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Motivated by a recent experiment [J. H. Han et al., Phys. Rev. Lett. 122, 065303 (2019)], we investigate
the many-body physics of interacting fermions in a synthetic Hall tube, using a state-of-the-art density-matrix
renormalization-group numerical method. Since the interleg couplings of this synthetic Hall tube generate
an interesting spin-tensor Zeeman field, exotic topological and magnetic properties occur. In particular, four
quantum phases, such as nontopological spin-vector and -tensor paramagnetic insulators, and topological and
nontopological spin-mixed paramagnetic insulators, are predicted by calculating the entanglement spectrum,
entanglement entropies, energy gaps, and local magnetic orders with three spin vectors and five spin tensors.
Moreover, the topologically magnetic phase transitions induced by the interaction as well as the interleg
couplings are also revealed. Our results establish a way to explore many-body (topological) states induced by
both the spiral spin-vector and -tensor Zeeman fields.

DOI: 10.1103/PhysRevA.102.043313

I. INTRODUCTION

Since the discovery of the quantum Hall effect [1], the
exploration of novel topological states of matter has attracted
a great deal of attention both theoretically and experimen-
tally, since they provide important applications in designing
novel quantum devices and processing quantum information.
The Hofstadter-Harper Hamiltonian is one of the fundamen-
tal models that are used to investigate topological states [2].
The experimental realization of such a Hamiltonian in cold
atomic gases creates the opportunity for simulating topolog-
ical states [3–5]. In cold-atom systems, the internal degrees
of freedom of atoms, such as the hyperfine spins and clock
states [6–14], can be treated as a synthetic dimension to
simulate the (D + 1)-dimensional quantum physics using D-
dimensional lattices [15], e.g., the four-dimensional quantum
Hall effect [16] and chiral edge current of Hall ribbons [6,7].

Using three hyperfine states as a synthetic lattice dimen-
sion and coupling them through synthetic gauge fields by
the two-photon Raman process [17], spin-1 spin-orbit cou-
pling [18–22] and spin-tensor-momentum coupling [23,24]
have also been implemented. When the links between the hy-
perfine states are cyclical with a gauge flux φ = 2π/3, the op-
tical lattice can form a synthetic Hall tube [25,26], which is a
simple Hofstadter-Harper Hamiltonian [2]. The synthetic Hall
tube supports a generalized inversion symmetry-protected
topological insulator [27], which is similar to the integer
quantum Hall state. Since the time-reversal, particle-hole,
and chiral symmetries are broken, this topological insulator
belongs to the symmetry class A (unitary) of the Altland-
Zirnbauer classification [28–31]. By varying one of the
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interleg coupling strengths, there exists a topological phase
transition with a closing band gap at the critical point [25]. In
a recent experiment, this interesting synthetic Hall tube was
realized successfully in the alkaline-earth fermions [32].

Apart from the single-particle quantum regulation in cold-
atom experiments, the interactions between the internal states
can be controlled via Feshbach resonances [33] and more
importantly generate rich many-body phenomena [34–40].
However, the interacting synthetic Hall tube has not been
fully investigated. In this paper we investigate many-body
properties of such a system, based on a state-of-the-art
density-matrix renormalization-group (DMRG) numerical
method [41,42]. Since the interleg couplings of this synthetic
Hall tube generate an interesting spin-tensor Zeeman field,
it is necessary to explore magnetic properties of the system,
apart from the interaction-driven topological transition. Due
to the coexistence of the spiral spin-vector and -tensor Zee-
man fields in the synthetic Hall tube, local magnetic orders
with three spin vectors and five spin tensors should be intro-
duced [43]. In terms of the calculated entanglement spectrum,
entanglement entropies, energy gaps, and local magnetic or-
ders, we find four quantum phases such as nontopological
spin-vector and -tensor paramagnetic insulators, and topolog-
ical and nontopological spin-mixed paramagnetic insulators.
Moreover, the topologically magnetic phase transitions in-
duced by the interaction as well as the interleg couplings are
also revealed. Our results provide a way to explore many-body
(topological) states induced by both the spiral spin-vector and
-tensor Zeeman fields.

II. MODEL AND HAMILTONIAN

Similarly to Ref. [32], here we consider the alkaline-
earth fermions 173Yb trapped in an effective one-dimensional
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FIG. 1. (a) Schematics of the system setup with three Raman
lasers Rσ,π,σ

1,2,3 , which are represented by the yellow, blue, and red
arrows, respectively. Here Rσ

1 has is at an angle η from the x axis. A
magnetic field B along the z axis is applied to lift the spin degeneracy
of the ground state |1S0〉. (b) Three hyperfine spin states in the
ground state |1S0〉 of alkaline-earth(-like) atoms 173Yb are coupled
by three two-photon Raman transitions. (c) Synthetic Hall tube with
a uniform flux φ on each side plaquette and interaction U between
these hyperfine spin states.

optical lattice (in the x direction), where the system is highly
confined in the other two directions (y and z) and takes a
cigar-shaped structure (i.e., tube), as shown in Fig. 1(a). Three
hyperfine spin states of the ground state |1S0〉, i.e., |1〉 = |F =
5/2, mF = −5/2〉, |2〉 = |F = 5/2, mF = −3/2〉, and |3〉 =
|F = 5/2, mF = −1/2〉, are chosen as three legs, as shown
in Fig. 1(b). Three linearly polarized Raman laser beams
Rσ,π,σ

1,2,3 are used to make three two-photon Raman transitions
between the states |1S0, F = 5/2〉 and |3P1, F = 7/2〉. The
couplings |1〉 ↔ |2〉 and |2〉 ↔ |3〉 are the π -σ transitions
(�mF = 1), while the coupling |1〉 ↔ |3〉 is the σ -σ transition
(�mF = 2), as shown in Fig. 1(b). Thus, the three-component
atomic tunneling along the lattice and three-leg couplings with
a complex phase factor form a synthetic tube with a uniform
flux per plaquette, as shown in Fig. 1(c).

When the effective one-dimensional optical lattice is deep
enough and the Rabi frequency of the two-photon Raman tran-
sitions is not too large, we use the single-band approximation
to derive the tight-binding model Hamiltonian [32]

Ĥ = Ĥhop + Ĥ� + Ĥint, (1)

where the tunneling Hamiltonian

Ĥhop =
∑
j,σ

(−t ĉ†
j+1,σ ĉ j,σ + H.c.), (2)

the interleg coupling Hamiltonian

Ĥ� = 1

2

∑
j,σ �=σ ′

(�σσ ′eiφ j ĉ†
j,σ ĉ j,σ ′ + H.c.), (3)

and the interaction Hamiltonian

Ĥint = U
∑

j,σ �=σ ′
n̂ j,σ n̂ j,σ ′ . (4)

Along the real space, the interaction is on site and short
ranged, while in the synthetic dimension, the interaction is
long ranged. In Eqs. (2) and (3), ĉ j,σ (ĉ†

j,σ ) is the annihila-
tion (creation) operator for a fermion at the real lattice site
j = 1, . . . , L with spin σ = (1, 2, 3) and the lattice length L.
In Eq. (4) n̂ j,σ ≡ ĉ†

j,σ ĉ j,σ is the number operator. In addition,
t is the tunneling rate; �σσ ′ is the Rabi frequency of the
two-photon Raman transition between the spin states |σ 〉 and
|σ ′〉 and is set to �12 = �23 for simplicity; the j-dependent
complex phase factor eiφ j results from the momentum im-
parted by the two-photon Raman transitions; the flux φ =
kRdx(1 − cos η), with kR the recoil momentum of the Raman
lasers and dx the lattice constant; U is the interaction strength,
and H.c. is the Hermitian conjugate.

The Hamiltonian (1) has a distinct advantage that all pa-
rameters can be tuned independently. For example, t can be
tuned by varying the depth of the optical lattice, �σσ ′ can be
controlled by adjusting the magnitudes of the Raman laser
beams, φ can be manipulated by controlling the angle η,
and U can be tuned via the external magnetic field through
an orbital Feshbach resonance [44–46] or via the transverse
trapping frequencies through the confinement-induced reso-
nance [47,48]. In the following, we mainly consider the case
of the unit filling, i.e., n = N/L = 1, with N the total number
of atoms, and φ = 2π/3, since the system exhibits a synthetic
Hall tube in such a condition. We also address the repulsive
interaction U > 0 and set t = 1 as a unit.

In the absence of interaction (U = 0), when �− <

�31 < �+ with �± = ±3t +
√

�2
12 + 9t2 , this synthetic Hall

tube supports a topological insulator protected by general-
ized inversion symmetry [25,27,32]. Since the time-reversal,
particle-hole, and chiral symmetries are broken, the topologi-
cal insulator belongs to the unitary symmetry class A (unitary)
of the Altland-Zirnbauer classification and is characterized
by a Z invariant [28–31]. More interestingly, the interleg
couplings generate spatially periodic spin-vector and -tensor
Zeeman fields with the Hamiltonian

Ĥ� =
∑

j

�12
[

cos(φ j)Sx
j − sin(φ j)Sy

j

]

+�31
[

cos(φ j)
(
Nxx

j − Nyy
j

) + sin(φ j)Nxy
j

]
, (5)

where S j = ∑
σσ ′ b†

jσ Fσσ ′b jσ ′ , with Fσσ ′ the spin operators
of the total angular momentum F = 1; Nαβ = {Sα, Sβ}/2 −
δαβS2/3 is the anticommutation relation with α(β ) = (x, y, z);
�12 and �31 are called the spin-vector and -tensor Zeeman
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fields, respectively; and 2π/φ is the spiral period of the Zee-
man field. When �31 = 0, the synthetic Hall tube reduces to
the spin-1 spin-orbit-coupled optical lattice only with the spin-
vector Zeeman field [18–21], which has a trivial topology.
Notice that �12 can also be treated as the spin-tensor Zeeman
field since the Hamiltonian (5) has rotational symmetry.

In the presence of weak interaction, the topological insu-
lator with the Z invariant still exists since the generalized
inversion symmetry remains [49]. By further increasing the
interaction strength, the topology of the system becomes triv-
ial. On the other hand, the interaction Hamiltonian (4) can also
be rewritten in a magnetic form

Ĥint = U

2

∑
j

Sz
j
2(n̂ j − 1). (6)

This shows clearly that at half filling (n = 1), the interaction
contributes little to the magnetism of the system, i.e., the
magnetic properties of the synthetic Hall tube are mainly
determined by Ĥ�.

Based on the above qualitative analysis, it can be found
that the synthetic Hall tube exhibits exotic topological and
magnetic properties arising from the competition between the
tunneling, spin-vector and -tensor Zeeman fields, and inter-
actions. In order to quantitatively reveal them, we will use a
state-of-the-art DMRG numerical method, for which we retain
400 truncated states per DMRG block and perform 30 sweeps
with a maximum truncation error on the order of 10−10.

III. ORDER PARAMETERS

The many-body topological properties can be well de-
scribed by the degeneracy in the entanglement spectrum,
entanglement entropy, chemical potential spectrum, and ex-
cited energy gap. The entanglement spectrum is defined
as [50]

ξi = − ln(ρi ), (7)

where ρi is the eigenvalue of the reduced density matrix
ρ̂A = TrB|ψ〉〈ψ |, with |ψ〉 the ground-state wave function and
A and B corresponding to the left and the right half of the one-
dimensional chain, respectively. The system is topological
if the entanglement spectrum is degenerate since the entan-
glement spectrum resembles the energy spectrum of edge
excitations and vice versa [50–56]. The quantum criticality
of the interaction-driven topological phase transition can be
governed by the von Neumann entropy [56–61]

SvN = −TrA(ρ̂A log ρ̂A). (8)

The divergence of the von Neumann entropy at the critical
point not only indicates a continuous transition but also yields
a central charge, which reflects the universality class of phase
transition. The von Neumann entropy of a subchain of length
l is given by

SvN = C

6
ln

(
sin

π l

L

)
+ const, (9)

in which the slope at a large distance gives the central
charge C of the conformal field theory underlying the critical
behavior [62,63].

The appearance of edge states is usually considered to be
a hallmark of topological properties for the bulk system. The
topological insulator of the synthetic Hall tube has two gapless
edge states inside the gap between the lowest and the upper
branches in the chemical potential spectrum [25], which is
essentially the energy required to add an atom to a system of
N atoms and can be defined as

μ = Eo
g (N ) − Eo

g (N − 1). (10)

Here Eo
g (N ) is the ground-state energy of N atoms under

open boundary conditions. The topological ground state of
the synthetic Hall tube is nondegenerate and separated from
the first excited state by a finite gap, which closes and reopens
in the process of the topological phase transition [32]. The
excited energy gap is defined as

�e = E p
e (N ) − E p

g (N ), (11)

where E p
e (N ) [E p

g (N )] is the first-excited-state (ground-state)
energy of N atoms under periodic boundary conditions.

Due to the coexistence of the spin-vector and -tensor Zee-
man fields, the magnetism of the synthetic Hall tube should be
described by whole spin-1 local magnetic orders (eight spin
moments with three spin vectors and five spin tensors) and
their correlations [43]. The local spin vector

	S j = (〈
Sx

j

〉
,
〈
Sy

j

〉
,
〈
Sz

j

〉)T
, (12)

while the local spin-tensor fluctuation matrix Tj has tensor
moments

T αβ
j = 〈{

Sα
j , Sβ

j

}〉/
2 − 〈

Sα
j

〉〈
Sβ

j

〉
. (13)

Geometrically, 	S j is characterized by an arrow and Tj is
governed by an ellipsoid [with principle axis lengths ln

T ( j)
(n = a, b, c) and orientations 	vn

T ( j) given by the square roots
of the eigenvalues and eigenvectors of T αβ

j [64]]. Since the

magnetic properties are mainly determined by Ĥ�, all the
insulators are spiral paramagnetic phases without any long-
range correlations. As a result, eight independent geometric
parameters, including the length lS and spherical coordinates
θS and φS of the arrow, the two axis lengths la,b

T with the third

axis length lc
T =

√
2 − (lS )2 − (la

T )2 − (lb
T )

2
, and the orienta-

tional Euler angles θT , φT , and φ′
T of the ellipsoid, are chosen

to quantitatively characterize and geometrically visualize the
magnetic orders.

IV. QUANTUM PHASES

A. Noninteracting case (U = 0)

We first address the case of the noninteracting case (U =0).
For �− < �31 < �+, the ground state is a topological insula-
tor and vice versa. As a result, we can discuss the magnetisms
of the topological and nontopological insulators as varying the
spin-tensor Zeeman field �31 for a fixed spin-vector Zeeman
field �12/t = 12.3. When �31 = 0, the system is the same
as the spin-1 spin-orbit-coupled optical lattice only with the
spin-vector Zeeman field [18–21]. In this case, the spin-vector
arrow has a unit length lS = 1 and spirals in the x-y plane
(i.e., θS is a constant and φS changes cyclically), as shown
in Figs. 2(a i) and 2(a ii). The spin-tensor ellipsoid almost
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FIG. 2. (a i), (b i), and (c i) Schematic diagrams of the spin-vector density arrows 	Sj and the spin-tensor density ellipsoids Tj . The blue
arrow denotes the spin vector 	S, while the red ellipsoid reflects the spin tensor T , in which the black arrows are the ellipsoid’s axis orientations.
(a ii), (b ii), and (c ii) Spatial distributions of [lS ( j), θS ( j), φS ( j)] for the vector-density arrows 	Sj . (a iii), (b iii), and (c iii) Distributions of the
axis lengths ln

T ( j) (n = a, b, c) of the spin-tensor density ellipsoids Tj . (a iv), (b iv), and (c iv) Distributions of the orientational Euler angles θT ,
φT , and φ′

T of the spin-tensor density ellipsoids Tj . The parameters are �12/t = 12.3, U/t = 0, L = 64, and (a) �31/t = 0, (b) �31/t = 12.3,
and (c) �31/t = 19.

is a plate with large lb,c
T and small la

T [see Fig. 2(a iii)] and
also spirals with a cyclical variation φT and constants θT and
φ′

T [see Fig. 2(a iv)], since the spin-tensor ellipsoid depends
crucially on the three spin-vector operators Sα [see Eq. (13)].
This paramagnetic insulator dominated only by the spin vector
is called nontopological spin-vector paramagnetic insulator
(NTSV). For �31 < �− (i.e., a small spin-tensor Zeeman
field), the ground state is still the NTSV.

For the topological regime with �− < �31 < �+, the spin-
vector arrows also spiral in the x-y plane but have short lengths
lS < 1, as shown in Figs. 2(b i) and 2(b ii). In this case,
the spin vector cannot fully describe the magnetic properties
and the spin tensor should be considered. The spin-tensor
ellipsoids have finite la,b,c

T [see Fig. 2(b iii)] and also spiral
in the x-y plane with a cyclical variation φT and constants
θT and φ′

T [see Fig. 2(b iv)]. Different from the NTSV, this
spiral spin-tensor ellipsoid only depends on the spin-tensor
Zeeman field. This topological insulator is called a topologi-
cal spin-mixed paramagnetic insulator (TSM). For �31 > �+
(i.e., a large spin-tensor Zeeman field), the spin-vector arrow
vanishes (i.e., lS = 0), as shown in Figs. 2(c i) and 2(c ii).
In this case, the magnetic orders are fully dominated by the
spin-tensor ellipsoid. The ellipsoids have lb,c

T ∼ 1 and la
T → 0

[see Fig. 2(c iii)] and also spiral in the x-y plane with a cyclical
variation φT and constants θT and φ′

T [see Fig. 2(c iv)]. This
paramagnetic insulator without the spin vector is called a
nontopological spin-tensor paramagnetic insulator (NTST).

The above analysis of Fig. 2 shows that there exist two
topologically magnetic phase transitions with increasing spin-
tensor Zeeman field �31/t . One is the transition from the
NTSV to the TSM at �c1

31 = �−. At this critical point, the
spin-vector arrow length lS drops rapidly, but the ellipsoid’s

axis lengths la,b,c
T increase rapidly [see Fig. 3(a)]. The other

is the transition from the TSM to the NTST at �c2
31 = �+.

At this critical point, the spin-vector arrow length lS sud-
denly becomes zero and the ellipsoid’s axis lengths la,b

T (lc
T )

increase (decrease) abruptly [see Fig. 3(a)]. The derivatives
of the lengths are not continuous at the critical points �c1,c2

31
[see Fig. 3(b)]. Figure 3(c) shows the phase diagram in the
�31-�12 plane. Both the phase transitions of NTSV ↔ TSM
and TSM ↔ NTST [see blue lines in Fig. 3(c)] are of second
order with a closing excited energy gap �e at the critical
points [25,32].
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FIG. 3. (a) Lengths and (b) derivatives of the spin-vector arrow lS

and the axis lengths of the spin-tensor ellipsoid la,b,c
T as functions of

the spin-tensor Zeeman field �31/t with a spin-vector Zeeman field
�12/t = 12.3. (c) Phase diagram in the �12-�31 plane. In all panels
U = 0 and L = 64.
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FIG. 4. (a) Four lowest levels in the entanglement spectrum ξi

(i = 0, 1, 2, 3), (b) von Neumann entropy SvN, (c) chemical poten-
tial spectrum μ, (d) excited energy gap �e, and (e) length of the
spin-vector arrow lS and axis lengths of the spin-tensor ellipsoid
la,b,c
T as functions of the interaction strength U/t . In (a)–(c) and (e),
�31/t = 11 and L = 32 and the open boundary condition is used.
In (d), �31/t = 11 and L = 12 and the periodic boundary condition
is used. The inset in (b) shows the von Neumann entropy of a
subchain of length l as a function of sin(π l/N ) for a chain with
L = 32 at the critical point Uc/t = 1.85. The solid line is the linear fit
SvN = C

6 ln[sin(π l/N )] + 1.22 with C ≈ 2. The central charge is six
times the slope of the linear fit. (f) Length of the spin-vector arrow
lS and axis lengths of the spin-tensor ellipsoid la,b,c

T , as well as the
excited energy gap �e in the inset, as functions of the spin-tensor
Zeeman field �31/t with the interaction strength U/t = 6. In (f),
L = 32 and the open boundary condition is used. In the inset of (f),
L = 12 and the periodic boundary condition is used. In all panels
�12/t = 12.3.

B. Interacting case (U > 0)

We now explore many-body properties induced by the
repulsive interaction (U > 0). We first address the topologi-
cal properties driven by the interaction, when �12/t = 12.3
and �31/t = 11. For a weak interaction, the entanglement
spectrum ξi is twofold degeneracy and no longer degenerate
beyond a critical interaction strength Uc/t ∼ 1.85, as shown in
Fig. 4(a). Without any symmetry breaking in this processing,
it is a typical topological phase transition from a topological
insulator to a nontopological insulator. As demonstrated in
Fig. 4(b), sharp features of the von Neumann entropy SvN

emerge at the critical point. From the inset in Fig. 4(b), we
estimate C ∼ 1.97, which is close to the universality class of
the Luttinger liquid (C = 2) and shows the continuity of the
topological phase transition. On the other hand, in the absence
of interaction, there are two gapless edge states inside the

bulk band gap in the chemical potential spectrum μ. By in-
creasing the interaction strength beyond a critical value Uc/t ,
these edge states merge into the bulk band and the system
becomes a nontopological insulator, as shown in Fig. 4(c).
Moreover, the excited energy gap �e closes at the same criti-
cal value and then reopens, as shown in Fig. 4(d). This critical
point is consistent with that derived from entanglements in
Figs. 4(a) and 4(b).

We now explore the magnetic orders in the presence of
interaction. Based on the above graphics of Fig. 2, it can be
found that the spin-vector arrows and the spin-tensor ellip-
soids exhibit the same spiral features, but show the distinct
lengths lS and la,b,c

T . This means that these lengths are ade-
quate to describe the magnetic properties. As a result, we only
calculate the lengths lS and la,b,c

T and ignore the angles θS , φS ,
θT , φT , and φ′

T hereafter.
In Fig. 4(e) we plot the lengths lS and la,b,c

T as functions
of the interaction strength U/t . This figure shows that at the
critical point Uc/t , the spin-vector arrow length lS suddenly
increases to lS ∼ 1 and the spin-tensor ellipsoid’s axis lengths
la,b
T drop rapidly, which indicates that this topologically mag-

netic phase transition from the TSM to the NTSV occurs. In
Fig. 4(f) we plot the lengths lS and la,b,c

T as functions of the
spin-tensor Zeeman field strength �31 for a large interaction
strength U/t = 6. In this case, all the insulators are nontopo-
logical since the entanglement spectrum ξi is nondegenerate.
Interestingly, with increasing spin-tensor Zeeman field �31,
the vector length lS and the ellipsoid’s axis lengths la,b

T first
remain the same and then lS rapidly decreases to lS < 1 and
la,b
T (lc

T ) increase (decreases) rapidly. The corresponding phase
is called the nontopological spin-mixed paramagnetic insula-
tor (NTSM). Further increasing the spin-tensor Zeeman field
�31, lS suddenly drops to lS ∼ 0 and la,b

T rapidly increase to
la,b
T ∼ 1, i.e., the system enters into the NTST. In the pro-

cessing of the nontopological magnetic phase transition, the
excited energy gap �e also closes at the critical points, as
shown in inset of Fig. 4(f). Note that for a small interaction,
the fundamental properties are similar to those in Fig. 3(a) and
thus not plotted here. We also calculate the orders of other
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FIG. 5. (a) Finite-size scaling of the critical points �c
31/t of the

TSM-NTST transition (red circles) with U/t = 2, the TSM-NTSV
transition (black squares) with U/t = 2, the NTSM-NTST transition
(green down triangles) with U/t = 6, the NTSV-NTSM transition
(blue up triangles) with U/t = 6, and the NTSV-NTST transition
(olive diamonds) with U/t = 32. The symbols are the DMRG results
and the solid lines are the fitting. (b) Phase diagram in the �31-U
plane for the spin-vector Zeeman field �12/t = 12.3. The blue and
black lines show the continuous phase transitions. The blue lines
denote the liquids with C = 2.
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finite-sizes systems and find that the orders have the same
features. By using finite-size scaling, we get the critical points
of phase transitions in the thermodynamic limits, which are
almost the same as those of finite-size systems, as shown in
Fig. 5(a).

Finally, with the help of the calculated entanglement
spectrum, entanglement entropies, energy gaps, and local
magnetic orders, in Fig. 5(b) we map out the phase diagram
in the �31-U plane for the spin-vector Zeeman field �12/t =
12.3. This figure shows clearly four different phases such as
the TSM, the NTSM, the NTSV, and the NTST, which are well
controlled by both the spin-vector and -tensor Zeeman fields
as well as the repulsive interaction. The NTSM phase shrinks
between the NTSV and NTST phases and finally disappears
when increasing the interaction strength U . Moreover, all the
phase transitions with a closing excited energy gap �e are of
second order.

V. CONCLUSION

Before concluding this paper, we briefly discuss how
to observe these quantum phases and phase transitions in
cold-atom experiments. The entanglement entropy can be
measured using quantum interference of many-body twins
of ultracold atoms in optical lattices [61]. The excited en-
ergy gap closing in the processing of the topological phase

transition can be observed via momentum-resolved analysis
of the quench dynamics [32]. The local magnetic orders can
be measured by isolating the sites of interest using additional
site-resolved potentials [65–68]. Thus, all the quantum phases
and phase transitions can be observed in current experimental
setups.

In conclusion, we have studied the many-body physics
of an interacting synthetic Hall tube by the state-of-the-art
DMRG numerical method. We have found four quantum
phases, including the TSM, the NTSM, the NTSV, and the
NTST, by means of the calculated entanglement spectrum, en-
tanglement entropies, energy gaps, and local magnetic orders.
These quantum phases depend crucially on the interaction and
the spiral spin-vector and -tensor Zeeman fields induced by
the interleg couplings. Our work provides a way to explore
many-body (topological) states induced by both the spiral
spin-vector and -tensor Zeeman fields.
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