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Fractional quantum Hall physics and higher-order momentum correlations in a few spinful
fermionic contact-interacting ultracold atoms in rotating traps
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The fractional quantum Hall effect (FQHE) is theoretically investigated, with numerical and algebraic ap-
proaches, in assemblies of a few spinful ultracold neutral fermionic atoms, interacting via repulsive contact
potentials and confined in a single rapidly rotating two-dimensional harmonic trap. Going beyond the commonly
used second-order correlations in the real configuration space, the methodology in this paper will assist the
analysis of experimental observations by providing benchmark results for N-body spin-unresolved, as well
as spin-resolved, momentum correlations measurable in time-of-flight experiments with individual particle
detection. Our analysis shows that the few-body lowest-Landau-level (LLL) states with good magic angular
momenta exhibit inherent ordered quantum structures in the N-body correlations, similar to those associated
with rotating Wigner molecules (WMs), familiar from the field of semiconductor quantum dots under high
magnetic fields. The application of a small perturbing stirring potential induces, at the ensuing avoided crossings,
formation of symmetry-broken states exhibiting ordered polygonal-ring structures, explicitly manifest in the
single-particle density profile of the trapped particles. Away from the crossings, an LLL state obtained from exact
diagonalization of the microscopic Hamiltonian, found to be well described by a (1,1,1) Halperin two-component
variational wave function, represents also a spinful rotating WM. Analysis of the calculated LLL wave function
enables a two-dimensional generalization of the Girardeau one-dimensional “fermionization” scheme, originally
invoked for mapping of bosonic-type wave functions to those of spinless fermions.
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I. INTRODUCTION

The discovery [1] of the fractional quantum Hall effect
(FQHE) in extended (bulk) electronic semiconductor samples
of high purity, cooled down to low temperatures, and sub-
jected to high perpendicular magnetic fields gave rise to a
new subfield in condensed-matter physics, resulting in a large
number of both experimental and theoretical investigations of
correlated states of interacting electronic systems exhibiting
emergent topological phases of matter. Among the theoret-
ical approaches, we note in particular those based on the
introduction of families of variational wave functions in the
lowest Landau level (LLL) (see, e.g., Refs. [2–6]), following
Laughlin’s seminal publications [2,3].

The unprecedented experimental advances achieved re-
cently in the area of trapped ultracold neutral atoms generated
intense interest in finite-size bosonic analogs [7–14] of
the FQHE, being embodied in clouds of a few ultra-
cold atoms trapped in rotating harmonic traps, with the
rotation acting as a synthetic (rotational gauge) magnetic
field.

The expansion of the horizon of such LLL investigations
to encompass the regime of a few ultracold spinful fermionic
atoms is a natural undertaking. Theoretical investigations of
such an endeavor, presented in this paper, are further sup-
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ported by a growing number of recent experimental advances
[15–19] in the deterministic control of assemblies of a few (N)
trapped 6Li atoms, and in particular by the anticipated imple-
mentation [20] of a single rapidly rotating two-dimensional
(2D) harmonic trap able to project the few-body wave func-
tions within the LLL Hilbert space.

We use state-of-the-art computational tools based on exact
diagonalization of the microscopic Hamiltonian with the use
of the full configuration interaction (CI) methodology, as was
adapted to two dimensions [21–25], in contrast to the familiar
three-dimensional (3D) CI chemistry formalism [26]; indeed,
this approach has been proved successful in previous studies
of few bosons [11] or electrons [21,27] in the LLL. Our
study will assist the analysis of experimental observations
by providing benchmark results for N-body (spin-unresolved,
as well as spin-resolved) momentum correlations that can
be measured directly with time-of-flight (TOF) protocols
employing individual particle detection through fluorescent
imaging in free space [17–19,28]. Such research endeavors
aim at revealing the microscopic structure of the correlated
FQHE states (here for contact-interacting spinful fermions),
adding, supplementing, and going beyond the information
gained from studies of bulk properties, e.g., Hall resistance. In
this respect, the approach in this paper, demonstrated earlier
for a few bosons in Ref. [11], goes beyond the common theo-
retical analyses that are based on second-order correlations in
the real configuration space [3,10,21].

The main issues discussed and analyzed in this work in-
clude the following:
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(1) The formation of few-body LLL states with magic an-
gular momenta [29–31] exhibiting intrinsic ordered structures
in the N-body correlations. Such ordered quantum structures,
referred to commonly as rotating Wigner molecules (RWMs)
[21,31,32], have been seen previously in the case of semicon-
ductor quantum dots (electrons) under high magnetic fields.
Here they are shown to appear even in the case of ultracold
contact interacting fermionic atoms confined in a rotating trap.

(2) The application of a small perturbing stirring potential
VP to the rotating trap, as described in experimental protocols
[9,13,14], where this perturbation enables transition between
good-total-L states. In the presence of VP, symmetry-broken
states (referred to as pinned Wigner molecules [27,33])
emerge in the neighborhood of ensuing avoided crossings,
exhibiting the ordered structures already at the lowest level of
the first-order correlations, i.e., the single-particle densities.

(3) A CI-calculated LLL state, corresponding to
Halperin’s (1,1,1) variational wave function [4], is shown
to provide an example of both a rotating Wigner molecule
and of a generalization to two dimensions of Girardeau’s
one-dimensional “fermionization” scheme [16,34], originally
invoked for designating the mapping of bosonic-type wave
functions to those of spinless fermions.

The above theoretical predictions can be explicitly tested
through analysis of experimentally determined momentum
correlations, that is, including up to N th-order correlation
functions obtained for N fermionic atoms confined in the
rotating trap via time-of-flight measurements.

Plan of paper

The plan of the paper is given below. Following this Intro-
duction section, we present in Sec. II theoretical preliminaries
which aim at defining the problem, establishing notations, and
giving a brief survey of the methodologies and techniques em-
ployed in this study. In more detail: Section II A presents the
microscopic many-body Hamiltonian of ultracold fermionic
atoms (here four 6Li) confined in a rapidly rotating (stirred
up) trap, with or without a perturbation VP, that breaks the
cylindrical symmetry of the trap. Section II B describes the
configuration interaction method used to obtain numerical
solutions of the Hamiltonian via exact diagonalization of the
microscopic Hamiltonian, with illustrations of the effect of
the perturbation, resulting in avoided crossings, depending on
the strength of VP, between neighboring eigenstates of the
unperturbed Hamiltonian; in most calculations demonstrated
in this paper, we consider a VP perturbing stirring potential of
hexadecapolar symmetry in the many-body Hamiltonian.

Section II C discusses the tools of analysis used in this
investigation, in particular, the spin-unresolved and spin-
resolved correlation functions, that is, single-particle, first-
order, correlation function (i.e., CI-single-particle density),
and higher-order (up to fourth-order) correlation functions
in real coordinate space. Section II D describes these tools
of analysis in the momentum space, that is, it discusses the
Fourier transforms of the real-space correlation functions, as
measured in TOF measurements of particles propagating in
free space after confinement removal.

In Sec. III, we discuss the LLL spectra and the concept
of magic angular momenta, including the combined effects

of the rotational and spin degrees of freedom; a group the-
oretical discussion of the geometrical-symmetry origins of
the magic angular momenta sequences can be found in Ap-
pendix A. Section IV is devoted to analysis of the properties
of the ground state in the spin sector (S = 0, Sz = 0) of
the four 6Li trapped and rotating atoms while traversing an
avoided crossing, originating from the symmetry-breaking
perturbation VP. This includes illustration of the formation
of a pinned crystalline-ordered (square) symmetry-broken
single-particle density, revealed in the single-particle den-
sity three-dimensional surface plots; see Sec. IV A. Away
from the avoided crossing, the circular symmetry of the
single-particle density is automatically reestablished, and the
crystalline order becomes intrinsic and hidden, but it can still
be revealed in the N th-order (here fourth-order) correlation
function (Sec. IV B). Second-order correlations are discussed
in Sec. IV C, and the spin structure of the ground state is
analyzed in Sec. IV D. These results illustrate the formation
of a quantum ultracold rotating-Wigner molecule (UC-RWM)
of square symmetry, and have been obtained for the case
of a hexadecapolar stirring potential. In Sec. IV E, we illus-
trate the formation of an UC-RWM for the case of N = 4
for a quadrupolar trap deformation. The resulting molecule
is shown to be closely similar to the one obtained for the
hexadecapolar perturbation, even though the symmetry of
the quadrupolar stirring potential does not coincide with the
square symmetry.

One of the main foci of this work is addressed in Sec. V,
namely, examination of the generalization of the Laughlin
wave function by Halperin to include FQHE spinful (non-
spin-polarized) configurations. To this end, we concentrate
our discussion on the spin sector (S = 2, Sz = 0) of the four
6Li ultracold atoms in the rotating trap, and compare the
predictions of our exact-diagonalization CI calculations for
the structure of the ground state in this sector with that of
the Halperin (1,1,1) trial function. The presentation in Sec. V
includes three subsections: Sec. V A: the fourth-order correla-
tion and the molecular configuration predicted for the ground
state of above spin sector by the CI calculation; Sec. V B:
comparison between CI state and trial (1,1,1) Halperin wave
function; Sec. V C: examination of the limitations of analysis
of the CI wave function in the (S = 2, Sz = 0) spin sector
when using second-order correlations [particularly for angular
momenta corresponding to the (1,1,1) Halperin state], show-
ing the advantages offered by the N-body correlation function
(here N = 4).

In Sec. VI, we discuss and illustrate a fermionization anal-
ogy in two dimensions, enabled by derivation of appropriate
analytic expressions for the calculated exact CI wave function.
This is done for the angular momentum L = 6 for N = 4
fermions in Sec. VI A, and for L = 15 for N = 6 fermions
in Sec. VI B

In Sec. VII, we pause to discuss a comparison be-
tween the Wigner parameter RW , specifying the interparticle
interaction strength, and used to define the regime of forma-
tion of crystal-like-ordered geometric configurations (that is,
quantum Wigner-molecule formations) for confined particles
interacting via sufficiently long-range interactions (such as
Coulomb-interacting electrons in quantum dots, or the forces
between trapped atoms interacting via dipolar interaction
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potentials), and the parameter Rδ used as the strength of short-
range contact interactions between trapped neutral ultracold
atoms in fastly rotating traps (that is, in the LLL regime). We
summarize in Sec. VIII.

II. THEORETICAL PRELIMINARIES

A. Many-body Hamiltonian

The Fock-Darwin spectrum [35,36] associated with the
(n, l ) single-particle states in a rapidly rotating two-
dimensional (2D) trap is given by [37]

εFD
n,l = h̄[(2n + |l| + 1)ω − l�], (1)

where ω is the trapping frequency of the harmonic confine-
ment, � is the rotational frequency of the trap, n is the number
of nodes, and l denotes the single-particle angular momen-
tum. The projection on the LLL imposes n = 0 (Fock-Darwin
single-particle states without radial nodes), and the associated
many-body Hamiltonian without the perturbing contribution
is [38]

HLLL

h̄ω
= N +

(
1 − �

ω

)
L + 2πRδ

N∑
i< j

δ(ri − r j ), (2)

where N is the number of particles, and L denotes the total
angular momentum, L = ∑N

i=1 li, along the axis perpendic-
ular to the 2D trap plane. The energies in Eq. (2) are in
units of h̄ω and the lengths in units of the oscillator length
� = √

h̄/(Mω). Here, the first and second terms express the
LLL kinetic-energy contribution HK , whereas the third term
represents the contact-interaction contribution Hint.

The dimensionless parameter

Rδ = g

2π�2h̄ω
= gM

2π h̄2 (3)

expresses the strength g of the coupling constant associated
with an area 2π�2, relative to the zero-point energy h̄ω as-
sociated with the 2D harmonic trap; M is the mass of the
ultracold fermionic atoms. Naturally, the δ functions in Eq. (2)
are two dimensional.

For the quasi-2D traps realized in experiments, the cou-
pling constant g, as a function of the 3D scattering length as

and the oscillator length lz = √
h̄/(Mωz ) in the tight trans-

verse direction, can be calculated numerically by considering
the s channel in a two-particle scattering problem [39]. When
as is smaller than lz, the analytic expression Rδ = √

2/πas/lz
[40], can also be derived using the expression for the cou-
pling constant in Eq. (11) of Ref. [39]; see also Eq. (1.122)
in Ref. [41]. Experimentally, the 3D scattering length can
be varied over a wide range with the use of the Feshbach
resonance; e.g., for 6Li atoms, see Refs. [42,43]. We note
that the organization of the LLL trapped atoms in geometric
structures of particular symmetries (that is, the formation of
LLL ultracold-atom Wigner molecules, discussed below) is
independent of the precise value of Rδ; for further discussion,
see Sec. VII.

Another way for interpreting the parameter Rδ is that it
equals the direct matrix element [see Eqs. (11), (13), and (14)

below]

emax = 〈l1 = 0, l2 = 0|Hint|l3 = 0, l4 = 0〉 = Rδ. (4)

emax is in units of h̄ω and the subscript “max” indicates
that this energy represents the maximum repulsion that two
fermions with opposite spins can attain in the LLL Hilbert
space. Since the energy gap between the lowest and the first-
excited Landau levels is 2h̄ω (see the Appendix in Ref. [31]),
the condition for validating the projection of the few-body
problem in the LLL is Rδ < 2. In the following, for all cal-
culations, we use a value of Rδ = 0.4 [44].

Adding a small perturbation VP, the total many-body
Hamiltonian becomes

HMB = HLLL + VP. (5)

Traditionally, a VP perturbation or its effects have not been
considered in the literature of the electronic FQHE (see, e.g.,
Refs. [2–6]), with the exceptions of Refs. [27] and [33] in the
context of disorder effects in the semiconductor sample and
on the edge states in graphene quantum dots, respectively. A
tunable VP perturbation representing a multipole deformation
of the shape of the rotating harmonic trap [see Eq. (6) below]
has been proposed in Refs. [9,13] as the building block of
protocols for experimentally controlled assemblies of a few
ultracold bosonic atoms enabling simulations of states char-
acterized by well-known trial FQHE states, like the bosonic
Laughlin ones. A proposal to use this type of perturbation in
order to simulate well-known variational spinful FQHE states
with ultracold 6Li atoms has been advanced in Ref. [20]. To
this effect, consideration of energy spectra and spatial cor-
relations up to second order was sufficient. By considering
higher-order correlations (both spatial and momentum ones)
beyond the second order, and investigating the spontaneous
symmetry breaking induced by the VP perturbation in the
regions of the avoided crossings, we focus here on previously
unexplored fundamental properties of the many-body LLL
states of a finite-size assembly of spinful, contact-interacting
ultracold atoms.

For reasons of experimental convenience in transitioning
from one LLL state to another, it has been shown [9,13,20]
that the following perturbation (in second quantization), asso-
ciated with a small multipole deformation of the rotating trap,
is desirable:

VP

h̄ω
= C

(∑
l

√
(l + m)!

2m/2
√

l!
a†

l+mal + H.c.

)
, (6)

where m is the order of the multipole deformation, and C
is a dimensionless constant specifying the strength of the
deformation. This perturbation can be introduced as a stir-
ring potential. It couples the many-body solutions of HLLL

that differ by m units in their total angular momenta L, and
generates avoiding crossings, with an example given in Fig. 1.
Note that in showing the spectra of HMB, we limit ourselves
to a particular spin sector; in Fig. 1 for N = 4, the spin sector
is (S = 0, Sz = 0), with the lowest-in-energy state within the
spin sector termed “the relative ground state.”

For a small value of the parameter C (e.g., C = 0.0001),
VP couples mainly the two originally (when VP = 0) crossing
states with good total L and L + m, or L − m and L. In this
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FIG. 1. Spectra of the four lowest-in-energy CI solutions of the
many-body Hamiltonian HMB [Eq. (5)] for N = 4 fermions as a func-
tion of the ratio �/ω (the constant energy Nh̄ω has been subtracted).
The spin sector with (S = 0, Sz = 0) is displayed. Rδ = 0.4 and
m = 4 (hexadecapole trap deformation). Label A corresponds to C =
0.0001 (weak VP perturbation). Label B corresponds to C = 0.004
(strong VP perturbation). The energies associated with label A have
been shifted upward by 1h̄ω. The integers next to the curves denote
the corresponding ideal good total angular momenta in the absence
of any perturbation (VP = 0). In the relative ground state (lowest-in-
energy state within the spin sector), only the magic angular momenta
2, 4, and 8 appear (see Sec. III). The nonzero value of C = 0.004
generates a visible (stronger) avoided crossing in the neighborhood
of �/ω ∼ 0.884, which is magnified in the inset labeled B. For the
much smaller value of C = 0.0001, this avoided crossing is minute,
as seen from the inset labeled A (no energy shift). Overall, with the
naked eye, the two spectra A and B are difficult to differentiate. How-
ever, the effect of a weak versus strong perturbation is pronounced on
the properties (correlations) of the many-body wave functions when
traversing the avoided crossing, as it is discussed in Sec. IV A.

case, the expectation value 〈L〉 of the total angular momentum
along the avoided crossing exhibits a sharp stepwise profile;
see Fig. 2(a). A larger value of the parameter C introduces
additional couplings to L ± 2m, L ± 3m, etc., states, which
may become non-negligible, and simultaneously the 〈L〉 pro-
file along the avoided crossing broadens and exhibits a slower
variation rate; see Fig. 2(b) for the strong-coupling case of
C = 0.004.

B. Configuration interaction method

Denoting the spin degree of freedom by σ , in the
CI method, one writes the many-body wave function
	CI(r1σ1, r2σ2, . . . , rNσN ) as a linear superposition of Slater
determinants 
(r1σ1, r2σ2, . . . , rNσN ) that span the many-
body Hilbert space and are constructed out of the single-
particle spin orbitals

χ j (r) = ψ j (r)α if 1 � j � K (7)

and

χ j (r) = ψ j−K (r)β if K < j � 2K, (8)

FIG. 2. Expectation values of the total angular momentum 〈L〉
for N = 4 fermions and for the relative ground state in the spin
sector (S = 0, Sz = 0). (a) C = 0.0001 corresponding to the avoided
crossing highlighted in the inset labeled as A in Fig. 1. (b) C = 0.004
corresponding to the avoided crossing highlighted in the inset labeled
as B in Fig. 1. Note the pronounced difference between (a) and (b) in
the displayed ranges of trap rotational frequencies (horizontal axes).
m = 4 and Rδ = 0.4.

where α (β ) denotes up (down) spins. Namely, the wave
function of the qth CI state is given by

	
q
CI(r1σ1, . . . , rNσN ) =

∑
I

cq(I )
I (r1σ1, . . . , rNσN ), (9)

where


I = 1√
N!

∣∣∣∣∣∣
χ j1 (r1) . . . χ jN (r1)

...
. . .

...

χ j1 (rN ) . . . χ jN (rN )

∣∣∣∣∣∣, (10)

and the master index I counts the number of arrange-
ments { j1, j2, . . . , jN } under the restriction that 1 � j1 <

j2 < · · · < jN � 2K . Of course, q = 1, 2, . . . counts the ex-
citation spectrum, with q = 1 corresponding to the overall
ground state for each total spin projection Sz.

Because we restrict the Hilbert space in the LLL, the
single-particle spatial orbitals are nodeless and they are given
in polar coordinates by the expression

ψl (r) = 1√
π l!

rleilθ e−r2/2, (11)

where l � 0 is the single-fermion angular momentum, and r
is in units of the oscillator length � = √

h̄/(Mω).
Next, the CI (exact) diagonalization of the many-body

Schrödinger equation

HMB	
q
CI = Eq

CI	
q
CI (12)

transforms into a matrix diagonalizatiom problem, which
yields the coefficients cq(I ) and the CI eigenenergies Eq

CI.
Because the resulting matrix is sparse, we implement its nu-
merical diagonalization employing the very efficient ARPACK

solver [45] of large-scale eigenvalue problems with implicitly
restarted Arnoldi methods [46].

The matrix elements 〈
I |HMB|
J〉 between the basis de-
terminants [see Eq. (10)] are calculated using the Slater rules
[26]. Naturally, important ingredients in this respect are the
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two-body matrix elements of the contact interaction

V1234 =
∫ ∞

−∞

∫ ∞

−∞
dridr jψ

∗
1 (ri )ψ

∗
2 (r j )δ(ri − r j )

× ψ3(ri )ψ4(r j ), (13)

in the basis formed out of the single-particle spatial orbitals
ψi(r), i = 1, 2, . . . , K [Eq. (11)]. When the lengths are ex-
pressed in units of �, these matrix elements are dimensionless
and are given analytically by [47]

V1234 = 1

2π

δl1+l2,l3+l4√
l1!l2!l3!l4!

(l1 + l2)!

2l1+l2
. (14)

The Slater determinants 
I [see Eq. (10)] conserve the
third projection Sz, but not the square Ŝ2 of the total spin.
However, because Ŝ2 commutes with the many-body Hamil-
tonian, the nondegenerate CI solutions are automatically
eigenstates of Ŝ2 with eigenvalues S(S + 1). After the diag-
onalization, these eigenvalues are determined by applying Ŝ2

onto 	
q
CI and using the relation

Ŝ2
I =
[

(N↑ − N↓)2/4 + N/2 +
∑
i< j

�i j

]

I , (15)

where the operator �i j interchanges the spins of fermions i
and j provided that their spins are different; N↑ and N↓ denote
the number of spin-up and spin-down fermions, respectively.

C. Tools of analysis: Real configuration space

The tools of analysis used in this paper are the
single-particle densities (first-order correlations), the spin-
unresolved and spin-resolved second-order correlations, as
well as the higher-order N-body correlations (fourth order for
N = 4 fermions).

The spin-unresolved CI single-particle densities (first-
order correlation functions) are given by

ρCI(r) =1 G(r) = 〈	CI|
N∑

i=1

δ(ri − r)|	CI〉. (16)

Here and in the following, it is understood that evaluation
of expectation values over the many-body wave function
	CI(r1σ1, . . . , rNσN ) involves integration over all the parti-
cles’ coordinates (including the spin ones).

We note that, in the case of a single Slater determinant, the
above definition yields the simple formula of summation over
the modulus square of the single-particle spatial orbitals. The
spin-unresolved second-order correlations (pair correlations)
are specified as

2G(r, r0) = 〈	CI|
∑
i 
= j

δ(r − ri )δ(r0 − r j )|	CI〉, (17)

whereas the definition of the spin-resolved second-order
correlations (pair correlations) includes the spin degree of
freedom as follows:

2Gσσ0 (r, r0) = 〈	CI|
∑
i 
= j

δ(r − ri )δ(r0 − r j )δσσiδσ0σ j |	CI〉.

(18)

The spin-resolved 2Gσ,σ0 is also referred to as conditional
probability distribution (CPD) [27,31] because it gives the
spatial probability distribution for finding a second fermion
with spin projection σ under the condition that a first fermion
with spin projection σ0 is fixed at r0; σ and σ0 can be either
up (↑) or down (↓). The first- and second-order correlations
defined above are calculated using the Slater rules [48] for the
matrix elements between determinants of one- and two-body
operators, respectively.

More importantly, here, we use in addition higher-order
correlations, and in particular the N-body correlations (fourth
order for N = 4 fermions which are the focus of this paper).
To motivate our discussion, we start first with the case of four
fully polarized fermions (S = 2 and Sz = 2), whose spatial
part is equivalent to the case of spinless fermions. For this
case the CI wave function can be written as

	CI(r1α(1), r2α(2), r3α(3), r4α(4))

= F (r1, r2, r3, r4)α(1)α(2)α(3)α(4), (19)

and the fourth-order correlation function is given simply by
the modulus square of the spatial part, i.e.,

4GCI(r1, r2, r3, r4) = |F (r1, r2, r3, r4)|2. (20)

The cases of non-spin-polarized configurations are
more complicated, involving both spin-resolved and spin-
unresolved correlations. In general, in the case of N spinful
fermions (with N = N↑ + N↓), the CI wave function 	CI con-
tains K = N!/(N↑N↓) primitive spin functions of the form

ζi(N↑, N↓) = αα . . . ββ. (21)

To be specific, for the case of N = 4 fermions with N↑ =
N↓ = 2 (Sz = 0), there are K = 6 such spin primitives,
namely,

ζ1 = α(1)α(2)β(3)β(4),

ζ2 = α(1)α(3)β(2)β(4),

ζ3 = α(1)α(4)β(2)β(3),

ζ4 = α(2)α(3)β(1)β(4),

ζ5 = α(2)α(4)β(1)β(3),

ζ6 = α(3)α(4)β(1)β(2),

(22)

where the arguments from 1 to 4 in the α’s and β’s correspond
to particle indices.

Considering the four spin orbitals uI
1 = φI

l1
α, uI

2 = φI
l2
α,

uI
3 = φI

l3
β, and uI

4 = φI
l4
β of the Ith determinant in the CI

expansion [Eq. (9)], which (for a given determinant) are the
same for all six ζ ’s listed in Eq. (22), the many-body CI wave
function for N↑ = N↓ = 2 can be rewritten as

	CI =
6∑

i=1

Fi(r1, r2, r3, r4)ζi, (23)

where

Fi =
∑

I

c(I )Det↑
[
φI

l1

(
si

1

)
, φI

l2

(
si

2

)]
Det↓

[
φI

l3

(
si

3

)
, φI

l4

(
si

4

)]
,

(24)
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where c(I ) are the coefficients of the CI expansion and (si
1, si

2)
and (si

3, si
4) coincide with the spatial coordinates associated

with the particle indices for the up and down spins in the ζi

spin primitives defined in Eq. (22). For example, for i = 5,
one has

s5
1 → r2,

s5
2 → r4,

s5
3 → r1,

s5
4 → r3.

(25)

The spin-unresolved fourth-order correlation is then given
by

4Gun
CI =

6∑
i=1

F∗
i Fi. (26)

The spin resolved fourth-order correlations are defined as a
partial summation over the spin-primitive index i [Eq. (22)].
For example, the probability of finding the fourth fermion with
spin down [β(4) in any ζi spin primitive] at a position r, given
the positions of the first three fermions with unresolved spins,
is

4Gres,1
CI = F∗

1F1 + F∗
2F2 + F∗

4F4. (27)

Other spin-resolved fourth-order correlations are possible:
for example, finding the fourth fermion with spin down at
position r, given the positions of the first three fermions with
the second fermion having a spin up and the first and third
ones with unresolved spins is given by

4Gres,2
CI = F∗

1F1 + F∗
4F4. (28)

D. Tools of analysis: Momentum space

To channel our discussion about momentum-space correla-
tion functions, we recall again that, usually, a CI calculation
(or other exact-diagonalization schemes used for solution
of the microscopic many-body Hamiltonian) yields a many-
body wave function (e.g., 	CI) in position coordinates
(r1σ1, r2σ2, . . . , rNσN ); see Eq. (9), which for the case of
N = 4 fermions can take the form in Eq. (23).

The CI wave functions 	CI are particularly conducive for
carrying out their mapping into the momentum-space ones
	M

CI ; naturally, the momentum space is spanned by the co-
ordinates (k1σ1, k2σ2, . . . , kNσN ), with k j = p j/h̄. Indeed, it
is sufficient to replace each LLL single-particle real-space
orbital ψ j (r) in the basis determinants 
I [Eq. (10)] by its
2D Fourier transform, which is given by [compare to the
real-space function in Eq. (11)]

ψl (k) = il

√
π l!

kleilϕe−k2/2, (29)

where k is in units of the inverse of the oscillator length 1/�;
see definition after Eq. (11).

Having obtained the many-body wave function in real
space, all and each formula (in Sec. II C) specifying the tools
of analysis in real space (first-, second-, and N th-order cor-
relations) can be immediately translated in momentum space
by simply replacing r j → k j and 	CI → 	M

CI . In addition,

Eq. (29) shows that, apart from a phase il , the LLL orbitals in
momentum space retain the same form as the corresponding
ones in configuration space, with the following substititions:
(r, θ ) ←→ (k, ϕ) and � ←→ 1/�. Consequently, note the
following. (i) All the expressions and final results, including
the figure plots, for the first, second, and fourth correlations
calculated in real space represent also corresponding results
in momentum space, the only change being the units of the
axes (1/� versus �). (ii) The TOF measurements in the far
field [8,49] act as a microscope that magnifies directly the in
situ many-body wave function.

In deterministic time-of-flight measurements, the N
trapped ultracold atoms expand subsequent to a sudden turnoff
of the trapping potential, and a snapshot of the free-space
traveling N atomic particles is taken in the far field after a
time tTOF. This step is repeated several thousand times and the
compilation of the ensuing snapshots reproduces the modulus
square of the Fourier transform of the in situ many-body
wave function [18]. tTOF is taken long enough so that the
size of the compiled ensemble is much larger than its original
(confined) size. The TOF far-field real-space coordinates of
the particles at time tTOF are given by r j = h̄k jtTOF/M, with
j = 1, 2 . . . , N , where h̄k j is the single-particle momentum
at the source (the confining trap). From the above, we note
that during the expansion the interatomic interactions can be
neglected, whereas prior to the expansion the interactions
play a key role in determining the properties of the trapped
correlated LLL state [8,49]. In this way, analyses of TOF
measurements allow determination of the properties of the
many-body state of the confined system via analyses of the all-
order (1 to N) momentum-space correlation functions. These
momentum correlation functions are indeed the focus of our
study. As aforementioned, for the LLL case investigated here,
the single-particle Fourier transform in Eq. (29) retains the
same functional form on k as does ψl (r) in Eq. (11) on r. As
a result, apart of units, the in situ real-space and momentum
correlations coincide, and the TOF measurements act as a
microscope of the in situ many-body wave function.

III. LLL SPECTRA AND MAGIC ANGULAR MOMENTA

A primary tool for the classification and for gaining a
deeper understanding of the geometric aspects of the intrinsic
correlations in the LLL many-body wave functions is the
concept of magic angular momenta, introduced and exten-
sively utilized in the treatments of semiconductor quantum
dots [21,29–32,50–54].

It is pertinent to note here analogies between the ultracold-
atoms case and that of electrons confined in the above-
mentioned semiconductor quantum dots. Indeed, in such
parabolically confined (i.e., with a harmonic external poten-
tial), finite 2D strongly interacting correlated electron-gas
structures, the emergence of intrinsic quantum crystalline-
like (or molecularlike) features (so-called Wigner molecules,
WMs) is traditionally revealed through analysis of second-
order correlations in the CI [21,31,32], or center-of-mass
separable [55], many-body wave functions, associated with
spontaneous symmetry breaking at the mean-field unrestricted
Hartree-Fock level [56–58]. At zero magnetic field, for-
mation of such ordered structures has been shown to be
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driven by competition between the electron crystallization
that minimizes the long-range repulsive Coulomb interelec-
tron interaction and the opposing effect due to the increase
in the zero-point kinetic energy that accompanies crystalliza-
tion (that is, the reduced electron positional uncertainty that
occurs due to the localization of the electron at the induced
crystalline site) [31,56]. On the other hand, an applied mag-
netic field is acting as an independent factor inducing WM
formation [6,22,31,32]; see also Sec. VII below. The predicted
occurrence of such WM electron structures in 2D electron
dots under magnetic-field-free conditions, and in the pres-
ence of applied magnetic fields (where, as aforementioned,
the magnetic-field-induced rotating molecular structures have
been termed as rotating Wigner molecules [6,31,59]), have
been confirmed experimentally [60–65]. Here, we establish a
broader viewpoint by showing that such RWMs emerge also in
the case of ultracold fermionic neutral atoms (e.g., 6Li atoms)
interacting via short-range contact interactions and confined
in a rotating harmonic trap (that is emulating a magnetic field
via implementation of a synthetic gauge).

An early [29,30] recognized signature of magic angular
momenta was their forming sets of energetically advantageous
states (referred to also as cusp states) in the LLL spectra of
a few 2D fully spin-polarized electrons. According to subse-
quent [21,29–32,50–54] findings from CI calculations in the
field of semiconductor quantum dots (a few electrons confined
in a harmonic potential), the 2D electrons under a perpendic-
ular high magnetic field localize relative to each other and
form ordered ringlike configurations (n1, n2, . . . , nr ) (with∑r

i ni = N). Such ordered ring configurations are not visi-
ble in the CI single-particle densities, which are azimuthally
(rotationally) uniform, but are revealed by using higher-order
correlations [31]. Furthermore, the CI total angular momenta
must be compatible (i.e., satisfy) the Cn point group, etc., sym-
metries associated with the ring configurations [21,31,32,50–
54]. Similar magic angular momenta appear also in the LLL
spectra and CI solutions for ultracold bosonic atoms [11]. This
paper demonstrates that magic angular momenta are pertinent
as well to ultracold fermions in rapidly rotating harmonic
traps.

Going beyond the fully spin-polarized case, previous in-
vestigations have found [32,52–54] that the magic angular
momenta depend in a nontrivial way on the value S of the total
spin. In particular, for the case of N = 4 fermions (which is
the focus of this paper), the associated ringlike configuration
is a square (denoted as (0,4) [66]), and the series of magic
angular momenta are as follows [53,54]:

S = 0 → L = 4n or L = 4n + 2,

S = 1 → L = 4n − 1 or L = 4n; or 4n + 1,

S = 2 → L = 4n + 2,

(30)

where n = 0, 1, 2, 3, . . . .
The relative ground states of HLLL in each spin sector [see

definition below Eq. (6)] are associated with magic angular
momenta. Indeed, the values of L = 2, 4, and 8 in Fig. 1,
corresponding to the ground states in the spin sector (S =
0, Sz = 0), belong to the S = 0 series listed in Eq. (30); note
that not all terms in the series given in Eq. (30) correspond
to the sequence of ground states of the total Hamiltonian

FIG. 3. Spectra of the three lowest-in-energy CI solutions of
the many-body Hamiltonian HMB [Eq. (5)] for N = 4 fermions as
a function of the ratio �/ω (the constant energy Nh̄ω has been
subtracted). The spin sector with (S = 2, Sz = 0) is displayed. The
order of the multipole perturbation [see Eq. (6)] m = 4 and Rδ = 0.4.
Because there are no crossings, only the value C = 0.0001 (weak VP

perturbation) is plotted. The relative ground state has L = 6.

HMB. Furthermore, in the spin sector (S = 2, Sz = 0), the
relative ground state has the magic angular momentum L = 6
in agreement with the series in Eq. (30); see Fig. 3.

To further elaborate on the relation between magic angular
momenta and LLL spectra, we display in Fig. 4 the restricted
LLL spectra in each spin sector corresponding to the diago-
nalization of the contact-interaction term only, that is, to the
last term in Eq. (2). These spectra are plotted as a function of
the total angular momentum L; for each value of L, a tower
of excited states is shown (upward standing triangles above
the yrast-band line that connects the lowest-energy triangles).
These excited LLL states display a highest-energy bound at
2.5Rδ h̄ω. The number of states in each tower increases with
increasing L, and every newly appearing energy at a given L
repeats itself at larger L’s. In this figure, the lowest energies
for each L (forming the so-called yrast band) are highlighted
by passing a line through them. For the (S = 0, Sz = 0) and
(S = 1, Sz = 0) spin sectors, the yrast bands involve suc-
cessively lower energies and eventually they collapse to a
horizontal line at vanishing energy. For the (S = 2, Sz = 0),
only the horizontal segment at zero enery is present. The zero-
energy horizontal segment in Fig. 4 is a property connected to
the zero range of the contact interaction; it is absent in the case
of the long-range Coulomb interaction [21,31,54].

In Fig. 4, the magic angular momenta according to Eq. (30)
are marked by an arrow. They are preceded by a sharp drop in
energy relative to the previous angular momentum (as long
as the previous L is nonmagic or nonvanishing); as a result,
the associated LLL states are often referred to as cusp states
[31,67].

For a discussion on the group-theoretical relationship be-
tween the geometric structure of a Wigner molecule made
of spinful fermions, and the corresponding magic angular
momenta sequences for different spin states of the WM,
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FIG. 4. CI-calculated, partial LLL energy spectra for N = 4 fermions deriving from the diagonalization of the contact-interaction term
only; see third term of the HLLL Hamiltonian in Eq. (2). (a) The spectrum of the (S = 0, Sz = 0) sector. (b) The spectrum of the (S = 1, Sz = 0)
sector. (c) The spectrum of the (S = 2, Sz = 0) sector. The CI spectra were calculated for Sz = 0; however, note that these LLL spectra are
independent of the precise value of Sz. The arrows indicate magic angular momenta. The symbols ×n, with n being an integer, denote the
degeneracy of the vanishing-energy states in each spin sector. The horizontal axis represents the total angular momentum L. Energies in units
of Rδ h̄ω.

we refer the reader to the illustrative example given in
Appendix A.

IV. SPIN SECTOR (S = 0, Sz = 0): TRAVERSING THE
AVOIDED CROSSING

In this section, the properties of the relative-ground-state
wave functions in the spin sector (S = 0, Sz = 0) and for N =
4 fermions will be investigated in detail along the avoided
crossings highlighted in the insets (labeled as A and B) of
Fig. 1. The tools used in this analysis are the single-particle
densities (first-order correlations) and the N-body correlations
(fourth-order for N = 4 fermions) defined in Sec. II C.

A. Single-particle densities

In Fig. 5, we plot the CI single-particle density for two
different strengths of the pertubation VP [C = 0.004, top row
Figs. 5(a)–5(d) and C = 0.0001, bottom row Figs. 5(e)–5(h)]
and for two different values of the rotational frequency across
the avoided crossing highlighted in the insets of Fig. 1, i.e.,
near the midpoint at �/ω = 0.8855 [Figs. 5(a) and 5(b)], or
�/ω = 0.8847 [Figs. 5(e) and 5(f)], and after the crossing at
�/ω = 0.90 [Figs. 5(c), 5(d), 5(g), and 5(h)]. As was the case
in Fig. 1, Rδ = 0.4 and m = 4 (hexadecapole multipolarity);
for the case of a quadrupolar trap deformation (m = 2), see
Sec. IV E below. We note again that, in the LLL, the formation
of geometric structures of the particles in the trap and their
symmetries does not depend on the precise value of Rδ (see
also discussion in Sec. VII below).

As seen from Figs. 5(a)–5(d), the value C = 0.004 is
rather large and results in a symmetry-broken solution even
at the point �/ω = 0.90. Indeed, at this point, the associ-
ated expectation value of the total angular momentum 〈L〉 =
8.0364 is still rather different from the integer value of 8.
On the contrary, the small value C = 0.0001 yields 〈L〉 =
8.00002 at �/ω = 0.90, and the corresponding many-body
wave function preserves the rotational symmetry for all prac-
tical purposes; see the single-particle density in Fig. 5(g).

This behavior conforms with the fact that the many-body
wave functions 	gs’s, associated with Figs. 5(a) and 5(b),
5(c) and 5(d), and 5(e) and 5(f) contain significant contribu-
tions of basis determinants with total angular momenta other
than L = 8, i.e., L = 4 and 12; see Tables STI– STIV in
the Supplemental Material (SM) [68]. In contrast, the many-
body wave function 	gs associated with Figs. 5(g) and 5(h)
consists mainly of basis determinants each with total angular
momentum L = 8 (with one exception of a basis determinant
of L = 4 having a very small weight); see Table STIV in the
SM [68].

It is remarkable that in all cases of symmetry breaking
portrayed by the 3D surfaces in Figs. 5(a), 5(c), and 5(e), the
same underlying Wigner-molecule, square-ring configuration
emerges. This (0,4) ring configuration is further highlighted
by plotting the corresponding cuts through the origin along
the diagonals (solid line, violet) and perpendicular to the sides
(dashed line, green) of the square configuration in Figs. 5(b),
5(d), 5(f), and 5(h), respectively. In Fig. 5(h), the reestablish-
ment of rotational symmetry is reflected in the fact that both
the solid and dashed cuts do overlap. Furthermore, the demon-
strated here effect of VP at the avoided crossing upon the CI
single-particle density is so profound and disproportionate to
the smallness of the perturbation [compare, e.g., Figs. 5(e)
and 5(g)] that it is appropriate to characterize the present
results as a numerical example of the “flea on the elephant”
concept [69–71], developed in mathematical treatments of the
phenomenon of spontaneous symmetry breaking [72].

B. Fourth-order correlations associated with the
symmetry-preserving L = 8 relative ground state

A deeper understanding of the interplay, portrayed in
Fig. 5, between symmetry-broken solutions and those that
preserve the 2D rotational symmetry is gained by considering
the fourth-order correlations defined in Sec. II C. Figure 6
displays the spin-unresolved fourth-order correlations [see
Eq. (26)] associated with Fig. 5(g), i.e., for C = 0.0001 at the
point �/ω = 0.90. The most natural way to analyze this quan-
tity, that depends on four variables, is to fix three variables
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FIG. 5. CI single-particle densities (both in real space and momentum space) of the relative ground state of N = 4 fermions in the spin
sector with (S = 0, Sz = 0). 3D surfaces are plotted in (a), (c), (e), and (g). Corresponding cuts through the origin along the diagonals (solid
line, violet) and perpendicular to the sides (dashed line, green) of the square configuration are displayed in (b), (d), (f), and (h), respectively. In
(h) both curves overlap. (a), (b) Calculation for C = 0.004 (strong perturbation) at the point �/ω = 0.8855. The expectation value of the total
angular momentum is 〈L〉 = 7.189, indicating that the plotted case is a state with broken rotational symmetry. (c), (d) Calculation for C = 0.004
(strong perturbation) at the point �/ω = 0.90. The expectation value of the total angular momentum is 〈L〉 = 8.0364, closer to integer 8, but the
broken rotational symmetry is still present. (e), (f) Calculation for C = 0.0001 (weak perturbation) at the point �/ω = 0.8847. The expectation
value of the total angular momentum is 〈L〉 = 7.330, and the single-particle density exhibits strong breaking of the rotational symmetry.
(g), (h) Calculation for C = 0.0001 (weak perturbation) at the point �/ω = 0.90. The expectation value of the total angular momentum is
〈L〉 = 8.00002, very close to integer 8, and the rotational symmetry is practically reestablished. Rδ = 0.4 and the order of the multipole trap
deformation m = 4. Because of the properties of the Fourier transform of the LLL orbitals [see Eq. (29)], both real-space and momentum
densities are given by the same 3D numerical surface. For the spatial densities, the lengths along the x, y, and r axes are given in units of �,
and the vertical axes are in units of 1/�2. For the momentum densities, the momenta along the kx, ky, and kr axes are given in units of 1/�,
and the vertical axes are in units of �2.

and plot 4Ggs as a function of the fourth variable. Motivated
by the molecular ring configuration [usually denoted as (0,4)]
of the broken-symmetry single-particle densities, we place
the three fixed variables at the points r0 exp( jπ/2 + �) (with
j = 1, 2, 3), where r0 = 1.22 � is the radius of the maxima of
the four humps in Fig. 5(e), the angle π/2 reflects the square
arrangement of these four humps, and � is an arbitrary refer-
ence angle. Two values of � = 0 [Fig. 6(a)] and � = π/4
[Fig. 6(b)] were used. In both cases, Fig. 6 shows that the
conditional probability of finding the fourth fermion at a given
point is localized around the apex point that completes the
square of the (0,4) ring configuration.

Naturally, the fact that the intrinsic (0,4) molecular con-
figuration contained in the 4Ggs correlation is independent
of the reference angle � is consistent with the uniform (2D
rotationally symmetric) single-particle density in Fig. 5(g); it
is also the property that suggests the characterization of the
associated many-body state as a “rotating Wigner molecule”

[59], in contrast to the term “pinned Wigner molecule” sug-
gested by the broken-symmetry single-particle densities in
Figs. 5(a), 5(c), and 5(e).

C. Second-order correlations associated with the
symmetry-preserving L = 8 relative ground state

As described in Sec. II C, second-order correlations are a
complementary tool in obtaining information regarding the
intrinsic structure of the many-body wave function in the
absence of symmetry breaking. The second-order correla-
tions [see Eqs. (17) and (18)] for the symmetry-preserving
relative ground state in the (S = 0, Sz = 0) spin sector at
�/ω = 0.90 with m = 4 and C = 0.0001 [corresponding to
the single-particle density in Fig. 5(g)] are displayed in Fig. 7.
Specifically, taking the fixed point at r0 = (1.22�, 0), Fig-
ures 7(a) and 7(b) portray the up-up, 2G↑↑, and up-down, 2G↑↓,
spin-resolved second-order correlations, respectively, whereas
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FIG. 6. Unresolved fourth-order correlations (both in real space
and momentum space) of the relative CI ground state in spin sector
(S = 0, Sz = 0) for N = 4 fermions at the trap angular frequency
�/ω = 0.90. The strength of the VP perturbation is weak with C =
0.0001. Rδ = 0.4, and the order of the multipole trap deformation
m = 4. These correlations correspond to the 2D rotationally sym-
metric single-particle density in Fig. 5(g). The three fixed points
(denoted by the solid dots) are placed at a radius r0 = 1.22 �. The
reference angle � = 0 in (a) and � = π/4 in (b). Because of the
properties of the Fourier transform of the LLL orbitals [see Eq. (29)],
both real-space and momentum fourth-order correlations are given
by the same 3D numerical surface. For the spatial correlations, the
lengths along the x and y axes are given in units of �, and the vertical
axes are in units of 1/(π 4�8). For the momentum correlations, the
momenta along the kx and ky axes are given in units of 1/�, and the
vertical axes are in units of �8/π 4. In the case of the momentum
correlations, r0 here is replaced by k0

r = 1.22 1/�. Corresponding
mappings between the fixed points of the real-space and momentum-
space correlations apply also for Figs. 7, 9(b), 10, and 11 below.

Fig. 7(c) portrays the spin-unresolved one. Figures 7(d) and
7(e) portray the up-up and up-down second-order correlations,
respectively, but with the fixed point taken to be at the ori-
gin. Lastly, Fig. 7(f) displays the difference between the two
spin-resolved correlations 2G↑↓ −2 G↑↑ when the fixed point
is taken at the origin.

In addition to reproducing the relative single-particle lo-
calization of the four fermions in a square configuration
(discussed in Sec. IV B using fourth-order correlations), the
second-order correlations in Figs. 7(a) and 7(b) can assist
in the determination of the underlying spin structure of the
corresponding many-body wave function. To this end, the six
ζi’s spin primitives [see Eq. (22)], associated with the Wigner-
molecule square geometry are depicted graphically in the inset
of Fig. 7.

According to Fig. 7(a), when the fixed spin-up fermion is
placed at one corner of the square, the most probable locations
of the other spin-up fermion are the two adjacent corners of
the square, but not the opposite corner along the diagonal.
This behavior is consistent with the graphical depictions of ζ1

and ζ3 (or ζ4 and ζ6). In addition, it is straightforward to see
that the ↑↓ second-order correlation in Fig. 7(b) is consistent
with the same graphics for ζ1 and ζ3 (or ζ4 and ζ6). Indeed,
the most probable locations for the down-spin fermions are
all three remaining corners, including the one across the diag-
onal. The higher probability at the corner across the diagonal
is accounted for by the fact that this corner appears in both
graphics as probable location of the down fermions. Taking
into consideration that 2G↓↓ =2 G↑↑ and 2G↓↑ =2 G↑↓, one
can conclude that the dominant contributions in the many-
body wave function contain the spin configuration

ζ1 − ζ3 − ζ4 + ζ6, (31)

the minus signs resulting from the requirement that the spin
function in Eq. (31) must be an eigenstate of the total spin
with S = 0.

The spin-unresolved 2Gunres in Fig. 7(c) is the sum of all
four spin-resolved correlations 2G↑↑, 2G↓↓, 2G↑↓, and 2G↓↑, a
fact that is reflected in the difference in the scales for the ver-
tical axes going from Fig. 7(a) to Fig. 7(c); note that there are
two spin-down, but only one spin-up, other fermions for any
given spin-up fermion. Furthermore, although weakened, due
to the overlap of the different components that are added up,
the (0,4) square ringlike geometry is recognizable in Fig. 7(c),
as well.

Comparing the bottom row of panels in Fig. 7 [i.e., panels
(d), (e), and (f)] with the top row of panels in the same
figure, it is apparent that placing the fixed point r0 at the
origin misses crucial information concerning the many-body
wave function, that is, it misses both the presence of the spin
function displayed in Eq. (31), as well as the emergence of a
square-ring Wigner-molecule configuration.

D. Spin structure of the symmetry-preserving L = 8 relative
ground state

Motivated by the analysis of the second-order correlations
in Sec. IV C, showing that the spin function displayed in
Eq. (31) must be an important component of the many-body
CI wave function 	

L=8,S=0,Sz=0
CI , it is instructive to interrogate

whether the complete spin function of this state can be deter-
mined from the miscroscopic CI wave function. To this end,
we use the c(J ) coefficients (rounded to the fourth decimal
point) listed in Table STIV in the SM [68]; naturally, we
neglect the two orders-of-magnitude smaller c(2) coefficient.
With the above, the CI wave function can be approximated by
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FIG. 7. ↑↑ (a), (d), ↑↓ (b), (e), and spin-unresolved (c) second-order correlations (both in real space and momentum space) of the relative
CI ground state in spin sector (S = 0, Sz = 0) with L = 8 for N = 4 fermions at the trap angular frequency �/ω = 0.90. The strength of
the VP perturbation is weak, using C = 0.0001 with m = 4 and Rδ = 0.4. These correlations correspond to the 2D rotationally symmetric
single-particle density in Fig. 5(g). (d) The difference 2G↑↓ −2 G↑↑. The fixed points (see text) are placed at (x0 = 1.22 �, y0 = 0) for the
three top panels, and at the origin (x0 = 0, y0 = 0) for the three bottom panels. Because of the properties of the Fourier transform of the LLL
orbitals [see Eq. (29)], both real-space and momentum correlations are given by the same 3D numerical surface. For the space correlations, the
lengths along the x and y axes are given in units of �, and the vertical axes are in units of 1/�4. For the momentum correlations, the momenta
along the kx and ky axes are given in units of 1/�, and the vertical axes are in units of �4. In (a)–(c), the fixed point is denoted by a solid dot.
The inset provides a graphical representation of the six ζi’s spin primitives [see Eq. (22)], when associated with the Wigner-molecule square
geometry.

the sum of 15 Slater determinants (specified in Table STIV
by the single-particle angular momenta li, with i = 1, . . . , 4),
whose CI coefficients obey the following relations:

c(1) = c(16) = 2c(4) = −2c(6) = −2c(9) = 2c(11) = c1,

c(3) = c(15) = c2, 2c(8) = 2c(14) = −c2,

c(5) = c(13) = c3, c(7) = c(12) = c4, c(10) = c5.

(32)

From Table STIV in the SM, one can extract numeri-
cal values for the five constants ci (with i = 1, . . . , 5) in
Eq. (32). However, as we will discuss below, the spin structure
is independent of specific numerical values. Note that the

coefficients grouped together in each line of Eq. (32) are asso-
ciated with given (nonordered) sets of single-particle angular
momenta li, i.e., with the six sets (0,1,3,4), (0,2,2,4), (1,2,2,3),
(0,3,2,3), (1,2,1,4), and (1,3,1,3), respectively.

Using the relations (32) and the 15 Slater determinants in
Table STIV in the SM [68], and employing the MATHEMATICA

algebraic language [73] we can write the CI wave function in
the form of Eq. (23). The analytic expressions of the space
parts Fi(z1, z2, z3, z4) (with i = 1, . . . , 6 and z = x + iy =
reiθ ) are lengthy to be explicitly written in the text. However,
the interested reader will find them as MATHEMATICA scripts
in the Supplemental Material [68].

Before proceeding with the analysis, we recall here the
form of the six spin eigenfunctions ζ̃i (with i = 1, . . . , 6)
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having both good total spin S and a good spin projection
Sz. These spin eigenfunctions can be obtained by solving a
four-site Heisenberg Hamiltonian with the four spins arranged
in a closed rectangular configuration, as was done in Ap-
pendix B of Ref. [74]. Taking all four Heisenberg exchange
constants to be equal, the spin eigenfunctions (B13)–(B18)
in Ref. [74] simplify to the following (relevant to this paper)
expressions:

ζ̃1 = 1√
12

(ζ1 + ζ3 + ζ4 + ζ6 − 2ζ2 − 2ζ5), S = 0, (33)

ζ̃2 = 1

2
(ζ1 − ζ3 − ζ4 + ζ6), S = 0, (34)

ζ̃3 = 1√
2

(ζ6 − ζ1), S = 1, (35)

ζ̃4 = 1√
2

(ζ5 − ζ2), S = 1, (36)

ζ̃5 = 1√
2

(ζ4 − ζ3), S = 1, (37)

ζ̃6 = 1√
6

(ζ1 + ζ2 + ζ3 + ζ4 + ζ5 + ζ6), S = 2, (38)

where the ζi’s (with i = 1, . . . , 6) were defined in Eq. (22).
Solving the system of Eqs. (33)–(38) to obtain the spin

primitives ζi (with i = 1, . . . , 6), as a function of the spin
eigenfunctions ζ̃ j (with j = 1, . . . , 6), one can rearrange
Eq. (23) for the many-body wave function as follows:

	CI =
6∑

i=1

Fiζi =
6∑

i=1

F̃ĩζi, (39)

where

F̃1 = 1√
12

(F1 + F3 + F4 + F6 − 2F2 − 2F5), S = 0,

(40)

F̃2 = 1

2
(F1 − F3 − F4 + F6), S = 0, (41)

F̃3 = 1√
2

(F6 − F1), S = 1, (42)

F̃4 = 1√
2

(F5 − F2), S = 1, (43)

F̃5 = 1√
2

(F4 − F3), S = 1, (44)

F̃6 = 1√
6

(F1 + F2 + F3 + F4 + F5 + F6), S = 2. (45)

We note that the arrangement of the F̃i’s in Eqs. (40)–(45)
coincide with that of the ζi’s in Eqs. (33)–(38).

Using the analytic expressions [68] for the F’s, one can
verify that F̃3 = F̃4 = F̃5 = F̃6 = 0, which is a confirmation
of the fact that the CI wave function under consideration
has total spin S = 0. Consequently, one obtains the following
general form for the L = 8 ground state in the spin sector
(S = 0, Sz = 0):

	
L=8,S=0,Sz=0
CI = F̃1ζ̃1 + F̃2ζ̃2. (46)

From the analysis of second-order correlations in
Sec. IV C, it follows that the contribution of the first term in
Eq. (46) must be less important than that of the second term.

Indeed, this can further be confirmed by choosing the four
spatial coordinates to adhere to a square arrangement, i.e., by
taking z1 = z0, z2 = z0eiπ/2, z2 = z0eiπ , and z2 = z0ei3π/2,
with the point z0 being arbitrary. In this case, the spin structure
of 	

L=8,S=0,Sz=0
CI agrees with Eq. (31), i.e., one finds

F̃1 = 0,

F̃2 = 3c1 − 3
√

6c2 + 2
√

2c3 + 2
√

3c4 − 4c5

3π2
√

4!
zL

0 e−2z∗
0 z0 ,

(47)

where of course L = 8 here.
We further note that both F̃1 and F̃2 may contain the

associated Vandermonde determinant as a factor, like an
assumption [75] used earlier in the description of quantal
versions of skyrmions. Naturally, the Fock antisymmetrization
here is guaranteed by the fact that 	

L=8,S=0,Sz=0
CI is the sum of

Slater determinants.

E. Pinning the Wigner molecule with a quadrupolar
perturbation (m = 2)

The “flea on the elephant” behavior [69–71] played by
the small perturbation in the emergence of the pinned and
symmetry-broken WM was described in Sec. IV A. This be-
havior can be further illustrated by considering a VP with a
multipolarity incommensurate to the intrinsic hexadecapole
(m = 4) multipolarity of the square Wigner molecule, asso-
ciated with N = 4 fermions. To this effect, a quadrupolar
multipolarity (i.e., m = 2) is most relevant because it may
facilitate experimental endeavors.

In this context, Fig. 8 displays the CI single-particle
densities for N = 4 LLL fermions at rotational frequen-
cies located inside the region of the avoided crossing from
angular momentum L = 4 to 8, but with the exact diag-
onalization of the many-body Hamiltonian (including VP)
performed with m = 2 in Eq. (6). It is seen that for a weak
perturbation (C = 0.0002) the configuration of the Wigner
molecule remains unaltered, exhibiting its intrinsic square
geometry; see Fig. 8(a). For stronger perturbations (e.g., C =
0.004), the Wigner molecule starts feeling the details of the
external perturbation and, naturally, it exhibits a slight rect-
angular deformation from the perfect square configuration;
see Fig. 8(b).

V. SPIN SECTOR (S = 2, Sz = 0): AN ANALOG OF THE
(1,1,1) HALPERIN STATE

Focusing now on the spin sector (S = 2, Sz = 0), we
note that all the eigenvalues Eint associated with the contact-
interaction term of the HLLL Hamiltonian [third term in
Eq. (2)] are vanishing [see Fig. 4(c)], so that the curves in
Fig. 3 are nonintersecting straight lines, converging to zero
for �/ω = 1. The relative ground state has a total angular mo-
mentum L = 6, which is of interest because it coincides with
the angular momentum of the trial wave function [denoted as
(1,1,1)] proposed by Halperin [4] for spinful fermions as a
generalization of the celebrated Laughlin wave function [3]
(applicable only for the case of fully spin-polarized fermions).
Indeed, the general (p, p, q) Halperin wave function, where p
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FIG. 8. CI single-particle densities (both in real space and mo-
mentum space) of the relative ground state of N = 4 fermions in
the spin sector with (S = 0, Sz = 0), but considering a quadrupolar
perturbation (m = 2), in contrast to the hexadecapole perturbation
in Fig. 5. Rδ = 0.40. 3D surfaces are plotted. (a) Calculation for
C = 0.0002 (weak perturbation) at the point �/ω = 0.884 651. The
expectation value of the total angular momentum is 〈L〉 = 7.8501,
indicating that the plotted case is a state with broken rotational
symmetry. (b) Calculation for C = 0.004 (strong perturbation) at
the point �/ω = 0.885. The expectation value of the total angular
momentum is 〈L〉 = 7.8252. For the spatial densities, the vertical
axes are in units of 1/�2. For the momentum densities, the vertical
axes are in units of �2.

and q are positive integers, is given by [4,76,77]
ϒ(p,p,q)(z,w)

=
N↑∏
i< j

(zi − z j )
p

N↓∏
k<l

(wk − wl )
p

N↑,N↓∏
i,k

(zi − wk )q. (48)

In Eq. (48), zi = rieiθi and wk = rkeiθk are the space coordi-
nates (here in units of �) in the complex plane for the spin-up
and -down fermions, respectively. Note further that the trivial
Gaussian factors exp[−∑N↑

i=1 z∗
i zi/2] exp[−∑N↓

k=1 w∗
k wk/2]

have been omitted in Eq. (48). The total angular momentum
associated with the wave function ϒ(p,p,q)(z,w) is [78]

L(p,p,q) = p
N↑(N↑ − 1)

2
+ p

N↓(N↓ − 1)

2
+ qN↑N↓, (49)

which indeed for N↑ = N↓ = 2 and p = q = 1 gives
L(1,1,1) = 6.

Of significance is the fact that the original proposal for the
ϒ(z,w) wave functions did not include the spin variables. Be-
low, we will investigate the connection of the (1,1,1) Halperin
wave function to the CI many-body wave function which is
the relative ground state in the (S = 2, Sz = 0) spin sector
[79]; recall that the relative ground state is the lowest-in-
energy state within each spin sector. Furthermore, using this
connection we will demonstrate a two-dimensional case of
mapping from spinful to spinless fermions that is analogous
to the fermionization mapping in one dimension [34].

A. Fourth-order correlation and the molecular configuration

First in Fig. 9 we display the single-particle density
[Fig. 9(a)] and the corresponding spin-unresolved fourth-
order correlation [Fig. 9(b)] for the CI state with S = 2, Sz =
0 and L = 6. It is seen that the single-particle density is
rotationally symmetric, but an intrinsic square geometrical
configuration appears in the unresolved fourth-order correla-
tion. This is similar to the behavior found for the CI relative
ground state in the spin sector (S = 0, Sz = 0) at the point
�/ω = 0.90. Common to these two states is the fact that the
corresponding angular momenta, i.e., L = 6 and 8, respec-
tively, are magic ones compatible with the C4 point-group
symmetry; see Eq. (30).

B. Comparison between CI state and trial (1,1,1) Halperin wave
function

Furthermore, in Table I, we list the dominant CI co-
efficients c(I ) and the spin orbitals (l1 ↑, l2 ↑, l3 ↓, l4 ↓),
entering into the associated basis of Slater determinants (see
Sec. II B). The criterion used for selection of the most dom-
inant determinants in the CI solution was |c(I )| > 10−3. The
CI calculation used 1296 basis determinants with all possible
total angular momenta from 2 to 30. From Table I, it is appar-
ent that only six determinants with L = 6 and equal weighting
coefficients |c(J )| contribute to the CI LLL state with S =
2, Sz = 0; indeed,

∑6
i=1 |c(J )|2 = 0.999 994 75, i.e., the cor-

responding normalization constant differs from unity only in
the sixth decimal point.

Taking into consideration that the numerical value of the
|c(J )|’s in Table I equals 1/

√
6, up to the sixth decimal point,

and that the LLL single-particle orbitals [with lengths in units
of �, the harmonic confinement oscillator length, see text
below Eq. (11)] are written as zl exp[−z∗z/2]/

√
π l!, one can

verify the following algebraic identity:

	
S=2, Sz=0
CI

=
6∑

J=1

sgn(J )√
4!

√
6
√

2!3!π2

× Det
[
zl1(J )

1 α(1), zl2(J )
2 α(2), zl3(J )

3 β(3), zl4(J )
4 β(4)

]
= − 1

2
√

3 × 4!π2

(
4∏

i< j

(zi − z j )

)∑6
J=1 ζJ√

6
, (50)
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FIG. 9. Structure of the relative CI ground state (in both real
space and momentum space) in the spin sector (S = 2, Sz = 0)
for N = 4 fermions at the trap angular frequency �/ω = 0.90.
(a) Single-particle density. (b) Spin-unresolved fourth-order corre-
lation. The strength of the VP perturbation is weak with C = 0.0001.
Rδ = 0.4, and the order of the multipole trap deformation m = 4.
Because of the properties of the Fourier transform of the LLL or-
bitals [see Eq. (29)], both real-space and momentum densities and
correlations are given by the same 3D numerical surface. For the
spatial quantities, the lengths along the x and y axes are given in
units of �, and the vertical axes are in units of 1/�2 for the density
and 1/(π 4�8) for the fourth-order correlation. For the momentum
quantities, the momenta along the kx and ky axes are given in units
of 1/�, and the vertical axes are in units of �2 for the density and
�8/π 4 for the the fourth-order correlation. The 2D single-particle
density in (a) is rotationally symmetric. In (b), the three fixed points
(denoted by solid dots) are placed at a radius r0 = 0.90 �, whereas
the azimuthal angle between them is π/2, and the reference angle
� = π/4.

where sgn(J ) is the + or − sign of the c(J ) coefficients
according to Table I. The ζJ , J = 1, 2, . . . , 6, are defined in
Eq. (22), and we omitted the trivial Gaussian factors.

Renaming the spatial coordinates of the spin-up fermions
as z3 → w1 and z4 → w2, one sees immediately that the space

TABLE I. Dominant coefficients c(I ) in the CI expansion of the
relative LLL ground state (with L = 6) in the (S = 2, Sz = 0) spin
sector. The CI expansion (I = 1, 2, . . . , Itotal) consists of Itotal = 1296
basis determinants. The index J is introduced to relabel the dominant
coefficients. The dominance criterion was |c(I )| > 10−3.

I J c(J ) (l1 ↑, l2 ↑, l3 ↓, l4 ↓)
∑4

i=1 li

16 1 −0.4082472 (0,1,2,3) 6
46 2 0.4082472 (0,2,1,3) 6
81 3 −0.4082472 (0,3,1,2) 6
291 4 −0.4082472 (1,2,0,3) 6
326 5 0.4082472 (1,3,0,2) 6
541 6 −0.4082472 (2,3,0,1) 6

part of the 	
S=2, Sz=0
CI wave function [see Eq. (50)] coincides

with the (1,1,1) Halperin function, i.e., with the expression for
ϒ(z,w) in Eq. (48) when p = q = 1. We recall here the possi-
bility that in certain instances the LLL CI wave function may
be expressed exactly in analytical form, as it has been noted
in earlier publications [80–82] for the case of LLL ground
states of a few spinless bosons in the range 0 � L � N . As
a notable counterexample, we mention here the disagreement
between the Moore-Read trial wave function [83], which con-
sists mainly of a (0,5) ring configuration, and the CI wave
function, which contains mainly a (1,4) ring configuration, in
the case of the LLL ground state for N = 5 spinless bosons
and L = 8 [84].

C. What about the second-order correlations?

Unlike the approach in this paper, and a handful of
earlier publications [11,82], the second-order correlations
have been traditionally considered sufficient (see, e.g.,
Refs. [3,9,10,20,32,54]) for analyzing the intrinsic structure of
the highly correlated LLL states. The case of the (S = 2, Sz =
0) CI LLL state for N = 4 fermions and L = 6 shows that the
above supposition does not hold in general. Indeed, in Fig. 10,
we display the up-up (↑↑) and up-down (↑↓) spin-resolved
second-order correlations for this CI state [which corresponds
to the (1,1,1) Halperin wave function]. Note that there is
a 1-to-2 ratio between the ↑↑ and the (↑↓) second-order
correlations because, for each spin-up fermion, there are one
spin-up and two spin-down additional fermions.

As seen from Fig. 10, only the existence of the zero
probability for finding two fermions at the same position is
visible. Any signature of the square-ring intrinsic molecular
structure has been washed away in Fig. 10 due to the av-
eraging performed through the double integrations over the
coordinates of the third and fourth particles; see the definition
of the second-order correlations in Eq. (18). Revealing the
intrinsic Wigner-molecule structure using second-order cor-
relations requires higher total angular momenta, as shown in
Ref. [11] for the analogous cases of LLL bosons. However, it
appears that the experimental window [20] for a few rapidly
rotating ultracold fermions is restricted to the range of small
L’s, up to values in the neighborhood of L(1,1,1), corresponding
to the (1,1,1) Halperin states. Consequently, we conclude that
consideration of the N-body correlations offers, as shown in
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FIG. 10. CI spin-resolved second-order correlations of the rel-
ative ground state in the spin sector (S = 2, Sz = 0) for N = 4
fermions at the trap angular frequency �/ω = 0.90. (a) ↑↑ corre-
lation. (b) ↑↓ correlation. The strength of the VP perturbation is
weak with C = 0.0001. Rδ = 0.4, and the order of the multipole
trap deformation m = 4. The fixed point (denoted by a solid dot)
was placed at a radius r0 = 0.90 �. Because of the properties of the
Fourier transform of the LLL orbitals [see Eq. (29)], both real-space
and momentum correlations are given by the same 3D numerical
surface. For the spatial correlations, the lengths along the x and y axes
are given in units of �, and the vertical axes are in units of 1/�4. For
the momentum correlations, the momenta along the kx and ky axes
are given in units of 1/�, and the vertical axes are in units of �4.
Note the different scales between (a) and (b).

this paper, essential additional information regarding the CI
wave functions.

VI. A FERMIONIZATION ANALOG IN TWO DIMENSIONS

A. The L = 6 state for N = 4 fermions

The derivation of the exact CI analytic expression in
Eq. (50) enabled us to make another important comparison.

It is well known that the fully spin-polarized fermionic LLL
CI state with L = N (N − 1)/2 = LN↑=N↓

(1,1,1) consists of only one
Slater determinant constructed with the single-particle orbitals
z0α, z1α,...,zN−1α (again the Gaussian factors are omitted).
For the case of N = 4 fermions, this state is written as (con-
sidering that the space part is a Vandermonde determinant)

	
S=2, Sz=2
CI

= 1√
4!

√
2!3!π2

Det
[
α(1), z2α(2), z2

3α(3), z3
4α(4)

]
= 1

2
√

3 × 4!π2

(
4∏

i< j

(zi − z j )

)
α(1)α(2)α(3)α(4). (51)

One sees that, apart from a sign, the space parts of the
spinful 	S=2, Sz=0

CI and the fully spin-polarized 	
S=2, Sz=2
CI wave

functions are the same. This mapping between a nonpolarized
many-body wave function representing repulsively interact-
ing fermions and that of fully spin-polarized (equivalent to
spinless) noninteracting fermions is reminiscent of the well-
known mapping [34] in one dimension between the wave
function of N hard bosons, i.e., bosons with strong interpar-
ticle contact interaction, and that of N noninteracting and
spinless fermions; it can be viewed as a generalization of
the “fermionization” concept [34] to two dimensions (indeed
fermions with different spin projection can coexist in the same
position like two bosons).

We note that, because of the exchange hole, the contact
interaction becomes inoperative in the case of fully polarized
(or spinless) fermions, and as a result this fermionization
mapping demonstrates that the intrinsic crystalline correla-
tions portrayed in Fig. 9(b) can be generated, as a limiting
case to the quantum Wigner molecule, by the Pauli exclusion
principle alone [85].

B. The L = 15 state for N = 6 fermions

The fermionization analog discussed in Sec. VI A, i.e., the
precise mapping between the space parts of the nonpolarized
(S = N/2, Sz = 0) state with L = N (N − 1)/2 and the cor-
responding fully polarized (S = N/2, Sz = N/2) one, is not
limited to the N = 4 case. Here, we elaborate on another
example concerning the more complex LLL state of N = 6
fermions with an angular momentum L = 15.

As a first step, we establish that the space part of the CI
relative ground state for N = 6 fermions with L = 15 and
(S = 3, Sz = 3) is very well approximated by the Halperin
(1,1,1) trial function. To this end, in Table II we list the 20
dominant Slater determinants, out of a total of 7056 ones with
various total L’s that comprise the basis employed in the actual
CI calculation; indeed,

∑20
i=1 |c(J )|2 = 0.999 982 0, i.e., the

corresponding normalization constant differs from unity only
in the fifth decimal point.

From Table II, two observations are crucial: (1) The co-
efficients c(J ) of these 20 Slater determinants are all equal
and their absolute value approximates 1/

√
20 = 0.223 606 80

to the fifth decimal point. (2) Only the six single-particle
angular momenta 0, 1, 2, 3, 4, and 5 appear in these dominant
Slater determinants, resulting for all of them in a total angular
momentum L = 15.
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TABLE II. The 20 dominant coefficients c(I ) in the CI expansion of the relative LLL ground state for N = 6 and L = 15 in the (S =
3, Sz = 0) spin sector. The CI expansion (I = 1, 2, . . . , Itotal) consists of Itotal = 7056 basis determinants. The index J is introduced to relabel
the dominant coefficients. The dominance criterion was |c(I )| > 10−3.

I J c(J ) (l1 ↑, l2 ↑, l3 ↑, l4 ↓, l5 ↓, l6 ↓)
∑6

i=1 li

65 1 −0.22360479 (0,1,2,3,4,5) 15
139 2 0.22360479 (0,1,3,2,4,5) 15
219 3 −0.22360479 (0,1,4,2,3,5) 15
302 4 0.22360479 (0,1,5,2.3.4) 15
628 5 −0.22360479 (0,2,3,1,4,5) 15
708 6 0.22360479 (0,2,4,1,3,5) 15
791 7 −0.22360479 (0,2,5,1,3,4) 15
1123 8 −0.22360479 (0,3,4,1,2,5) 15
1206 9 0.22360479 (0,3,5,1,2,4) 15
1541 10 −0.22360479 (0,4,5,1,2,3) 15
2371 11 0.22360479 (1,2,3,0,4,5) 15
2451 12 −0.22360479 (1,2,4,0,3,5) 15
2534 13 0.22360479 (1,2,5,0,3,4) 15
2866 14 0.22360479 (1,3,4,0,2,5) 15
2949 15 −0.22360479 (1,3,5,0,2,4) 15
3284 16 0.22360479 (1,4,5,0,2,3) 15
4120 17 −0.22360479 (2,3,4,0,1,5) 15
4203 18 0.22360479 (2,3,5,0,1,4) 15
4538 19 −0.22360479 (2,4,5,0,1,3) 15
5377 20 0.22360479 (3,4,5,0,1,2) 15

Taking into consideration that the numerical value of the
|c(J )|’s in Table II equals 1/

√
20, up to the fifth decimal

point, and that the LLL single-particle orbitals [with lengths
in units of �, the harmonic confinement oscillator length,

see text below Eq. (11)] are written as zl exp[−z∗z/2]/
√

π l!,
one can verify the following algebraic identity (us-
ing the MATHEMATICA scripts given in the Supplemental
Material [68]):

	
S=3, Sz=0
N=6, CI =

20∑
J=1

sgn(J )√
6!

√
20

Det
[
zl1(J )

1 α(1), zl2(J )
2 α(2), zl3(J )

3 α(3), zl4(J )
4 β(4), zl5(J )

5 β(5), zl6(J )
6 β(6)

]
= − 1√

2!3!4!5!
√

6!π3

(
6∏

i< j

(zi − z j )

)∑20
J=1 ZJ√

20
, (52)

where we omitted the trivial Gaussian factors. sgn(J ) is the
+ or − sign of the c(J ) coefficients according to Table II.
The ZJ ’s, J = 1, 2, . . . , 20, are the spin primitives associated
with six spins having an Sz = 0 total spin projection. They are
defined explicitly in Appendix B.

The L = 15 state corresponding to N = 6 fully polarized
and noninteracting fermions is written as (considering that the
space part is a Vandermonde determinant)

√
2!3!4!5!

√
6!π3	

S=3, Sz=3
N=6, CI

= Det[α(1), z2α(2), z2
3α(3), z3

4α(4), z4
5α(5), z5

6α(6)]

=
(

6∏
i< j

(zi − z j )

)
α(1)α(2)α(3)α(4)α(5)α(6). (53)

As was the case for N = 4 LLL fermions, one sees from
Eqs. (52) and (53) that, apart from a sign, the space parts of the
spinful 	

S=3, Sz=0
N=6, CI and of the fully spin-polarized 	

S=3, Sz=3
N=6, CI

wave functions are the same, offering another example of the

concept of “fermionization” in two dimensions discussed in
Sec. VI A.

To complete the inquiry concerning the L = 15 relative
ground state for N = 6 LLL fermions in the spin sector
S = 3 (with Sz = 0 or 3), we investigate its intrinsic sym-
metries. To this end, we display in Fig. 11 the associated
spin-unresolved sixth-order correlation function. Instead of
using the numerical result of the CI calculation, we can take
advantage of the identity in Eq. (52) and plot the algebraic
expression

6G
(
z, z0

2, z0
3, z0

4, z0
5, z0

6

)
∝ (

z − z0
2

)(
z − z0

3

)(
z − z0

4

)(
z − z0

5

)(
z − z0

6

)
×(

z∗ − z0∗
2

)(
z∗ − z0∗

3

)(
z∗ − z0∗

4

)(
z∗ − z0∗

5

)(
z∗ − z0∗

6

)
.

(54)

The superscript 0 indicates a fixed point. Two cases are plotted
in Fig. 11: in Fig. 11(a) the five fixed points are located on
a circle of radius r0 = 1.6 � and form a regular pentagon,
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FIG. 11. The 6G(x, y) (with x + iy = z) sixth-order spin-
unresolved correlation [see Eq. (54)] of N = 6 LLL fermions for
the relative ground state with L = 15 in the spin sector S = 3 (with
Sz = 0 or 3). It exhibits a (1,5) intrinsic geometrical configuration.
(a) The fixed points (highlighted by solid dots) are placed at z0

2 = r0,
z0

3 = r0e2π i/5, z0
4 = r0e4π i/5, z0

5 = r0e6π i/5, and z0
6 = r0e8π i/5. (b) The

fixed points (highlighted by solid dots) are placed at z0
2 = 0, z0

3 =
r0e2π i/5, z0

4 = r0e4π i/5, z0
5 = r0e6π i/5, and z0

6 = r0e8π i/5, r0 = 1.6 �.
The units of the vertical axes are arbitrary, but the same for both
frames. The same surface portrays also the associated momentum
correlations 6G(kx, ky ), with corresponding mappings for the fixed
points, i.e., r0 → k0

r = 1.6 1/�.

whereas in Fig. 11(b), one of the five fixed points was moved
from the corner of the pentagon to the origin. In Fig. 11(a),
it is apparent that the sixth fermion lies at the origin, while
in Fig. 11(b), the sixth fermion completes the apices of the
regular pentagon. The above results for the sixth-order corre-
lation function clearly portray the formation of a concentric
(1,5) arrangement of the emergent UC-RWM in the LLL in
the case of six trapped fermionc atoms, described by the wave
function in Eq. (52).

We note that the (1,5) ring geometrical structure found
here to be associated with N = 6 LLL fermions (both contact
interacting and noninteracting) is familiar [31], as one of two
competing configurations from the case of N = 6 Coulomb-
interacting confined electrons in the field of 2D semiconductor

quantum dots, the other configuration being a (0,6) arrange-
ment.

VII. DISCUSSION: THE ROLE OF THE WIGNER
PARAMETER

The dimensionless parameter Rδ [defined in Eq. (3)] en-
ters naturally in the many-body LLL Hamiltonian in Eq. (2).
This applies also for the many-body Hamiltonians for ultra-
cold atoms in nonrotating traps, i.e., when � = 0; see, e.g.,
Ref. [57]. We note that, in the absence of a magnetic field
and for a finite number of N trapped electrons in 2D semicon-
ductor quantum dots, a corresponding parameter [31,55,56]
(usually referred to as the Wigner parameter) is defined as

RW = Q/(h̄ω), (55)

where Q = e2/(κl0) is the Coulomb repulsive energy between
two electrons at a distance equal to the oscillator strength
l0 = √

h̄/(m∗
eω), κ is the dielectric constant of the semicon-

ducting medium, m∗
e is the effective mass of the electron, and

ω is the frequency of the parabolic (harmonic) 2D potential
confinement.

In the case of a high applied magnetic field B (LLL Hilbert
space), l0 in Eq. (55) is replaced by the magnetic length and
ω is replaced by the cyclotron frequency, that is, l0 → lB and
ω → ωc = eB/(m∗c), with lB = √

h̄/(m∗ωc). As is the case
with the contact interaction, i.e., the fact (discussed in Sec. III)
that the LLL spectrum associated solely with the interaction
term Hint [third term in Eq. (2)] scales with Rδ , the LLL spec-
trum associated solely with the long-range Coulomb repulsion
scales also with RW . As a result, the values Rδ and RW do
not influence the intrinsic structure of the LLL many-body
wave functions. [Note that the eigenstates of Hint are also
eigenstates of the LLL kinetic-energy Hamiltonian HK ; see
second term in Eq. (2)]. The independence of WM formation
from the precise value of Rδ is further demonstrated in Fig. 12
in Appendix C, where a different value Rδ = 0.2 was used.

The only effect of the magnitude of Rδ is to determine the
precise value of �/ω where the crossings in Fig. 1 occur.
In contrast, for vanishing and small magnetic fields, or for
a nonrotating trap, the emergence of the Wigner molecular
structures does depend on the value of RW and Rδ , respec-
tively, requiring values of these parameters larger than unity
[23–25,31,55–58,86].

The apparent above inconsistency concerning the quali-
tative role of the Wigner parameter motivates the following
deeper insight. Indeed, both the RW and Rδ parameters at
B = 0 and � = 0, respectively, express the ratio

R = �Eint

�Esp
, (56)

where �Eint is a representative amount of repulsive energy
and �Esp is an average energy spacing in the single-particle
spectrum. For B = 0, or � = 0, the h̄ω used in Eqs. (3)
and (55) reflects indeed the average energy gap between the
single-particle states of the familiar 2D harmonic oscillator.
In the case of the Landau-level spectrum (Fock-Darwin oscil-
lator [31,35,36]), 2h̄ω, or h̄ωc, represents the energy spacing
between Landau levels. However, the relevant many-body
Hilbert space is restricted in the LLL where the energy gap
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between the single-particle states vanishes due to the well-
known infinite degeneracy of the Landau levels; this is also
referred to as single-particle kinetic-energy quenching. Thus,
with respect to the pertinent dimensionless parameter that
controls Wigner-molecule formation in the LLL, the denom-
inator in Eq. (56) must be taken to be precisely zero, which
results in all instances in an infinite value for R. Interest-
ingly, the single-outcome value of R → +∞ implies that the
LLL many-body case is preset for favoring the emergence of
Wigner molecules, independently of the strength or the type of
the two-body interaction. In fact, in addition to the Coulombic
and contact-interaction cases, this qualitative prediction has
been confirmed by numerical calculations in the case of few
fully spin-polarized LLL fermions interacting via a dipole-
dipole potential [87].

VIII. SUMMARY

The development and employment of both computa-
tional, numerical (two-dimensional configuration interaction
[21,22,31]), and algebraic (MATHEMATICA [73]) state-of-the-
art methodological approaches were shown here to bring forth
advanced tools (e.g., all-order momentum correlations) that
boost and refine our ability to in-depth interrogate the complex
many-body physics underlying the fractional quantum-Hall
effect in assemblies of a few ultracold neutral fermionic
atoms, interacting via repulsive contact potentials and con-
fined in a single rapidly rotating two-dimensional harmonic
trap. We considered spinful fermionic atom assemblies, where
in addition to the two-dimensional orbital degree of freedom,
each orbital within a degenerate Landau level state has also
spin degrees of freedom. Detailed results were given for the
illustrative example of four spinful ultracold fermions in a
rapidly rotating trap (a case anticipated to be among the first
to be experimentally explored in the near future).

As pointed out earlier [9,13,14,20], rotating assemblies of
a few ultracold atoms have become particularly promising for
exploring the LLL physics due to experimental difficulties
in reaching sufficiently dilute regimes (low filling fractions)
with a large number of atoms [88,89] in rotating traps; in the
former experiment [88] high rotational rates of a BEC cloud
of 87Rb atoms resulted in formation of ordered Abrikosov
vortices, and similarly for the case of a large-number BEC
cloud of 7Li atoms [89]. In this context, the raised level of
understanding brought forth by consideration of the N-body
correlations, compared to studies limited to examination of
merely the 2nd-order ones, appears to be pivotal for making
further progress in this field. This is the case in particular
because the experimental window of fermionic LLL states
is restricted to the lowest range of total angular momenta,
up to values in the neighborhood of L(1,1,1) associated with
the (1,1,1) Halperin wave function. Indeed for spin-balanced
assemblies (with N particles), the total angular momentum
value is L(1,1,1) = N (N − 1)/2, which is smaller than the
value of N (N − 1) for the bosonic, and 3N (N − 1)/2 for the
fermionic, Laughlin states.

Our analysis showed that the few-body LLL states with
magic angular momenta exhibit intrinsic ordered quantum
structures in the N-body correlations, similar to those asso-
ciated with rotating Wigner molecules [21,31], familiar from

the field of semiconductor quantum dots under high magnetic
fields.

The application of a small perturbing stirring potential Vp

[specifically a multipole deformation of the trap; see Eq. (6)]
induces, in the neighborhood of the ensuing avoided cross-
ings in the global LLL energy spectra [see Fig. 1 associated
with the (S = 0, Sz = 0) spin sector], states with broken
rotational symmetry (i.e., without good total angular mo-
menta, referred to accordingly as pinned Wigner molecules).
These structures exhibit molecular-type (or crystalline-type)
configurations which are manifested already at the lowest
level of first-order correlations (i.e., in the single-particle CI
spin-unresolved densities; see Fig. 5). This behavior portrays
characteristics reminiscent of the “flea on the elephant” con-
cept [69–71], familiar from the mathematical treatment of
spontaneous symmetry-breaking phenomena [72].

Furthermore, our analysis identified a CI LLL state in the
(S = 2, Sz = 0) spin sector, which was shown to be well
described by a Halperin (1,1,1) two-component orbital vari-
ational wave function. Analysis of this CI LLL wave function
enabled a two-dimensional generalization of the Girardeau
one-dimensional “fermionization” scheme [34], originally in-
voked for the mapping of bosonic-type wave functions to
those of spinless fermions.

We stress that our systematic comparative analysis and
investigations led us to conclude that in order to uncover
the intrinsic geometrical structural characteristics of the
symmetry-preserving ultracold rotating Wigner molecules
that form in the rotating traps and exhibit magic angular mo-
menta, it is imperative to carry out analysis that goes beyond
second-order correlations in the real configuration space. To
assist the design and analysis of experimental observations
in 2D traps, we illustrate these findings through benchmark
theoretical predictions for all-order spin-unresolved, as well
as spin-resolved, all-order momentum correlations. These can
be indeed directly measured [17,18,90] with time-of-flight
protocols employing individual particle detection in the far-
field region.

Our conclusions regarding all-order momentum correal-
tions apply to the correlated FQHE states formed in ultracold
neutral atom assemblies trapped in rotating traps on which
we focused in this study, as well as to future investigations,
including interrogations of quantum magnetism in finite 2D
systems (extending previous studies on 1D trapped ultracold
atoms [74,91]), hole pairing in 2D plaquettes [92], and Mott
insulator to superfluid quantum phase transitions in finite 2D
ultracold atom systems [93].
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APPENDIX A: MAGIC ANGULAR MOMENTA FOR THE
N = 3 WM WITH SPINFUL FERMIONS

To enhance the brief historical overview in Sec. III, and
to illustrate the role of the underlying geometric picture, we
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sketch here the derivation for the spin-dependent magic an-
gular momenta in the simpler case of three localized fermions
arranged in an intrinsic configuration of an equilateral triangle
[94]. For N = 3 fermions, both the Sz = 1

2 and 3
2 polarizations

need to be considered. We start with the Sz = 1
2 polarization,

which is associated with three spin primitives |↓↑↑〉, |↑↓↑〉,
and |↑↑↓〉. These primitives correspond to single Slater de-
terminants which exhibit a breaking of both the total spin
symmetry and of the continuous rotational symmetry. We
first proceed with the restoration of the total spin by noticing
that the three spin primitives have a point-group symmetry
lower than the C3 symmetry of an equilateral triangle. The
C3 symmetry, however, can be readily restored by apply-
ing appropriate point-group projection operators according to
group-theoretical concepts [95,96]. This yields the following
two different three-determinantal combinations for the intrin-
sic part of the many-body wave function:

	intr
1 (γ0) = |↓↑↑〉 + e2π i/3|↑↓↑〉 + e−2π i/3|↑↑↓〉 (A1)

and

	intr
2 (γ0) = |↓↑↑〉 + e−2π i/3|↑↓↑〉 + e2π i/3|↑↑↓〉. (A2)

Here, γ0 = 0 denotes the azimuthal angle of the triangle ver-
tex associated with the position of the original spin-down
fermion in |↓↑↑〉. We note that the intrinsic wave functions
	intr

1 and 	intr
2 are eigenstates of the square of the total spin

operator Ŝ2 (Ŝ = ∑3
i=1 ŝi) with quantum number S = 1

2 . This
can be verified directly by applying to them the Ŝ2 as given in
Eq. (15).

To restore the circular symmetry, one applies the continu-
ous space projection operator [31]

2πPL ≡
∫ 2π

0
dγ exp[−iγ (L̂ − L)] , (A3)

where L̂ = ∑N
j=1 l̂ j is the operator for the total angular mo-

mentum.
The resulting wave function � has both good total spin and

angular momentum quantum numbers; it is of the form

2π� =
∫ 2π

0
dγ 	intr

1or2(γ )eiγ L, (A4)

where now the intrinsic wave function [given by Eq. (A1)
or (A2)] has an arbitrary azimuthal orientation γ , which is
integrated out.

The operator R̂(2π/3) ≡ exp(−i2π L̂/3) can be applied to
� in two different ways, namely, either on the intrinsic part
	intr or the external part exp(iγ L). Using Eq. (A1) and the
property R̂(2π/3)	intr

1 = exp(−2π i/3)	intr
1 , one finds

R̂(2π/3)� = exp(−2π i/3)� (A5)

from the first alternative, and

R̂(2π/3)� = exp(−2πLi/3)� (A6)

from the second alternative. Now, if � 
= 0, the only way
that Eqs. (A5) and (A6) can be simultaneously true is if the
condition exp[2π (L − 1)i/3] = 1 is fulfilled. This leads to a
first sequence of magic angular momenta associated with total
spin S = 1

2 , i.e.,

L = 3n + 1, n = 0,±1,±2,±3, . . . . (A7)

Using Eq. (A2) for the intrinsic wave function, and follow-
ing similar steps, one can derive a second sequence of magic
angular momenta associated with good total spin S = 1

2 , i.e.,

L = 3n − 1, n = 0,±1,±2,±3, . . . . (A8)

In the fully polarized case, the spin primitive |↑↑↑ 〉 is al-
ready an eigenstate of Ŝ2 with quantum number S = 3

2 . Thus,
only the rotational symmetry needs to be restored, that is, the
intrinsic wave function is simply 	intr

3 (γ0) = |↑↑↑ 〉. Since
R̂(2π/3)	intr

3 = 	intr
3 , the condition for the allowed angular

momenta is exp[−2πLi/3] = 1, which yields the following
magic angular momenta:

L = 3n, n = 0,±1,±2,±3, . . . . (A9)

We mention again here that only non-negative angular mo-
menta are present in the LLL.

APPENDIX B: THE 20 SPIN PRIMITIVES FOR N = 6
FERMIONS

The 20 spin primitives for N = 6 fermions are as follows:

Z1 = α(1)α(2)α(3)β(4)β(5)β(6),

Z2 = α(1)α(2)α(4)β(3)β(5)β(6),

Z3 = α(1)α(2)α(5)β(3)β(4)β(6),

Z4 = α(1)α(2)α(6)β(3)β(4)β(5),

Z5 = α(1)α(3)α(4)β(2)β(5)β(6),

FIG. 12. CI single-particle density (both in real space and mo-
mentum space) of the relative ground state of N = 4 fermions in
the spin sector with (S = 0, Sz = 0), but considering Rδ = 0.20, in
contrast to the value Rδ = 0.40 used in the calculations in the main
text. 3D surfaces are plotted. C = 0.004 at the point �/ω = 0.9445
(situated at the avoided crossing between L = 4 and 8). The expecta-
tion value of the total angular momentum is 〈L〉 = 7.8739, indicating
that the plotted case is a state with broken rotational symmetry. For
the spatial density, the vertical axis is in units of 1/�2. For the
momentum density, the vertical axis is in units of �2.
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Z6 = α(1)α(3)α(5)β(2)β(4)β(6),

Z7 = α(1)α(3)α(6)β(2)β(4)β(5),

Z8 = α(1)α(4)α(5)β(2)β(3)β(6),

Z9 = α(1)α(4)α(6)β(2)β(3)β(5),

Z10 = α(1)α(5)α(6)β(2)β(3)β(4),

Z11 = α(2)α(3)α(4)β(1)β(5)β(6),

Z12 = α(2)α(3)α(5)β(1)β(4)β(6),

Z13 = α(2)α(3)α(6)β(1)β(4)β(5),

Z14 = α(2)α(4)α(5)β(1)β(3)β(6),

Z15 = α(2)α(4)α(6)β(1)β(3)β(5),

Z16 = α(2)α(5)α(6)β(1)β(3)β(4),

Z17 = α(3)α(4)α(5)β(1)β(2)β(6),

Z18 = α(3)α(4)α(6)β(1)β(2)β(5),

Z19 = α(3)α(5)α(6)β(1)β(2)β(4),

Z20 = α(4)α(5)α(6)β(1)β(2)β(3). (B1)

APPENDIX C: A CI CALCULATION FOR N = 4 LLL
FERMIONS AND Rδ = 0.20

An example of the formation of a pinned WM for a differ-
ent value of Rδ , i.e., Rδ = 0.20, is given with Fig. 12.

[1] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Two-Dimensional
Magnetotransport in the Extreme Quantum Limit, Phys. Rev.
Lett. 48, 1559 (1982).

[2] R. B. Laughlin, Quantized motion of three two-dimensional
electrons in a strong magnetic field, Phys. Rev. B 27, 3383
(1983).

[3] R. B. Laughlin, Anomalous Quantum Hall Effect: An Incom-
pressible Quantum Fluid with Fractionally Charged Excitations,
Phys. Rev. Lett. 50, 1395 (1983).

[4] B. I. Halperin, Theory of the Quantized Hall Conductance,
Helv. Phys. Acta 56, 75 (1983).

[5] J. K. Jain, Composite-Fermion Approach for the Fractional
Quantum Hall Effect, Phys. Rev. Lett. 63, 199 (1989).

[6] C. Yannouleas and U. Landman, Trial wave functions with long-
range Coulomb correlations for two-dimensional N-electron
systems in high magnetic fields, Phys. Rev. B 66, 115315
(2002).

[7] N. K. Wilkin and J. M. F. Gunn, Condensation of “Composite
Bosons” in a Rotating BEC, Phys. Rev. Lett. 84, 6 (2000).

[8] N. Read and N. R. Cooper, Free expansion of lowest-Landau-
level states of trapped atoms: A wave-function microscope,
Phys. Rev. A 68, 035601 (2003).

[9] M. Popp, B. Paredes, and J. I. Cirac, Adiabatic path to fractional
quantum Hall states of a few bosonic atoms, Phys. Rev. A 70,
053612 (2004).

[10] N. Barberán, M. Lewenstein, K. Osterloh, and D. Dagnino,
Ordered structures in rotating ultracold Bose gases, Phys. Rev.
A 73, 063623 (2006).

[11] L. O. Baksmaty, C. Yannouleas, and U. Landman, Rapidly ro-
tating boson molecules with long- or short-range repulsion: An
exact diagonalization study, Phys. Rev. A 75, 023620 (2007).

[12] N. R. Cooper, Rapidly rotating atomic gases, Adv. Phys. 57,
539 (2008).

[13] S. K. Baur, K. R. A. Hazzard, and E. J. Mueller, Stirring trapped
atoms into fractional quantum Hall puddles, Phys. Rev. A 78,
061608(R) (2008).

[14] N. Gemelke, E. Sarajlic, and S. Chu, Rotating few-body
atomic systems in the fractional quantum hall regime,
arXiv:1007.2677.

[15] F. Serwane, G. Zürn, T. Lompe, T. B. Ottenstein,
A. N. Wenz, and S. Jochim, Deterministic preparation

of a tunable few-fermion system, Science 332, 336
(2011).

[16] G. Zürn, F. Serwane, T. Lompe, A. N. Wenz, M. G. Ries, J. E.
Bohn, and S. Jochim, Fermionization of Two Distinguishable
Fermions, Phys. Rev. Lett. 108, 075303 (2012).

[17] A. Bergschneider, V. M. Klinkhamer, J. H. Becher, R. Klemt,
L. Palm, G. Zürn, S. Jochim, and P. M. Preiss, Experimental
characterization of two-particle entanglement through position
and momentum correlations, Nat. Phys. 15, 640 (2019).

[18] P. M. Preiss, J. H. Becher, R. Klemt, V. Klinkhamer, A.
Bergschneider, N. Defenu, and S. Jochim, High-Contrast Inter-
ference of Ultracold Fermions, Phys. Rev. Lett. 122, 143602
(2019).

[19] J. H. Becher, E. Sindici, R. Klemt, S. Jochim, A. J. Daley, and
P. M. Preiss, Measurement of identical particle entanglement
and the influence of antisymmetrisation, arXiv:2002.11207.

[20] L. Palm, Exploring Fractional Quantum Hall Physics Using
Ultracold Fermions in Rotating Traps, Master thesis, Heidel-
berg, 2018; see also R.-J. Petzold, Few Ultracold Fermions in a
Two-Dimensional Trap, Master thesis, Heidelberg, 2020.

[21] C. Yannouleas and U. Landman, Two-dimensional quantum
dots in high magnetic fields: Rotating-electron-molecule ver-
sus composite-fermion approach, Phys. Rev. B 68, 035326
(2003).

[22] C. Yannouleas and U. Landman, Structural properties of elec-
trons in quantum dots in high magnetic fields: Crystalline
character of cusp states and excitation spectra, Phys. Rev. B 70,
235319 (2004).

[23] M. Rontani, C. Cavazzoni, D. Bellucci, and G. Goldoni, Full
configuration interaction approach to the few-electron problem
in artificial atoms, J. Chem. Phys. 124, 124102 (2006).

[24] Y. Li, C. Yannouleas, and U. Landman, Three-electron
anisotropic quantum dots in variable magnetic fields: Exact
results for excitation spectra, spin structures, and entanglement,
Phys. Rev. B 76, 245310 (2007); 81, 049902(E) (2010).

[25] S. A. Blundell and S. Chacko, Isomeric and hybrid isomeric-
vibrational states of Wigner molecules, Phys. Rev. B 81,
121104(R) (2010).

[26] A. Szabo and N. S. Ostlund, Modern Quantum Chemistry:
Introduction to Advanced Electronic Structure Theory, revised
1st ed. (McGraw-Hill, New York, 1989).

043317-20

https://doi.org/10.1103/PhysRevLett.48.1559
https://doi.org/10.1103/PhysRevB.27.3383
https://doi.org/10.1103/PhysRevLett.50.1395
https://doi.org/10.1103/PhysRevLett.63.199
https://doi.org/10.1103/PhysRevB.66.115315
https://doi.org/10.1103/PhysRevLett.84.6
https://doi.org/10.1103/PhysRevA.68.035601
https://doi.org/10.1103/PhysRevA.70.053612
https://doi.org/10.1103/PhysRevA.73.063623
https://doi.org/10.1103/PhysRevA.75.023620
https://doi.org/10.1080/00018730802564122
https://doi.org/10.1103/PhysRevA.78.061608
http://arxiv.org/abs/arXiv:1007.2677
https://doi.org/10.1126/science.1201351
https://doi.org/10.1103/PhysRevLett.108.075303
https://doi.org/10.1038/s41567-019-0508-6
https://doi.org/10.1103/PhysRevLett.122.143602
http://arxiv.org/abs/arXiv:2002.11207
https://doi.org/10.1103/PhysRevB.68.035326
https://doi.org/10.1103/PhysRevB.70.235319
https://doi.org/10.1063/1.2179418
https://doi.org/10.1103/PhysRevB.76.245310
https://doi.org/10.1103/PhysRevB.81.049902
https://doi.org/10.1103/PhysRevB.81.121104


FRACTIONAL QUANTUM HALL PHYSICS AND … PHYSICAL REVIEW A 102, 043317 (2020)

[27] C. Yannouleas and U. Landman, Unified microscopic approach
to the interplay of pinned-Wigner-solid and liquid behavior of
the lowest Landau-level states in the neighborhood of ν = 1/3,
Phys. Rev. B 84, 165327 (2011).

[28] A. Bergschneider, V. M. Klinkhamer, J. H. Becher, R. Klemt,
G. Zürn, P. M. Preiss, and S. Jochim, Spin-resolved single-atom
imaging of 6Li in free space, Phys. Rev. A 97, 063613 (2018).

[29] S. M. Girvin and T. Jach, Interacting electrons in two-
dimensional Landau levels: Results for small clusters, Phys.
Rev. B 28, 4506 (1983).

[30] P. A. Maksym and T. Chakraborty, Quantum Dots in a Magnetic
Field: Role of Electron-Electron Interactions, Phys. Rev. Lett.
65, 108 (1990).

[31] C. Yannouleas and U. Landman, Symmetry breaking and quan-
tum correlations in finite systems: studies of quantum dots and
ultracold Bose gases and related nuclear and chemical methods,
Rep. Prog. Phys. 70, 2067 (2007).

[32] P. A. Maksym, Eckardt frame theory of interacting electrons in
quantum dots, Phys. Rev. B 53, 10871 (1996).

[33] I. Romanovsky, C. Yannouleas, and U. Landman, Edge states in
graphene quantum dots: Fractional quantum Hall effect analo-
gies and differences at zero magnetic field, Phys. Rev. B 79,
075311 (2009).

[34] M. Girardeau, Relationship between systems of impenetrable
bosons and fermions in one dimension, J. Math. Phys. 1, 516
(1960).

[35] V. Fock, Bemerkung zur Quantelung des harmonischen Oszil-
lators im Magnetfeld, Z. Phys. 47, 446 (1928).

[36] C. G. Darwin, The Diamagnetism of the Free Electron, C. G.
Darwin, Proc. Cambridge Philos. Soc. 27, 86 (1931)

[37] For details regarding the equivalence between applied magnetic
field B and the rotational frequency �, as well as the derivation
of the spectrum in Eq. (1) (see the Appendix in Ref. [31]; see
also Refs. [7,12]).

[38] For an instance of a detailed derivation of HLLL, see Sec. II A of
Ref. [11].

[39] D. S. Petrov, M. Holzmann, and G. V. Shlyapnikov, Bose-
Einstein Condensation in Quasi-2D Trapped Gases, Phys. Rev.
Lett. 84, 2551 (2000).

[40] Concerning earlier literature, Rδ agrees with the parameter η in
Ref. [9]. Furthermore, the parameter U in Ref. [13] relates to Rδ

as U = Rδ h̄ω.
[41] G. E. Astrakharchik, Quantum Monte Carlo study of ultracold

gases, Ph.D. dissertation, University of Trento, 2004.
[42] G. Zürn, Few-fermion systems in one dimension, Ph.D. thesis,

Heidelberg, 2012.
[43] P. S. Julienne and J. M. Hutson, Contrasting the wide Feshbach

resonances in 6Li and 7Li, Phys. Rev. A 89, 052715 (2014).
[44] For a CI calculation with a different value, i.e., Rδ = 0.2, which

illustrates explicitly that the formation of the WMs in the LLL
is independent of Rδ , see Fig. 12 in Appendix C.

[45] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users’
Guide: Solution of Large-Scale Eigenvalue Problems with Im-
plicitly Restarted Arnoldi Methods (SIAM, Philadelphia, 1998).

[46] W. E. Arnoldi, The principle of minimized iterations in the
solution of the matrix eigenvalue problem, Q. Appl. Math. 9,
17 (1951).

[47] G. F. Bertsch and Th. Papenbrock, Yrast Line for Weakly
Interacting Trapped Bosons, Phys. Rev. Lett. 83, 5412
(1999).

[48] See Tables 2.3 and 2.4 on p. 70 of Ref. [26].
[49] E. Altman, E. Demler, and M. D. Lukin, Probing many-body

states of ultracold atoms via noise correlations, Phys. Rev. A
70, 013603 (2004).

[50] W. Y. Ruan, Y. Y. Liu, C. G. Bao, and Z. Q. Zhang, Origin of
magic angular momenta in few-electron quantum dots, Phys.
Rev. B 51, 7942(R) (1995).

[51] T. Seki, Y. Kuramoto, and T. Nishino, Origin of magic angu-
lar momentum in a quantum dot under strong magnetic field,
J. Phys. Soc. Jpn. 65, 3945 (1996).

[52] C. Yannouleas and U. Landman, Group theoretical analysis of
symmetry breaking in two-dimensional quantum dots, Phys.
Rev. B 68, 035325 (2003).

[53] Z. Dai, J.-L. Zhu, N. Yang, and Y. Wang, Spin-dependent rotat-
ing Wigner molecules in quantum dots, Phys. Rev. B 76, 085308
(2007).

[54] C. Shi, G. S. Jeon, and J. K. Jain, Composite fermion solid and
liquid states in two component quantum dots, Phys. Rev. B 75,
165302 (2007).

[55] See the case of two electrons in a 2D parabolic trap, C.
Yannouleas and U. Landman, Collective and Independent-
Particle Motion in Two-Electron Artificial Atoms, Phys. Rev.
Lett. 85, 1726 (2000).

[56] C. Yannouleas and U. Landman, Spontaneous Symmetry
Breaking in Single and Molecular Quantum Dots, Phys. Rev.
Lett. 82, 5325 (1999) Erratum: Spontaneous Symmetry Break-
ing in Single and Molecular Quantum Dots [Phys. Rev. Lett. 82,
5325 (1999)], 85, 2220 (2000).

[57] I. Romanovsky, C. Yannouleas, and U. Landman, Crystalline
Boson Phases in Harmonic Traps: Beyond the Gross-Pitaevskii
Mean Field, Phys. Rev. Lett. 93, 230405 (2004).

[58] U. De Giovannini, F. Cavaliere, R. Cenni, M. Sassetti, and
B. Kramer, Spin and rotational symmetries in unrestricted
Hartree-Fock states of quantum dots, New J. Phys. 9, 93
(2007).

[59] For the use of this term in the context of electrons in 2D semi-
conductor quantum dots, see Ref. [31]. The variants of “rotating
electron molecule” [31] or “rotating boson molecule” [11] in the
case of bosons have also been employed.

[60] C. Ellenberger, T. Ihn, C. Yannouleas, U. Landman, K.
Ensslin, D. Driscoll, and A. C. Gossard, Excitation Spec-
trum of Two Correlated Electrons in a Lateral Quantum Dot
with Negligible Zeeman Splitting, Phys. Rev. Lett. 96, 126806
(2006).

[61] Y. Nishi, P. A. Maksym, D. G. Austin, T. Hatano, L. P.
Kouwenhoven, H. Aoki, and S. Tarucha, Intermediate low spin
states in a few-electron quantum dot in the ν � 1 regime, Phys.
Rev. B 74, 033306 (2006).

[62] S. Kalliakos, M. Rontani, V. Pellegrini, C. P. García, A. Pinczuk,
G. Goldoni, E. Molinari, L. N. Pfeiffer, and K. W. West, A
molecular state of correlated electrons in a quantum dot, Nat.
Phys. 4, 467 (2008).

[63] A. M. Mintairov, J. Kapaldo, J. L. Merz, S. Rouvimov, D. V.
Lebedev, N. A. Kalyuzhnyy, S. A. Mintairov, K. G. Belyaev,
M. V. Rakhlin, A. A. Toropov et al., Control of Wigner local-
ization and electron cavity effects in near-field emission spectra
of In(Ga)P/GaInP quantum-dot structures, Phys. Rev. B 97,
195443 (2018).

[64] S. Pecker, F. Kuemmeth, A. Secchi, M. Rontani, D. C. Ralph,
P. L. McEuen, and S. Ilani, Observation and spectroscopy of

043317-21

https://doi.org/10.1103/PhysRevB.84.165327
https://doi.org/10.1103/PhysRevA.97.063613
https://doi.org/10.1103/PhysRevB.28.4506
https://doi.org/10.1103/PhysRevLett.65.108
https://doi.org/10.1088/0034-4885/70/12/R02
https://doi.org/10.1103/PhysRevB.53.10871
https://doi.org/10.1103/PhysRevB.79.075311
https://doi.org/10.1063/1.1703687
https://doi.org/10.1007/BF01390750
https://doi.org/10.1017/S0305004100009373
https://doi.org/10.1103/PhysRevLett.84.2551
https://doi.org/10.1103/PhysRevA.89.052715
https://doi.org/10.1090/qam/42792
https://doi.org/10.1103/PhysRevLett.83.5412
https://doi.org/10.1103/PhysRevA.70.013603
https://doi.org/10.1103/PhysRevB.51.7942
https://doi.org/10.1143/JPSJ.65.3945
https://doi.org/10.1103/PhysRevB.68.035325
https://doi.org/10.1103/PhysRevB.76.085308
https://doi.org/10.1103/PhysRevB.75.165302
https://doi.org/10.1103/PhysRevLett.85.1726
https://doi.org/10.1103/PhysRevLett.82.5325
https://doi.org/10.1103/PhysRevLett.85.2220
https://doi.org/10.1103/PhysRevLett.93.230405
https://doi.org/10.1088/1367-2630/9/4/093
https://doi.org/10.1103/PhysRevLett.96.126806
https://doi.org/10.1103/PhysRevB.74.033306
https://doi.org/10.1038/nphys944
https://doi.org/10.1103/PhysRevB.97.195443


CONSTANTINE YANNOULEAS AND UZI LANDMAN PHYSICAL REVIEW A 102, 043317 (2020)

a two-electron Wigner molecule in an ultraclean carbon nan-
otube, Nat. Phys. 9, 576 (2013).

[65] G. Hönig, G. Callsen, A. Schliwa, S. Kalinowski, Ch.
Kindel, S. Kako, Y. Arakawa, D. Bimberg, and A. Hoffmann,
Manifestation of unconventional biexciton states in quantum
dots, Nat. Commun. 5, 5721 (2014).

[66] The (1, 5) ring configuration for N = 6 fermions is demon-
strated in Sec. VI B.

[67] J. K. Jain, Composite Fermions (Cambridge University Press,
Cambridge, 2007).

[68] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevA.102.043317 for (I) additional Tables related
to Figs. 5(a-f) and (II) MATHEMATICA scripts related to Sections
IV D, V B, VI A, and VI B.

[69] Ch. J. F. van de Ven, C. Gerrit, R. R. Groenenboom, and N. P.
Landsman, Quantum spin systems versus Schrödinger opera-
tors: A case study in spontaneous symmetry breaking, SciPost
Phys. 8, 022 (2020).

[70] G. Jona-Lasinio, F. Martinelli, and E. Scoppola, New approach
to the semiclassical limit of quantum mechanics, Commun.
Math. Phys. 80, 223 (1981).

[71] B. Simon, Semiclassical analysis of low lying eigenvalues. IV.
The flea on the elephant, J. Funct. Anal. 63, 123 (1985).

[72] P. W. Anderson, An approximate quantum theory of the antifer-
romagnetic ground state, Phys. Rev. 86, 694 (1952).

[73] Wolfram Research, Inc., MATHEMATICA, Version 12.1, Cham-
paign, IL (2020).

[74] C. Yannouleas, B. B. Brandt, and U. Landman, Ultracold few
fermionic atoms in needle-shaped double wells: spin chains and
resonating spin clusters from microscopic Hamiltonians emu-
lated via antiferromagnetic Heisenberg and t-J models, New J.
Phys. 18, 073018 (2016).

[75] A. H. MacDonald, H. A. Fertig, and L. Brey, Skyrmions without
Sigma Models in Quantum Hall Ferromagnets, Phys. Rev. Lett.
76, 2153 (1996).

[76] S. M. Girvin and A. H. MacDonald, Multicomponent Quantum
Hall Systems: The Sum of Their Parts and More, in Perspectives
in Quantum Hall Effects: Novel Quantum Liquids in Low-
Dimensional Semiconductor Structures, edited by S. Das Sarma
and A. Pinczuk (Wiley, Weinheim, 1996).

[77] D. Tong, Lectures on the Quantum Hall Effect,
arXiv:1606.06687v2.

[78] The corresponding filling factor is ν = 2/(p + q), i.e., ν = 1
for p = q = 1.

[79] It turns out that this state becomes also the global ground state
in all spin sectors for �/ω � 0.77.

[80] R. A. Smith and N. K. Wilkin, Exact eigenstates for repulsive
bosons in two dimensions, Phys. Rev. A 62, 061602(R) (2000).

[81] Th. Papenbrock and G. F. Bertsch, Rotational spectra of weakly
interacting Bose-Einstein condensates, Phys. Rev. A 63, 023616
(2001).

[82] C. Yannouleas and U. Landman, Quantal molecular descrip-
tion and universal aspects of the spectra of bosons and
fermions in the lowest Landau level, Phys. Rev. A 81, 023609
(2010).

[83] G. Moore and N. Read, Nonabelions in the fractional quantum
Hall effect, Nucl. Phys. B 360, 362 (1991).

[84] See Sec. III D and Fig. 4 in Ref. [82].
[85] For a similar effect of the Pauli exclusion principle regarding the

formation of a Wigner molecule in the case of N = 2 ultracold

fermionic atoms confined in a single quasi-1D well, see the
comparison of second-order correlations between the singlet
and triplet states in Sec. III A of B. B. Brandt, C. Yannouleas,
and U. Landman, Two-point momentum correlations of few
ultracold quasi-one-dimensional trapped fermions: Diffraction
patterns, Phys. Rev. A 96, 053632 (2017); compare also Fig.
2(e) (singlet) and Fig. 2(g) (triplet) in Double-well ultracold-
fermions computational microscopy: Wave-function anatomy
of attractive-pairing and Wigner-molecule entanglement and
natural orbitals, Nano Lett. 15, 7105 (2015); Naturally, unlike
the LLL case, a strong repulsion (for separating the particles) is
needed for the formation of the singlet-state Wigner molecule in
a nonrotating trap. Without addressing the fermionization map-
ping, the limiting case (referred to as a Pauli crystal) of a Wigner
molecule associated with fully polarized ultracold fermions in
a static 2D harmonic trap has been discussed in M. Holten,
L. Bayha, K. Subramanian, C. Heintze, Ph. M. Preiss, and S.
Jochim, Observation of pauli crystals, arXiv:2005.03929; and
in M. Gajda, J. Mostowski, T. Sowiński, and M. Załuska-Kotur,
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