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Segregated quantum phases of dipolar bosonic mixtures in two-dimensional optical lattices
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We identify the quantum phases in a binary mixture of dipolar bosons in two-dimensional optical lattices.
Our study is motivated by the recent experimental realization of binary dipolar condensate mixtures of Er-Dy
[Phys. Rev. Lett. 121, 213601 (2018)]. We model the system by using the extended two-species Bose-Hubbard
model and calculate the ground-state phase diagrams by using mean-field theory. For selected cases we also
obtain analytical phase boundaries by using the site-decoupled mean-field theory. For comparison we also
examine the phase diagram of two-species Bose-Hubbard model. Our results show that the quantum phases with
the long-range intraspecies interaction phase separate with no phase ordering. The introduction of the long-range
interspecies interaction modifies the quantum phases of the system. It leads to the emergence of phase-separated
quantum phases with phase ordering. The transition from the phase-separated quantum phases without phase
ordering to phase ordered ones breaks the inversion symmetry.
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I. INTRODUCTION

The Bose-Hubbard model [1,2] describes the physics of
ultracold bosonic atoms trapped in optical lattices [3]. The
variation of the hopping term, equivalent to kinetic terms
in continuum models, in the Bose-Hubbard model drives a
quantum phase transition from the Mott insulator (MI) to
the superfluid (SF) phase. And this transition has been ex-
perimentally observed [4]. The interparticle interaction in the
Bose-Hubbard model is onsite or contact in nature. The in-
troduction of the nearest neighbor (NN) interaction in the
Bose-Hubbard model generates two more phases: density
wave (DW) and supersolid (SS). This model with the NN in-
teractions is referred to as the extended Bose-Hubbard model
[5] and shows rich physics compared with the Bose-Hubbard
model. Such a model captures the physics of dipolar ultra-
cold quantum gases in optical lattices [6,7]. A more complex
system, ideal to model several condensed-matter systems, is
to fill the optical lattice with two species Bose-Einstein Con-
densate or binary condensate. A binary condensate could be
a condensate mixture of two different atomic species [8–13],
two hyperfine states of an atom [14–23], or two different
isotopes of an atomic species [24–26]. It was experimentally
first realized in the two hyperfine states |F = 2, mF = 2〉
and |F = 1, mF = −1〉 of 87Rb atoms [14]. The binary con-
densates, in the weakly interacting continuum systems, have
been used to investigate novel phenomena such as pattern
formation [27–33], phase separation [10,12,13,23,24,34–38],
nonlinear dynamical excitations [21,39–44], collective ex-
citations [45–51], the Kibble-Zurek mechanism [52], and
the production of dipolar molecules [53–55]. The phase

separation, among all the phenomena, is a unique property
of binary condensates. In this work we study the binary con-
densates trapped in the optical lattices that can be described
by the Bose-Hubbard model with appropriate modifications.
The experimental realization in optical lattices are reported
in Refs. [56,57] and early theoretical studies are presented in
Refs. [58–61]. A remarkable recent achievement related to bi-
nary condensates is the experimental realization with dipolar
quantum mixtures of Er-Dy, reported in a recent work [62].

The physics of the two-species Bose-Hubbard model
(TBHM), the lattice counterpart of a binary condensate,
in one dimension has been investigated in detail [63–65].
And there has been some works in two dimension as well
[58–61,66–69]. The phase diagram of TBHM shows different
combinations of mixed MI-SF phases apart from the Mott
insulator and superfluid phases. And, these have been inves-
tigated by using quantum Monte Carlo [60,61], mapping to
spin systems [58], and with mean-field theory [59,66–68,70].
These studies, except for Ref. [70], considered homogeneous
systems. However, hitherto the phenomenon of phase separa-
tion in two-dimensional TBHM has yet to be investigated in
detail.

The quantum phases of TBHM in the phase-separated
domain, unlike in the binary condensates, do not show seg-
regation into two spatial domains. We attribute this to the
lack of long-range interactions. The simplest modification to
include the effect of long-range interactions is to add nearest-
neighbor interactions. The extended Bose-Hubbard model, as
mentioned earlier, supports two more quantum phases: density
wave [71–73] and supersolid [73–78]. The density wave phase
is an insulating phase similar to the Mott insulator phase but it
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has crystalline order or diagonal long-range order. And the su-
persolid phase is a compressible phase with both diagonal and
off-diagonal long-range order. In a recent study of extended
TBHM (eTBHM) [79], it was shown that the supersolid phase
exists for small value of NN interactions. In this work, the NN
interaction was limited to either one of the species or between
the species. We address this research gap by including all
the possible intra- and interspecies NN interactions. Such a
model is apt to describe the physics of dipolar Bose-Bose
mixtures in optical lattices. An example of such a combination
is the recently realized Er-Dy mixture [62]. An important
result of our work is the possibility to realize compressible
and incompressible quantum phases with spatial segregation.
Such a phase could be instrumental in examining superfluid
instabilities and other nonequilibrium properties in the lattice
models of quantum liquids.

The remainder of the paper is organized into four sections.
In Sec. II we describe the zero-temperature Hamiltonian of the
TBHM and discuss the Gutzwiller mean-field theory of the
model. We then discuss the mean-field decoupling theory to
calculate the compressible-incompressible phase boundaries
analytically. This is followed by a brief discussion on the
characterization of quantum phases. The phase diagrams of
TBHM are discussed in the Sec. III. Section IV includes a dis-
cussion on the phase diagram of the eTBHM. In particular, the
miscible and immiscible phases. We also check the dynamical
stability of the quantum phases by computing the collective
excitations of the system. We end the paper with conclusion
in Sec. V.

II. THEORY

A. Two-species Bose-Hubbard model Hamiltonian

At zero temperature, the TBHM Hamiltonian, which
describes the physics of a binary condensate in a two-
dimensional optical lattice, is [80]

ĤTBH = −
∑
p,q,k

[(
Jk

x b̂†k
p+1,qb̂k

p,q + H.c.
) + (

Jk
y b̂†k

p,q+1b̂k
p,q + H.c.

)

−Ukk

2
n̂k

p,q

(
n̂k

p,q − 1
) + μ̃k

p,qn̂k
p,q

]

+
∑
p,q

U12n̂1
p,qn̂2

p,q, (1)

where k = 1, 2 is the species index, (p, q) are the lattice
indices, Jk

x (Jk
y ) is the NN hopping strength along x (y) di-

rections, b̂†k
p,q (b̂k

p,q) is the creation (annihilation) operator, and
n̂k

p,q is the number operator at site (p, q). Ukk is the intraspecies
interaction strength, and U12 is the interspecies interaction
strength between two species. Furthermore, μ̃k

p,q = μk − εk
p,q,

is the local chemical potential at each site for the two species
where εk

p,q is the envelope potential for the species. For a
system of K×L lattices sites, the index along x (y) has val-
ues p = 1, . . . K (q = 1, . . . L). The unique feature of the
binary condensates is the phase separation and, for continuum
systems, the criterion for phase segregation is U 2

12 > U11U22

[34,81]. Otherwise, it is in the miscible phase. For the case
of strongly interacting binary condensates in optical lattices,
described by the above Hamiltonian, we show the existence of
different phases in both the miscible and immiscible domains.

To obtain the ground state of the Hamiltonian in Eq. (1),
we use single-site Gutzwiller mean-field (SGMF) theory
[7,82–86]. The starting point of this theory is to separate
the operators into mean-field and fluctuation operator com-
ponents as b̂k

p,q = φk
p,q + δb̂k

p,q and b̂†k
p,q = φk∗

p,q + δb̂†k
p,q. Then,

the Hamiltonian in Eq. (1) is reduced to the sum of the single-
site mean-field Hamiltonian

ĥTBH
p,q = −

∑
k

[
Jk

x

(
b̂†k

p+1,qφ
k
p,q + φk∗

p+1,qb̂k
p,q

) + H.c.

+ Jk
y

(
b̂†k

p,q+1φ
k
p,q + φk∗

p,q+1b̂k
p,q

) + H.c.

− Ukk

2
n̂k

p,q

(
n̂k

p,q − 1
) + μ̃k

p,qn̂k
p,q

]
+ U12n̂1

p,qn̂2
p,q,

(2)

where φk
p,q (φk∗

p,q) is the superfluid order parameter. With this
definition of the single-site mean-field Hamiltonian, the total
Hamiltonian of the system is

ĤTBH =
∑
p,q

ĥTBH
p,q . (3)

For the details of the derivations, see Ref. [84]. To get the
ground state we diagonalize the Hamiltonian in Eq. (2) at
each site. And, for this, we use the Gutzwiller ansatz, based
on which the ground state at site (p, q) is [68]

|ψ〉p,q =
∑
n1,n2

c(p,q)
n1,n2

|n1, n2〉p,q. (4)

Here, |n1, n2〉 is a Fock state, which is the direct product
of the n1 and n2 occupation number states of the first and
second species, respectively. The occupation number states
nk ∈ [0, Nb − 1], where Nb is the total number of local Fock
states used in the computation, and cp,q

n1,n2 are complex coef-
ficients with

∑
n1,n2

|c(p,q)
n1,n2 |2 = 1. From the ground state, we

can compute the new superfluid order parameter of the two
species as

φ1
p,q = p,q〈ψ |b̂1

p,q|ψ〉p,q =
∑
n1,n2

√
n1c(p,q)∗

n1−1,n2
c(p,q)

n1,n2
, (5a)

φ2
p,q = p,q〈ψ |b̂2

p,q|ψ〉p,q =
∑
n1,n2

√
n2c(p,q)∗

n1,n2−1c(p,q)
n1,n2

. (5b)

Similarly, corresponding lattice occupancies are

ρ1
p,q = p,q〈ψ |n̂1

p,q|ψ〉p,q =
∑
n1,n2

n1

∣∣c(p,q)
n1,n2

∣∣2
, (6a)

ρ2
p,q = p,q〈ψ |n̂2

p,q|ψ〉p,q =
∑
n1,n2

n2

∣∣c(p,q)
n1,n2

∣∣2
. (6b)

Using the new superfluid order parameters, the ground
state of the next lattice site is computed and this process is
repeated until all the lattices sites are covered. One such sweep
is identified as an iteration, and we then start the process
again for the next iteration. The iterations are carried out until
the convergence criterion |φn−1

p,q − φn
p,q| � 10−12 is satisfied

at the nth iteration. In the present work, to determine the
phase diagrams, we consider lattice system of size 10×10 and
choose Nb = 7. That is, K and L are both 10. We find that
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the phase boundaries remain unchanged when the system size
is augmented to 20×20. We also use the augmented system
size to validate key findings. In addition, we employ periodic
boundary conditions to model an infinite-sized system.

B. Extended two-species Bose-Hubbard model Hamiltonian

The Bose-Hubbard model with NN interactions, referred to
as the extended Bose-Hubbard model, exhibits a richer phase
diagram than does the Bose-Hubbard model and it has the
novel feature of harbouring the supersolid phase. The phase
diagram of this model consists of density wave, supersolid,
Mott insulator and superfluid phases. Similarly, the eTBHM
also exhibits these phases as well as miscible and segregated
phases and the model Hamiltonian of the system is

Ĥ ext = ĤTBH +
∑
p,q,k

[
Vkn̂k

p,q

(
n̂k

p−1,q + n̂k
p+1,q + n̂k

p,q−1 + n̂k
p,q+1

)

+V12n̂k
p,q

(
n̂3−k

p−1,q + n̂3−k
p+1,q + n̂3−k

p,q−1 + n̂3−k
p,q+1

)]
, (7)

here Vk and V12 are the intraspecies and interspecies NN
interaction strengths respectively. In the experiments the ratio
of NN interaction to the on-site interaction can be varied by
tuning the on-site interaction through a magnetic Feshbach
resonance. The NN interaction, arising from the dipole-dipole
interaction, can also be varied by rotation of the dipoles
with a time-dependent external magnetic field [87,88]. Using
this method it can even be turned off. The quantum phases
obtained from the model described by the above Hamiltonian
are relevant to the experimental realizations with the dipoles
oriented perpendicular to the lattice plane. In a latter section,
Sec. IVB3, we provide a brief description of the quantum
phases when the tilt angle θ is nonzero. Here, θ is the
angle between the orientation of the dipoles and the normal
to the lattice plane. Thus, to relate with the experimental
observations and predict possible phases, we vary the inter-
and intraspecies interaction strengths. We use SGMF theory
to obtain the ground state of the system, then, in this method,
the total Hamiltonian is the sum of the single-site mean-field
Hamiltonian

ĥext
p,q = ĥTBH

p,q +
∑

k

[
Vkn̂k

p,q

(〈
n̂k

p−1,q

〉 + 〈
n̂k

p+1,q

〉 + 〈
n̂k

p,q−1

〉 + 〈
n̂k

p,q+1

〉) + V12n̂k
p,q

(〈
n̂3−k

p−1,q

〉 + 〈
n̂3−k

p+1,q

〉 + 〈
n̂3−k

p,q−1

〉 + 〈
n̂3−k

p,q+1

〉)]
. (8)

We diagonalize this Hamiltonian at each site separately and
obtain the ground state. The NN-interaction term contributes
to the diagonal matrix element. From the single-site wave
function, the superfluid order parameter and lattice occupancy
can be calculated from the expressions in Eqs. (5a), (5b) and
(6a), (6b).

C. Mean-field decoupling theory

1. Two-species Bose-Hubbard model

To calculate the phase boundaries between Mott insulator
and superfluid phases analytically we use the site-decoupled
mean-field theory [7,89,90]. For this, we adapt perturbative
analysis of the mean-field Hamiltonian in Eq. (2). It is impor-
tant to note that the superfluid order parameter φk

p,q is zero in
the Mott insulator phase, but nonzero in the superfluid phase.
So, the vanishing of the superfluid order parameter φk

p,q → 0+
marks the MI-SF phase boundary in the phase diagram. With
this consideration, in the site-decoupled mean-field theory,
the interaction and the chemical potential terms constitute the
unperturbed Hamiltonian ĥTBH

p,q,0. From Eq. (2),

ĥTBH
p,q,0 =

∑
k

[
Ukk

2
n̂k

p,q

(
n̂k

p,q − 1
) − μ̃k

p,qn̂k
p,q

]
+ U12n̂1

p,qn̂2
p,q,

(9)

which is diagonal with respect to the Fock basis states. Then,
the hopping terms in Eq. (2) act as the perturbation,

ĥTBH
p,q,1 = −

∑
k

[
Jk

x

(
b̂†k

p+1,qφ
k
p,q + φk∗

p+1,qb̂k
p,q

) + H.c.

+ Jk
y

(
b̂†k

p,q+1φ
k
p,q + φk∗

p,q+1b̂k
p,q

) + H.c.
]
, (10)

with the superfluid order parameter φk
p,q as the perturbation

parameter. Then, from the first-order perturbative correction
to the ground-state wave function (details given in Appendix
A), we have

φk
p,q = Jφ̄k

p,q

(
nk

p,q + 1

nk
p,qU − μ̄k

p,q

− nk
p,q(

nk
p,q − 1

)
U − μ̄k

p,q

)
, (11)

with

μ̄k
p,q = μ̃k

p,q − U12n3−k
p,q ,

φ̄k
p,q = (

φk
p+1,q + φk

p−1,q + φk
p,q+1 + φk

p,q−1

)
.

For a homogeneous lattice system εk
p,q = 0. Then, in the Mott

insulator phase the total density ρ = ρ1 + ρ2 is integer com-
mensurate and φk

p,q = 0. In the superfluid phase, the order
parameter is nonzero and uniform, say φk

p,q = ϕk
0 . With these

considerations, φ̄k
p,q = φ̄k = 4ϕk

0 . Starting from the superfluid
phase, at the SF-MI phase boundary ϕk

0 → 0+. Considering
this limit in Eq. (11), we obtain the equation which defines
the phase boundary in terms of J for a particular value of μ.

For the ρ = 2 Mott lobe, in the miscible domain, atoms of
both the species fill all the lattice sites. That is, n1

p,q = n2
p,q = 1.

The MI-SF phase boundary is then defined by

1

4J
= 2

U − μ + U12
+ 1

μ − U12
. (12)

On the other hand, for finite U12, the system is in the immis-
cible domain for the ρ = 1 Mott lobe. The density pattern has
one atom at each lattice site chosen randomly from the two
species. Thus, at a given lattice site (p, q) we can have the
occupancies as n1

p,q = 1, n2
p,q = 0 or n1

p,q = 0, n2
p,q = 1. In the

perturbative analysis, without loss of generality, we consider
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neighboring lattice sites which are occupied by atoms of dif-
ferent species. This is also one realization of the energetically
favorable configuration for U12 < U . Then, with the correc-
tion arising from b†1φ1, the equation

1

4J
= 2

U12 − μ
+ 1

μ
, (13)

defines the phase boundary of the Mott lobe with ρ = 1.
Based on similar analysis, we can obtain the phase boundary
of other Mott lobes. For which we have to use Eqs. (12) and
(13) for the even and odd-integer values of ρ, respectively.

2. Extended two-species Bose-Hubbard model

We extend the analysis done in previous section to the
eTBHM case. The expression of the order parameter is similar
to Eq. (11) but μ̄k

p,q is given by

μ̄k
p,q = μ̃k

p,q − U12n3−k
p,q − 4Vknk

p,q − 4V12n3−k
p,q , (14)

For the MI(1,1) phase with ρ = 2, the occupancies are nk
p,q =

1. Furthermore, assuming V1 = V2, the MI-SF boundary is
given by

1

4J
= 2

U − μ̄
+ 1

μ̄
, (15)

with μ̄ = μ − U12 − 4V1 − 4V12. Similarly, the phase bound-
ary for the MI(2, 2) lobe can be obtained by choosing nk

p,q = 2
in Eq. (11) with μ̄k

p,q given by Eq. (14). In the density wave
phase, the two sublattice structure description is applicable.
Using this, the density wave to compressible phase boundary
for V1 = V2 and V12 = 0 is given by

1

16J2
=

(
n1,B + 1

Un1,B − μ + U12n2,B + 4V1n1,A

− n1,B

U (n1,B − 1) − μ + U12n2,B + 4V1n1,A

)

×
(

n1,A + 1

Un1,A − μ + U12n2,A + 4V1n1,B

− n1,A

U (n1,A − 1) − μ + U12n2,A + 4V1n1,B

)
. (16)

The details are given in Appendix B. As an example con-
sider the DW(1,0) phase. It has n1,A = 1, n1,B = 0, n2,A =
0, and n2,B = 1. From the above equation, the DW(1,0)-
compressible phase boundary is given by

1

16J2
=

(
1

−μ + U12 + 4V1

)(
2

U − μ
+ 1

μ

)
. (17)

Using Eq. (16), we can also calculate the phase boundaries for
other density wave phases.

D. Characterization of the phases

To identify different quantum phases of the system we
compute the density contrast 	ρk , order parameter contrast
	φk , and compressibility κk . To define 	ρk , divide the lattice
site occupancies as

nk
p,q =

{
nk,A if (p, q) ∈ sublattice A
nk,B if (p, q) ∈ sublattice B,

(18)

TABLE I. Classification of different quantum phases with order
parameters for our systems.

Quantum phase ρ φ 	ρk 	φk

Mott insulator Integer =0 =0 =0
Superfluid Real �=0 =0 =0
Density wave Integer =0 �=0 =0
Supersolid Real �=0 �=0 �=0

then, the density contrast of the kth species is

	ρk = nk,A − nk,B. (19)

The order parameter contrast is defined similarly as

	φk = φk,A − φk,B, (20)

where φk,A and φk,B, like in the case of density, are the values
of the order parameters at lattice sites with (p, q) belonging to
sublattices A and B, respectively. The compressibility of each
species are calculated by using the definition ∂μk/∂ρk .

The TBHM, like the single species Bose-Hubbard model,
shows two phases, Mott insulator and superfluid. The Mott
insulator phase is an incompressible phase with integer com-
mensurate density nk,A = nk,B ∈ N. And incompressibility
implies zero superfluid order parameter, φk,A = φk,B = 0. The
superfluid phase, on the other hand, is compressible. Hence, it
has nk,A = nk,B ∈ R, φk,A = φk,B ∈ R, and κk �= 0. For these
two phases, the density and superfluid order parameters are
uniform, so the contrast order parameters 	ρk and 	φk

are zero. In the eTBHM, the NN interaction leads to the
emergence of two more quantum phases: density wave and
supersolid. These two phases have nonuniform density and
superfluid order parameters. As a result, the distinguishing
features of these phases are nonzero contrast order parameters.
The density wave phase has integer nk

p,q with nk,A �= nk,B and
	ρk ∈ N. This phase has zero superfluid order parameter
φk,A = φk,B = 0 and hence, is incompressible. The supersolid
phase has real nk

p,q with nk,A �= nk,B and 	ρk ∈ R. The super-
fluid order parameter in this phase is nonzero and nonuniform.
This implies that nk,A �= nk,B and φk,A �= φk,B. So, both the
contrast order parameters are nonzero in this phase. For easy
reference the properties of the different quantum phases are
listed in Table I.

III. PHASE DIAGRAM OF TWO-SPECIES
BOSE-HUBBARD MODEL

To compute the ground-state wave function and determine
the phase, we initialize the superfluid order parameter φ. This,
then, defines the Hamiltonian in Eq. (2) and Hamiltonian
matrix elements are computed by using the Gutzwiller wave
function in Eq. (4). By diagonalizing the Hamiltonian matrix
for each site we obtain the ground-state wave function. From
the results, the MI-SF phase boundary is identified based on
the superfluid order parameter and the lattice occupancy. For
the incompressible Mott insulator phase, at each lattice site,
φ is zero and ρ is integer commensurate. For the superfluid
phase, φ is nonzero and ρ is real commensurate. The phase
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FIG. 1. Phase diagram of TBHM by varying the interspecies
interaction strength U12. Blue solid lines represent numerically ob-
tained phase boundaries for the mean field Hamiltonian. Filled dots
marks phase boundaries between compressible and incompressible
phases, obtained analytically by perturbative analysis of the mean-
field Hamiltonian. The odd occupancy Mott lobes appear for nonzero
U12 and enlarges with increasing U12.

diagrams of TBHM given in Eq. (2) for different values of
U12 are shown in Fig. 1.

For simplicity, we consider symmetric hopping
Jk

x = Jk
y = J , equal chemical potential μ̃1

p,q = μ̃2
p,q = μ,

and identical intraspecies interactions Ukk = U . We scale
all the energies with U and define the phase diagram in the
J/U -μ/U plane.

A. Zero-temperature phase diagram

The phase diagram consists of a sequence of Mott lobes
having integer ρ. Without the interspecies interaction U12 = 0,
as shown in Fig. 1(a), the phase diagram is equivalent to the
case of single species, but with twice the occupancy. That is
the Mott lobes, which have ρ = 2n with ρ1 = ρ2 = n and
n ∈ N. So, the lowest Mott lobe has ρ = 2 and each lattice
has one atom from each of the two species. As a result, the
phase diagram is identical to the single species case. With
the introduction of the interspecies interaction (U12 �= 0) the
half filled lobes like ρ = 1 emerge in the phase diagram with
0 < ρ1 < 1, and then ρ2 = 1 − ρ1. This is discernible for
U12 = 0.4U from the Fig. 1(b). Based on the form of the
interactions in the Hamiltonian of the system, the energies of
system is degenerate for all the possible combinations of ρ1

and ρ2 in the allowed ranges. For example, with U12 = 0.4U
and for μ/U = 0.2, J/U = 0.01 we observe 0.33 � ρ1 �
0.7. In the figure, the half filling lobe ρk = 0.5 and ρ = 1 at
J/U = 0 lies in the domain 0 � μ/U � 0.4. In general, in
the miscible domain, the half filling lobe ρ = 1 at J/U = 0
lies in the domain 0 � μ/U � U12/U . The other Mott lobes
with higher ρ occur at the higher values μ/U . In general, the
Mott lobes have ρ = n with n ∈ N and ρk = n/2. Thus, for
Mott lobes with odd n, the average occupancy of each species
is half integer.

With increasing U12, the Mott lobes with odd-integer oc-
cupancies grows in size, but the size of the lobes with
even-integer occupancies remains the same until U12 = Ukk

but shifts to higher μ/U . This can be understood from
Eq. (11). The trend is discernible from the phase diagrams
in Figs. 1(b)–1(c). This, in the case of weakly interacting
binary condensates, is equivalent to a march towards phase
separation [34–38]. For U12 > Ukk , the criterion for phase sep-
aration, the size of the Mott lobe ρ = 2 is different. But, once
the phase separation criterion is met, there is no change in the
phase diagram with further increase in U12. As an example
the phase diagram for U12 = 1.2U is shown in Fig. 1(d). The
lobes in this phase diagram are the same as in Fig. 1(a). The
only difference is the occupancy is ρ = n with n ∈ N and
ρk = n/2. As a result, the density pattern of the lowest Mott
lobe (ρ = 1) has one atom at each lattice site chosen randomly
from the two species. The important point is that the Mott
lobes have the same sizes for U12 = 0 and U12 � Ukk . But, the
occupancy and hence the density patterns are different.

To verify our results we do a comparison with quantum
Monte Carlo results reported in earlier works [91,92]. For
this, we check the order of the MI-SF quantum phase transi-
tion of the ρ = 2 Mott lobe. As a measure we compute the
energy per particle for fixed μ and find that the transition
is first order close to the tip of the Mott lobe. And it is
second order away from the tip. This is consistent with the
quantum Monte Carlo results [91,92]. To assess the impact
of the quantum fluctuations on the nature of the phase tran-
sitions, we employ cluster Gutzwiller mean-field (CGMF)
theory. This is a multisite generalization of the SGMF the-
ory and captures the quantum correlations accurately within
each cluster. We refer to Refs. [84,85,93] for the details.
In the present case, we repeat the SGMF computations by
using 2×2 clusters, which is sufficient to probe the effects
of quantum fluctuations. With the CGMF method, apart from
the enhancement of the Mott lobe, we observe shrinking in
the domain of the first-order phase transition. In particular,
for U12 = 0.8U and ρ = 2 Mott lobe, the first-order MI-SF
phase transition is observed for 1.1 � μ/U � 1.3 with the
CGMF calculation. While with SGMF, it is 0.99 � μ/U �
1.44. Similar trends were reported in the comparison of
the mean-field theory and quantum Monte Carlo results in
Ref. [92].

B. Phase diagram at finite temperatures

The results we have discussed are at zero temperature, a
theoretical simplification. This simplification helps to explore
the basic qualitative features of the quantum phases in the
system. In these results the thermal fluctuations are absent.
Experiments are, however, at finite temperatures and effects of
thermal fluctuations have to be incorporated. The competition
between the quantum and thermal fluctuations modify the
zero-temperature phase diagram. At finite temperatures, the
observables have to be calculated with the thermal averag-
ing, and this requires calculation of the partition function. In
the mean-field theory we have used, the single-site partition
function

Zp,q =
∑

l

e−βEl
p,q , (21)
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FIG. 2. Phase diagram of TBHM at different temperatures for
U12 = 0.4U . Maroon-colored line represents the phase boundaries
between the incompressible lobes and the superfluid phase, while
the green line forms the boundary of region of the normal fluid (NF)
phase.

where β = 1/kBT , T is the temperature of the system, and
El

p,q is the lth eigenenergy of the single-site Hamiltonian at
the lattice site (p, q). As the parameters in the Hamiltonian in
Eq. (2) are scaled with the onsite interaction U , the tempera-
ture of the system is in the units of U/kB. And, for simplicity,
we set kB = 1. The thermal average of the superfluid order
parameter for the kth species at the (p, q) lattice site is〈

φk
p,q

〉 = 1

Zp,q

∑
l

l
p,q〈ψ |b̂k

p,qe−βEl
p,q |ψ〉l

p,q , (22)

where 〈. . .〉 represents the thermal averaging and |ψ〉l
p,q is the

lth eigenstate of the single-site Hamiltonian. Similarly, the
occupancy or the density at finite T is defined as〈〈

n̂k
p,q

〉〉 = 1

Zp,q

∑
l

l
p,q〈ψ |n̂k

p,qe−βEl
p,q |ψ〉l

p,q . (23)

For a detail implementation of the finite temperature
Gutzwiller method, we refer to Refs. [85,86]. At finite tem-
peratures, there is an additional phase, normal fluid phase, in
the phase diagram. It emerges due to the thermal fluctuations
[94,95]. This phase has superfluid order parameter φ = 0, and
the local density is real. To distinguish the normal fluid phase
from the incompressible ρ = n lobes, we compute the local
compressibility κ , which is proportional to the local number
variance. The κ is zero in the incompressible phase, while it
is finite for the normal fluid phase. As an example, in Fig. 2,
we show the phase diagrams of the TBHM at T = 0.01U and
0.04U with the same interaction parameters as in Fig. 1(b).
That is with the interspecies interaction U12 = 0.4U . In the
phase diagrams, the thermal-fluctuation-induced melting of
the incompressible lobes into normal fluid phase is visible. At
finite temperature, the normal fluid phase occupies the regions
with μ below and above the tip of the lobes. The domain of
this phase is enhanced as the temperature is increased and
this is evident from the Fig. 2. This results in the shrinking
of the incompressible lobes. Upon increasing the temperature
further, the incompressible phases disappear above a critical
temperature. For the parameters considered, T ≈ 0.061U is
the critical temperature at which the incompressible lobes
completely melt.

FIG. 3. Phase diagram of eTBHM at different interspecies inter-
action strength U12 and for interspecies NN interaction V12 =V21 = 0,
V1 = V2 = 0.05U . Maroon-colored line forms the boundary of the re-
gion comprised of incompressible phases (MI, DW). The filled black
dots mark the phase boundaries obtained analytically by perturbative
analysis of the mean field Hamiltonian. Around the density wave
phase, a supersolid phase exists and the boundary between supersolid
and superfluid phases is represented by green lines. The supersolid
region around the density wave region enlarges with increasing U12.
In DW(n, 0) phase both species have DW(n, 0) pattern and in MI(1,1)
phase both species have uniform unit occupancy.

IV. PHASE DIAGRAM WITH LONG-RANGE
INTERACTIONS

A. V12 = 0

The ground state of the eTBHM Hamiltonian in Eq. (8),
like in the previous case, is obtained by using the Gutzwiller
ansatz. The long-range interactions in the eTBHM introduce
two more phases, density wave and supersolid, in the phase di-
agram. To analyze and highlight the effect of long-range intra-
and interspecies interactions, we first consider the case of
V12 = 0. And we set the intraspecies NN interaction strength
Vk = 0.05U . Then, we vary the interspecies onsite interaction
strength U12, which can be achieved in experiments through
the Feshbach resonance. The choice of low value of Vk is
based on the parameters realized in dipolar Bose-Einstein
condensate experiments [6]. In these experiments, V/h̄ is in
the range ≈10-100 Hz, whereas U/h̄ has typical values in
kHz. In addition, this choice of parameters has the unique
possibility to study the MI-DW quantum phase transition by
changing U12 and keeping Vk fixed. This is to be contrasted
with the extended Bose-Hubbard model, where the NN in-
teraction strength V � 0.25U [73,86] marks the critical point
for such quantum phase transitions. Like in the case of the
Bose-Hubbard model, we consider symmetric hopping Jk

x =
Jk

y = J , identical chemical potential μ̃k
p,q = μ, and Ukk = U .

The phase diagram for U12 = 0 is shown in Fig. 3(a). It is
identical to the phase diagram of the single-species extended
Bose-Hubbard model [73,86] and consists of the DW(1,0),
MI(1,1), DW(2,1), MI(2,2), supersolid (green line), and su-
perfluid phases. In the figure, the supersolid phase occurs as a
thin envelope around the density wave lobes. On increasing Vk

but keeping the other parameters fixed, the size of the density
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wave lobes and the accompanying envelope of the supersolid
phase are enhanced. However, the Mott lobes disappear from
the phase diagram. This is due to the higher energy cost of
having commensurate occupancy due to the intraspecies NN
interaction. The same effect is reported in the single-species
extended Bose-Hubbard model [73,86].

The density wave phases with U12 = 0 are fourfold de-
generate. Two of the states have 	ρ1 = 	ρ2 and the other
two have 	ρ1 = −	ρ2. For both set of states, one of the
degenerate states is obtained by shifting both of the species by
one lattice constant either along the x or y direction. For the
	ρ1 = 	ρ2 states, the occupancies of the two species at each
lattice sites are the same n1

p,q = n2
p,q. From this the 	ρ1 =

−	ρ2 states are obtained after translation of one of the
species by one lattice constant either along the x or y direction.
Thus, in the latter we have n1,A = n2,B and n1,B = n2,A. It is to
be noted that the ρ = 1 phase of the TBHM has the same av-
erage density as the DW(1,0). However, the two have different
symmetries. The ρ = 1 phase of the TBHM has atoms from
the two species with random occupancies and has no diagonal
long-range order. But the DW(1,0) has diagonal order arising
from the nonzero 	ρk . As an example, consider the DW(1,0)
phase, the two degenerate states correspond to 	ρ1 = 	ρ2 =
1 and 	ρ1 = −	ρ2 = 1. At higher μ, the DW(2,1) inter-
venes the transition from MI(1,1) to MI(2,2) phase.

To study the effect of the interspecies interaction we
increase U12, retaining V12 and Vk fixed at 0 and 0.05U , re-
spectively. The phase diagram corresponding to U12 = 0.4U
is shown in Fig. 3(b). At finite U12 the Mott insulator phase
is energetically costly due to repulsion between atoms of the
two-species coexisting on the same lattice site. So it shifts
to higher μ/U values with increasing U12, which can be
understood from Eq. (15). As seen from the figure, the finite
U12 enhances the DW(1,0) lobe. The finite U12 also lifts the
degeneracy of the density wave states, and the state with
n1

p,q = n2
p,q has higher energy. So, the density of the density

wave states with finite U12 has n1,A = n2,B and n1,B = n2,A.
The MI(1,1) lobe remains unchanged in size but is shifted

upward in the phase diagram. The shift is attributed to the
increase in effective chemical potential arising from the in-
teraction energy associated with finite U12. A similar trend,
enhancement of the DW(1,0) lobe, occurs in the case of U12 =
0 upon increasing Vk . In addition to the Mott insulator phase,
the DW(2,1) and similar density wave phases with nonzero
nk,A and nk,B are also energetically disfavored. However, the
most important feature is the emergence of prominent super-
solid phase envelope around each of the density wave lobes.
Upon increasing U12 further, as seen from the Figs. 3(c)–3(d),
the Mott lobes are transformed into density wave lobes.
And, at higher U12, only the DW(n,0) phase, with n ∈ N, is
present in the system. The domain of the supersolid phase
also increases. Ultimately, the supersolid envelopes around
each density wave lobes merge into a single large supersolid
domain, and this is discernible in these figures.

B. V12 > 0

One of the phenomena unique to the binary condensate
is the phase separation. This provides important insights to
understand novel phenomena in nonlinear dynamics, pattern

FIG. 4. Phase diagram of eTBHM at the different interspecies
interaction strength U12 and for interspecies NN interaction V12 =
V21 = 0.05, V1 = V2 = 0.05U . The incompressible (MI, cDW) and
compressible phase (SS, SF) regions are separated by maroon-
colored lines. In correlated density wave phase the two species
occupy lattice sites randomly in such a way such that total density
ρ = ρ1 + ρ2 have density wave pattern. And, around this phase, the
supersolid phase exists and its boundary is marked by green lines.
For U12 = 1.2 the density wave and superfluid phases are phase
separated.

formation, quantum phase transitions in condensed-matter
systems, etc. [28,29,36–42,45–51,96]. Phase separation of
binary condensates in the weakly interacting regime, as men-
tioned earlier, is well studied. This, however, is not the case
for the strongly interacting two-species ultracold atoms in
optical lattices. As discussed earlier, in the TBHM we observe
phase separation in the superfluid phase, where the density of
the two species are spatially separated into two domains. The
phase-separated Mott insulator phases, on the other hand, have
random filling of the two species and are not separated into
two distinct domains. The inclusion of the NN interactions
modifies its density distribution in the phase-separated do-
main. To study this, we solve Eq. (8) with finite V12 and keep
it fixed to a value of 0.05U . We then increase the interspecies
interaction U12 from the miscible domain U 2

12 < U11U22 to
the immiscible domain U 2

12 > U11U22. The phase diagrams for
selected values of U12 are shown in the Fig. 4.

1. Miscible phase

In the miscible domain, U 2
12 < U11U22, the phase diagram

has lobes of incompressible quantum phases having ρ = n
with n ∈ N. These lobes are similar to those in the TBHM.
In the present case, however, the ρ = n lobes are intervened
by lobes of density wave quantum phases with half-integer
total average occupancies ρ = (2m + 1)/2 with m ∈ {0,N}.
The total occupancy np,q = n1

p,q + n2
p,q of these phases have

diagonal long-range order. This is essentially induced by the
nonzero interspecies NN interaction, V12 > 0. The particle
densities nk

p,q, however, possess no diagonal long-range order.
For this reason we refer to these as correlated density wave
(cDW) phases. This is to distinguish between the density
wave phases with V12 = 0, in which case nk

p,q have diagonal
long-range order. Due to the small value of the NN interaction
strength, the correlated density wave lobes are surrounded by
a thin envelope of the supersolid phase. As an example, the
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phase diagram for U12 = 0.9U is shown in Fig. 4(a). In the
figure, the cDW(1,0) has the lowest average occupancy ρ =
1/2. One of the possible density distributions of this phase is
nk,A = 0. And, at the other sublattice the occupancy is n2,B

p,q =
1 − n1,B

p,q . The values of n1,B
p,q are either 0 or 1, distributed

randomly. And the random distribution implies that there is no
diagonal long-range order. In other words, the lattice occupan-
cies of the individual species are not structured but the total
lattice occupancy is a structured quantum phase. Around the
correlated density wave phase, as J/U is increased for fixed
μ/U , the quantum fluctuations drive a second-order quantum
phase transition from correlated density wave to the supersolid
phase. For the supersolid phase around the cDW(1,0) phase,
the occupancies of the two sublattices are identical and lie in
the range 0 � n1,A

p,q = n2,A
p,q � 0.25 and 0.25 � n1,B

p,q = n2,B
p,q �

0.50. Hence, both species have the same diagonal long-range
orders. Here, the occupancies are defined over a finite range
due to its finite compressibility. The superfluid order parame-
ters, although different in value, follow similar trends φ1,A

p,q =
φ2,A

p,q , φ1,B
p,q = φ2,B

p,q , and φk,B
p,q �= φk,A

p,q . In short, the fluctuations
drive the cDW(1,0) phase with random integer nk,B

p,q to identi-
cal occupancies. And nk,A

p,q also acquire nonzero values. Upon
increasing J/U further, the quantum fluctuations drive another
phase transition from the supersolid to the superfluid phase. In
this transition, the diagonal long-range order is destroyed and
translational invariance of the system is restored.

The insulating phase with average occupancy ρ = 1 has
uniform total lattice occupancy np,q = n1

p,q + n2
p,q = 1. And

the occupancies of the two species satisfy the condition n1
p,q =

1 − n2
p,q with n2

p,q ∈ {0, 1}, where the values between the two
possibilities are chosen at random. Thus, this phase is like the
conventional Mott insulator phase with integer commensurate
integer occupancies, but in terms of the total occupancy np,q.
Similar to the correlated density wave phase, we refer to this
phase as the correlated Mott insulator phase. This implies that
increasing the chemical potential or adding more particles
to the system, at a fixed but low J/U , the system starting
from cDW(1,0) passes through supersolid, superfluid, and
then to the ρ = 1 phase. At still higher μ, the cDW(2,1)
phase appears. The total occupancies of the two sublattices
in this quantum phase are nA

p,q = n1,A
p,q + n2,A

p,q = 2 and nB
p,q =

n1,B
p,q + n2,B

p,q = 1. This implies that both species have the same
occupancies in the A sublattice n1,A

p,q = n2,A
p,q = 1. And it is

equivalent to the DW(2,0) phase in the eTBHM with V12 = 0.
From this phase we obtain the cDW(2,1) phase by randomly
adding one atom of either species at the B sublattice sites.
That is, n1,B

p,q = 1 − n2,B
p,q with n2,B

p,q ∈ {0, 1}, where the values
between the two possibilities are chosen at random. So, ef-
fectively, the cDW(2,1) is a superposition of DW(2,0) with
cDW(1,0). At higher μ the other lobes with increasing ρ ap-
pear. And these have similar occupancies and order parameter
structure as the lobes with lower ρ. It is to be highlighted that
the phase diagrams are different, qualitatively and quantita-
tively, from the two-species Bose-Hubbard model where only
one of the species is dipolar [79].

The effect of quantum fluctuations are underestimated in
the single-site mean-field theory. And this could lead to the
appearance of quantum phases which are rendered unstable

by quantum fluctuations. The supersolid quantum phase, with
diagonal long-range order, is one such phase. So, to check
the robustness of the thin supersolid phase around the cor-
related density wave phase, we use the CGMF theory, with
which we study the ground-state quantum phases by tiling the
system with 2×2 clusters. With this method, we observe an
enhancement of the incompressible lobes. And the extent of
the supersolid phase around the cDW(1,0) phase is similar
in size. We also observe the enhancement of cDW(1,0) lobe
along the μ/U axis. That is, the cDW (1,0) lobe closes at
μ = 0.3U with CGMF, as compared with μ = 0.2U calcu-
lated by using SGMF. Thus, the supersolid quantum phase
around the correlated density wave phases appears to be robust
against quantum fluctuations. A concrete observation could be
made with larger clusters and by doing a detailed study with
cluster finite-size analysis. We shall take this up in our future
works.

2. Immiscible phase

The criterion for phase separation of the two species in
the binary condensates or weakly interacting domain is U 2

12 >

U11U22 [34,35]. And, as discussed earlier, at phase separation
the atoms of different species do not occupy the same lattice
site. This is the energetically favorable configuration. How-
ever, the local nature of the interparticle interaction preserves
the inversion symmetry and the species do not separate into
two spatial domains. In the binary condensates or weakly
interacting domain, the contact interaction is sufficient to
break the inversion symmetry and leads to the formation
of two spatial domains [10,12,13,23,24] at phase separation.
The introduction of the long-range interspecies interaction
(V12 > 0) in the eTBHM introduces the possibility to lower
the energy of the density configurations, which breaks in-
version symmetry. Thus, there is phase ordering of the two
species.

In the present case, for the parameters considered (U11 =
U22 = U ), the phase separation criterion is equivalent to
U12 > U . This choice of parameters, as a representative case,
captures the key qualitative and quantitative features of the
eTBHM. More importantly, the long-range nature of V12 in-
troduces phase ordering at phase separation. As an example,
the phase diagram for U12 = 1.2U is shown in Fig. 4(b). The
structure of the insulating or incompressible and compress-
ible phases are similar to the case of U12 < U , as shown
in Fig. 4(a). But there is one key difference, the correlated
density wave, supersolid, and superfluid phases in Fig. 4(b)
are phase separated. This is the combined effect of the onsite
and long-range interspecies interactions. And this is indicated
in the phase diagram with the annotation PS (phase separated).
But the insulating phases with ρ = 1 and ρ = 2 are not phase
separated. In the ρ = 1 phase, like in the case of U12 < U ,
each lattice site is singly occupied by an atom from the two
species chosen randomly. If the phase separation is along
one of the axes, say the x axis, the DW(nA, nB) phase has
occupancies

nk
p,q =

{

[(−1)k (p − (K − 1)/2)]nA for (p, q) ∈ A


[(−1)k (p − (K − 1)/2)]nB for (p, q) ∈ B,
(24)

043309-8



SEGREGATED QUANTUM PHASES OF DIPOLAR BOSONIC … PHYSICAL REVIEW A 102, 043309 (2020)

FIG. 5. Phase separation with a side-by-side pattern of species
occupancies obtained with periodic boundary conditions along both
the x and y axes. The density distribution of the species over lattice
sites is shown in panels (a)–(c) for the cDW(2,1) phase, in panels
(d)–(f) for the supersolid phase, and in panels (g)–(i) for the super-
fluid phase.

where k, as defined earlier, is the species index, K is the
size of the system along the x axis, and nA and nB are
integers with nA �= nB. The ground state is doubly degenerate
because the above density configuration has the same energy
when the species are interchanged. The occupancies of other
phase-separated phases can also be defined in a similar way.
However, in these two phases, nA and nB are real. Further-
more, in the supersolid phase nA �= nB but in the superfluid
phase nA = nB. The superfluid order parameters for these
phases are also defined in the same form. The presence of the
Heaviside step functions in Eq. (24) indicates inversion sym-
metry is broken. The Hamiltonian is, however, invariant under
the inversion symmetry. Thus, the phase mixed to separa-
tion transition breaks the inversion symmetry spontaneously.
And the observed ground state is one of the degenerate
configurations.

As an example, the phase diagram in the immiscible do-
main U12 = 1.2U is shown in Fig. 4(b). In the phase diagram,
the global features of the phase domains are qualitatively
similar to the phase diagram in the miscible parameter do-
main U12 = 0.9U shown in Fig. 4(a). There is, however, an
important difference. All the phases in the figure are phase
separated and this is indicated in the phase diagram with
label PS. In the superfluid phase, phase separation occurs
across the whole parameter domain. The density profiles of
the cDW(2,1) phase, and the supersolid and superfluid phases
around it are shown in Fig. 5. In the figure, consider the lattice
sites with odd (even) values of (p + q) as the A (B) sublattice.
And, for better representation of the density orders of the
structured phases, we consider a system size of 10×10. Then,
from the density pattern in Figs. 5(a) and 5(b), both the species
have occupancies nA = 2 and nB = 1. And, because it is phase

FIG. 6. Phase separation with side-by-side pattern of species su-
perfluid order parameter, obtained with periodic boundary conditions
along both x and y axes. The superfluid order parameter at the lattice
sites is shown in panels (a)–(c) for the supersolid phase and in panels
(d)–(f) for the superfluid phase.

separated, from Eq. (24),

nk
p,q =

{



[
(−1)k

(
p − 9

2

)]
2 for odd (p + q)



[
(−1)k

(
p − 9

2

)]
1 for even (p + q).

(25)

The density pattern shown in the figures Figs. 5(a)–5(c) cor-
respond to the parameters μ/U = 1.35 and J/U = 0.010.
The above occupancies of the species imply that each of the
species are confined within a subsystem of a 5×10 lattice. The
other species, because we apply periodic boundary conditions
along both directions, effectively provides a confining poten-
tial. This is better visualized when the system is mapped to a
torus. Then, phase separation along one of the axes, divides
the torus into two equal halves. Here each half is occupied by
one of the species. For such a configuration, there are two in-
terspecies boundaries which segregate the two species. Thus,
with a 10×10 system size, the total length of the boundary is
20a, where a (as defined earlier) is the lattice constant. From
the figure it is evident that other configuration is the phase-
separated state, existing along the diagonal. This, however, is
energetically not favorable as it has larger interface energy due
to longer boundary 10(2 + √

2)a.
For the same value of chemical potential μ/U = 1.35, on

increasing the hopping amplitude to J/U = 0.011 we are in
the supersolid phase domain. It is also phase separated and
the lattice site occupancies have a similar form as Eq. (25).
The occupancies are real, have checkerboard order, and are
shown in Figs. 5(d)–5(f). Another important point is, as seen
from the figures, that boundary effects are present in the
superfluid order parameter. The reason is that the effective
potential which segregates the two species is like a soft bound-
ary condition. And this is due to the long-range interspecies
interaction. The supersolid phase is a superfluid phase with
diagonal long-range order, and hence has a nonzero super-
fluid order parameter φk

p,q. The superfluid order parameters
of the two species are shown in Figs. 6(a)–6(c). The bound-
ary effects are more prominent in these figures and at the
boundaries, the deviations from the checkerboard order of
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φk
p,q are visible without ambiguity. It is to be mentioned here

that the domain of the supersolid phase, for the parameters
considered, is rather small. Despite this, supersolid quantum
phase with phase segregation is a novel one and it deserves
detailed investigation. Upon increasing J/U further, we reach
the superfluid phase, which is also phase separated. As an
example, the occupancies and superfluid order parameters for
μ/U = 1.35 and J/U = 0.015 are shown in Figs. 5(g)–5(i)
and in Figs. 6(d)–6(f), respectively. In the superfluid phase,
there is phase separation, but the occupancies and superfluid
order parameter are uniform within the domains of each
species. Thus, the average occupancies and lattice site oc-
cupancies are the same n1

p,q = ρ1 (for p < 5) and n2
p,q = ρ2

(for p � 5). As we consider identical parameters for both
the species ρ = ρ1 = ρ2, where ρ ∈ R and 1 � ρ � 2. The
values and range are also discernible from the figures. The key
point from these case studies is that, for nonzero interspecies
long-range interactions and U 2

12 > U11U22, the eTBHM has
quantum phases which are phase separated.

3. Finite tilt angle and finite temperature

The results of the eTBHM discussed so far are the quantum
phases of the model described by the Hamiltonian in Eq. (7).
As mentioned earlier, this corresponds to the case of dipoles
aligned perpendicular to the lattice plane. In this section we
provide a brief discussion on the general case, where the tilt
angle θ is nonzero. For this, we consider the dipole-dipole
interaction

Cdd

2

∑
i j

n̂in̂ j
(1 − 3cos2αi j )

|ri − r j |3 ,

where the angle αi j is the angle between the dipole polar-
ization axis and the separation vector ri − r j between the
lattice sites i and j. The coupling constant Cdd represents the
strength of the dipole interaction. Without loss of generality,
the dipoles are assumed to be polarized in the y-z plane,
and then, θ = π

2 − αi j . The detailed physical description of
such a system is given in Ref. [7]. Even though the dipole-
dipole interaction is a long-range interaction, we restrict it
to the NN sites. This simplified limit is sufficient to examine
the effects arising from the anisotropy of the interaction. The
strength of the dipole-dipole interaction can be varied from
Cdd to −2Cdd by changing θ from 0 to π

2 . Thus the effective
dipole-dipole interaction strength decreases as θ increases. In
the repulsive domain, the decrease in the effective interaction
strength shrinks the density wave and Mott lobes. We have
verified the decrease of the density wave lobes by considering
the tilt angle θ = π

12 . In the miscible phase (U12 = 0.9U ), the
phase diagram at θ = π

12 is qualitatively similar, but there are
quantitative differences in terms of the phase boundaries of
the incompressible phases. As stated earlier, we observe that
the correlated density wave lobes shrink along the J/U axis
and close at a smaller μ/U value. The thin envelope of the
supersolid phase also show the same trends as the correlated
density wave lobes. That is, the supersolid phase also shrinks
along the J/U axis and closes at a lesser μ/U value. The
incompressible ρ = n lobes are shifted downward along the
μ axis.

Earlier, we had discussed the ground-state phases with
thermal fluctuations associated with finite temperatures. We,
similarly, have studied the effects of the thermal fluctuations
on the ground-state phases of eTBHM, in particular, for the
parameters domain where the system is in the miscible do-
main. We observe that the regions of the incompressible lobes
are reduced, and the melted region is occupied by the normal
fluid phase. Like in the case of TBHM, in Sec. III B, an in-
crease in temperature shrinks the incompressible lobes. And,
above a critical temperature, the lobes disappear.

4. Linear stability analysis

The dynamics of fluid mixtures exhibit different types
of instabilities. The binary condensates are no exception. In
particular, the Rayleigh-Taylor instability [27,28] and Kelvin-
Helmholtz instability [97,98] have been studied in detail.
So, it is pertinent to examine the stability of the spatially
phase-separated ground-state configuration of the eTBHM.
The collective excitations are the relevant properties of the
system which carry signatures of instabilities. To calculate
the collective excitations we add fluctuations δc(p,q)

n1,n2 (t ) to the
ground-state coefficients in the dynamical Gutzwiller mean-
field equation [99,100]. The coefficients of the Fock states in
Eq. (4) is then modified to

c(p,q)
n1,n2

(t ) = c̄(p,q)
n1,n2

+ δc(p,q)
n1,n2

(t ), (26)

where c̄(p,q)
n1,n2 are the coefficients at equilibrium or the ground-

state solution of the Gutzwiller mean-field theory. To obtain
the collective excitations, we use the Bogoliubov approxima-
tion and define

δc(p,q)
n1,n2

(t ) = u(p,q)
n1,n2

e−iωt + v∗(p,q)
n1,n2

eiωt , (27)

where ω is the energy of the collective mode, and
(un1,n2 , vn1,n2 ) is the amplitude of the collective modes
[101–103]. Using this in the dynamical Gutzwiller equa-
tion and retaining terms linear in u and v, we obtain the
Bogoliubov-de Gennes equation. The details of the derivation
and equations for the eTBHM are given in Appendix C. We
then diagonalize the Bogoliubov-de Gennes matrix and obtain
the eigenspectrum of the system.

In the eigenspectrum of the system, the appearance of
collective modes with complex energies is a signature of dy-
namical instability. With complex energy, the imaginary part
leads to an exponential growth of the fluctuations and this is
evident from Eq. (27). And, thus, the system is unstable to
perturbations. To determine the stability of the phases in the
phase diagram presented in Fig. 4(b), we have performed the
stability analysis for the phase-separated, side-by-side ordered
cDW (2,1) and superfluid phases. In both of these phases, we
get a real-valued excitation spectrum. This indicates that these
phase-separated states are dynamically stable. We have also
verified the stability of other phases in the phase diagram.

V. CONCLUSIONS

In conclusion, we obtain the phase diagram of the two-
species Bose-Hubbard model and its extended version, the
eTBHM with long-range interactions in two-dimensional op-
tical lattices. Our findings are pertinent and timely in view
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of the recent experimental realization of the Er-Dy binary
dipolar Bose-Einstein condensate mixture [62]. The phase
diagram of the TBHM has the unique feature of additional
Mott lobes with average occupancies which are half integer.
These lobes emerge due to the presence of the second species.
And, the domain of these lobes are enhanced with the increase
of the interspecies interaction strength. In the case of eTBHM,
we obtain insulating phases with the nonoverlapping density
distributions even with U 2

12 < U11U22, where the atoms of
the two species are distributed across the system randomly.
The nonoverlapping densities are like phase separation but, in
this work, we use phase separation to mean the configuration
where the densities of the two species are segregated into
two nonoverlapping domains. One key finding of our study
is that the DW-MI quantum phase transitions may occur by
varying U12 while keeping Vk fixed. This is in contrast with
the single-species extended Bose-Hubbard model, where the
NN interaction strength is required to be large to observe
such quantum phase transitions. With finite interspecies NN
interactions, we obtain the phase diagram in the miscible and
immiscible regimes. Our result is that the correlated density
wave, supersolid, and superfluid phases in the eTBHM in the
immiscible domain U 2

12 > U11U22 are phase separated. And,
they have side by side order. These phase-separated phases
are dynamically stable.
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APPENDIX A: PERTURBATION ANALYSIS OF
THE TWO-SPECIES BOSE-HUBBARD MODEL

The unperturbed ground state at the lattice site (p, q) has
the form |ψ〉(0)

p,q = |n1, n2〉p,q. The energy of this unperturbed
ground state is

E (0)
n1

p,q,n
2
p,q

= U

2

[
n1

p,q

(
n1

p,q − 1
) + n2

p,q

(
n2

p,q − 1
)]

+U12n1
p,qn2

p,q − μ1
p,qn1

p,q − μ2
p,qn2

p,q, (A1)

where we have chosen U11 = U22 = U . Then, to the first order
of the superfluid order parameter φk

p,q, the perturbed ground
state can be written as

|ψ〉p,q = |n1, n2〉p,q +
∑

m1, m2

�= n1, n2

p,q〈m1, m2|ĥTBH
p,q,1|n1, n2〉p,q

E0
n1

p,q,n
2
p,q

− E0
m1

p,q,m
2
p,q

× |m1, m2〉p,q, (A2)

where, considering uniform hopping strengths for both the
species (J1

x = J2
x = J1

y = J2
y = J) and superfluid order param-

eters as real numbers,

ĥTBH
p,q,1 = −J

[
φ̄1

p,q

(
b̂†1

p,q + b̂1
p,q

) + φ̄2
p,q

(
b̂†2

p,q + b̂2
p,q

)]
, (A3)

with φ̄k
p,q = (φk

p+1,q + φk
p−1,q + φk

p,q+1 + φk
p,q−1). Then, using

Eqs. (A1)–(A3), the ground state can be calculated as

|ψ〉p,q = |n1, n2〉p,q + Jφ̄1
p,q

⎛
⎝

√
n1

p,q + 1

n1
p,qU − μ1

p,q + U12n2
p,q

|n1 + 1, n2〉p,q −
√

n1
p,q(

n1
p,q − 1

)
U − μ1

p,q + U12n2
p,q

|n1 − 1, n2〉p,q

⎞
⎠

+ Jφ̄2
p,q

⎛
⎝

√
n2

p,q + 1

n2
p,qU − μ2

p,q + U12n1
p,q

|n1, n2 + 1〉p,q −
√

n2
p,q(

n2
p,q − 1

)
U − μ2

p,q + U12n1
p,q

|n1, n2 − 1〉p,q

⎞
⎠. (A4)

From this state, we calculate the superfluid order parame-
ter φk

p,q = p,q〈ψ |b̂k
p,q|ψ〉p,q, and the expression is given in

Eq. (11).

APPENDIX B: PERTURBATION ANALYSIS OF THE
EXTENDED TWO-SPECIES BOSE-HUBBARD MODEL

The unperturbed ground state at the lattice site (p, q) ∈ A
sublattice has the form |ψ〉(0)

A = |n1,A, n2,A〉 with energy

E (0)
n1,A,n2,A = U

2
[n1,A(n1,A − 1) + n2,A(n2,A − 1)]

+U12n1,An2,A − μ(n1,A + n2,A)

+ 4V1(n1,An1,B + n2,An2,B), (B1)

where we have chosen μ̃1 = μ̃2 = μ, U11 = U22 = U , and
V1 = V2. Then, to first order in the superfluid order parameter
φk

p,q, the ground state is

|ψ〉A = |n1, n2〉A +
∑

(m1, m2 )
�= (n1, n2 )

A〈m1, m2|ĥTBH
p,q,1|n1, n2〉A

E0
n1,A,n2,A − E0

m1,A,m2,A

|m1, m2〉A,

(B2)

where, considering J1
x = J2

x = J1
y = J2

y = J and the superfluid
order parameters as real numbers,

ĥTBH
p,q,1 = −4J

[
φ1

B

(
b̂†1

A + b̂1
A

) + φ2
B

(
b̂†2

A + b̂2
A

)]
. (B3)
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Then, using Eqs. (B1)–(B3), the perturbed ground state is

|ψ〉A = |n1,A, n2,A〉 + 4Jφ1
B

( √
n1,A + 1

Un1,A − μ + U12n2,A + 4V1n1,B
|n1,A + 1, n2,A〉

−
√

n1,A

U (n1,A − 1) − μ + U12n2,A + 4V1n1,B
|n1,A − 1, n2,A〉

)
+ 4Jφ2

B

( √
n2,A + 1

Un2,A − μ + U12n1,A + 4V1n2,B
|n1,A, n2,A + 1〉

−
√

n2,A

U (n2,A − 1) − μ + U12n1,A + 4V1n2,B
|n1,A, n2,A − 1〉

)
. (B4)

Using this, the superfluid order parameter φ1
A =A 〈ψ |b̂1

A|ψ〉A is given by

φ1
A = 4Jφ1

B

(
n1,A + 1

Un1,A − μ + U12n2,A + 4V1n1,B
− n1,A

U (n1,A − 1) − μ + U12n2,A + 4V1n1,B

)
. (B5)

A similar analysis can be done at the lattice site (p, q) ∈ B to obtain the superfluid order parameter φ1
B =B 〈ψ |b̂1

B|ψ〉B, and we get

φ1
B = 4Jφ1

A

(
n1,B + 1

Un1,B − μ + U12n2,B + 4V1n1,A
− n1,B

U (n1,B − 1) − μ + U12n2,B + 4V1n1,A

)
. (B6)

Substituting φ1
B from Eq. (B6) into Eq. (B5) and then taking the limit φ1

A → 0+ gives Eq. (16), which defines the DW-
compressible phase boundary.

APPENDIX C: BOGOLIUBOV-DE GENNES EQUATIONS FOR EXTENDED TWO-SPECIES BOSE-HUBBARD MODEL

The Bogoliubov-de Gennes equation, obtained after retaining the linear terms in the fluctuations and using the Bogoliubov
approximation, for the eTBHM is

ωu(p,q)
n1,n2

=
∑

(p′,q′ ),m1,m2

(
A(p,q)n1,n2

(p′,q′ )m1,m2
u(p′,q′ )

m1,m2
+ B(p,q)n1,n2

(p′,q′ )m1,m2
v(p′,q′ )

m1,m2

)
,

−ωv(p,q)
n1,n2

=
∑

(p′,q′ ),m1,m2

(
B∗(p,q)n1,n2

(p′,q′ )m1,m2
u(p′,q′ )

m1,m2
+ A∗(p,q)n1,n2

(p′,q′ )m1,m2
v(p′,q′ )

m1,m2

)
.

It is a set of two coupled equations in terms of the mode amplitudes u and v. The matrix elements in the above equations are

A(p,q),n1,n2
(p′,q′ ),m1,m2

=
{[ ∑

k

(
Ukk

2
nk (nk − 1) − μknk + VknkNk

(p,q)

)
+ U12n1n2 + V12

(
n1N2

(p,q) + n2N1
(p,q)

) − ω
(p,q)
0

]
δn1,m1δn2,m2

− J1
[√

n1 + 1�1∗
(p,q)δm1,n1+1 + √

n1�
1
(p,q)δm1,n1−1

]
δm2,n2

− J2
[√

n2 + 1�2∗
(p,q)δm2,n2+1 + √

n2�
2
(p,q)δm2,n2−1

]
δm1,n1

}
δp′,pδq′,q

+ (−J1
√

(n1 + 1)(m1 + 1)c̄∗(p′,q′ )
m1+1,m2

c̄(p,q)
n1+1,n2

− J1√n1m1c̄∗(p′,q′ )
m1−1,m2

c̄(p,q)
n1−1,n2

− J2
√

(n2 + 1)(m2 + 1)c̄∗(p′,q′ )
m1,m2+1c̄(p,q)

n1,n2+1 − J2√n2m2c̄∗(p′,q′ )
m1,m2−1c̄(p,q)

n1,n2−1

+ [V1n1m1 + V2n2m2 + V12(n1m2 + n2m1)]c̄∗(p′,q′ )
m1,m2

c̄(p,q)
n1,n2

)
(δp′,p±1δq′,q + δp′,pδq′,q±1),

B(p,q),n1,n2
(p′,q′ ),m1,m2

= (−J1
√

(n1 + 1)(m1)c̄(p′,q′ )
m1−1,m2

c̄(p,q)
n1+1,n2

− J1
√

n1(m1 + 1)c̄(p′,q′ )
m1+1,m2

c̄(p,q)
n1−1,n2

−J2
√

(n2 + 1)(m2)c̄(p′,q′ )
m1,m2−1c̄(p,q)

n1,n2+1 − J2
√

n2(m2 + 1)c̄(p′,q′ )
m1,m2+1c̄(p,q)

n1,n2−1

+[V1n1m1 + V2n2m2 + V12(n1m2 + n2m1)]c̄(p′,q′ )
m1,m2

c̄(p,q)
n1,n2

)
(δp′,p±1δq′,q + δp′,pδq′,q±1).

Here k represents the species index. �k
(p,q) and Nk

(p,q) are the mean-field superfluid order parameter and the number density

summed over NN sites of (p, q), respectively. And ω
(p,q)
0 is the ground-state energy calculated by using the unperturbed

coefficients. The equations can be written as a matrix equation

ω
(u

v

)
=

( A B
−B∗ −A∗

)(u
v

)
.

The matrix on the right-hand side is the Bogoliubov-de Gennes matrix. Diagonalizing, we get the collective modes of the system.
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