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Dispersion relations and self-localization of quasiparticles
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We present a detailed study of the spectrum and dispersion of Bogoliubov quasiparticles in two coupled
elongated Bose-Einstein condensates. We develop an analytically solvable model that approximates two infinite
homogeneous condensates and compare its predictions to a numerical simulation of a realistic trapped system.
While the comparisons show a reasonable agreement between the two models, they also manifest the existence
of several anomalous Bogoliubov modes in the spectrum. These modes show degeneracy in both energy and
momentum together with self-localization in the coordinate space.
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I. INTRODUCTION

Systems consisting of mutually coherent Bose-Einstein
condensates (BECs) have attracted considerable research in-
terest in recent years. While the most prominent applications
of such systems are undoubtedly matter-wave interferometry
and quantum metrology [1,2], they also provide an excel-
lent platform to study various other physical phenomena,
including Josephson effects [3–7], quantum fluctuations and
spatial coherence [8–10], and spin-orbital coupling [11,12].
To enable such experiments, a coherent coupling between the
condensates can be achieved in different ways. Most common
realizations utilize two internal states of atoms in BEC cou-
pled by Raman lasers [7,13], or multiwell trapping potentials
with a possibility for atoms to tunnel through the barriers
[4,5]. However, the physics of coupled condensates is deter-
mined not only by the nature of the coupling but also to a large
extent by the geometry of individual condensates (see, e.g.,
Refs. [14–17]). One of the most simple yet nontrivial geome-
tries is realized with two parallel cigar-shaped condensates
coupled through a potential barrier along their long dimen-
sion. Despite their seeming simplicity, such systems display
a wide range of dynamical effects with many open questions.
Having many similarities with superconducting long Joseph-
son junctions [18,19] such systems are actively studied in
the context of sine-Gordon solitons and Josephson vortices
[19–21]. Coupled condensates with such geometry are in the
focus of the present work.

Near-equilibrium dynamics of a Bose-condensed system
is commonly analyzed on the level of low-energy collective
excitations, also termed Bogoliubov quasiparticles. The spec-
trum of such collective excitations is very sensitive to the
geometry of the system and reveals a number of specific
features for the case of two coupled condensates [13,22–
25]. In particular, the tunneling of atoms through the barrier

may be effectively coupled with their motion inside each
condensate if corresponding collective modes posses similar
energies. The signatures of such a coupling were previously
identified in theoretical [15,18,26] and experimental studies
[5]. However, an understanding of general requirements for
such coupled modes to appear, as well as their structure and
dynamical properties, is still lacking. In the present work
we aim to develop such an understanding by extracting and
analyzing the spectrum of linear collective excitations and
building the dispersion relations of quasiparticle modes in
parallel coupled elongated BECs. To this end we develop
an analytical model which approximates two coupled infinite
homogeneous condensates and which can be compared to the
numerical results without fitting parameters. A comparison
of the analytical predictions to the numerical calculations of
a realistic trapped system is the main goal of the present
work. Such a comparison allows one to identify and ana-
lyze a peculiar phenomenon of self-localization, which is
observed for some of the quasiparticle modes as a drastic
deviation from the analytically predicted behavior. As we
show here, these modes correspond to a coupled internal
and mutual motion in two condensates and can be associ-
ated with imaginary-wave-number solutions of the analytical
model.

The article is structured as follows. In Sec. II we de-
rive and analyze the dispersion relation for linear collective
excitations in a system of two parallel coupled homoge-
neous condensates. The more realistic setting of a finite
trapped condensate is introduced in Sec. III. We calculate
the frequency and momentum spectrum of the Bogoliubov
quasiparticles numerically and compare the results to the
analytical predictions. Finally, in Sec. IV we identify and
discuss several anomalous low-lying modes which appear out-
side of the predicted dispersion branches and display spatial
self-localization.
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FIG. 1. Schematic representation of coupled condensates in our
geometry. Two elongated condensates are uniform in the x direction
and coupled through a barrier in the y direction. A few examples
of particle-exchange processes are depicted to illustrate the physical
meaning of coupling terms K , F , and I in Eq. (4). More details on
these coupling coefficients can be found in the text.

II. COLLECTIVE EXCITATIONS IN HOMOGENEOUS
INFINITE CONDENSATES

We consider an atomic Bose-Einstein condensate charac-
terized by the mean-field Gross-Pitaevskii equation (GPE)

ih̄
∂

∂t
�(r, t ) =

[
− h̄2∇2

2M
+ V (r) + g|�|2

]
�(r, t ), (1)

with the nonlinear coupling coefficient g > 0 to ensure stabil-
ity of the condensate. Our system of interest consists of two
elongated weakly coupled BECs. A schematic representation
of the system is depicted in Fig. 1. In order to make an
analytical treatment possible we consider in this section a

uniform condensate in the x direction and a two-well trap in
the transverse (y, z) plane. We therefore assume V = V⊥(y, z).
The specific shape of the two-well potential V⊥ is not relevant
here. It is important only that the total condensate wave func-
tion can be approximately represented as a sum of two parts,
one for each condensate, and the dimensions can be separated
into the dynamical (x) and the frozen ones (y, z):

�(x, y, z, t ) = �1(x, t )χ1(y, z) + �2(x, t )χ2(y, z). (2)

Each of the functions χ1 and χ2 is localized in one well of
the two-well potential and represents each one of the two
coupled condensates. We assume these functions to be real,
orthogonal, and normalized to unity:∫∫

dy dz χ1χ2 = 0,

∫∫
dy dz χ2

1 =
∫∫

dy dz χ2
2 = 1.

Also a weak coupling between the two condensates implies
that the absolute overlap of these functions is small:∫∫

dy dz|χ1χ2| � 1. (3)

The ansatz (2) is an extension to a well-known two-mode ap-
proximation [3]. The key difference is that we keep one spatial
dimension as a dynamical variable. Inserting this ansatz into
the GPE (1), the frozen directions can be integrated out. This
results in two coupled equations for the functions �1 and �2.
The first equation reads

ih̄
∂

∂t
�1(x, t ) =

(
− h̄2

2M

∂2

∂x2
+ g1D|�1|2

)
�1 − K�2 − F [(|�1|2 + |�2|2)�2 + (�∗

1 �2 + �∗
2 �1)�1]

+ I[|�2|2�1 + (�∗
1 �2 + �∗

2 �1)�2], (4)

and the second equation is the same with indices 1 and 2
interchanged. The coefficients that enter these equations are
defined as

g1D = g
∫∫

dy dz χ4
1 = g

∫∫
dy dz χ4

2 , (5)

K = −
∫∫

dy dz

(
− h̄2

2m
χ1∇2

y,zχ2 + χ1V⊥χ2

)
, (6)

F = −g
∫∫

dy dz χ3
1 χ2 = −g

∫∫
dy dz χ1χ

3
2 , (7)

I = g
∫∫

dy dz χ2
1 χ2

2 . (8)

For simplicity we consider only the case of a fully symmetric
two-well potential. More general equations for asymmetric
wells can be derived in the same way.

The ground state of two coupled parallel condensates is
characterized by a uniform particle density n in each conden-
sate. So we can write the ground-state solution of Eq. (4)
as �1 = �2 = √

n e−iμt/h̄ with the chemical potential μ =
−K + (g1D − 4F + 3I )n. In order to analyze collective exci-
tations in the system we introduce a small perturbation to the

ground state in a usual form of plane waves [27],

�1(x, t ) = e−iμt/h̄(
√

n + u1e−iωt+ikx + v∗
1eiωt−ikx ),

�2(x, t ) = e−iμt/h̄(
√

n + u2e−iωt+ikx + v∗
2eiωt−ikx ). (9)

Inserting this into Eq. (4) yields the Bogoliubov–de Gennes
system of four coupled equations, which can be expressed in
the following matrix form:

[L̂0 + KL̂K + (g1DL̂g + FL̂F + IL̂I )n]

⎡
⎢⎣

u1

v1

u2

v2

⎤
⎥⎦ = h̄ω

⎡
⎢⎣

u1

v1

u2

v2

⎤
⎥⎦
(10)

with

L̂0 =
(

h̄2k2

2M
− μ

)⎡
⎢⎣

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎤
⎥⎦,

L̂g =

⎡
⎢⎣

2 1 0 0
−1 −2 0 0

0 0 2 1
0 0 −1 −2

⎤
⎥⎦,
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L̂K =

⎡
⎢⎣

0 0 −1 0
0 0 0 1

−1 0 0 0
0 1 0 0

⎤
⎥⎦,

L̂F =

⎡
⎢⎣

−4 −2 −4 −2
2 4 2 4

−4 −2 −4 −2
2 4 2 4

⎤
⎥⎦,

L̂I =

⎡
⎢⎣

2 1 4 2
−1 −2 −2 −4

4 2 2 1
−2 −4 −1 −2

⎤
⎥⎦.

The eigenvalues of Eq. (10) can be calculated analytically
and provide the dispersion relations, which form two separate
branches:

[h̄ω1(k)]2 = h̄2k2

2M

(
h̄2k2

2M
+ 2g1Dn − 8Fn + 6In

)
, (11)

[h̄ω2(k)]2 =
(

h̄2k2

2M
+ 2K + 4Fn − 4In

)

×
(

h̄2k2

2M
+ 2g1Dn + 2K + 4Fn − 6In

)
. (12)

The frequency ω1 corresponds to excitations which are
symmetric (in-phase) in the two condensates, while ω2 cor-
responds to antisymmetric (out-of-phase) ones. These results
are consistent with previous studies of coherently coupled
spinor BECs in Refs. [13,22,23] in the limit of purely linear
coupling (F = 0, I = 0). In spinor BECs the branch ω1(k)
represents a density wave, and ω2(k) is a spin wave. We will
therefore refer to the corresponding excitations in a two-well
condensate as density-like and spin-like.

The density-like branch ω1 is gapless, and in the long-
wavelength limit (k → 0) it describes sound modes propagat-
ing with a characteristic velocity

c = dω1

dk

∣∣∣
k→0

=
√

(g1D − 4F + 3I )n

M
. (13)

The spin-like branch ω2 is gapped, with the gap size cor-
responding to the frequency of Josephson plasma oscillations
[18]. From Eq. (12) we find this frequency as

h̄ωp = 2
√

(K + 2Fn − 2In)(g1Dn + K + 2Fn − 3In).

This expression is similar to the result of so-called full two-
mode model presented in Ref. [28].

In order to get further understanding of the obtained dis-
persion relations, it is necessary to analyze the coefficients
defined in Eqs. (5)–(8). The coefficient g1D represents the
one-dimensional reduction of the nonlinear interaction pa-
rameter g. It corresponds to a collisional interaction between
atoms inside each condensate. The other three coefficients
K , F , and I characterize the coupling between the two con-
densates. Their mathematical form and physical meaning are
very similar to the corresponding coefficients of the two-mode
model [28,29]. The linear coupling coefficient K represents
the probability density of a single particle tunneling through
the potential barrier. The other two coefficients F and I and
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FIG. 2. Numerically obtained spectrum of Bogoliubov excita-
tions as a function of Vb/μ. The modes are distinguished by their
symmetry: the red dotted lines correspond to density-like modes,
blue solid lines correspond to spin-like modes.

corresponding terms in Eq. (4) represent collisional coupling
between the two condensates. From the integrals (6)–(8) we
see also that K and F are both of first order with respect to the
overlap between χ1 and χ2, while I is of second order. This
means that if Eq. (3) holds then also

g1Dn � (|K|, |Fn|) � In. (14)

For many physically relevant applications the terms in Eq. (4)
proportional to I will be negligible, except for very strong
interaction regimes, where they can significantly alter the
dynamical phase portrait [30]. Here we do not address the
specific effects of these terms and consider I = 0 for the rest
of the paper.

From Eqs. (5)–(8) one may also see that two coefficients,
g1D and I , are strictly positive, and the other two, K and F ,
are in general not sign definite. Then the requirement that the
frequency ω2 of spin-like modes (12) is real-valued imposes
an additional restriction:

K + 2Fn > 0. (15)

Otherwise the ground state becomes formally unstable, which
would show a general inconsistency of the proposed one-
dimensional model. In this context it is worth noticing that
equations with purely linear coupling are often used in the
modeling of two-well condensates [19,24,26]. However, the
requirement (15) then reads simply as K > 0, which greatly
limits the applicability of such models or requires one to treat
the coefficient K as a fitting parameter (see, e.g., discussions
in Refs. [31,32]). We illustrate this issue and analyze the be-
havior of the coupling coefficients for a more specific physical
system in the next section (see Fig. 4 below).
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FIG. 3. The ratio between the numerically extracted momentum
km of the spin-like mode m and the corresponding analytical ex-
pectation for the uniform condensate mπ/L. The red circles denote
modes at Vb/μ = 0, the green stars at Vb/μ = 1, and blue crosses
show Vb/μ = 3. The momentum for the density-like branch is indis-
tinguishable from the spin-like one at Vb/μ = 3. Connection lines
are a guide for the eye.

III. QUASIPARTICLE SPECTRUM AND DISPERSION
IN A FINITE SYSTEM

Let us now turn to the more realistic case of a trapped
system. We consider a trap with the shape of a symmetric
double-well potential in the y direction and a box-like poten-
tial in the x direction:

V (x, y, z) = A
[
1 + e(L/2−|x|)/λ]−1

+ M

2

(
ω2

y y2 + ω2
z z2

) + Vb e−2y2/λ2
, (16)

where ωy = 2π × 50 Hz and ωz = 2π × 200 Hz are the trap
frequencies in transverse directions, L = 180 μm and A/h =
1500 Hz are respectively the length and the depth of the box-
like potential in the longitudinal direction, and λ = 2 μm is
the characteristic width of the barrier and the box potential
edge, which in a real experiment would be related to the

FIG. 4. Linear (K) and nonlinear (Fn) coupling terms, and their
combination K + 2Fn, which determine the stability of the ground
state. The quantities are shown as functions of the barrier height in
the trapped system.

resolution of the optical system. We consider the amplitude
of the barrier potential Vb as a tunable parameter controlling
the coupling between the two condensates. While this trap
configuration does not reproduce any specific experimental
setup, such traps are accessible in present-day experiments
with painted potentials [33] or atom chips [5].

The trapped system is modeled by the GPE (1). However
for computational simplicity we reduce it to two spatial di-
mensions, while the z dimension can be safely considered as
frozen in the low-energy region that we aim to analyze. A
usual dimensional reduction procedure leads to the rescaling
of the interaction parameter g, which in the two-dimensional
approximation becomes [34]

g = a

√
8π h̄3ωz

M
,

where a is the s-wave scattering length of the atoms. We
consider here 87Rb with M = 86.91 u and a = 5.313 nm. The
total particle number is N = 5.5 × 104, and it defines the
normalization of the wave function.

The stationary ground state of the system ψg and the corre-
sponding chemical potential μ is obtained by propagating the
GPE (1) in imaginary time [34]. In order to calculate the spec-
trum of collective excitations corresponding to the stationary
state ψg we solve a standard Bogoliubov–de Gennes system
of equations in two spatial dimensions [27]:

h̄ωu = (Ĥ0 + 2g|ψg|2 − μ)u + g|ψg|2v,

−h̄ωv = (Ĥ0 + 2g|ψg|2 − μ)v + g|ψg|2u, (17)

where

Ĥ0 = − h̄2∇2

2M
+ V (r). (18)

The functions u(r) and v(r) represent the spatial distribution
of a Bogoliubov mode with a characteristic frequency ω.

The numerically obtained spectrum of eigenfrequencies of
Eqs. (17) is shown in Fig. 2 as a function of the dimension-
less ratio Vb/μ. We can distinguish two types of modes by
their spatial symmetry across the barrier. Modes which are
symmetric across the barrier can be identified as density-like
excitations. We observe that they are rather insensitive to the
barrier height. The other type of modes are antisymmetric
across the barrier, and they are identified as spin-like exci-
tations. They are sensitive to the barrier height. In the limit of
a vanishing barrier the lowest spin-like mode is a dipole mode
with the characteristic frequency ω = ωy. For very high barri-
ers both types of modes become degenerate as they approach
the spectrum of two uncoupled condensates.

In order to build dispersion relations of the Bogoliubov
modes we need to associate a momentum value with each
mode. This poses a nontrivial question for the trapped system
as there is no translational symmetry in this case and the
modes can never be eigenstates of the momentum operator.
Following Refs. [35,36] we introduce the longitudinal mo-
mentum of each mode as an expectation value of the squared
momentum operator

km ≡
√

〈m|k2
x |m〉 =

√∫
dkk2

x [|ũm(k)|2 + |ṽm(k)|2]∫
dk[|ũm(k)|2 + |ṽm(k)|2]

, (19)
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where ũm(k) and ṽm(k) are Fourier transforms of the mth
Bogoliubov mode um(r) and vm(r). The momentum values ob-
tained from Eq. (19) can be compared to the idealized case of a
uniform system of length L, where the eigenmodes of the mo-
mentum operator are distributed as km = mπ/L with m ∈ Z.
The results of such a comparison are presented in Fig. 3. They
show reasonable agreement especially for higher modes. It is
worth noticing that the momentum distribution of Bogoliubov
modes is practically the same in low- and high-barrier regions.
It is noticeably different only for spin-like modes and only
for intermediate barrier heights Vb/μ ∼ 1. In the discussion
below we present the extracted momentum of the Bogoliubov
modes in units of π/L for easier interpretation.

To enable a comparison with the analytical predictions of
the previous section it is necessary also to reliably approxi-
mate the one-dimensional model coefficients g1D, K , and F ,
as well as the one-dimensional particle density n. To this
end we calculate the antisymmetric first excited state ψe of
Eq. (1), which is done by imaginary time evolution of an
initial function with odd symmetry across the barrier. Using
two stationary states ψg and ψe all the necessary coefficients
can be approximated directly (see the Appendix for details),
which allows us to compare the analytical dispersion relations
(11) and (12) to the numerical results without any fitted pa-
rameters. But before proceeding with such comparisons let
us first analyze the obtained coefficients K and F to see if
the one-dimensional model is valid for the trapped system
under consideration. The values of these coefficients depend-
ing on the ratio Vb/μ are shown in Fig. 4. One can clearly
see that there is a region with K < 0. In this region the one-
dimensional model would produce unphysical results if only
linear coupling is considered. At the same time the character-
istic combination K + 2Fn appears to be always positive and
monotonically decreasing. We can therefore conclude that the
model based on Eq. (4) is applicable for our system in a wide
range of barrier heights.

We now have all the necessary ingredients to analyze the
dispersion relations of the coupled trapped condensates and
compare them to the analytical formulas. In Fig. 5 we show
the results of such a comparison for two different values of
the barrier height. We see that the general behavior of the
dispersion curves is adequately reproduced by the analytical
model. The main discrepancy, which is more pronounced in
low- and intermediate-barrier regions, is the gap size for the
spin-like modes. The reason for this discrepancy is the same as
that of a usual two-mode model. It originates from the fact that
in a low-barrier region the spatial distribution of the lowest
spin-like excitation is quite different from the shape of the
antisymmetric excited state ψe, which was used to build the
analytical model. More details about this effect can be found
in Ref. [28]. Other features of the dispersion curves, such as
the slope of the density-like branch (the speed of sound) and
the curvature of the spin-like branch, are reproduced much
more accurately.

IV. SELF-LOCALIZATION OF SPIN-LIKE MODES

One may notice in Fig. 5 (left panel) that the lowest
spin-like mode deviates significantly from the corresponding
branch of the dispersion relation. This mode, which is in fact

FIG. 5. Dispersion relations for Vb/μ = 1 (left panel) and
Vb/μ = 2.5 (right panel). Symbols denote the numerically obtained
Bogoliubov modes of the trapped system. Solid lines show the cor-
responding analytical predictions of Eqs. (11) and (12). The red line
and the symbols “×” show the gapless density-like excitations, the
blue line and the symbols “+” correspond to the gapped spin-like
excitations. The dotted circle marks the location of the anomalous
lowest spin-like mode discussed in the text.

two degenerate modes, shows considerably lower frequency
and higher momentum values than expected from the smooth
dispersion curve. The existence of such anomalous modes is
specific for the intermediate-barrier region Vb/μ ∼ 1.

To further analyze the behavior of the lowest spin-like Bo-
goliubov excitations we trace the frequency and momentum
of several modes of this type depending on the barrier height.
The resulting trajectories are shown in Fig. 6. As previously
mentioned, a very simple model based on a finite uniform
system suggests that momentum distribution of the modes is
independent of the barrier height. From Fig. 6 we see that
higher excitations follow that prediction in general. The be-
havior of the lowest spin-like modes is, however, considerably
different. Depending on the barrier height the two lowest
modes may acquire a large momentum and become degener-
ate in both energy and momentum. Several other modes have
their momentum considerably reduced in the same region. The
last observation is even more apparent from Fig. 3, where
we see that the entire spectrum of momentum values (except
the lowest two modes) is considerably shifted downwards in
the case of Vb/μ = 1.

In order to quantify the observed degeneracy we calculate
the frequency and momentum difference between the two
lowest spin-like modes (see Fig. 7). Both these quantities
show a pronounced minimum when the barrier height is of
the same order as the chemical potential. The minimal values
for both frequency and momentum spacings are reached si-
multaneously at Vb/μ ≈ 0.87. This value also corresponds to
a maximal momentum of the two modes.

To get a better insight into anomalous behavior of the
lowest spin-like modes we show in Fig. 8 spatial distributions
of several lowest modes for Vb/μ = 1. The two lowest ones,
which are degenerate, appear to be also tightly localized at
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FIG. 6. Frequency and momentum of the spin-like Bogoliubov
modes depending on the barrier height. Blue symbols show the snap-
shots of this dependence for three specific barrier heights: Vb/μ = 0
(stars), Vb/μ = 1 (squares), Vb/μ = 3 (crosses). Red circles show the
dispersion of symmetric Bogoliubov modes at Vb/μ = 3 for compar-
ison. Solid lines show the trajectory of each mode with changing
barrier height Vb.

the edges of the condensate. Such states cannot be charac-
terized by reasonably well-defined momentum values, and
Eq. (19) rather represents the uncertainty of the momentum
for them, which explains the high values observed in Fig. 6.
Other spin-like modes shown in Fig. 8 contain a node in their
spatial distribution located close to the edges. This ensures
orthogonality of the modes but also may be responsible for
the reduction of the corresponding momentum values, seen in
Fig. 6.

Although the observed anomalous modes do not possess
a well-defined momentum, they can still be related to the
dispersion relation of spin-like modes in the homogeneous
system (12). Formally, this dispersion relation may have a
real-frequency solution also with an imaginary value of the
wave number k = iκ. This implies exponentially growing
solutions, which is certainly unphysical in an infinite system,
but may be possible if the system is finite. From the spatial
distribution of the first anomalous Bogoliubov mode v1 shown

FIG. 7. Relative frequency and momentum spacing between the
two lowest spin-like modes as a function of barrier height. Note the
logarithmic scale of the vertical axis.

FIG. 8. Lowest spin-like modes of the Bogoliubov spectrum for
Vb/μ = 1. The displacement from the equilibrium particle density
δn = ψg(u + v∗) is shown. Color represents the amplitude and sign
of such a displacement. The dashed line on the first panel shows the
1/e2 isosurface of the ground-state density |ψg|2.

in Fig. 9 we see that away from the edges its x dependence has
a form of real exponentials

v1 ∝ eκx + e−κx, (20)

which indeed corresponds to the imaginary-wave-number so-
lution of the homogeneous system. Similarly, the second
anomalous mode behaves as the difference of two expo-
nentials with the same factor κ. Furthermore, it is possible
to perform a more quantitative comparison with the ana-
lytical dispersion relation (12). To this end, we derive the
exponential factor κ from Eq. (12) by comparing the zero-
wave-number solution ω2(0) and the imaginary-wave-number
solution ω2(iκ). We get

κ
2 ≈ M

ω2
2(0) − ω2

2(iκ)

g1Dn + 2K + 4Fn
. (21)

-100 -50 0 50 100

10 -4

10 -3

10 -2

10 -1

10 0

FIG. 9. The solid blue line shows the lowest spin-like mode as
a function of the x coordinate at a fixed y0 close to the minimum of
one of the potential wells. The red dashed line shows the result of
Eqs. (20) and (21). Note the logarithmic scale of the vertical axis.
The presented mode corresponds to Vb/μ = 1.
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To perform a comparison with the numerically obtained spec-
trum we take the lowest normal mode frequency and the
anomalous mode frequency as ω2(0) and ω2(iκ), respectively.
From the results presented in Fig. 9 we find a surprisingly
good agreement of the above estimate with the behavior of
the actual numerical solutions for the finite system.

To the best of our knowledge, the observed self-
localization and mode degeneracy have not been analyzed
previously in coupled atomic BECs. However, several similar
phenomena were mentioned in previous theoretical studies. In
Ref. [18] the degenerate Bogoliubov modes are shown to be
responsible for the multifrequency plasma oscillations in long
bosonic Josephson junctions. Edge-localized modes also show
an apparent similarity with bending modes in the quasiparticle
spectrum associated with a vortex line in a trapped BEC [37].
Another similar self-localization behavior was also observed
for tunneling currents in superconducting Josephson junctions
[38] and attributed to the Meissner effect. In all these ex-
amples the self-localized degenerate modes seemingly appear
as an edge effect resulting from the elongated geometry of
the system. Further analysis of edge-localized solutions, espe-
cially concerning transitions between real and imaginary wave
numbers, and an extension to other trap potentials remain
interesting open questions for future studies.

V. CONCLUSIONS

In the present work we have performed an analytical and
numerical study of the linear collective excitation spectrum
in coupled elongated Bose-Einstein condensates. The devel-
oped analytical model describes the dispersion of Bogoliubov
quasiparticles in homogeneous condensates. The proposed
approach is an extension of the well-known two-mode ap-
proximation. It offers the advantage that a direct comparison
to numerical Gross-Pitaevskii simulations is possible without
fitting parameters. We have performed such a simulation for
a realistic trapped system and compared the frequency and
momentum spectra of quasiparticle excitations with analytical
predictions. Such a comparison shows a reasonable agree-
ment, taking into account the limitations of our analytical
approach, mostly inherited from the two-mode approxima-
tion.

Our results also reveal anomalous behavior of the low-
est spin-like excitations in the region of intermediate barrier
heights Vb/μ ∼ 1. The two lowest spin-like modes become
degenerate and tightly localized at the edges of the con-
densate. Such self-localization also leads to high momentum
values obtained for these modes, which is mainly attributed
to the imprecise definition of the mode momentum. The self-
localization of the lowest modes appears due to the finite size
of the system and can be covered by our analytical model
by inclusion of imaginary-wave-number solutions. Higher
excitations retain a spatial structure of plane waves and fol-
low the predicted dispersion relation, showing no signs of
coupling to the tunneling motion. This provides an intuitive
explanation of the results obtained in Ref. [39], where it was
shown that thermal fluctuations have almost negligible influ-
ence on the tunneling dynamics. Similar degenerate modes
were also previously observed in theoretical studies of har-
monically trapped condensates [18]. In that case, however, a

large number of pairwise degenerate modes was observed.
This indicates, in particular, that the number of anomalous
modes may depend on the details of the longitudinal trap
potential, and one has to be cautious applying the results of
the present work to other trap setups.

The observed localized quasiparticle modes are a clear
manifestation of a coupling between internal and mutual de-
grees of freedom in the two condensates. In realistic systems
this coupling may lead to discrepancies of the tunneling dy-
namics from the Josephson model, which was observed in
recent experiments [5,40] and also noticed in several numeri-
cal studies [18,26,39].
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APPENDIX: CALCULATION OF THE COEFFICIENTS IN
THE ONE-DIMENSIONAL MODEL

Here we show how the coefficients of the one-dimensional
model defined in Eqs. (5)–(8) can be calculated using the
solutions of the full system. The main problem is that the
separation of dimensions in Eq. (2) is approximate in a real
system, which means the functions χ1,2 are unknown. One
could build an average guess of these functions, but a more
useful approach is to rewrite the integrals of the coefficients,
Eqs. (5)–(8), in terms of known solutions of the full GPE (1).
This is done by propagating Eq. (1) in imaginary time with
an initial state prepared with the desired symmetry. Then we
construct the following two functions:


1(x, y, z) = ψg + ψe

2
, 
2(x, y, z) = ψg − ψe

2
. (A1)

These functions are by construction orthogonal and normal-
ized to N/2. Each of them is also localized (mainly) in one
of the potential wells. We then assume that spatial dimensions
can be separated as follows:


1 = �1(x)χ1(y, z), 
2 = �2(x)χ2(y, z). (A2)

The (unknown) functions �1,2 and χ1,2 are assumed to have
the following properties:

∫∫
dy dz χ1χ2 = 0,

∫∫
dy dz χ2

1 =
∫∫

dy dz χ2
2 = 1,

�1(x) = �2(x),
∫

dx �2
1 = N

2
.

Such a decomposition satisfies the ansatz (2) used in our one-
dimensional model. The above assumptions are sufficient to
rewrite the integrals (5)–(8) in terms of the known functions

043316-7



MOMME, PRIKHODKO, AND BIDASYUK PHYSICAL REVIEW A 102, 043316 (2020)


1 and 
2. We get

g1D = 4g

N2

∫∫
dy dz

( ∫
dx 
2

1

)2

,

K = − 2

N

∫∫∫
dx dy dz

(
− h̄2

2m

1∇2

y,z
2 + V⊥
1
2

)
,

F = − 4g

N2

∫∫
dy dz

(∫
dx
2

1

)( ∫
dx 
1
2

)
,

I = 4g

N2

∫∫
dy dz

( ∫
dx
1
2

)2

.

The one-dimensional density n, which enters the dispersion
relations (11) and (12) can be estimated as follows:

n = max
x

∫∫
dy dz 
2

1.

Naturally, such an estimate is only valid if the condensate is
mostly uniform in the x dimension, which is the case for the
trap potential (16) considered in the present work.

We stress that all the above expressions are straightfor-
wardly calculated from the numerically obtained stationary
solutions ψg and ψe. They also provide a reasonable ap-
proximation if the separation of dimensions (A2) is only
approximate, which is always the case for our finite system.
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