in the complex k plane at B = Bres.
(a) In 3D the pole corresponding to a bound state (blue) moves
down the positive imaginary axis, becoming a resonance as soon as it
crosses threshold. (b) In quasi-1D the bound-state pole moves down
the positive imaginary axis and then continues along the negative
imaginary axis as a “virtual state” until kpole = − i

r1D
, and only then

does it become a resonance.

where k is the relative momentum of the two atoms, w is the
scattering volume, and re is the effective range, which for 3D
p-wave resonances has units of inverse length. It is important
to note that for the magnetically tuned Feshbach resonances
we are interested in, the scattering volume w is a function of
the magnetic field

w(B) = wbg

(
1 − �B

B − B0

)
, (5)

where wbg is the background scattering volume, B0 is the bare
resonance position, and �B is the resonance width.

The roots of − 1
w

+ rek2/2 − ik3 with respect to k give the
three poles of the S matrix. As we vary the scattering volume
(by varying the magnetic field) the poles move on the complex
plane [see Fig. 1(a)]. Importantly, one of these poles moves
along the positive imaginary axis to cross the threshold and
become a resonance. It is this pole corresponding to a true
molecular bound state which then becomes a metastable state
in the continuum that would potentially decay into a deeper
molecular state upon collision with a third atom. The wave

number of this state is

kpole = −
(

i
re

6
+ (i + √

3)r2
e

12
( − r3

e − 108α + 6
√

6
√

α(r3
e + 54α)

) 1
3

+ i − √
3

12
(6

√
6
√

α(r3
e + 54α) − r3

e − 108α)
1
3

)
,

(6)

where α is 1
w

. As we approach resonance, the leading term

in an expansion with respect to α gives kpole →
√

2
wre

. Thus,

as we approach resonance the bound-state energy scales as
Epole = h̄2k2

pole/m → 2h̄2/(mwre). There are two striking dif-
ferences from the classic unitarity limited bound-state energy
in s-wave resonances. First, the effective range is included
in the energy, implying that the behavior is not universal
across atomic species. Second, the binding energy scales as
1/w, in contrast with the 1/a2 scaling of an s-wave Feshbach
resonance in 3D. Because of this the p-wave binding energy
approaches threshold as (B − Bres) instead of the typical s-
wave behavior of (B − Bres)2.

To calculate the closed-channel amplitude, we note that
Ec = δμc(B − B0) is the closed-channel energy. We may then
rewrite the scattering volume as

w = wbg

(
1 − δμc�B

Ec

)
. (7)

Thus, we may rewrite kpole(w, re) → kpole(Ec, re) and con-
sequently we may rewrite the binding energy Eb in terms
of the closed-channel energy Ec. Simple differentiation, Z =
∂ (−Eb)/∂ (Ec), yields the closed-channel amplitude.

Figure 2 shows the closed-channel amplitude calculated for
both 6Li and 40K close to their respective 3D p-wave reso-
nances. Both closed-channel fractions remain approximately
constant as they approach resonance. We calculate Z = 0.8
and Z = 0.76 for 6Li and 40K, respectively, which are consis-
tent with the measurements by Fuchs et al. [26] for 6Li and
Gaebler et al. [27,48] for 40K. The closed-channel fraction is
thus large over the entire resonance for both atomic species.
This is in stark contrast to s-wave resonances, where even for
narrow resonances the closed-channel fraction approaches 0
as we approach resonance.

Figures 3(a) and 3(b) show the 3D p-wave scattering cross
section as well as the Feshbach bound-state energy, Eb, for 6Li
and 40K, respectively. Note that both resonances are extremely
narrow and that the bound state (solid line) tunes directly
through the continuum to form a resonant state (dash-dotted
line). The collision energy associated with the maximal scat-
tering cross section directly follows the energy of the resonant
state.

IV. ONE-DIMENSIONAL ANALYSIS

Now we extend the pole analysis to one dimension. In
quasi-1D, Zhou and Cui found that you may write a new
effective 1D S matrix [46],

S1D = − 1
a1D

+ 1
2 r1Dk2 + ik

− 1
a1D

+ 1
2 r1Dk2 − ik

, (8)
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FIG. 2. Closed-channel amplitude in 3D for (a) 6Li and (b) 40K.
Inset: Closed-channel amplitude close to resonance.

where a1D is the effective 1D scattering length and r1D is
the 1D effective range. The parameters are related to the 3D
scattering volume and 3D effective range by

1

a1D
= a2

⊥
3

( 1

w
− 1

2

re

a⊥2

)
− 1

a2
⊥

ζ
(
−1

2
, 1

)
, (9)

r1D = a2
⊥re

3
− a⊥√

2
ζ
(1

2
, 1

)
. (10)

Here a⊥ is the transverse confinement length given by a⊥ =√
h̄

m 2π f⊥
. For the remainder of the paper we quantify the

confinement by the transverse trapping frequency f⊥.
Figure 1 shows how the poles of the 1D S matrix move

on the complex momentum plane. In contrast to the 3D case,
there are only two poles. More importantly the pole corre-
sponding to the true bound state crosses the threshold and then
remains on the pure imaginary axis briefly before picking up
a real part. In physical language the bound state becomes a
virtual state and then becomes a resonance. It is this threshold
behavior (bound state → virtual state) that encapsulates the
universal regime. Explicitly solving for the bound-state pole
yields

kpole1D =
i −

√
−1 + 2r1D

a1D

r1D
. (11)

FIG. 3. Three-dimensional p-wave scattering cross section and
bound-state energy for (a) 6Li and (b) 40K. The bound-state energy
(solid line) tunes linearly as a function of the magnetic field, directly
becoming a resonance (dash-dotted line) at B = Bres, above which
point the energy of this quasistable molecular state tunes linearly
through the continuum.

Taking the limit as we approach resonance ( 1
a1D

→
0), kpole1D → 1

a1D
reproduces the universal limit Epole →

h̄2/(ma2
1D). This suggests that as we approach resonance the

underlying molecular state is a halo dimer. To quantify this
molecular state more fully, we calculate the closed-channel
fraction.

We calculate the closed-channel amplitude the same way
as in the 3D case; that is, owing to the poles we now have
an expression for the 1D bound-state energy Eb,1D in terms
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FIG. 4. Closed-channel amplitude in quasi-1D for (a) 6Li and
(b) 40K for a variety of transverse confinements. The resonance
becomes significantly more open channel dominated as the confine-
ment increases.

of the closed-channel energy. Figure 4(a) [4(b)] shows the
closed-channel amplitude calculated for 6Li [40K] for a va-
riety of transverse confinements. (Note that the confinement
shifts the resonance position; we have shifted the origins
to fit all the curves onto one plot.) The 1D p-wave closed-
channel amplitude resembles the closed-channel amplitude
of narrow s-wave resonances. Furthermore, as the confine-
ment is increased the resonances become more and more
open channel dominated. While for our two-body calculations
the closed-channel amplitude goes to 0 on resonance, we
expect many-body effects to keep Z nonzero throughout the
resonance as they do in the s-wave case [37–42]. However,
that Z goes to 0 in the two-body limit should imply that the
closed-channel fraction becomes extremely small in the full
many-body limit. It should be noted here that many-body ef-
fects also limit the universality of narrow s-wave resonances;
when many-body effects are taken into account it has been
shown that only resonances which are broad compared to the
Fermi energy are truly universal [33–40,42]. However, a full
many-body treatment of the problem is beyond the scope of
this paper.

Next we consider the scattering cross section itself. Fig-
ure 5(a) [5(b)] shows the scattering cross section as well
as the real part of the bound-state pole, Re[Epole], for 6Li
[40K]. For an experimentally realizable trap geometry which

FIG. 5. Scattering cross section and bound-state energy in quasi-
1D for (a) 6Li and (b) 40K. We assumed a transverse confinement
of 3 MHz (500 kHz) for 6Li (40K). The energy of the bound state
(solid line) merges with the continuum at Bres and then continues as
a virtual state (dotted line) before eventually becoming a resonance
(dash-dotted line).

can provide extremely tight confinement in two dimensions,
we consider a square two-dimensional standing-wave lattice
made from retroreflected 532-nm light with a depth of 200ER

(where ER is the recoil energy for a 532-nm photon). This
would correspond to a transverse confinement frequency of
3 MHz for 6Li and 500 kHz for 40K. The solid line for energy
represents the case where the pole is a true bound state; the
dashed line, where it is a virtual state; and the dash-dotted
line, where the pole is a resonance. Similarly to narrow s-wave
resonances [1], we see that the energy of the two-body state
varies quadratically with the magnetic field when the state is
a true bound state and a virtual state near resonance. Once the
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FIG. 6. [(a),(b)] Field stability and [(c),(d)] temperature required for achieving halo dimers as transverse confinement is increased. [(a),(c)]
The conditions necessary for 6Li; [(b),(d)] the conditions necessary for 40K.

two-body state becomes a quasibound state it starts to vary
linearly with the field.

We want to estimate the experimental conditions necessary
to access the universal regime, kpole ∼ 1

a1D
. It is clear from

Fig. 5 that once the pole becomes a resonance there is a
sharp change in behavior after which the energy of the pole
scales linearly with the magnetic field. This transition occurs
at a1D[ f⊥, B] = 2r1D[ f⊥] and thus the unwanted resonance
regime is avoided for 1

a1D
< 1

2r1D
. Next we want to ensure

that kpole is well approximated by a first-order expansion.
Expanding kpole to second order,

kpole → i

(
1

a1D
+ r1D

2

1

a2
1D

)
, (12)

we obtain the condition 1
a1D

� 2
r1D

. We take the requirement
that no resonant states are formed to be sufficient as it is a fac-
tor of 4 more stringent than 1

a1D
< 2

r1D
; we believe that under

these conditions the first-order approximation is adequately
satisfied, however, there may still be some small deviation
from the halo dimer form. To maintain this condition, very
strict control of the magnetic field stability is necessary. For
our suggested trap configuration, a field stability of δB <

3.6 mG for 6Li and δB < 187 mG for 40K is required. Further-
more, looking at the collisional energy where the scattering
cross section is resonant, we may estimate the temperatures
needed to reach this 1D p-wave halo dimer regime. For the

trap configuration in Fig. 5 this corresponds to a temperature
of T < 0.21 μK for 6Li and T < 1 μK for 40K. Note that
the conditions for potassium are less stringent than those for
lithium and thus it may be easier to suppress three-body loss
in potassium. However, unlike lithium, potassium not only
suffers from three-body loss but also suffers from two-body
loss due to dipolar relaxation [21].

The confinement clearly plays a crucial role in achieving
p-wave halo dimers. To identify requirements for future exper-
iments aimed at realizing long-lived halo p-wave molecules,
we have plotted in Fig. 6 the magnetic field stability and
temperature necessary to access the universal regime for
6Li and 40K as a function of the transverse confinement.
We use the conditions a1D[ f⊥, Bhalo] < 2r1D[ f⊥] and Thalo <

h̄2/(kBmr1D[ f⊥])2) to estimate the magnetic field stability and
temperatures for which we expect halo dimers. Note that
both δBhalo and Thalo increase very rapidly as the transverse
confinement increases, making increasing the confinement a
promising avenue for attaining the halo dimer region.

Thus far we have discussed the conditions for accessing the
universal regime (achieving halo dimers) in quasi-1D p-wave
Fermi gases. However, three-body loss may be suppressed
even beyond the halo dimer regime. The energy of the pole in
quasi-1D as a function of the magnetic field (see Fig. 5) shows
that there is a sizable region in which there is no resonant state
embedded in the continuum even though the scattering p-wave
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cross section is still unitarity limited for small but nonzero
values of k. This region is roughly twice as large as the halo
dimer regime and consists of the cases where the pole is a
true bound state, a virtual state, and a resonant state below
threshold. Without a quasistable bound state embedded in
the continuum, three-body loss would have to occur between
three separate atoms rather than between one atom and one

quasistable molecule. Thus we expect three-body loss to be
significantly suppressed within this entire region.
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