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Wave turbulence in self-gravitating Bose gases and nonlocal nonlinear optics
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We develop the theory of weak wave turbulence in systems described by the Schrödinger-Helmholtz equations
in two and three dimensions. This model contains as limits both the familiar cubic nonlinear Schrödinger
equation, and the Schrödinger-Newton equations. The latter, in three dimensions, are a nonrelativistic model
of fuzzy dark matter which has a nonlocal gravitational self-potential, and in two dimensions they describe
nonlocal nonlinear optics in the paraxial approximation. We show that in the weakly nonlinear limit the
Schrödinger-Helmholtz equations have a simultaneous inverse cascade of particles and a forward cascade of
energy. We interpret the inverse cascade as a nonequilibrium condensation process, which is a precursor to
structure formation at large scales (for example the formation of galactic dark matter haloes or optical solitons).
We show that for the Schrödinger-Newton equations in two and three dimensions, and in the two-dimensional
nonlinear Schrödinger equation, the particle and energy fluxes are carried by small deviations from thermody-
namic distributions, rather than the Kolmogorov-Zakharov cascades that are familiar in wave turbulence. We
develop a differential approximation model to characterize such “warm cascade” states.
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I. INTRODUCTION

A. Wave turbulence cascades

The dynamical and statistical behavior of random weakly
interacting waves is responsible for many important physical
effects across applications ranging from quantum to classical
and to astrophysical scales [1,2]. Assuming weak nonlinearity
and random phases, such behavior is described by the theory
of weak wave turbulence [1,2]. As in the theory of classi-
cal hydrodynamic turbulence, weak wave turbulence theory
can predict nonequilibrium statistical states characterized by
cascades of energy and/or other invariants through scales.
Sometimes, similarly to 2D classical turbulence, such cas-
cades are dual, with one invariant cascading to small scales
(direct cascade) and the other invariant towards large scales
(inverse cascade). An inverse cascade often leads to accu-
mulation of the turbulence spectrum near the largest scale of
the system, which is analogous to Bose-Einstein condensa-
tion. Large-scale coherent structures may form out of such
a condensate and further evolve via mutual interactions and
interactions with the background of random waves, thereby
realizing a scenario of order emerging from chaos.

In the present paper we will study a precursor to such
a process of coherent structure formation by developing the
wave turbulence theory and describing the dual cascade in
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the so-called “Schrödinger-Helmholtz equations” that arise in
cosmological and nonlinear optics applications.

B. Schrödinger-Helmholtz equations

The Schrödinger-Helmholtz equations are the nonlinear
partial differential equations

i∂tψ + ∇2ψ − V [ψ]ψ = 0, (1a)

∇2V − �V = γ |ψ |2 (1b)

for a complex scalar field ψ (x, t ) in which V [ψ] plays the role
of (potential) interaction energy and � and γ are constants.
We will be interested in systems set in three and two spatial
dimensions (3D and 2D, respectively).

Before proceeding in the body of the paper with develop-
ing the statistical description of the nonlinear field ψ in the
framework of Eqs. (1), we will first outline in Sec. I B the
important physical contexts in which Eqs. (1) have been used,
the previous results found, and the findings that we anticipate
will arise from our approach.

Notice that depending on the spatial scale of interest �,
one term or the other on the left-hand side of Eq. (1b) is
dominant. For � � �∗ = 1/

√
� the Schrödinger-Helmholtz

equations (1) become the more familiar cubic nonlinear
Schrödinger equation, discussed in Sec. I B 1, while for � �
�∗ they turn into the Schrödinger-Newton equations, see
Sec. I B 2. Finally, in Sec. I B 3 we return to interpret the
Schrödinger-Helmholtz Eqs. (1) in light of the discussion of
these limits.
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1. Large-scale limit: The nonlinear Schrödinger equation

In the limit of large scales, � � �∗, the first term on the
left-hand side of Eq. (1b) can be neglected and one imme-
diately finds that V [ψ] = −(γ /�)|ψ |2. The constant γ /�

can be removed by proper renormalization of |ψ |2, leav-
ing only the sign of this constant, denoted as s = ±1. Thus
the Schrödinger-Helmholtz Eqs. (1) become the nonlinear
Schrödinger equation

i∂tψ + ∇2ψ + s|ψ |2ψ = 0, (2)

also known as the Gross-Pitaevskii equation [3]. This equation
has a cubic, spatially local, attractive (for s = +1) or repulsive
(for s = −1) interaction.

The nonlinear Schrödinger Eq. (2) is well known in the
study of Bose-Einstein condensates [3], where ψ is the wave
function of a system of identical bosons in the Hartree-Fock
approximation [4,5] and the nonlinearity is due to s-wave
scattering. (As well as normalizing the coupling constant s
to ±1, units are further chosen such that the reduced Planck
constant h̄ = 1 and the boson mass m = 1/2.)

Equation (2) is also familiar in the field of nonlinear op-
tics [6,7] when a light beam, whose electric field is slowly
modulated by an envelope ψ (such that its intensity is |ψ |2),
impinges on a dispersive, nonlinear medium, inducing a non-
linear change in the medium’s refractive index via the Kerr
effect. Equation (2) then describes the evolution of the beam’s
envelope in the paraxial approximation, where t becomes the
length along the beam axis, and the remaining spatial direc-
tions are transverse to the beam. (In the optics application
units are chosen such that k0n0 = 1/2 where k0 is the free
space wavenumber of the input beam and n0 is the refractive
index of the medium, normalizing the coefficient of the Lapla-
cian term to unity.)

In this context s is the normalized Kerr coefficient, and
the cases with s = +1 or −1 are known as the focusing or
defocusing nonlinear Schrödinger equation respectively, ter-
minology that we adopt here in the general case.

The nonlinear Schrödinger Eq. (2) is studied in a great
many other systems due to its universality in describing
the slowly varying envelope of a monochromatic wave in a
weakly nonlinear medium [8]. We shall not pursue its other
applications in this work, instead merely noting that due to
its universality many monographs and papers have been dedi-
cated to the study of Eq. (2) and its solutions.

2. Small-scale limit: The Schrödinger-Newton equations

Now we focus on scales � � �∗, when the second term
in the left-hand side of Eq. (1b) dominates. Then the
Schrödinger-Helmholtz Eqs. (1) simplify to the coupled equa-
tions

i∂tψ + ∇2ψ − V [ψ]ψ = 0, (3a)

∇2V = γ |ψ |2. (3b)

In three dimensions if we retain the interpretation of ψ (x, t ) as
a boson wave function, we see that the nonlinearity in Eq. (3a)
is nonlocal, coming from an extended potential V [ψ] that
solves the Poisson Eq. (3b) for which the source is propor-
tional to the boson number density ρ = |ψ |2. Specifying γ =

π , and noting that we have chosen units in which h̄ = 1, m =
1/2, and Newton’s gravitational constant G = 1, we observe
that Eqs. (3) describe a dilute Bose gas moving at nonrelativis-
tic speeds under the influence of a Newtonian gravitational
potential generated by the bosons themselves. It is for this
reason that Eqs. (3) are known as the Schrödinger-Newton
equations. (The derivation of Eqs. (3) from a Klein-Gordon
action with a general relativistic metric can be found in the
literature, for example [9,10].)

The use of Eqs. (3) to represent self-gravitating Bose gases
in the Newtonian limit is important in cosmology, where
they are used to model “fuzzy dark matter.” This is the hy-
pothesis that dark matter is comprised of ultralight (m �
1 × 10−22 eV) scalar bosons whose de Broglie wavelengths
are on the order of galaxies (λdB ∼ 1 kpc) [9,11–15]. In this
scenario galactic dark matter haloes are gigantic condensates
of this fundamental boson, trapped by their own gravity and
supported by quantum pressure arising from the uncertainty
principle [10,11,13,16–19].

Fuzzy dark matter is an alternative to the standard model
of cosmology which supposes that dark matter is comprised
of thermal but subluminal, weakly interacting massive par-
ticles, i.e., “cold dark matter” [20]. While cold dark matter
is successful at describing the observed large-scale structure
of the universe, its accelerated expansion, and the fluctua-
tions of the cosmic microwave background [21,22], at small
scales it fails to reconcile observations with cosmological
simulations, particularly in matching the inferred flat density
profiles of galactic dark matter haloes with the cuspy profiles
found in simulations, and the lack of observed satellite dwarf
galaxies as compared to theoretical predictions [23,24]. By
contrast, in fuzzy dark matter galactic cores arise naturally
as compact solitonlike objects structures with core radii on
the order of λdB, below which fine structure is suppressed by
the uncertainty principle [25,26] and, when included in the
model, s-wave scattering [13,17,27], providing a resolution to
the small-scale problems of cold dark matter. At large scales
the two models become indistinguishable [18]. Thus, until the
precise nature of dark matter particles is identified, fuzzy dark
matter must be considered alongside cold dark matter when
investigating the formation of large-scale structure in the early
universe [18,28–30].

Like the nonlinear Schrödinger Eq. (2), the Schrödinger-
Newton Eqs. (3) also have applications in nonlinear optics.
Here (3a) is again the equation for the envelope of the beam
in two transverse spatial dimensions and the distance along the
beam is again the timelike dimension. V [ψ] is now the change
in refractive index of the optical sample induced by the inci-
dent beam, whose nonlocality is expressed in Eq. (3b). This
can be due to the refractive index being temperature dependent
and (3b) describing the diffusion of the incident beam energy
through the medium as heat: the thermo-optic effect [7,31].
Alternatively, in nematic liquid crystals the refractive index
depends on the orientation of the liquid crystal molecules with
respect to the wave vector of the incident beam, and (3b) de-
scribes the reorientation induced by the electric (or magnetic)
field of the beam, which diffuses through the sample due to
long-range elastic interactions between the molecules [32].

Nonlocal nonlinear optics manifest many phenomena
that are the nonlocal versions of the equivalent local
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phenomenon, for example (but by no means limited to)
solitons [31,33–35], soliton interactions [36], modulational
instability and collapse [37–39], and shocks and shock turbu-
lence [40,41]. In addition, comparisons can be made between
nonlinear optical systems and fuzzy dark matter by virtue of
Eqs. (3) describing them both. Indeed recent optics experi-
ments [42,43] and theoretical works [44,45] have drawn direct
analogies between optical systems that can be realized in the
laboratory and astrophysical systems on the scale of galaxies.

3. Physical applications of the Schrödinger-Helmholtz equations

The Schrödinger-Helmholtz Eqs. (1), then, are a model that
captures the physics present in both Eq. (2) and Eqs. (3).
Applied to fuzzy dark matter the diffusive term in Eq. (1b)
represents gravity in the Newtonian approximation of the Ein-
stein field equations, as per Sec. I B 2, while the local term
corresponds to the inclusion of a cosmological constant �

in this approximation [46]. This is necessary if one wants
to account for a dark energy component to cosmology in a
Newtonian approximation. It is also a means to regularize
the so-called “Jeans swindle”—the specification that Eq. (3b)
only relates the fluctuations of density and potential around an
unspecified equilibrium [47], see Appendix A.

In the optical context Eqs. (1) model a system where both
Kerr (local) effects and thermo-optic or elastic (diffusive non-
local) effects are important (alternatively, the diffusive term in
Eq. (1b) can be used to take account of heat losses at the edges
of the optical sample [40,42]).

We therefore take the Schrödinger-Helmholtz Eqs. (1)
as our model of interest as they comprise a model that is
physically relevant in both astrophysics and nonlinear optics,
depending on the choice of dimensionality and units. They
contain as limits both the nonlinear Schrödinger equation,
about which much is known, and the Schrödinger-Newton
equations, whose relevance is starting to come to the fore.
Next we discuss weak and strong turbulence in these latter
models, and introduce the process of dual cascade of invari-
ants, which is a precursor to the formation of structures at the
largest scale in Schrödinger-Helmholtz systems.

C. Turbulence in the nonlinear Schrödinger
and Schrödinger-Newton equations

Turbulence in laboratory Bose-Einstein conden-
sates [48–54] and optics [55–57] is now a well-established
field, and much has been understood by using the local
nonlinear Schrödinger Eq. (2). Its dynamics is rich, with
weakly nonlinear waves typically coexisting with coherent,
strongly nonlinear structures. The nature of these structures
depends radically on the sign of the interaction term s in
Eq. (2). In the defocusing (repulsive) case they include stable
condensates: accumulations of particles (in the Bose-Einstein
condensate case) or intensity (optics) at the largest scale, with
turbulence manifesting as a collection of vortices in 2D, or
a tangle of vortex lines in 3D, on which the density is zero
and which carry all the circulation, propagating through the
condensate [2,52,53]. In the focusing (attractive) case solitons
and condensates are unstable above a certain density, with
localized regions of over-density collapsing and becoming
singular in finite time [56,58].

On the other hand, turbulence in the Schrödinger-Newton
Eqs. (3) has only recently been investigated by direct numer-
ical simulation in the cosmological setting [28] and appears
to contain features of both the focusing and the defocus-
ing nonlinear Schrödinger equation. As mentioned above, at
large scales the Schrödinger-Newton model exhibits gravita-
tionally driven accretion into filaments which then become
unstable and collapse into spherical haloes [29,30] (cf. col-
lapses in the focusing nonlinear Schrödinger model driven
by the self-focusing local contact potential). However, within
haloes the condensate is stable, with turbulence in an enve-
lope surrounding the core manifesting as a dynamic tangle
of reconnecting vortex lines, as in the defocusing nonlinear
Schrödinger model [28]. This is to be expected, given that
the attractive feature of the Schrödinger-Newton model in
cosmology is that it is simultaneously unstable to gravitational
collapse and stable once those collapse event have regularized
into long-lived structures, and so it should contain features of
both the unstable (focusing) and stable (defocusing) versions
of the nonlinear Schrödinger model.

To understand more fully the phenomenology recently re-
ported in the Schrödinger-Newton Eqs. (3), it is tempting
to apply theoretical frameworks that have been successful
in explaining various aspects of turbulence in the nonlinear
Schrödinger equation. One such theory is wave turbulence: the
study of random broadband statistical ensembles of weakly
interacting waves [1,2]. The “turbulent” behavior referred
to here is the statistically steady-state condition where dy-
namically conserved quantities cascade through scales in the
system via the interaction of waves, a process analogous to
the transfer of energy in 3D classical fluid turbulence (and
respectively energy and enstrophy in 2D). Wave turbulence
theory is integral to the quantitative description of both the
wave component and the evolution of the coherent compo-
nents of the nonlinear Schrödinger system and is relevant
in three regimes: de Broglie waves propagating in the ab-
sence of a condensate [2,56], Bogoliubov acoustic waves on
the background of a strong condensate [2,56], and Kelvin
waves that are excited on quantized vortex lines in a con-
densate [2,59]. If the system is focusing, then the condensate
is modulationally unstable and vortices do not appear, so
acoustic and Kelvin wave turbulence will not be realized
[the gravitational-type nonlinearity present in Eqs. (3) is of
focusing type and so this is the situation that is most relevant
to this work]. Nonetheless, in both focusing and defocusing
systems de Broglie wave turbulence theory describes how,
starting from a random ensemble of waves, a dual cascade
simultaneously builds up the large-scale condensate while
sending energy to small scales [2]. As we will describe in
Sec. II C below, this dual cascade is generic in any system
of interacting waves with two quadratic dynamical invariants
(particles and energy in the cases of interest here). The theory
of wave turbulence thus provides a universal description of
how large-scale coherent structures can arise from a random
background.

The wave turbulence of Eqs. (1), the fundamental process
of dual cascade, and the spectra on which such cascades
can occur, have already been investigated theoretically and
in optics experiments in the one-dimensional case [55,60] in
the large-scale and small-scale limits where the dynamical
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equations become Eqs. (2) and (3) respectively. To our knowl-
edge such a study of the wave turbulence of (1) has not been
made in higher dimensions. We begin this study in the current
work.

Having said this, we note that Ref. [57] refers to the
“optical wave turbulence” of nonlocal systems, of which the
Schrödinger-Helmholtz equations are an important example.
Much of Ref. [57], and references therein, pertains to the
dynamics of inhomogeneous systems (such as modulational
instability and collapse, studied by a Vlasov equation). By
contrast, here we are concerned with the dynamics that gov-
ern statistically homogeneous systems. We comment on the
difference in approaches to inhomogeneous vs homogeneous
systems in Appendix B. Furthermore, a recent paper [61] has
examined the formation of large-scale structure in astrophys-
ical Bose gases obeying Eqs. (3), using a kinetic formulation
which was termed “wave turbulence” in Ref. [10]. We de-
scribe the similarities and differences between Ref. [61] and
this work in Sec. IV A.

D. Organization of this paper

In this work, then, we develop the theory of wave turbu-
lence for the Schrödinger-Helmholtz Eqs. (1) in the case of
fluctuations about a zero background. By taking the limits
of small and large � we obtain the wave turbulence of the
Schrödinger-Newton Eqs. (3) and also review known results
of the nonlinear Schrödinger Eq. (2). Our aim is to describe
the fundamental dynamical processes that govern the first
stages of formation of a large-scale condensate from ran-
dom waves in cosmology and in nonlinear optics. From this
structure gravitational-type collapses will ensue and the phe-
nomenology described above will develop.

In Secs. II A and II B we overview the wave turbulence
theory and arrive at the wave kinetic equation that de-
scribes the evolution of the wave content of the system.
Section II C describes the dual cascade of energy towards
small scales and particles towards large scales in the system.
In Secs. II D and II E we describe, respectively, the scale-
free pure-flux spectra and equilibrium spectra that are formal
stationary solutions of the wave kinetic equation. However,
in Sec. II F we show that these stationary spectra yield the
wrong directions for the fluxes of energy and particles, as
compared with the directions predicted in Sec. II C. We re-
solve this paradox by developing a reduced model of the
wave dynamics in Secs. II G and II H and using it in Sec. III
to reveal the nature of the dual cascades in the nonlin-
ear Schrödinger and the Schrödinger-Newton limits of the
Schrödinger-Helmholtz equations. We conclude in Sec. IV
and suggest further directions of research incorporating
wave turbulence into the study of the Schrödinger-Helmholtz
equations.

II. BUILDING BLOCKS OF SCHRÖDINGER-HELMHOLTZ
WAVE TURBULENCE

In this section we overview the aspects of the wave turbu-
lence theory that we require in our description of turbulence
in the Schrödinger-Helmholtz model.

A. Hamiltonian formulation of the
Schrödinger-Helmholtz equations

To put Schrödinger-Helmholtz turbulence in the context of
the general theory of wave turbulence we need to formulate
the Schrödinger-Helmholtz Eqs. (1) in Hamiltonian form. For
that goal we first set the system in the periodic box 
 = T d

L
and decompose variables into Fourier modes

ψk(t ) = 1

Ld

∫



ψ (x, t )e−ik·x dx,

and similarly for Vk(t ). The dynamical equations become

i∂tψk − k2ψk −
∑
1,2

V1ψ2δ
k
12 = 0, (4a)

−(
k2

1 + �
)
V1 = γ

∑
3,4

ψ3ψ
∗
4 δ3

14, (4b)

where Vj = Vk j , ψ j = ψk j ,
∑

i... j = ∑
ki,...,k j

, and δk
12 =

δ(k − k1 − k2) is the Kronecker delta, equal to unity if k =
k1 + k2 and zero otherwise.1

Equations (4) can be rewritten as the canonical Hamilto-
nian equation

i∂tψk = ∂H

∂ψ∗
k

, H = H2 + H4, (5a)

H2 =
∑

k

ωkψkψ
∗
k , (5b)

H4 = −1

2

∑
1234

W 12
34 ψ1ψ2ψ

∗
3 ψ∗

4 δ12
34 . (5c)

Here the Hamiltonian H is comprised of the quadratic part H2,
which leads to linear waves with dispersion relation ωk = k2,
and the interaction Hamiltonian H4 which describes four-wave
coupling of the 2 ↔ 2 type. The interaction coefficient W 12

34
can written in the symmetric form

W 12
34 = γ

4
(A1234 + A2134 + A1243 + A2143), (5d)

A1234 = 1/[(k1 − k4) · (k3 − k2) + �)]. (5e)

If we are using the Jeans swindle from the outset (see Footnote
1) then the sum in Eq. (5c) must exclude all terms when any
two wavenumbers are equal.

For completeness, we note that if we include a local cu-
bic self-interaction term −s|ψ |2ψ on the right-hand side of
Eq. (3a) as well as the gravitational term, then the four-wave
interaction coefficient would be

W 12
34 = −s + γ

4
(A1234 + A2134 + A1243 + A2143), (5f)

with A1234 as in Eq. (5e).
Finally, the four-wave interaction coefficient for the cubic

nonlinear Schrödinger Eq. (2) is simply

W 12
34 = −s.

1If we start with Eq. (3b), i.e., � = 0, from the outset, then we need
to set Vk=0 = 0, which is the Jeans swindle in Fourier space. This
corresponds to subtraction of the mean as in Eq. (A1), i.e., 〈ρ〉
 = 0.
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B. Kinetic equation and conserved quantities

In the theory of weak wave turbulence we consider en-
sembles of weakly interacting waves with random phases
uniformly distributed in [0, 2π ), and independently dis-
tributed amplitudes [2,62–64]. We define the wave spectrum

nk =
(

L

2π

)d

〈|ψk|2〉, (6)

where the angle brackets 〈· · · 〉 denote averaging of “· · · ” over
the random phases and amplitudes.

In the limit of an infinite domain L → ∞ and for weak
nonlinearity |H4/H2| � 1 one can derive [1,2,56] a wave ki-
netic equation for the evolution of the spectrum. For 2 ↔ 2
wave processes with the interaction Hamiltonian (5c), the
kinetic equation is

∂t nk = 4π

∫ ∣∣W 12
3k

∣∣2
δ12

3kδ
(
ω12

3k

)
n1n2n3nk

×
[

1

nk
+ 1

n3
− 1

n1
− 1

n2

]
dk1dk2dk3, (7)

where δ12
3k is now a Dirac delta function that imposes

wavenumber resonance k + k3 = k1 + k2; likewise fre-
quency resonance ωk + ω3 = ω1 + ω2 is enforced by the
Dirac delta δ(ω12

3k ).
The kinetic equation (7) describes the irreversible evolu-

tion of an initial wave spectrum via four-wave interaction.2

It is the central tool of wave turbulence theory at the lowest
level of closure of the hierarchy of moment equations (the
theory also allows the study of higher moments or even the full
probability density function [2,62–64]). Equation (7) allows
one to study the dynamical evolution of a wave spectrum from
an arbitrary initial condition, provided the interaction is weak.
The spectra that are of greatest interest in wave turbulence
theory are the stationary solutions that we discuss in Secs. II D
and II E. As well as being the first checkpoint in analyzing the
wave turbulence of a new system, these spectra also frequently
characterize the time-dependent dynamics. We shall return to
this point in Sec. IV A.

As the spectrum evolves under the action of Eq. (7), the fol-
lowing two quantities are conserved by the kinetic equation:

N =
∫

nk dk, (8a)

E =
∫

ωknk dk. (8b)

Here N is known as the (density of) wave action, or parti-
cle number, and is conserved for all times by the original
Eqs. (1), and E is referred to as the (density of) energy. It
is the leading-order part of the total Hamiltonian, i.e., H2, and

2Note that the interaction coefficient enters Eq. (7) only through its
squared modulus, so that the sign of the interaction does not play a
role in the weakly nonlinear limit. This means that, for example, in
the case of Eq. (2) the buildup of a large-scale condensate via an in-
verse cascade is the same for both the focusing and defocusing case,
and the difference only enters in the strongly nonlinear evolution.

is only conserved by Eqs. (1) over timescales for which the
kinetic equation (7) is valid.

For isotropic systems such as Eqs. (1) we can express the
conservation of invariants (8) as scalar continuity equations
for the wave action

∂t N
(1D)
k + ∂kη = 0, N (1D)

k = A(d−1)nkkd−1, (9a)

and for the energy

∂t E
(1D)
k + ∂kε = 0, E (1D)

k = ωkN (1D)
k . (9b)

Here η = η(k) and ε = ε(k) are, respectively, the flux of
wave action and energy through the shell in Fourier space of
radius k = |k|. In Eq. (9a) we have defined the isotropic one-
dimensional (1D) wave action spectrum N (1D)

k , where A(d−1)

is the area of a unit (d − 1) sphere; likewise in Eq. (9b) E (1D)
k

is the isotropic 1D energy spectrum.
In the rest of this work we will consider a forced-dissipated

system, with forcing in a narrow band at some scale kf and
dissipation at the large and small scales kmin and kmax, re-
spectively, and assume that these scales are widely separated
kmin � kf � kmax. The interval kf < k < kmax is known as the
direct inertial range, and kmin < k < kf is called the inverse
inertial range, because of the directions that E and N flow
through these ranges, as we describe in the next section. In
this open setup the local conservation Eqs. (9) will hold deep
inside the inertial ranges but the global quantities N and E are
only conserved if the rates at which they are injected match
their dissipation rates.

We examine the open system because it allows the
nonequilibrium stationary solutions of Eq. (7) to form and
persist, revealing the dual cascade in its purest manifestation.
The alternative would be to study turbulence that evolves
freely from an initial condition. In that case features of the sta-
tionary solutions still often characterize the evolving spectra,
see Sec. IV A. We leave the study of the time-evolving case
to future work and here establish the forms of the stationary
spectra by considering the forced-dissipative setup.

C. Fjørtoft argument for two conserved invariants

The presence of two dynamical invariants E and N whose
densities differ by a monotonic factor of k, here by ωk = k2,
places strong constraints on the directions in which the invari-
ants flow through k-space, as pointed out by Fjørtoft [65]. We
recapitulate his argument in its open-system form.3

Consider the system in a steady state where forcing bal-
ances dissipation: at kf energy and particles are injected at
rates ε and η, respectively, and dissipated at those rates at kmin

or kmax. The ratio of the density of energy to the density of
particles is k2, and so the energy and particle flux must be
related by the same factor at all scales. At the forcing scale
this means that ε ∼ k2

f η.
The argument proceeds by contradiction. Suppose that the

energy is dissipated at the large scale kmin at the rate ∼ε that
it is injected. Then at this scale particles would be removed

3See also Chap. 4 of Ref. [2] that makes a modified argument that
does not rely on the system being open.
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at rate ∼ε/k2
min ∼ ηk2

f /k2
min � η which is impossible because

then the particle dissipation rate would exceed the rate of
injection. Therefore, in a steady state most of the energy must
be dissipated at small scales kmax. Likewise, if we assume the
particles are removed at the small scale kmax at rate ∼η, then
energy would be removed at the impossible rate ∼εk2

max/k2
f �

ε so most of the particles must be removed at large scales kmin

instead.
Therefore, this argument predicts that the scale containing

most of the energy must move towards high k while the
scale containing the most particles must move towards low
k. Particles are then removed if kmin represents a dissipation
scale. However, if there is no dissipation here, then the spec-
trum develops a localized bump as the particles accumulate
at the largest scale—this is the condensate. In this case kmin

represents the transition scale between the condensate, which
becomes strongly nonlinear as the dual cascade proceeds, and
the weakly nonlinear wave component of the system which
continues to obey Eq. (7).

It is thus the Fjørtoft argument that robustly predicts that
particles accumulate at the largest available scale in the sys-
tem, while energy is lost by the dissipation at kmax, a process of
simultaneous nonequilibrium condensation and “evaporative
cooling” [66].

The Fjørtoft argument does not specify whether the in-
variants move via local scale-by-scale interactions, or by a
direct transfer from the intermediate to the extremal scales.
In Sec. II D we consider spectra on which the two invariants
move via a local cascade.

D. Kolmogorov-Zakharov flux spectra as formal
solutions of the kinetic equation

The landmark result of the theory of weak wave turbu-
lence is the discovery of spectra on which invariants move
with constant flux through k-space via a local scale-by-scale
cascade, potentially realizing the predictions of the Fjørtoft
argument. [However, anticipating the results of Sec. II F, it
turns out that for the Schrödinger-Newton Eqs. (3) and non-
linear Schrödinger Eq. (2) these spectra lead in most cases to
cascades with the fluxes in the wrong direction, a contradic-
tion that we resolve in the remainder of this work.] These are
the Kolmogorov-Zakharov spectra [1] and are analogous to
Kolmogorov’s famous k−5/3 energy cascade spectrum for 3D
classical strongly nonlinear hydrodynamical turbulence [67].
When they exist, they are steady nonequilibrium solutions of
the kinetic equation in which the spectra are scale invariant,
i.e.,

nk ∝ k−x. (10)

Necessary (but not sufficient) conditions for such spectra
to exist are that both the dispersion relation and interaction
coefficient are themselves both scale invariant. In our case the
dispersion relation is ωk = k2. For the interaction coefficient
we require a homogeneous function in the sense that

W μk1 μk2
μk3 μk4

= μβW k1 k2
k3 k4

.

For the Schrödinger-Helmholtz Eqs. (1) we obtain a scale-
invariant interaction coefficient in either the Schrödinger-

Newton limit � � �∗ (in which case β = −2) or in the
nonlinear Schrödinger limit � � �∗ (where β = 0).

The Kolmogorov-Zakharov spectra are obtained by mak-
ing a so-called Zakharov-Kraichnan transform in the kinetic
equation (7) and using the scaling behavior of all quantities
under the integral [1,2,56], or via dimensional analysis [2,68].
We omit the details and quote the results here.

For systems of 2 ↔ 2 wave scattering in d spatial dimen-
sions, the spectrum that corresponds to a constant flux of
particles and zero flux of energy has index

xFN = d + 2β

3
− 2

3
. (11a)

The spectrum of constant energy flux with zero particle flux is

xFE = d + 2β

3
. (11b)

In particular for the Schrödinger-Newton Eqs. (3) we have
β = −2, so

xFN = 1, xFE = 5/3 for d = 3, (12a)

xFN = 0, xFE = 2/3 for d = 2, (12b)

while for the nonlinear Schrödinger Eq. (2) β = 0, so

xFN = 7/3, xFE = 3 for d = 3, (12c)

xFN = 4/3, xFE = 2 for d = 2. (12d)

Results (12c) and (12d) are known [1,2,56] but the pure-flux
Kolmogorov-Zakharov spectra Eqs. (12a) and (12b) for the
Schrödinger-Newton equations are new results that we report
for the first time here.

E. Equilibrium spectra

The kinetic equation redistributes E and N over the de-
grees of freedom (wave modes) as it drives the system to
thermodynamic equilibrium. Equilibrium is reached when the
invariant σ = (E + μN )/T is distributed evenly across all
wave modes. This is realized by the Rayleigh-Jeans spectrum4

nk = T

ωk + μ
, (13)

where T is the temperature and μ is the chemical potential.
In particular, the spectrum is scale invariant, satisfying

Eq. (10), when there is equipartition of particles only (the ther-
modynamic potentials μ, T → ±∞ such that T/μ = nk =
const) or of energy only (obtained when μ = 0). We de-
note the corresponding spectral indices for thermodynamic
equipartition of particles and energy, respectively, as

xTN = 0 and xTE = 2 . (14)

4Formally, achieving the Rayleigh-Jeans spectrum depends on
there being a small-scale cutoff kmax to prevent σ being shared over
an infinite number of wave modes, i.e., the trivial solution nk = 0 for
every k.
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FIG. 1. Particle flux η(x) (in red) and energy flux ε(x) (in blue) as a function of spectral index x for the limits of the Schrödinger-Helmholtz
model. Upper panels for the Schrödinger-Newton model in (a) d = 3 and (b) in d = 2. Lower panels for the nonlinear Schrödinger model in
(c) d = 3 and (d) d = 2. Dashed lines indicate the signs of the fluxes when the spectral index takes the values xFN and xFE.

F. Directions of the energy and particle fluxes and realizability
of the scale-invariant spectra

With the various indices for the stationary Kolmogorov-
Zakharov and Rayleigh-Jeans power-law spectra in hand, we
now turn to the following simple argument to determine the
directions of the particle and energy fluxes η(x) and ε(x).

We consider what the flux directions will be when the
spectrum is a power law as in Eq. (10). We expect the fluxes
to respond to a very steep spectrum by spreading the spec-
trum out. Therefore for x large and positive (spectrum sharply
increasing towards low wavenumber) we expect both η, ε >

0, and for x large and negative (spectrum ramping at high
wavenumber) we expect η, ε < 0. Furthermore, both fluxes
will be zero for both thermal equilibrium exponents xTN and
xTE. Finally, the particle flux vanishes for the pure energy flux
spectrum with exponent xFE, and the energy flux vanishes for
the pure particle flux exponent xFN. By continuity the signs
of both fluxes for all x are fully determined by their signs at
infinity and the locations of their zero crossings. The fluxes
will schematically vary in the manner shown in Figs. 1(a)
and 1(b) for the Schrödinger-Newton model and Figs. 1(c)
and 1(d) for the nonlinear Schrödinger model.

First we consider the Schrödinger-Newton equations. In
both 3D and 2D at the spectral index corresponding to
pure energy flux xFE we find that ε is negative. On xFN, the

pure particle flux spectrum, we find that η is negative in
3D, whereas in 2D there is a degeneracy with the particle
equipartition spectrum xFN = xTN and correspondingly η = 0
there. These findings are in contradiction to the Fjørtoft
argument.

For the nonlinear Schrödinger equation in 3D, ε is positive
at xFE and η is negative at xFN. This is in agreement with the
Fjørtoft argument. We therefore naively expect that in 3D the
Kolmogorov-Zakharov flux cascades are possible. It turns out
that the inverse particle Kolmogorov-Zakharov spectrum is
realized, with a scale-by-scale transfer of particles to small
scales, however the direct energy cascade is nonlocal and the
spectrum must be modified to correct a logarithmic divergence
in the infrared limit, see Refs. [2,56] for details.

For the 2D nonlinear Schrödinger equation the energy flux
and equipartition spectra are degenerate xFE = xTE, giving ε =
0 there, and at the particle flux spectral index xFN we find η is
positive.

These results for the Schrödinger-Newton equations and
2D nonlinear Schrödinger equation are in contradiction to the
Fjørtoft argument for a forward energy cascade and inverse
particle cascade. However, the Fjørtoft argument is robust and
predicts that if an initial spectrum evolves, it must push most
of the energy towards small scales and particles towards large
scales. We therefore conclude that the Schrödinger-Newton
Eqs. (3), and the nonlinear Schrödinger Eq. (2) in 2D, do not

043318-7



SKIPP, L’VOV, AND NAZARENKO PHYSICAL REVIEW A 102, 043318 (2020)

accomplish this via the Kolmogorov-Zakharov spectra that are
determined solely by the values of the flux. To resolve this
paradox we develop a simplified theory to reduce the integro-
differential kinetic equation to a partial differential equation
that is analytically tractable.

G. Differential approximation model for wave turbulence

The Kolmogorov-Zakharov solutions of the kinetic equa-
tion for the Schrödinger-Newton equations in 3D and 2D,
and for the nonlinear Schrödinger equation in 2D predict the
wrong directions for the fluxes as compared to the Fjørtoft
argument. Such solutions cannot be realized for any finite
scale separation between forcing and dissipation. From ex-
perience with other wave turbulence systems we expect that
the flux-carrying spectra in these cases are instead close to
the zero-flux thermal Rayleigh-Jeans solutions, but with de-
viations that carry the flux [2,69,70]. These deviations are
small deep inside the inertial ranges but become large at the
ends, making the spectrum decay rapidly to zero near the
dissipation scales. Spectra of this sort are termed “warm”
cascades [69,71–73]. A feature of these solutions is that the
thermodynamic potentials T and μ will be functions of the
flux they have to accommodate,5 and the scales at which the
spectrum decays, i.e.,

T

μ
= f (η, ωmin) (15)

for the inverse cascades and

T = g(ε, ωmax) (16)

for direct cascades [2,69,70], where the functional forms of f
and g are to be found, and we have converted from wavenum-
ber to frequency using the dispersion relation ω = k2 (we will
continue to refer to “scales” when discussing frequencies as
the isotropy of the spectrum allows us to use the dispersion
relation to convert between spatial and temporal scales).

To describe warm cascade states we develop a differential
approximation model that simplifies the kinetic equation by
assuming that interactions are super-local in frequency space
(ωk ≈ ω1 ≈ ω2 ≈ ω3). This allows the collision integral to
be reduced to a purely differential operator. Asymptotically
correct stationary solutions of this reduced model can then be
found analytically, and these will be qualitatively similar to
the solutions for the full kinetic equation [56,69–74].

The reduction of the general four-wave kinetic equation
to the differential approximation model is done explicitly in
Ref. [56]. Here we take a heuristic approach based on the
scaling of the kinetic equation and neglect the full calculation
of numerical prefactors.

We integrate over angles in k-space and change variables
to frequency. The general form of the differential approxima-

5Note that the temperature T of the warm cascade refers to the
energy shared between wave modes, and is not related to the tem-
perature of particle or molecular degrees of freedom of the material
at hand (Bose gas or nonlinear optical sample), which plays no role
in this analysis.

tion model is then an ordinary differential equation in local
conservative form

ωd/2−1 ∂n

∂t
= ∂2R

∂ω2
, (17a)

where n = n(ω) is the spectrum expressed as a function of ω,
and the quantity

R = Sωλn4 ∂2

∂ω2

(
1

n

)
(17b)

is constructed so as to ensure that the Rayleigh-Jeans spectrum
is a stationary solution [∂ωω(1/n) term], the n4 term derives
from the fact that four-wave interactions are responsible for
the spectral evolution, the total n scaling matches the kinetic
equation, and S is a constant.

To find λ for the systems considered in the present work we
examine how the kinetic Eq. (7) scales with ω. Schematically
the kinetic equation is

ṅ =
∫

W 2n3δ(k)δ(ω)(dk)3 ∼ n3k2β+2d−2 ∼ n3ωβ+d−1,

while the differential approximation (17) scales as

ωd/2−1ṅ ∼ n3ωλ−4.

Comparing powers of ω we find that

λ = β + 3d

2
+ 2. (18)

H. Fluxes in the differential approximation

Comparing Eq. (17a) with (9a) and (9b) we see that the
particle and energy fluxes expressed as a function of ω are, up
to a geometrical factor that can be absorbed into S,

η = − ∂R

∂ω
and ε = −ω

∂R

∂ω
+ R. (19)

respectively.
Putting a power-law spectrum n = ω−x/2 into Eqs. (17)

and (19) allows us to find expressions for the fluxes. The
particle flux is

η = − x

2

(
x

2
− 1

)(
β + 3d

2
− 3x

2

)
Sωβ+3d/2−3x/2−1

and vanishes when x = 0 or x = 2, corresponding to the ther-
modynamic particle and energy spectral indices of Eqs. (14).
The particle flux also vanishes when x = d + 2β

3 , correspond-
ing to the energy flux spectral index xFE of Eqs. (12a) to (12d).
The energy flux is

ε = − x

2

(
x

2
− 1

)(
β + 3d

2
− 3x

2
− 1

)
Sωβ+3d/2−3x/2 (20)

and is again zero for the Rayleigh-Jeans spectra where x = 0
or x = 2, and for the constant particle flux (zero energy flux)
Kolmogorov-Zakharov spectrum with x = d + 2β

3 − 2
3 .

Thus in the differential approximation model we recover
the results of Secs. II D and II E. Furthermore, this model
gives a quantitative prediction of η(x) and ε(x) for all values
of x (to within the limits of the super-local assumption, and
the numerical determination of S). For example, taking S = 1
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and ω = 1 we have the cubic functions

η = − x

2

(
x

2
− 1

)(
β + 3d

2
− 3x

2

)
, (21a)

ε = − x

2

(
x

2
− 1

)(
β + 3d

2
− 3x

2
− 1

)
(21b)

that are drawn in Fig. 1, with β = −2 for the Schrödinger-
Newton Eqs. (3) and β = 0 for the nonlinear Schrödinger
Eq. (2).

III. TURBULENT SPECTRA IN THE
SCHRÖDINGER-HELMHOLTZ MODEL

A. Reconciling with the Fjørtoft argument

Having established the cases in which the Kolmogorov-
Zakharov spectra give either the wrong flux directions or
zero fluxes for the Schrödinger-Newton and the nonlinear
Schrödinger models, we now seek the spectra that give the
correct fluxes. To agree with the Fjørtoft argument we re-
quire a spectrum for the direct inertial range that carries the
constant positive energy flux ε from the forcing scale ωf up
to the dissipation scale ωmax, but carries no particles. Setting
η = ∂ωR = 0 in Eqs. (19) we obtain the ordinary differential
equation

ε = R = const > 0 (22)

in the direct inertial range.
Likewise in the inverse inertial range we require a spectrum

that carries the constant negative particle flux η from ωf to
dissipate at ωmin, but carries zero energy. Setting ε = 0 in
Eq. (19) we obtain ∂ωR = R/ω and so

η = − R

ω
= const < 0 (23)

in the inverse inertial range.
We now proceed in turn through the 3D and 2D

Schrödinger-Newton equations, followed by the 2D nonlinear
Schrödinger equation, and use Eqs. (22) and (23) to resolve
the predictions from Sec. II F that are in conflict with the
Fjørtoft argument.

(A full qualitative classification of the single-flux sta-
tionary spectra in the differential approximation model for
four-wave turbulence is presented in Ref. [75], based on the
phase space analysis of an auxiliary dynamical system. Those
general results are relevant to the systems under consideration
in this paper, however here we will concentrate on the partic-
ular functional form of the flux-carrying spectra in the inertial
range, and establish the relationships (15) and (16) between
the thermodynamic potentials and the fluxes, in the spirit of
Refs. [2,69,70].)

B. Spectra in the 3D Schrödinger-Newton model

In Sec. II F we found that in the 3D Schrödinger-Newton
Eqs. (3) both the particle and the energy cascade had the
wrong sign on their respective Kolmogorov-Zakharov spectra.
We specialize Eq. (18) to this model by setting β = −2 and
d = 3 and, following Ref. [2], we use the ordinary differential
Eqs. (22) and (23) to seek warm cascade solutions that carry
the fluxes in the directions predicted by Fjørtoft’s argument.

1. Warm inverse particle cascade in the 3D
Schrödinger-Newton model

The warm cascade is an equilibrium Rayleigh-Jeans spec-
trum with a small deviation. Thus we propose the spectrum

n = T

ω + μ + θ (ω)
(24)

and assume that the disturbance θ (ω) is small deep in the
inverse inertial range, i.e., ωmin � ω � ωf . We substitute this
into Eqs. (17) and impose the constant-flux condition (23)
for the inverse cascade. Linearizing with respect to the small
disturbance, we obtain the equation

θ ′′(ω) = − η

ST 3

(ω + μ)4

ω7/2
.

Integrating twice, and noting that |η| is negative, yields the
following expression for the deviation away from the thermal
spectrum that is valid deep in the inertial range:

θ (ω) = |η|
ST 3

(
4ω5/2

15
+ 16μω3/2

3

− 24μ2ω1/2 + 16μ3

3ω1/2
+ 4μ4

15ω3/2

)
, (25)

where we have absorbed the two integration constants by
renormalizing T and μ.

We can use (25) to obtain a relation between the flux and
thermodynamic parameters of the form (15) via the follow-
ing “approximate matching” argument. We need the warm
cascade spectrum to terminate at the dissipation scale ωmin.
Therefore near the dissipation scale we expect θ (ω) to become
significant, compared to the other terms in the denominator
of (24), i.e., we expect θ (ω) ∼ ω + μ near ωmin. We put
these terms into balance at ωmin and assume the ordering6

ωmin � μ. Taking the leading term from Eq. (25), we obtain
the flux scaling

(
T

μ

)3

∼ 4

15S
|η|ω3/2

min. (26)

Of course this matching procedure is not strictly rigorous as
Eq. (25) was derived for small θ and we are extending it to
where θ is large. Nevertheless, we expect that the scaling rela-
tion (26) will give the correct functional relationship between
the thermodynamic parameters and the flux and dissipation
scale. (Results derived in a similar spirit in other systems give
predictions that agree well with direct numerical simulations,
see, e.g., Ref. [69].)

Now we examine the structure of the inverse cascade near
the dissipation scale. Assuming that the spectrum around (ω −
ωmin) � ωmin is analytic, the condition n(ωmin) = 0 sug-
gests that the spectrum terminates in a compact front whose
leading-order behavior is of the form n = A(ω − ωmin)σ .
Again we substitute this ansatz into Eqs. (17), and demand

6If instead we set ωmin ∼ μ or ωmin � μ, then θ (ω) would not
become small for any ω � ωmin, contradicting the assumption under
which we derived Eq. (25).
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that the flux is carried all the way to the dissipation scale,
i.e., we impose the condition (23). Requiring that the flux
is frequency independent fixes A and σ , and we obtain the
compact front solution at the dissipation scale

n =
[

9|η|(ω − ωmin)2

10Sω
7/2
min

]1/3

. (27)

We shall find below that the compact front solution is nearly
identical near each dissipation range in each model and di-
mensionality that we examine. This is because the ∼n3 scaling
of the spectrum in Eqs. (17), and the need for the compact
front to vanish at the respective dissipation scale ω∗ fixes
σ = 2/3. The only difference will be the flux and the power
of the respective ω∗ in the coefficient, and the sign difference
in the power law.

We note that Eq. (25) suggests that θ (ω) could again be-
come large at high frequency. Arguing as above, this permits
the spectrum to terminate at a compact front at frequency
ω+ > ωmin. One could argue likewise for the warm direct
energy cascade spectrum, see Eq. (28) below. Indeed all the
warm cascade spectra discussed in this paper contain the
possibility that they might be bounded by two compact fronts.
We discuss this matter in Appendix C.

Using the differential approximation we have shown how
the inverse cascade of particles in the 3D Schrödinger-Newton
Eqs. (3) is carried by a warm cascade that closely follows a
Rayleigh-Jeans spectrum in the inertial range, with a strong
deviation near the dissipation scale that gave us an approxi-
mate scaling relation between the thermodynamic parameters
and the cascade parameters. We also investigated the structure
of the spectrum at the dissipation scale and found it to be a
compact front with a 2/3 power law that vanishes at ωmin.

In the rest of this work we will use the same procedures,
with the model and dimensionality under consideration giving
us the appropriate ω scaling in the differential approximation,
to identify similar features of the cascades. First, we turn to
the direct cascade of energy in the 3D Schrödinger-Newton
Eqs. (3).

2. Warm direct energy cascade in the 3D
Schrödinger-Newton model

To find a direct cascade of energy for the 3D Schrödinger-
Newton equations we again use the warm cascade ansatz (24)
and this time impose the constant energy flux condition (22).
We go through the same approximate matching procedure as
in Sec. III B 1: we find θ (ω) under the assumption that it is
small,

θ (ω) = ε

ST 3

(
4ω3/2

3
− 16μω1/2

+ 8μ2

ω1/2
+ 16μ3

15ω3/2
+ 4μ4

35ω5/2

)
, (28)

where again we have absorbed the two integration constants
into T and μ. Extending (28) towards ωmax where we require
it to balance the other terms in the denominator of (24), and

FIG. 2. Dual warm cascade in the 3D Schrödinger-Newton equa-
tions. The inverse particle cascade, with negative particle flux η,
is shown in red. In blue is the direct energy cascade with positive
flux ε. The black dashed line is the thermodynamic equipartition
spectrum (13). (See main text for parameters.)

assuming7 μ � ωmax gives a scaling relation of the type (16)

T 3 ∼ 4

3S
εω1/2

max. (29)

In the immediate vicinity of ωmax we again expect a com-
pact front. Substituting n = A(ωmax − ω)σ into (22) gives the
leading-order structure

n =
[

9ε(ωmax − ω)2

10Sω
9/2
max

]1/3

. (30)

Again we note that Eq. (28) suggests that θ can be made
large at some low frequency that would lead to a second
compact-front cutoff at ω− < ωmax. All the warm cascade
spectra we discuss here have the potential to be terminated
at two compact fronts. This is discussed in Appendix C.

3. Warm dual cascade in the 3D Schrödinger-Newton model

In summary, the results of Secs. III B 1 and III B 2 predict
that for the 3D Schrödinger-Newton model in the forced-
dissipative setup, the movement of particles to large scales
and energy to small scales is realized by a dual warm cascade
spectrum. This spectrum starts close to the Rayleigh-Jeans
distribution (13) near the forcing scale ωf and then deviates
strongly away, until it vanishes at compact 2/3 power-law
fronts at the dissipation scales ωmin and ωmax. We show the
dual warm cascade in Fig. 2, which was obtained by numer-
ically integrating Eq. (22) forwards and Eq. (23) backwards
from the initial condition that the spectrum and its deriva-
tive matched the Rayleigh-Jeans spectrum (13) at ωf = 105,
with T = μ = 104. The warm cascades carry a particle flux

7For ωmax ∼ μ or ωmax � μ there is no range of ω � ωmax for
which θ (ω) is small.
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η = −3.75 to large scales and energy flux ε = ω2
f |η| to small

scales, and the geometric constant S = 1.
The dual warm cascade for the 2D Schrödinger-Newton

and 2D nonlinear Schrödinger models can be obtained in a
similar fashion. They are qualitatively similar to Fig. 2 so we
omit displaying them.

C. Spectra in the 2D Schrödinger-Newton model

Now we turn to the 2D Schrödinger-Newton Eqs. (3),
setting β = −2 and d = 2 in Eq. (18). In Sec. II F we found
that the particle equipartition and cascade spectra coincided,
making the particle flux zero, and that the energy flux had the
wrong sign.

1. Log-corrected inverse particle cascade in the 2D
Schrödinger-Newton model

The degeneracy between the particle Rayleigh-Jeans and
Kolmogorov-Zakharov spectra n ∼ ω0 can be lifted by mak-
ing a logarithmic correction to this spectrum. Substituting the
trial solution n = B lnz(ω/ωmin) into Eqs. (17) and enforcing
constant negative particle flux (23) that is independent of ω

gives

n =
[

3|η|
S

ln

(
ω

ωmin

)]1/3

(31)

to leading order deep in the inverse inertial range.
To find a relation between the thermodynamic parameters

and the cascade parameters we carry out the approximate
matching procedure described in Sec. III B 1 at low frequency
ω ∼ ωmin � μ, obtaining(

T

μ

)3

∼ |η|
S

ln ωmin. (32)

As ω → ωmin the spectrum in Eq. (31) becomes zero, as
we would expect given ωmin is a dissipation scale. However,
we note that this is only a qualitative statement as subleading
terms will start to dominate in this limit, meaning that Eq. (31)
is no longer the correct stationary spectrum there. To obtain
the correct leading-order structure near ωmin we look for a
compact front solution and find once again a 2/3 power law,

n =
[

9|η|(ω − ωmin)2

10Sω2
min

]1/3

. (33)

2. Warm direct energy cascade in the 2D
Schrödinger-Newton model

To find a forward energy cascade for the 2D Schrödinger-
Newton model we again look for a warm cascade, substituting
Eq. (24) into (17) and seeking a constant energy flux (22).
Solving for the perturbation and matching the deviation to the
other terms in the denominator in (24) at ω ∼ ωmax � μ gives
the scaling relation

T 3 ∼ εω2
max

6S
.

The compact front near ωmax has leading-order form

n =
[

9 ε(ωmax − ω)2

10 Sω3
max

]1/3

. (34)

D. Spectra in the 2D nonlinear Schrödinger model

In Sec. II F we found that the Kolmogorov-Zakharov
particle flux spectrum for the nonlinear Schrödinger model
was positive rather than negative, and that the Kolmogorov-
Zakharov energy flux spectrum coincides with the Rayleigh-
Jeans energy equipartition spectrum. We specialize to the 2D
nonlinear Schrödinger Eq. (2) by setting β = 0 and d = 2 in
Eq. (18) and take these issues in turn. (These results recapitu-
late and extend the discussion in Chap. 15 of Ref. [2].)

1. Warm inverse particle cascade in the 2D nonlinear
Schrödinger model

The approximate matching procedure described above
gives the scaling relation

(
T

μ

)3

∼ |η|
6Sω2

min

for the inverse cascade. The compact front solution at the
dissipation scale has the structure

n =
[

9|η|(ω − ωmin)2

10Sω4
min

]1/3

. (35)

2. Log-corrected direct energy cascade in the 2D nonlinear
Schrödinger model

The degeneracy of n ∝ ω−1 corresponding to both
the Kolmogorov-Zakharov energy flux spectrum and the
Rayleigh-Jeans energy equipartition spectrum can be again
lifted by making a logarithmic correction. Substituting the
spectrum n = (B/ω) lnz(ωmax/ω) into Eqs. (17) and imposing
Eq. (22) we obtain

n = 1

ω

[
3ε ln(ωmax/ω)

S

]1/3

. (36)

Comparing Eq. (36) to the energy equipartition spectrum n =
T/ω we have a relation of the kind in Eq. (16), namely

T 3 ∼ 3ε

S
ln ωmax. (37)

We obtain the same scaling [apart from the factor of 3 on the
right-hand side of Eq. (37)] if we assume a warm cascade and
carry out the approximate matching procedure as described in
Sec. III B 1. This is natural as the log-corrected solution (36) is
of a prescribed form, whereas in the warm cascade argument
the perturbation θ is not constrained from the outset, so the
two solutions are two different perturbations from the thermal
spectrum. However, by continuity they should give the same
scaling of thermal with cascade parameters, differing only by
an O(1) constant.

As in Sec. III C 1 the log-corrected spectrum (36) becomes
zero at the dissipation scale. However the structure will not
be correct here as subleading terms would start to become
significant. The correct leading-order structure for the front
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FIG. 3. Sketch of the crossover from a warm cascade [which follows closely the thermodynamic spectrum (13) shown in black dashes] to a
scale-free cascade, the latter with the Kolmogorov-Zakharov spectral indices shown, in the 3D Schrödinger-Helmholtz equations. The crossover
happens around ω ≈ �, with the warm cascade in ω � � and the Kolmogorov-Zakharov cascade in ω � �. Depending on placement of the
forcing scale the crossover happens (a) in the inverse cascade (shown in red) or (b) in the direct cascade (shown in blue).

is again the 2/3 power law

n =
[

9ε(ωmax − ω)2

10Sω5
max

]1/3

.

E. Crossover from warm to Kolmogorov-Zakharov
cascade in the 3D Schrödinger-Helmholtz model

As mentioned in Sec. II F the dual cascade in the 3D non-
linear Schrödinger limit of (1) is achieved by a scale-invariant
Kolmogorov-Zakharov spectrum, rather than the warm cas-
cade discussed in Sec. III B for the 3D Schrödinger-Newton
limit. Both of these two regimes may be accessed if the
removal of wave action from the weakly nonlinear wave con-
tent of the system (through dissipation or absorption into the
condensate) is situated at larger scales than the cosmologi-
cal constant which controls the crossover between the two
limits of Eqs. (1), i.e., if ωmin � �. We sketch this schemat-
ically in Fig. 3(a) when ωf � �, so the crossover from the
Kolmogorov-Zakharov to the warm cascade happens in the
inverse inertial range, and in Fig. 3(b) when ωf � � and the
crossover happens in the direct inertial range.

Note that Fig. 3 is a sketch and not produced directly by
using the stationary differential approximation model (19).
This is because in the crossover regime ω ≈ � the interac-
tion coefficient (5d) cannot be put into scale-invariant form.
Accurate realizations of Fig. 3 must await direct numerical
simulation of Eqs. (1) in future work.

The crossover from a scale-invariant cascade dominated
by flux to an equipartitionlike spectrum at small scales is
common in turbulence, when a flux-dominated spectrum runs
into a scale where the flux stagnates and thermalizes. The
stagnation is due to a mismatch of flux rate between the scale-
invariant spectrum and the small-scale processes, whether that
be (hyper-)dissipation in hydrodynamic turbulence [71,76],
or a different physical regime such as the crossover from
hydrodynamic to Kelvin wave turbulence in superfluids [77].
Our case here, the crossover from the nonlinear Schrödinger

to the Schrödinger-Newton regime, is more like the latter but
again the details await further work.

IV. CONCLUSION AND OUTLOOK

A. Summary and discussion of results

In this work we have developed the theory of weak
wave turbulence in the Schrödinger-Helmholtz Eqs. (1),
which contain as limits both the nonlinear Schrödinger and
Schrödinger-Newton Eqs. (2) and (3). We obtained the kinetic
equation for the Schrödinger-Helmholtz model in the case of
four-wave turbulence, which is of random fluctuations of the
field with no condensate present, and we used the Fjørtoft
argument to predict the dual cascade of particles upscale and
energy downscale in this model.

Using the differential approximation of the full kinetic
equation, we have characterized the statistically steady states
of its Schrödinger-Newton and nonlinear Schrödinger limits
in the case of a forced-dissipated system. We found that
the dual cascade is achieved via a warm spectrum for the
Schrödinger-Newton limit in 2D and 3D, and for the nonlinear
Schrödinger limit in 2D. For the 3D nonlinear Schrödinger
limit the Kolmogorov-Zakharov spectra are responsible for
the cascades, and we have schematically illustrated the
crossover between the warm and Kolmogorov-Zakharov cas-
cades when both limits of the full Schrödinger-Helmholtz
model are accessible.

Finally we found scaling relationships between the ther-
modynamic parameters and the fluxes and dissipation scales
of the type (15) and (16) for these cascades. We have thus
characterized the processes by which particles are condensed
at the largest scales, and energy sent to small scales, in both
limits of the Schrödinger-Helmholtz model. The results for the
nonlinear Schrödinger model have appeared in the literature
before, but the results for the Schrödinger-Newton model are
new and are relevant to the problem of cosmological structure
formation in a fuzzy dark matter universe, and to optical
systems where nonlocal effects are significant.
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For the bulk of this work we considered an open system
where forcing matched dissipation. This allowed us to discuss
the stationary warm spectra that will realize the dual cascade
in the forced-dissipated system. There remains the question of
how the dual cascade will be realized in the time-dependent
case where turbulence evolves from an initial condition; such
a case is far more relevant when discussing the formation
of galaxies, and realistic protocols in an optics experiment.
Experience with other wave turbulence systems shows that
time-dependent cascades are strongly controlled by the ca-
pacity of the relevant flux spectra, defined as follows. We
consider pushing the dissipation scales towards the extremes
kmin → 0 and kmax → ∞. If in this extremal case the integral
defining an invariant, cf. (8), converges (or diverges) at the
limit towards which that invariant is cascading, then the spec-
trum is said to have finite (infinite) capacity, respectively. It
has been observed elsewhere that for finite capacity systems
the cascading invariant fills out the inertial range in the wake
of a self-similar front that reaches the dissipation scale in
finite time, even in the extremal case, and then reflects back
towards the forcing scale, with the Kolmogorov-Zakharov flux
spectrum established behind the returning front. By contrast
for infinite capacity systems the front takes infinite time to
establish in the extremal case [78–80].

For the small and large-scale limits of the Schrödinger-
Helmholtz equations we have found that the flux-carrying
spectra are the Rayleigh-Jeans-like warm spectra, except
for the nonlinear Schrödinger limit in 3D where they are
Kolmogorov-Zakharov spectra. It is easy to check that for all
these cases, the inverse particle cascade has finite capacity and
the direct cascade has infinite capacity. We therefore expect
that in an evolving system the inverse cascade will resemble
the stationary spectra we have discussed, and that these spec-
tra will be established in finite time, but will have parameters
(μ and T in the warm case) that vary with time. As for the
direct cascade, for an unforced system there is always a kmax

sufficiently remote that the energy in any initial condition is
insufficient to fill the cascade spectrum. Therefore we do not
expect that the direct energy cascade spectrum will be realized
generically in systems evolving according to (1), although we
might expect to see the cascade when kmax is small enough,
and the initial condition contains enough energy to act as a
reservoir with which to fill the cascade spectrum.

Our hypotheses above regarding the time-evolving case
are in broad agreement with numerical results in the recent
study of the 3D Schrödinger-Newton equations by Levkov
et al. [61]. They show by direct numerical simulation that,
starting from a statistically homogeneous random field, the
formation of coherent structures is preceded by a kinetic evo-
lution, after which the structures become inhomogeneous due
to a gravitational Jeans instability (the latter collapsed struc-
tures are what they call a condensate and the condensation
time they report is the time of collapse, terminology we shall
adhere to while comparing our study to theirs). Moreover, they
argue that this kinetic evolution is governed not by pure flux
spectra of Kolmogorov-Zakharov type, but rather by a process
of thermalization. Their conclusion entirely agrees with the
scenario of large-scale structure formation via a warm cas-
cade, but the theory we have developed in this work suggests

an explanation that is different from the interpretation given
in [61].

First, we can quantitatively demonstrate agreement be-
tween the wave turbulence theory of this paper and the
numerics of Ref. [61] by estimating the characteristic
timescale τkin ∼ N/|Coll[nk]| over which Eq. (7) acts, where
N is a typical value of the spectrum and Coll[nk] is the
right-hand side of (7), whose size is estimated in Appendix B,
Eq. (B10). Taking values from the Gaussian initial spectrum
of [61] we obtain a characteristic kinetic timescale of τkin ∼
4.3 × 105 in dimensionless units. This compares favourably
to the condensation timescale of 1.08 × 106 reported in [61]
for this initial condition: large-scale homogeneous structure
forms over a timescale of roughly 2τkin before a gravitational
instability collapses this structure into a compact object. This
lends credence to our kinetic equation capturing the essence
of the condensation processes examined by Levkov et al.
Furthermore, they give timescale estimates for kinetic conden-
sation in dimensional units for two models of self-gravitating
bosons, which links our results to astrophysically relevant
processes.

The points of difference between this study and Ref. [61]
lie in the nature of the kinetic equations that are used in each.
Levkov et al. derive a Landau-type differential kinetic equa-
tion by assuming that only boson-boson interactions that are
strongly nonlocal in physical space contribute to the dynam-
ics, which leads to small-amplitude scattering, an assumption
that becomes more accurate at higher energies. They also
imply that the lack of Kolmogorov-Zakharov cascades is due
to the nonlocality of the system. By contrast our kinetic equa-
tion is derived without restriction to strong nonlocality, and is
valid at arbitrary energies. Importantly, we attribute the lack of
Kolmogorov-Zakharov cascades to the fact that they give the
wrong flux directions, rather than the effects of nonlocality.

Additionally, when we reduce our kinetic equation (7)
to the differential approximation model (17), the latter is
explicitly constructed to keep the general Rayleigh-Jeans
spectrum (13) as a stationary solution. However, the only
thermodynamic spectrum that solves the differential kinetic
equation in Ref. [61] is the energy equipartition spec-
trum: (13) with μ = 0. The low-energy part of the general
Rayleigh-Jeans spectrum is excluded from their solution, yet
we argue that this is the part responsible for the dynamical
inverse cascade of particles that builds large-scale structure.
Despite this, at the condensation time Levkov et al. observe
excellent agreement between the spectrum obtained by di-
rect numerical simulation of (3), the spectrum obtained by
evolving their kinetic equation, and the low-energy part of the
energy equipartition spectrum.

The agreement with the energy equipartition spectrum at
the condensation time we explain by noting that μ = 0 is
indeed the criterion for condensation in the local Eq. (2) [81],
and the arguments are sufficiently general that this criterion
should apply universally. As mentioned above, we conjecture
that the time-evolving spectra might be Rayleigh-Jeans-like,
with time-dependent thermodynamic parameters. As the sys-
tem evolves towards the condensation time we expect to
see μ(t ) shrink to 0, leaving only the energy equiparti-
tion spectrum at the condensation time, as observed in [61].
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The deviation of the observed spectrum from the thermody-
namic one at high energies might be related to the infinite
capacity of the direct warm cascade spectrum, meaning that
the cascade may have had insufficient time to fill out at the
highest frequencies, as mentioned above. Indeed Levkov et al.
make reference to this part of the spectrum having a slow
thermalization timescale.

Thus, we summarize that our kinetic equation and its dif-
ferential approximation is more general than that of Ref. [61],
in terms of not being restricted to highly nonlocal interac-
tions, and containing the general Rayleigh-Jeans spectrum
that could explain more features of the evolution in the four-
wave kinetic regime. Clearly further work is needed to explore
and test these hypotheses.

B. Outlook for wave turbulence
in Schrödinger-Helmholtz systems

We now speculate on what further perspectives wave tur-
bulence could bring to the astrophysical and optical systems
to which Eqs. (1) apply. Focusing first on the astrophysical
application, our results suggest that the first process that starts
to accumulate a condensate of dark matter particles at large
scales in the early universe is an unsteady weakly nonlinear
evolution that bears the hallmark of a warm dual cascade.
Following this initial phase of condensation the subsequent
evolution would follow the same broad lines as has already
been documented in the literature, namely that gravitational
collapse into a collection of virialized 3D spheroidal haloes
will ensue [29,61].

We also conjecture that wave turbulence may have much
to say regarding certain other details that have already been
noted. For example, the structure of haloes has been reported
as a solitonic core that is free of turbulence surrounded by
a turbulent envelope [28]. The exclusion of turbulence from
the core is reminiscent of the externally trapped defocusing
nonlinear Schrödinger Eq. (2), where wave turbulence com-
bined with wave packet (Wentzel-Kramers-Brillouin) analysis
predicts the refraction of Bogoliubov sound waves towards the
edges of the condensate, where transition from the three-wave
Bogoliubov wave turbulence to four-wave processes could
occur [66]. On the other hand, the virialization of haloes
suggests a condition of critical balance where the linear prop-
agation and nonlinear interaction timescales of waves are
equal scale by scale. In that case the weak wave turbulence
described here is not applicable and new spectral relations
must be found based on the critical balance hypothesis [2,82].

After the formation of haloes the next step of the evolution
will be their mutual interaction. As mentioned in Sec. I C, in
nonlinear optics experiments and simulation of Eqs. (3) in one
dimension (with six-wave interactions taken into account to
break the integrability of the system), it has been observed
that a random field creates a condensate via the dual cas-
cade, which then collapses into solitons. These solitons then
interact via the exchange of waves and finally merge into one
giant soliton that dominates the dynamics [55,60]. It seems
plausible that the same phenomenology might carry over to
the Schrödinger-Helmholtz equations, and into higher spatial
dimensions.

Indeed, in cosmological simulations of binary and multi-
ple halo collisions, scattering events, inelastic collisions, and
mergers are all observed [28,83–85]. Following such events,
subsequent virialization of the products involves ejection of
some of the mass of the haloes [86,87]. A detailed study of
these processes should consider both the weakly nonlinear
wave component and the strongly nonlinear haloes, and how
the two components interact. Numerical studies could obtain
effective collision kernels for those interactions in order to
develop a kinetic equation for the “gas” of haloes that results
from the collapse of a condensate. We note that work has
been done in this spirit in Ref. [85] but without detailed
consideration of the wave component. In our opinion it is
crucial to incorporate wave turbulence into the study of the
Schrödinger-Helmholtz model to uncover the full richness of
the behavior that this system manifests.

Finally, we expect that all the processes outlined above in
the 3D astrophysical case—condensation via the dual cascade,
fragmentation by modulational instability, soliton formation,
and soliton interaction and merger via the exchange of weakly
nonlinear waves—will be qualitatively the same in 2D. This
makes them all amenable to direct observation by nonlocal
nonlinear optics experiments. As mentioned in Sec. I B 2 the-
oretical [44,45] and experimental [42,43] comparisons have
been made between astrophysical phenomena and experi-
ments in thermo-optic media. To observe the wave turbulence
cycle of condensation, collapse, and soliton interaction that
we describe here one could also look to using nematic liq-
uid crystals and modifying the one-dimensional experiments
of [55,60] to 2D. Any such experiment would need to have
fine control over losses and nonlinearity strength in order
to keep within the wave turbulence regime while the con-
densate is being built up. Liquid crystals are an attractive
optical medium in this respect due to several inherently tun-
able parameters [88] that would assist in achieving conditions
relevant to wave turbulence studies.
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APPENDIX A: RELATION BETWEEN THE
COSMOLOGICAL CONSTANT AND THE JEANS SWINDLE

In Sec. I B 3 we motivated the inclusion of a local term
in Eq. (1b) in the dark matter application as representing a
cosmological constant [46], and asserted that this is equivalent
to using the “Jeans swindle.” In this Appendix we expand on
this statement.

043318-14



WAVE TURBULENCE IN SELF-GRAVITATING BOSE … PHYSICAL REVIEW A 102, 043318 (2020)

Equation (3b) is well posed for spatially infinite domains
in which the support of ρ(x) = |ψ (x)|2 is compact, but if
one seeks an equilibrium with spatially constant V and ρ the
only solution is the trivial null solution (an empty domain).
The Jeans swindle [47] is the ad hoc replacement of V in
Eq. (3a) with Ṽ that solves ∇2Ṽ = γ ρ̃, where the tildes re-
fer to fluctuations of quantities about a nonzero equilibrium,
whose existence is entirely paradoxical. In a periodic domain

 = T d

L of side L the equivalent problem is that Eq. (3b)
can only be satisfied when 
 is empty, as can be seen by
integrating over 
, and using the divergence theorem and
the periodic boundary conditions. The Jeans swindle is then
implemented by replacing (3b) with

∇2Ṽ = γ (ρ − 〈ρ〉
), (A1)

where the box average of the number density 〈ρ〉
 =
L−d

∫



ρdx is the equilibrium solution, and one solves only
for Ṽ .

It is shown in Ref. [46] in the infinite-domain case that
the Jeans swindle can formally be justified by considering the
Helmholtz-like Eq. (1b) instead of Eq. (3b), as the former
is well posed without the restriction of the right-hand side
needing to integrate to zero, and then taking the limit � → 0.
For the case of the periodic boundary we simply note that
averaging (1b) gives 〈V 〉
 = −γ 〈ρ〉
/�. Substitution back
into (1b) and writing V = Ṽ + 〈V 〉
 recovers Eq. (A1) in the
limit � → 0.

APPENDIX B: WAVE TURBULENCE IN
INHOMOGENEOUS SYSTEMS

In the main body of this paper we have applied the the-
ory of weak wave turbulence to the Schrödinger-Helmholtz
system, and described the initial stage of wave condensation
via the dual cascade in a forced-dissipated setup. Crucial to
this analysis is the assumption that the system is statisti-
cally spatially homogeneous, as only then can the dynamical
variables, such as the spectrum and linear frequency, be char-
acterized solely by time or axial distance t and wavenumber
k. However, for inhomogeneous systems these quantities may
vary with spatial position x. This brings into play physical
effects that are not present in homogeneous systems and
that are described by a different dynamical equation. In this
Appendix we discuss the extension of wave turbulence theory
to inhomogeneous systems and make simple estimates of the
conditions under which the processes outlined in this paper
will be the dominant dynamical processes.

To take into account inhomogeneities of the wave field we
define a local spectrum that can now vary with spatial position,
with characteristic spatial scale D, via the Wigner transform of
the ψ (x, t ) field [89]:

nk(x, t ) =
∫

〈ψ (x − y/2, t ) ψ∗(x + y/2, t )〉e−iy·k dy. (B1)

Let K be a characteristic wavenumber associated with the
spectrum. If DK � 1 a Wentzel-Kramers-Brillouin analysis
gives the following Vlasov-like equation of motion for the
local spectrum (see, e.g., [61,89–95]):

∂nk

∂t
+ ∇kω̃k · ∇xnk − ∇xω̃k · ∇knk = Coll[nk]. (B2)

The term Coll[nk] on the right-hand side of Eq. (B2) is the
collision integral of the wave kinetic equation (7) which de-
scribes spectral evolution via nonlinear wave interactions.8

The left-hand side of (B2) is the Liouville operator describ-
ing the motion of wave packets through phase (k, x) space,
in which trajectories are given by Hamilton’s equations. The
latter are ∂t x = ∇kω̃k and ∂t k = −∇xω̃k, where the effective
Hamiltonian is the renormalized dispersion relation ω̃k which,
as we shall shortly discuss, is a function of the local spec-
trum. If the collision integral vanishes, wave packets move
ballistically in phase space in a manner that conserves wave
action. As they move across the inhomogeneous wave field,
e.g., through a turbulent patch, the amplitude of the spectrum
changes and therefore ω̃k changes. In this manner wave pack-
ets can be distorted as they move, leading to a redistribution
of the spectrum and an exchange of energy between the wave
packets and the background turbulence [90,91,93,94].

The distortion of wave packets brings about two effects: ei-
ther wave packets are dispersed [second term on the left-hand
side of (B2), noting that ∇kω̃k = vg, the group velocity], or in
the case of a focusing nonlinearity such as the gravitational
one considered in this paper, the wave packet can become
unstable and bunch up in physical space (third term). As
we justify below, these collapsing events are an incoherent
version of the monochromatic modulational instability, and
lead to the formation of compact strongly nonlinear structures,
studied in deep water gravity waves in Ref. [94], and in 1D lo-
cal [93] and nonlocal optical turbulence [96]. These collapses
were also observed in the 3D Schrödinger-Newton equations
in their dark matter context [61], after a period of evolution
governed by four-wave kinetics, such as we describe in the
main body of this paper (see Sec. IV A). It is thus important
to distinguish when processes associated with inhomogeneity
will occur faster than processes due to four-wave interaction.
Below we derive conditions to evaluate which of these two
types of processes dominate the dynamics.

1. Renormalized dispersion relation

For any nonlinear equation with even-wave interactions of
the type M ↔ M, such as the Schrödinger-Helmholtz equa-
tions (of type 2 ↔ 2), the linear dispersion relation ωk is
modified by the nonlinearity [2]. This can be seen in Eq. (5c)
where the diagonal terms in the nonlinear Hamiltonian give
a contribution whose effect is to shift the linear frequency by
ωNL, i.e., the dispersion relation is renormalized to

ω̃k = ωk + ωNL.

This frequency shift is the leading effect of the nonlinearity,
and does not lead to interaction between wave modes.

8Note that in Coll[nk] the spectrum nk is now the local spectrum
defined in (B1). The frequency resonance condition δ(ω12

3k ) can be
taken between the linear frequencies of waves in the tetrad as the
nonlinear frequency (B3) gives higher-order corrections to Coll[nk]
that are not significant during the time over which the wave kinetic
equation is valid.
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For the Schrödinger-Helmholtz equations the nonlinear
frequency correction is

ωNL(k) = −γ
∑

k1

(
1

|k − k1|2 + �
+ 1

�

)
|ψ1|2 (B3)

and depends on both k and the spectrum. When the spectrum
is spatially dependent, as in (B1), then the renormalized fre-
quency also varies in space, leading to the distortion of wave
packets described above.

We can conveniently estimate the size of ωNL in the case
of weak inhomogeneity DK � 1. Then in physical space
Eq. (B3) is replaced by

ωNL(x, t ) = −γ

∫
G�∗(x − y)N (y, t ) dy (B4)

[95], where N (x, t ) = (2π )−d
∫

nk(x, t ) dk = 〈|ψ (x, t )|2〉 is
the average local level of fluctuations, whose typical ampli-
tude we denote N . Here G�∗(x − y) is the Green’s function
for Eq. (1b). It is useful to extract the explicit dependence
on �∗ = 1/

√
� by the scaling space as x = �∗ξ and defining

G(ξ) as the normalized Green’s function satisfying (∇2
ξ −

1)G(ξ) = δ(d )(ξ), and that integrates to unity. Doing so we
find G(ξ) = �d−2

∗ G�∗ (x). (For self-consistency, passing to the
local limit requires that γ̃ = γ �2

∗ → const.) We approximate
the convolution in (B4) by multiplying the average fluctuation
level N with the volume of the d ball of size �∗. Neglecting
geometrical factors and the sign we obtain

ωNL ∼ 2γ �2
∗N. (B5)

For l∗K � 1 Eq. (B3) reduces to the well-known value for
the nonlinear Schrödinger equation −2γ̃

∑
k〈|ψk|2〉, so the

estimate in (B5) becomes exact.
We now provide estimates on the various terms in Eq. (B2)

in order to determine when the wave packet collapse due to
inhomogeneity will dominate over either dispersion, or four-
wave nonlinear interactions.

2. Incoherent modulational instability

We assume an isotropic spectrum that has spectral width
�K about the representative wavenumber K . Thus, in terms
of the measure of the average fluctuations N and neglecting
geometric factors, the spectrum can be estimated as

nk ∼ N

Kd−1�K
. (B6)

With estimates (B5) and (B6) we can estimate the sizes of
the second and third terms on the left-hand side of (B2). The
second term describes the dispersion of wave packets, which
is a stabilizing process. Noting that the linear frequency ωk =
k2, that ωNL is k independent, and that the inhomogeneity of
the spectrum has characteristic size D, we estimate

∇kω̃k · ∇xnk ∼ N

DKd−2�K
. (B7)

Turning to the focusing term, we note that ∇xω̃k = ∇xωNL

as the linear frequency is x independent. The spectrum varies
over length D, however the convolution in (B4) “smears out”
the variations of the spectrum over the length �∗, meaning
that ωNL will vary over a length max(D, �∗). Additionally the

spectrum has a k-space width of �K by assumption, so we can
approximate the gradient in ∇knk by 1/�K . Bringing these
considerations together, we estimate the focusing term as

∇xω̃k · ∇knk ∼ γ �2
∗N2

max(D, �∗)Kd−1(�K )2
. (B8)

Comparing (B7) and (B8) we find that wave packet col-
lapse into incoherent solitons is favored over wave dispersion
when

D

max(D, �∗)

γ̃ N

K�K
> 1. (B9)

To justify the assertion that these collapse events are the
result of an incoherent modulational, (or Benjamin-Feir) in-
stability, we note that the latter has been extensively studied
in the 1D local nonlinear Schrödinger equation, for example
in the context of extreme ocean waves [97]. In the oceanic
literature an important dimensionless number has been identi-
fied that controls the tendency for polychromatic wave packets
to destabilize and form strongly nonlinear structures such as
rogue waves: the Benjamin-Feir index (BFI) [94,98]. In the
notation we have established in this Appendix this is

BFI =
√

γ̃ N

K2
,

with the modulational instability triggering the formation of
nonlinear structures when BFI > 1 [98]. However our con-
dition (B9) for inhomogeneity on scales greater than the
nonlocality length (D > �∗) and with a spectrum whose width
is of the same order as the characteristic wavenumber (�K ∼
K) is just BFI2 > 1 for wave packet collapse. Thus we con-
clude that the ratio on the left-hand side of (B9) contains
the same physics as the BFI, so we identify the third term
in Eq. (B2) with modulational instability and wave packet
collapse. Note that (B9) is valid for both local and nonlocal
nonlinearities, indicating that our condition is a generalization
of the BFI to the nonlocal case, and for the spectra of arbitrary
width �K .

3. Kinetic regime

The derivation of the wave kinetic equation requires that
the nonlinearity is small in the original equation of motion.
Quantitatively this means that the linear wave period is much
smaller than the characteristic timescale for nonlinear evolu-
tion [2], or in other words |ωknk| � |Coll[nk]|. We estimate
the collision integral as

Coll[nk] ∼ γ 2N3

(K2 + 1/�2∗)2Kd+2
, (B10)

giving the first condition for wave turbulence

(γ N )2 � (K2 + 1/�2
∗)2K5

�K
. (B11)

In inhomogeneous domains, wave turbulence processes
will only dominate if in Eq. (B2) the collision integral is larger
than the focusing term that leads to wave packet collapse, i.e.,
|Coll[nk]| > |∇xω̃k · ∇knk|. This gives a second condition for
wave turbulence when the kinetic regime dominates over wave
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packet collapse:

1

max(D, �∗)

�2
∗(K2 + 1/�2

∗)2K3

γ N (�K )2
< 1. (B12)

We now examine what our conditions (B9), (B11),
and (B12) imply about the applicability of the kinetic regime.

a. Kinetic regime in the local limit

For Eq. (B2) to be valid, and for the nonlinearity to be
local, we have D � 1/K � �∗. In this limit, condition (B11)
becomes (γ̃ N )2 � K5/�K , and the condition for the mod-
ulational instability to be stable [i.e., (B9) with the ordering
reversed] is γ̃ N < K (�K ). If the spectrum is broad (�K ∼
K), then the conditions for weak nonlinearity and modula-
tional stability become identical, (γ̃ N )2 � K4, which agrees
with the physical intuition that for weak wave turbulence pro-
cesses one must not have the spectrum collapsing into strongly
nonlinear objects.

In the local limit condition (B12) becomes K3/D(�K )2 <

γ̃ N . Thus for wave turbulence to be the dominant process the
nonlinearity must satisfy the double inequality

K3

D(�K )2
< γ̃ N < min

(
K (�K ),

K5/2

(�K )1/2

)
. (B13)

These inequalities are violated when either the spectrum is
too narrow, or the inhomogeneity length is too short. If �K
is small, then no matter how large D is, the system is still
vulnerable to modulational instability via the first term on the
right-hand side of (B13), and if the spectrum is broad but
D → 1/K the system again becomes modulationally unstable
from the left-hand side of (B13), as both sides of the inequality
approach the same value.

We thus conclude that wave turbulence in the Schrödinger-
Helmholtz equations in their local limit requires that the
spectrum is sufficiently broad everywhere, and that the inho-
mogeneity length of the spectrum is sufficiently long.

b. Kinetic regime in the nonlocal limit

Validity of (B2) and a nonlocal nonlinearity both re-
quire D, �∗ � 1/K . We now consider the ordering �∗ ∼ D or
�∗ � D. These give K6/(�K )2 � γ N for condition (B12),
whereas condition (B11) becomes (γ N )2 � K9/�K . For a
broad spectrum this means that γ N is both much smaller and
much greater than K8, which is impossible (the violation of
the inequalities is worse for a narrow spectrum).

We conclude that nonlocal wave turbulence is not possible
when �∗ ∼ D or �∗ � D. Instead, The ordering D � �∗ �
1/K allows for wave turbulence for sufficiently large D.

APPENDIX C: BIMODAL CASCADE SPECTRA IN THE
DIFFERENTIAL APPROXIMATION MODEL

In Sec. III B we noted that Eqs. (25) and (28) permitted
the deviation away from the Rayleigh-Jeans spectrum θ (ω)
to become large at both low and high frequencies for both
the inverse and direct cascades. This led to the intriguing
possibility that we could have a warm inverse cascade spec-
trum, which carries only particles, arising from the cutoff at
ω+, becoming large at intermediate ω and terminating at the
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FIG. 4. Double-peaked spectra representing a solution of the dif-
ferential approximation model where particles are swept upscale (red
curve) and energy downscale (blue curve) from forcing at ωf at a zero
value for the spectrum. Black dashed lines represent the two different
thermodynamic spectra that match the middle of the two peaks of the
spectrum. For parameters see main text.

cutoff at ωmin. Similarly one could imagine that the warm
direct cascade of energy might exist between ω− and ωmax,
terminating at compact fronts at those frequencies. For both
of these to be realized the combined spectrum would have two
maxima. The frequency where the two cascades met would
then be the forcing scale, i.e., ωf = ω+ = ω−, and the forcing
would be such that all the particles were swept upscale and
the energy downscale with the spectrum at ωf vanishing. This
scenario is illustrated in Fig. 4.

[To obtain the direct cascade, shown in blue in Fig. 4,
we have integrated (22) forwards to ωmax and backwards to
ω− from a spectrum and its derivative matching Eq. (13) at
ω = 1012 with T = 108 and μ = 1011. Likewise to obtain the
inverse cascade shown in red, we integrated (23) backwards
to ωmin and forwards to ω+ from a spectrum and its deriva-
tive matching Eq. (13) at ω = 105 with T = μ = 104. The
fluxes were η = −150 and ε = ω2

f |η| with ωf ≈ ω− ≈ ω+ =
6.44 × 106. In Fig. 4 we have chosen parameters to slightly
separate ω− and ω+ for clarity.]

We argue here that this scenario, although technically
possible within the differential approximation, is implausible
for more realistic models like the wave kinetic equation (7)
or the original dynamical equation itself [the Schrödinger-
Helmholtz system (1) or its limits]. Note that this possibility
is common to all the warm cascade spectra we discuss here.
Following on from Sec. III B we take the concrete example of
the Schrödinger-Newton model in 3D, but similar arguments
can be made for either the Schrödinger-Newton model or
nonlinear Schrödinger model in 2D. The argument proceeds
by seeking compatibility with wide inertial ranges ωmin � ω+
for the inverse cascade and ω− � ωmax for the direct cascade.

First considering the inverse particle cascade Eq. (25)
and the requirement that there exists a range of ω > ωmin

for which θ (ω) is small, gives the ordering ωmin � μ. This
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ordering gave the relation (26) between flux and thermo-
dynamic parameters. Now, a cutoff at ω+ implies that in
that vicinity the deviation must become comparable to the
other terms in the denominator of the warm spectrum (24).
We set θ (ω+) ∼ μ + ω+ here. If we then let either ω+ ∼ μ

or ω+ � μ and substitute (26), then we obtain ω+ ∼ ωmin,
which is not compatible with a wide inertial range. A scale
separation between forcing and dissipation is only possible
if the we have the ordering ωmin � μ � ω+ for the inverse
cascade.

Next we consider the direct energy cascade. Equation (28)
for the deviation, and the requirement that it must be small for
some ω < ωmax gives the ordering μ � ωmax. From this we
obtained the relation (29). If we have a low-frequency cutoff
at ω−, then near there it must match the other terms in the
denominator of (24). We set θ (ω−) ∼ μ + ω− and consider
ω− ∼ μ and ω− � μ. Substituting (29) gives ω− ∼ ωmax for
these two cases, which is not compatible with a wide inertial
range. Therefore for the direct cascade we must have ω− �
μ � ωmax.

Thus if we seek a double-peaked “flux-sweeping” spec-
trum with the inverse and direct warm cascades joining at ωf

and the spectrum being zero there, then the cascades could not
share the same thermodynamic parameters, as μ must lie deep
within the inertial ranges of both cascades. Indeed, to realize

such a spectrum in Fig. 4 we have had to choose very different
sets of thermodynamic parameters for each inertial range. This
is technically possible within the differential approximation,
as each steady cascade is described by a second order ordinary
differential Eq. (22) or (23), which only requires for its solu-
tion the value of the spectrum and its derivative at the forcing
scale.

However, when considering a fuller model one must
consider a more realistic forcing protocol, for example in
simulations setting the spectrum to be drawn from a particular
distribution at a certain level in a narrow range around ωf at
each time step. This sets the amplitude and derivative of the
spectrum at the forcing scale at the same prescribed value for
both cascades, corresponding to prescription of the thermo-
dynamic parameters T and μ that both cascades share. It is
therefore hard to imagine a scenario of forcing which could
realize the double-peaked spectrum in a more realistic model
like Eqs. (1) or (7). For example, the four-wave collision
integral in Eq. (7) has the effect of smoothing out irregular-
ities in the spectrum, and so we expect that any stationary
solution will be at least continuous and differentiable. In this
respect, this discussion stands as a cautionary example that
the differential approximation includes exotic solutions like
the double-peaked spectrum of Fig. 4, that a more physically
relevant model would not permit.
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replaced.

043318-20

https://doi.org/10.1103/PhysRevLett.121.151301
https://doi.org/10.1016/j.physleta.2004.09.062
https://doi.org/10.1016/j.physd.2004.11.016
https://doi.org/10.3402/tellusa.v5i3.8647
https://doi.org/10.1016/S0167-2789(03)00239-2
https://doi.org/10.1098/rspa.1991.0075
https://doi.org/10.1016/S0167-2789(03)00214-8
https://doi.org/10.1016/j.physd.2011.11.019
https://doi.org/10.1209/0295-5075/95/24005
https://doi.org/10.1103/PhysRevLett.92.044501
https://doi.org/10.1134/S0021364006050031
https://doi.org/10.1007/s10909-009-9895-x
https://doi.org/10.1134/S0021364006120046
https://doi.org/10.1088/1751-8121/aba29d
https://doi.org/10.1103/PhysRevLett.101.144501
https://doi.org/10.1103/PhysRevB.76.024520
https://doi.org/10.1103/PhysRevLett.74.3093
https://doi.org/10.1103/PhysRevD.55.489
https://doi.org/10.1017/S0022377899008284
https://doi.org/10.1103/PhysRevLett.95.263901
https://doi.org/10.1017/S002211201100067X
https://doi.org/10.1103/PhysRevD.74.103002
https://doi.org/10.1103/PhysRevD.94.043513
https://doi.org/10.1103/PhysRevD.100.063507
https://doi.org/10.1103/PhysRevD.69.124033
https://doi.org/10.1086/504508
https://doi.org/10.1103/PhysRevA.98.023825
https://doi.org/10.1098/rspa.1978.0181
https://doi.org/10.1016/0370-1573(85)90040-7
https://doi.org/10.1016/0375-9601(92)90503-E
https://doi.org/10.1103/PhysRevE.65.035602
https://doi.org/10.1103/PhysRevE.67.046305
https://doi.org/10.1364/OE.15.009063
https://doi.org/10.1103/PhysRevLett.107.233901
https://doi.org/10.1016/j.physrep.2013.03.001
https://doi.org/10.1175/1520-0485(2003)33<863:NFIAFW>2.0.CO;2

