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Dissipation-facilitated molecules in a Fermi gas with non-Hermitian spin-orbit coupling
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We study the impact of non-Hermiticity on the molecule formation in a two-component spin-orbit-coupled
Fermi gas near a wide Feshbach resonance. Under an experimentally feasible configuration where the two-photon
Raman process is dissipative, the Raman-induced synthetic spin-orbit coupling acquires a complex strength.
Remarkably, dissipation of the system facilitates the formation and binding of molecules, which, despite their
dissipative nature and finite lifetime, exist over a wider parameter regime than in the corresponding Hermitian
system. These dissipation-facilitated molecules can be probed by the inverse radio-frequency (rf) spectroscopy,
provided the Raman lasers are blue detuned to the excited state. The effects of dissipation manifest in the rf
spectra as shifted peaks with broadened widths, which serve as a clear experimental signature. Our results,
readily observable in current cold-atom experiments, shed light on the fascinating interplay of non-Hermiticity
and interaction in few- and many-body open quantum systems.
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I. INTRODUCTION

Non-Hermitian physics have been intensively explored
recently in a wide range of experimental systems such as
optics, acoustics, and microwave cavities [1,2]. Whereas most
of these studies focus on single-particle physics, the inter-
play of non-Hermiticity and interaction, a key element in
understanding non-Hermitian many-body quantum systems,
is a more challenging but less explored subject. An ideal
platform for this study is cold atomic gases, where the inter-
action is highly tunable through Feshbach resonances [3], and
non-Hermiticity can be conveniently implemented via laser-
induced one-body [4–9] or two-body [10–12] dissipation. Up
to now, the existing experimental [4–7,10–12] and theoretical
[13–22] studies have predominantly focused on properties
of interacting bosons with dissipation, while the many-body
physics of dissipative fermions have rarely been discussed,
except for a limited number of theoretical works exploring
the fermion superfluidity in various non-Hermitian settings
[23–25]. At this stage, it is highly desirable to search for read-
ily accessible non-Hermitian systems, fermionic in particular,
where the interplay of interaction and non-Hermiticity leads
to nontrivial and experimentally detectable phenomena.

In this work we propose an experimentally feasible scheme
where the nontrivial effect of non-Hermitian spin-orbit cou-
pling (SOC) on the molecule formation in a two-component
Fermi gas can be probed by the widely used radio-frequency
(rf) spectroscopy [26]. We start from the two-photon Raman
process that has been used to generate SOCs in Hermitian
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cold-atom systems [27–31]. To make the SOC non-Hermitian,
we consider the case where the intermediate excited state
is subject to a controllable loss, which, for instance, can
be induced by an additional laser, as illustrated in Fig. 1.
Such a loss channel makes the SOC strength complex val-
ued, with tunable real and imaginary parts. Since the SOC
does not commute with interatomic interactions, the resulting
non-Hermitian system is expected to host nontrivial few- and
many-body quantum phenomena.

Here we focus on the study of two-body bound states, or
molecules, under the non-Hermitian SOC. We find that, in
contrast to previously realized spin-selective dissipation [8,9],
which do not affect the molecular binding of spin-singlet
fermions [32], the non-Hermitian SOC has significant im-
pact on molecules. Remarkably, the non-Hermitian SOC can
greatly facilitate the molecule formation, in that it can induce
new molecular branches or enhance the binding energy of ex-
isting molecules in a wide parameter regime. This is in distinct
contrast to Hermitian systems where the molecule formation
is suppressed by SOC [33–35]. Another important feature of
these molecules is that their binding energies are generally
complex valued with negative imaginary parts, reflecting their
dissipative nature with finite lifetime. Nevertheless, we show
that these molecules can still be experimentally probed via
the inverse radio-frequency (rf) spectroscopy. Signatures of
non-Hermiticity manifest themselves as shifted spectral peaks
and broadened widths in the rf spectrum. Our results pave the
way for experimental explorations of fundamental few-body
physics in non-Hermitian fermionic systems, which are in-
dispensable for the understanding of many-body phenomena
therein.

The work is organized as follows. In Sec. II we derive the
non-Hermitian effective Hamiltonian of the system starting
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FIG. 1. Schematics of the experimental setup. A two-component
Fermi gas with hyperfine spin states |↑〉 and |↓〉 are subject to
a non-Hermitian SOC through a dissipative Raman process. The
parameters q, η, and δ, respectively, represent the transferred mo-
mentum, single-photon Rabi frequency, and detuning. The tunable
effective decay rate � of the intermediate excited state (|e〉) contains
contribution from both spontaneous decay and laser-induced decay.
Here we show only Raman lasers with red detuning as an example.

from the Lindblad equation. We then study the single-particle
physics in Sec. III, before fully characterizing the dissipation-
facilitated molecules in Sec. IV. In Sec. V we show that
signals of the dissipative molecules can be detected through
rf spectroscopy. Finally, we summarize in Sec. VI.

II. MODEL

We start by writing down the Lindblad master equation
corresponding to the configuration in Fig. 1 (h̄ = 1 throughout
the paper)

d

dt
ρ = −i[H, ρ] − 1

2�(S†Sρ + ρS†S − 2SρS†)

= −i(Heffρ − ρH†
eff ) + �SρS†. (1)

Here the single-particle Hamiltonian H for the internal de-
grees of freedom is given by

H = −δ|e〉〈e| + η
(
eiqx|e〉〈↑| + e−iqx|e〉〈↓| + H.c.

)
, (2)

where |e〉 is the excited state, |σ 〉 (σ =↑,↓) are the ground
hyperfine spin states, and q is the transferred momentum.
Dissipation of the system originates from either the sponta-
neous decay of state |e〉, or the laser-induced decay of |e〉 to
a third state, or both. These loss processes can be described
by the quantum jump term in Eq. (1), where the quantum
jump operator is given by S = |r〉〈e| (|r〉 is the reservoir
state) and � is the overall decay rate of |e〉. We also assume
the decay of |e〉 does not end up in states |σ 〉. This can be
achieved, for example, by coupling the excited state |e〉 to
states which are not trapped, and are immediately lost from the
system.

Adiabatically eliminating the excited state |e〉, we derive
the equations of motion for the remaining density-matrix ele-
ments:

d

dt
ρ̃↑↑ = −i(� − �∗)ρ̃↑↑ − i�e−i2qxρ̃↓↑ + i�∗ei2qxρ̃↑↓, (3)

d

dt
ρ̃↓↓ = −i(� − �∗)ρ̃↓↓ − i�ei2qxρ̃↑↓ + i�∗e−i2qxρ̃↓↑,

(4)
d

dt
ρ̃↑↓ = −i(� − �∗)ρ̃↑↓ − i�e−i2qxρ̃↓↓ + i�∗ei2qxρ̃↑↑,

(5)
d

dt
ρ̃rr = i(� − �∗)(ρ̃↑↑ + ρ̃↓↓), (6)

where � = η2/(δ + i�/2), and ρ̃ denotes the density ma-
trix in the subspace spanned by the states {|↑〉, |↓〉, |r〉}.
Equations of motion (3)–(6) can be rearranged into a compact
Lindblad form

d

dt
ρ̃ = −i(HSOCρ̃ − ρ̃H†

SOC) + γ
∑
i=1,2

Liρ̃L†
i , (7)

where the quantum jump operators L1 = |r〉〈↑| and L2 =
|r〉〈↓|, γ = −2Im(�), and the non-Hermitian effective
Hamiltonian is given by

HSOC = �|↑〉〈↑| + �|↓〉〈↓| + �
(
e−i2qx|↑〉〈↓| + H.c.

)
.

(8)

Note that above the Hamiltonian also includes a complex
Stark-shift term (of strength �) for each spin, which ensures
the dissipative nature of all eigenstates of the system.

Time evolution of the system under Eq. (7) can be
described as non-Hermitian dynamics driven by the non-
Hermitian Hamiltonian HSOC, which is further interrupted by
quantum jumps, dictated by the terms γ LiρL†

i (i = 1, 2). For
the short-time dynamics within the timescale t � 1/γ , the
impact of quantum-jump terms is insignificant and the system
dynamics is dominantly governed by the non-Hermitian ef-
fective Hamiltonian HSOC. The physical origin of this relation
is that the number loss of our system comes directly from
the dissipative spin-orbit coupling (SOC) in the two-photon
Raman process, therefore the imaginary SOC strength deter-
mines the quantum jump (or number decay) of such a system.
Note that in the far detuning regime η �

√
δ2 + (�/2)2, the

excited state |e〉 is barely populated, giving rise to effective
parameters such as � and γ which govern the dynamics
within the ground-state manifold {|↑〉, |↓〉}. The applicability
of the non-Hermitian Hamiltonian is therefore restricted by γ

rather than � in Eq. (1). It is also understood that the Marko-
vian approximation is satisfied, with the bath correlation time
much shorter than all relevant timescales in our study.

Combining HSOC with the single-particle kinetic energy,
we arrive at the following effective single-particle Hamilto-
nian:

H0 =
∫

drψ†(r)

[(
−∇2

2m
+�

)
+ �(S+e−i2qx + H.c.)

]
ψ (r).

(9)

Here ψ (r) = [ψ↑(r), ψ↓(r)]T , and ψσ is the annihilation field
operator for the state |σ 〉; the operator S+ (S−) converts the
spin-↓ to spin-↑ (spin-↑ to spin-↓). For the convenience of
discussion, we rewrite the complex SOC strength � as

� = �0

1 ± i�̃
, (10)
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where + (−) corresponds to the blue (red) single-photon de-
tuning with δ > 0 (δ < 0), �0 = η2/δ is the Raman-induced
SOC strength at zero dissipation, and �̃ = �/(2|δ|) is the
dimensionless dissipation strength.

At short times (t � 1/γ ), one may then identify the lowest
real part of the eigenspectrum as the effective ground-state
energy and the imaginary part as its decay rate [24,25]. We
note that this is in contrast to previous studies on many-body
steady states at long times in open systems [36,37].

After a U (1) transformation of the field operators, ψσ (r) =
eisσ qxψ̄σ (r) (s↑ = −1, s↓ = 1), H0 can be written in mo-
mentum space as H0 = ∑

k ψ̄
†
kh0(k)ψ̄k, with the transformed

basis ψ̄k = [ψ̄k↑, ψ̄k↓]T , and

h0(k) = 1

2m
(k − qσzex )2 + �σx + �I. (11)

Here σα (α = x, y, z) is Pauli matrix and I is a 2×2 identity
matrix. The corresponding single-particle dispersion is

ξk± = εk + Eq + � ±
√

(qkx/m)2 + �2, (12)

where Eq = q2/(2m), εk = k2/(2m), and ± indicates differ-
ent helicity branches.

The total Hamiltonian is then given by H = H0 + Uint, with
the interaction part given by

Uint = U
∑

Q,k,k′
ψ̄

†
k↑ψ̄

†
Q−k ↓ψ̄Q−k′ ↓ψ̄k′↑, (13)

where the bare interaction U is related to the s-wave scattering
length as via 1/U = m/(4πas) − 1/V

∑
k m/k2. Note that

this renormalization relation is not changed by the presence
of SOC that is linearly proportional to the momentum [38].

III. SINGLE-PARTICLE PHYSICS

We first study the impact of dissipation on the single-
particle dispersion ξk±. As shown in Fig. 2(a), Re(ξk±)
are identical for red- and blue-detuned lasers, if both are
shifted by the corresponding threshold energy ξth = Re(ξkm−).
Here km = (kmin, 0, 0), and kmin is the location of minimum
Re(ξk−) along kx. For Im(ξk±), however, the red- and blue-
detuned cases are different [see Figs. 2(b1) and 2(b2)]. In
either case, Im(ξk±) < 0, indicating a finite lifetime for a
single particle.

For our later discussion of molecule formation, it is helpful
to highlight several key properties of the single-particle dis-
persion. First, it is found that kmin varies nonmonotonically
with �̃: it increases for small �̃ and decreases for large �̃

[see Figs. 2(c1) and (c2)]. Second, we examine the coupling
constant between the lowest-energy states in the helicity basis,
which is proportional to the following expectation value:

C = 〈 − kL
m−; kL

m−
∣∣∑

kk′
ψ̄

†
k↑ψ̄

†
−k′↓ψ̄−k′↓ψ̄k↑

∣∣kR
m−; −kR

m−
〉
,

(14)

with |kR/L
μ 〉 denoting the right/left eigenvector satisfying

h0|kR
μ〉 = ξkμ|kR

μ〉 and h†
0|kL

μ〉 = ξ ∗
kμ|kL

μ〉. It is found that C
also varies nonmonotonically with �̃ [see Fig. 2(d)]. Further-
more, in Fig. 2(e) we show the energy gap G = Re(ξ0+) −
Re(ξ0−), which decays monotonically with �̃.

FIG. 2. Single-particle physics modified by dissipation.
(a) Re(ξk±) (shifted by ξth) along kx for different �̃ at a fixed
|�0| = 1. The arrows mark the locations (kmin) of the energy
minimum. (b1) and (b2) Im(ξk±) for red-tuned (b1) and blue-detuned
(b2) Raman lasers at |�0| = 1 and �̃ = 0.5. The helicity indices
(+/−) are marked on the curves accordingly. (c1) Contour plot of
kmin (encoded by the color bar) in the (|�0|, �̃) plane. (c2) kmin as
a function of �̃ for given |�0|. (d) Coupling constant C for two
lower-helicity fermions at km and −km as a function of �̃. Here
km = (kmin, 0, 0). (e) Real energy gap G at k = (0, 0, 0). In all
figures we take q and Eq as the units of momentum and energy,
respectively.

The nonmonotonic behavior of kmin and C can be un-
derstood through perturbation theory in either the small- or
large-�̃ limit (see Appendix A). In the large-�̃ limit, the SOC
strength decays as � ∼ i�0/�̃ and Eq. (11) is reduced to
the Hamiltonian studied in Ref. [24]. The reduction of SOC
strength in this limit is a direct consequence of the quan-
tum Zeno effect, as observed previously in dissipative atomic
systems [4,10]. An important implication from the nonmono-
tonic behavior is that non-Hermitian SOC would achieve its
strongest effect at an intermediate strength �̃ ∼ 1, which we
confirm in the molecule calculations below.

IV. DISSIPATION-FACILITATED MOLECULES

The molecular state in our interacting non-Hermitian sys-
tem satisfies the Lippman-Schwinger equation

|�R〉 = G0Uint|�R〉. (15)

Here G0 = (E2 − H0 + i0+)−1 is the noninteracting Green’s
function at the two-body energy E2 = 2ξth + Eb, where Eb is
the two-body binding energy with Im(E2) = Im(Eb). Since
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FIG. 3. Dissipation-facilitated molecules. (a) Critical coupling
(1/as )c of two-body bound state as a function of �̃ for fixed |�0|.
(Inset) An enlarged view of the regime where (1/as )c turns negative.
(b) Im(Eb) at the critical coupling as a function of �̃ for the red-tuned
(�0 = −2) and blue-detuned (�0 = 2) Raman processes. (c) Re(Eb)
as functions of �̃ for several fixed couplings 1/as = 0.2, 0.5, 1,
with |�0| = 2. (d) Im(Eb) at a fixed coupling strength 1/as = 1
for the red-detuned (�0 = −2) and blue-detuned (�0 = 2) Raman
processes. We have taken q and Eq as the units of momentum and
energy, respectively.

Uint only acts on the spin-singlet state |S = 0〉 = |↑↓〉−|↓↑〉√
2

, we
arrive at the following equation for the two-body state:

1
U = 〈S = 0|G0(0, 0)|S = 0〉, (16)

where the Green’s function can be expanded as

G0(r, r′) = 1

2

∑
k;μν

〈
r
∣∣kR

μ; −kR
ν

〉〈 − kL
ν ; kL

μ

∣∣r′〉〈
kL

μ

∣∣kR
μ

〉〈 − kL
ν

∣∣ − kR
ν

〉
(E2 − ξkμ − ξ−kν )

.

(17)

Different from the Hermitian case, Eq. (16) leads to two cou-
pled equations corresponding to the real and imaginary parts
of the equation, which can be solved for the complex binding
energy Eb.

Figure 3 shows typical results of the molecular solution. To
demonstrate the effect of dissipation, in Fig. 3(a) we examine
the critical coupling (1/as)c to support a two-body bound
state as a function of �̃, obtained by setting Re(Eb) = 0 in
Eq. (16). We can see that apart from a narrow region at very
small �̃, (1/as)c is greatly reduced with increasing �̃, even to
negative values for certain �̃ [see inset of Fig. 3(a)]. There-
fore, molecules can form on the Bardeen-Cooper-Schieffer
(BCS) side of the Feshbach resonance, in contrast to the
case under one-dimensional Hermitian SOC, where molecules
only survive on the Bose-Einstein condensate (BEC) side with
positive as [33–35]. The presence of dissipation-facilitated
molecules is further confirmed in Fig. 3(c): for a fixed
1/(qas) = 0.5 (or 0.2), a new molecular branch emerges at
�̃ � 0.82 (or �1.35); for a stronger interaction 1/(qas) = 1,

the molecule binding energy is enhanced by nearly an order
of magnitude when increasing �̃ from 0 to 2. At sufficiently
large �̃, molecular energy saturates at Re(Eb) = −1/(ma2

s ),
as quantum Zeno effects become dominant.

The mechanism of dissipation-facilitated molecules is
closely related to the single-particle physics discussed previ-
ously: the enhanced low-energy coupling constant [Fig. 2(d)]
and the reduced energy gap [Fig. 2(e)] under dissipation.
These factors make the pairwise scattering of fermions much
easier in the low-energy subspace, giving rise to enhanced
molecule formation. Moreover, such enhancement is most
dramatic at intermediate dissipation with �̃ ∼ 1. This, again,
is consistent with the nonmonotonic behavior we show
in Fig. 2.

Here we emphasize that the type of Raman detuning (red or
blue detuned), which determines the sign of �0, does not alter
the results of (1/as)c and Re(Eb), but it does change the values
of Im(Eb) as shown in Figs. 3(b) and 3(d). For both red- and
blue-detuned Raman lasers, we have Im(Eb) < 0, suggesting
that the molecules are all dissipative and have finite lifetime.
We have checked that the imaginary part of binding energy are
generally of the same order as the imaginary part of the SOC
strength, i.e., |Im(Eb)| ∼ 2|Im(�)|, which can be attributed to
the fact that Eb is closely related to the complex single-particle
spectrum in the presence of a complex SOC.

V. DETECTION

We now turn to the experimental detection of dissipation-
facilitated molecules using rf spectroscopy. Consider a
third hyperfine state |1〉, which has no interaction or SOC
with |↑〉 and |↓〉, but can be coupled to |↓〉 by a rf field with
the Hamiltonian

Hrf = �rf

∫
dr(e−iωt+iqxψ

†
1 (r, t )ψ̄↓(r, t ) + H.c.). (18)

We focus on two different types of commonly used rf mea-
surements in cold atoms: the direct rf spectroscopy, where the
rf field breaks preformed molecules and transfers atoms from
the |↓〉 state to an empty |1〉 state; and the inverse rf spec-
troscopy, where atoms are initialized in |1〉 and are transferred
to |↓〉 state by the rf field to form the molecular state. Both
types of measurements have been successfully implemented
in cold Fermi gases under Hermitian SOC [30,39].

In the background of the biorthogonal basis, the right and
left states in the Schrödinger picture are

|φR
s (t )〉 = e−i(H+Hrf )t |φR(0)〉, (19)

|φL
s (t )〉 = e−i(H+Hrf )†t |φL(0)〉, (20)

here |φR(0)〉 [|φL(0)〉] is the initial state at t = 0, which is
usually an eigenstate of H (H†) with eigenenergy E (E∗); Hrf

is the external field as the perturbation. The Hamiltonian of
the system (without perturbation) is H = H0 + Uint + H1, and
H1 = ∫

drψ†
1 (r)(−∇2

2m )ψ1(r).
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The right and left states in the interaction picture are
defined as

|φR(t )〉 = eiHt
∣∣φR

s (t )
〉
, (21)

|φL(t )〉 = eiH†t
∣∣φL

s (t )
〉
. (22)

According to Eqs. (21) and (22), the expectation values of
annihilation operator (ψα) and creation operator ψ†

α (α =�, 1)
in the Schrödinger picture are

〈φL
s (t )|ψα|ψR

s (t )〉 = 〈φL(t )|eiHtψαe−iHt |φR(t )〉, (23)

〈φL
s (t )|ψ†

α |φR
s (t )〉 = 〈φL(t )|eiHtψ†

αe−iHt |φR(t )〉, (24)

so the field operators in the interaction picture can be defined
as

ψα (t ) = eiHtψαe−iHt , (25)

ψ†
α (t ) = eiHtψ†

αe−iHt . (26)

Note that since we have H = H† for the non-Hermitian
system, the creation and annihilation field operators in the
interaction picture [ψα (t ), ψ†

α (t )] are no longer conjugate to
each other. This is the unique property of non-Hermitian
systems.

According to the linear response theory, we consider the
transition rate caused by the rf field that is associated with the
retarded spin-flip correlation function

D(t, t ′) = −iθ (t − t ′)
∫

drdr′
L〈[ψ†

1 (r, t )ψ↓(r, t ),

× ψ
†
↓(r′, t ′)ψ1(r′, t ′)]〉R. (27)

Its Fourier transform in the frequency space is

D(iω) = 1

β

∑
k

∑
n

G↓↓(k, iωn)G11(k + qex, iωn ± iω),

(28)

where the sign + (−) corresponds to the direct (inverse) rf
process, ω and ωn are both fermonic Matsubara frequencies,
G11(k, iωn) = (iωn − εk )−1 is the Green’s function for state
|1〉, and G↓↓ is the Green’s function for state |↓〉, which, in
view of the molecular state, can be written as

G↓↓(k, iωn) =
∑
λ=±

〈−kL
λ |ψ̄k↓|�R〉〈�L|ψ̄†

k↓| − kR
λ 〉

iωn − (E2 − ξ−kλ)
. (29)

Here |�R〉 (|�L〉) is the right (left) eigenvector for the molec-
ular state with eigenenergy E2 (E∗

2 ).
The transition rate is then given by

R(ω) = −ImD(iω → ω + i0+). (30)

For a direct rf process, it leads to

Rd (ω) = −
∑

k

∑
λ=±

Im

[ 〈−kL
λ |ψ̄k↓|�R〉〈�L|ψ̄†

k↓| − kR
λ 〉

ω + (E2 − ξ−kλ − εk+qex ) + i0+

]
.

(31)

For the inverse rf process it leads to

Ri(ω) = −
∑

k

∑
λ=±

nF (εk+qex )

× Im

[ 〈−kL
λ |ψ̄k↓|�R〉〈�L|ψ̄†

k↓| − kR
λ 〉

ω − (E2 − ξ−kλ − εk+qex ) + i0+

]
. (32)

In the Hermitian case with �̃ = 0, Eqs. (31) and (32) can
be reduced to the Fermi’s golden rule as applied to Hermitian
SOC systems (see Appendix B), which guarantees a positive-
definite transition rate [39,40]. However, for a non-Hermitian
system with �̃ > 0, due to the complex eigenenergies and
eigenstates involved in Eqs. (31) and (32), the Fermi’s golden
rule breaks down in general . Accordingly, a crucial ques-
tion is that, whether the transition rate can still be positive
(rather than negative) to allow the experimental detection of
molecules?

By noting that the molecules undergo a dissociation (as-
sociation) process in the direct (inverse) rf spectroscopy, we
recognize that important insights can be gained by comparing
the lifetime of the molecule τm (as inferred from its imaginary
energy) and that of unbound fermions τ f . Specifically, there
are two scenarios:

(i) In the direct rf spectroscopy, the molecule is formed
before the rf excitation. It follows that, to ensure a posi-
tive transition rate, the molecule should be relatively more
stable compared to unbound fermions after the rf excitation,
i.e., τm > τ f . Mathematically, this is equivalent to requiring
−Im(Eb) < −Im(ξkλ) [41], such that the denominator in the
summand of Eq. (31) has a positive imaginary part.

(ii) In the inverse rf spectroscopy, the molecule is formed
after the rf excitation, then a positive transition rate would
require τm < τ f . This is equivalent to −Im(Eb) > −Im(ξkλ),
such that the denominator in the summand of Eq. (32) again
has a positive imaginary part.

In the present case, the comparison of Im(Eb) and Im(ξkλ)
suggests that the requirement in (i) can hardly be satisfied,
while in (ii) can be met over a considerable parameter range
given the Raman laser is blue detuned. Indeed, the full numer-
ical calculations of Eqs. (31) and (32) confirm the feasibility
of achieving a positive transition rate using the inverse rf
spectroscopy with blue-detuned Raman lasers. This is demon-
strated in Figs. 4(a1) and 4(a2), where Ri stays positive over a
large frequency range, especially around the peak position ω̄p.
Note that we have used a shifted frequency ω̄ = ω − 2ξth +
ξq− in Fig. 4, for a better comparison of ω̄p and Re(Eb).

In Fig. 4 the evolution of Ri(ω̄) with �̃ can be classified
into two regimes. When �̃ is small [Fig. 4(a1)], increasing
�̃ leads to a spectral broadening, with the peak location
ω̄p getting more negative, consistent with a similar trend in
Re(Eb). This is the regime where the molecule formation is
greatly enhanced by dissipation. On the other hand, when
�̃ is sufficiently large [Fig. 4(a2)], further increase in �̃

leads to a narrower spectral width, with ω̄p getting less neg-
ative. This is the regime where the molecule is less affected
by non-Hermitian SOC due to the quantum Zeno effect. In
Figs. 4(b) and 4(c) we extract the peak position ω̄p and the
full width at half magnitude (FWHM) of the rf spectrum, both
of which show nonmonotonic evolutions with increasing �̃. In
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FIG. 4. Molecule spectrum via the inverse rf spectroscopy under
blue-detuned Raman lasers. (a1) and (a2) Transition rate Ri at differ-
ent �̃. We use the shifted frequency ω̄ (see main text) as the x axis,
and mark the locations of Re(Eb) for each case with arrows of the
same color. (b) and (c) The peak position ω̄p and the FWHM of the
rf spectrum as functions of �̃. In (b) we also show Re(Eb) to guide
the eye. In all plots we take �0 = 2 and 1/as = 1. We have taken q
and Eq as the units of momentum and energy, respectively.

particular, the evolution of ω̄p indeed follows the same trend
as in Re(Eb) [Fig. 4(b)]. We therefore conclude that the rf
spectrum is experimentally detectable and captures the key
properties of dissipation-facilitated molecules.

VI. DISCUSSION

In summary, we have proposed a realistic experimental
scheme to explore the interplay of interaction and non-
Hermitian SOC. We demonstrate the existence of dissipation-
facilitated molecules, and show that they can be detected
using inverse rf spectroscopy. Our model (9) can be ap-
plied to a variety of atomic species that are actively studied
in cold atoms. An explicit example is the 40K Fermi gas,
where rf spectrum has been successfully measured under the
Hermitian SOC, both without [29] and with [39] interac-
tions. For instance, the two hyperfine states are chosen as
{|F = 9

2 ,− 7
2 〉, |F = 9

2 ,− 9
2 〉} in the 2S1/2 manifold [39], and

an additional dressing laser can be applied to the excited
2P1/2 manifold for tunable dissipation. Under the parameters
δ ∼ 50 MHz, � ∼ 100 MHz, and η ∼ 300 kHz, we have γ =
2Im(�) ∼ 1.8 kHz, which suggests that our model should be
valid for t � 0.55 ms. Since τm ∼ 1/γ , the lifetime of the
dissipative molecule is also on the order of 0.55 ms, making
the molecules stable enough to be detected for t � 0.55 ms.

Furthermore, we note that the validity condition of H0

and HSOC should be separated from the ability to detect the
molecules. The former requires the measurement be com-
pleted within a short time [t � 1/γ = 1/|2Im(�)|], while the
latter would require a comparison of lifetimes between the ini-

tial and final states in the rf spectroscopy. Both requirements
need to be satisfied in practical experiments in order to detect
the molecular physics discussed in this work. Moreover, the
timescale over which the system relaxes to the quasisteady
molecular state actually sensitively depends on the wave-
function overlap between the initial state and the quasisteady
molecular state. In general, the few-body relaxation time is
much shorter than that is required for the many-body cor-
related state. As the limit of short timescale [1/|2Im(�)|]
can be manipulated to be long in experiment (for instance,
through a small �0 generated by a smaller Raman intensity
and larger detuning), this time can be sufficiently long for the
stabilization of the quasisteady molecular state.

Our results are expected to serve as a guide for the experi-
mental observation of nontrivial effects of non-Hermiticity in
interacting Fermi gases, which has so far eluded experimental
efforts. Future studies would include the dissipation-induced
Fermi superfluidity in the corresponding many-body systems,
as well as other exotic few- and many-body quantum states
where non-Hermiticity plays a key role.
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APPENDIX A: PERTURBATIVE EXPANSION

The nonmonotonic behavior of kmin and C can be un-
derstood through perturbation theory in either the small- or
large-�̃ limit. Here kmin is the location of minimum Re(ξk−)
along the x direction, and C is defined in Eq. (14).

For �̃ � 1, the dissipation can be treated as perturba-
tion. Up to the lowest order, we have � = �0(1 + i�̃),
whose imaginary part Im(�) ∝ �̃. This leads to the analytical
expressions kmin = q

√
1 − s2(1 − 3�̃2) and C = 1 − s2(1 −

3�̃2), with s = �0/(2Eq) � 1. Thus, both kmin and C increase
quadratically with �̃. In the opposite limit �̃ � 1, however,
the SOC strength decays as � ∼ i�0/�̃, and the � term
behaves just like an imaginary magnetic field, i.e., the mag-
netic field strength is a pure imaginary number. In this limit
we treat � as perturbation, and get kmin = q

√
1 + s2/�̃2 and

C = 1 + s2/�̃2, both decreasing with larger �̃. The distinct
trends of kmin and C in different limits of �̃ explain the
nonmonotonicity shown in Fig. 1 of the main text. We also
note that behavior in the large �̃ limit can be understood
through the quantum Zeno effects, which effectively suppress
the off-diagonal SOC term.

APPENDIX B: FERMI’S GOLDEN RULE MODIFIED
BY NON-HERMITICITY

In the Hermitian limit with �̃ = 0, Eqs. (31) and (32)
are reduced to the familiar Fermi’s golden rule of the
corresponding rf process in spin-orbit-coupled Hermitian
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systems, with experimentally detectable positive transfer rate
R(ω) > 0. Specifically, in the Hermitian limit, |kR

λ 〉 = |kL
λ〉 ≡

|kλ〉, |�R〉 = |�L〉 ≡ |�〉, and all energies are real. It follows
that Eqs. (31) and (32) exactly reproduce the formula of
Fermi’s golden rule under the corresponding rf process. For
instance, the direct rf spectrum is reduced from Eq. (31) to

Rd (ω) = π
∑
λ=±

|〈−kλ|ψ̄k↓|�〉|2δ(ω + E2 − ξ−kλ − εk+qex ).

(B1)

The Fermi’s golden rule results in a positive-definite transition
rate as studied earlier in SOC systems [39,40]. However, for
the non-Hermitian case here, both the numerator and denom-
inator in the summand of Eqs. (31) and (32) can be complex.
The conventional Fermi’s golden rule breaks down, and the re-
sulting R(ω) is significantly modified and not positive-definite
anymore.
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