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Realizing the Frenkel-Kontorova model with Rydberg-dressed atoms

Jorge Mellado Muñoz ,1 Rahul Sawant ,1,* Anna Maffei ,1,2 Xi Wang,1 and Giovanni Barontini 1

1School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
2Dipartimento di Fisica “E. Fermi,” Università di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy

(Received 29 June 2020; accepted 16 September 2020; published 7 October 2020)

We propose a method to realize the Frenkel-Kontorova model using an array of Rydberg-dressed atoms.
Our platform can be used to study this model with a range of realistic interatomic potentials. In particular, we
concentrate on two types of interaction potentials: A springlike potential and a repulsive long-range potential. We
numerically calculate the phase diagram for such systems and characterize the Aubry-type and commensurate-
incommensurate phase transitions. Experimental realizations of this system are also discussed.
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I. INTRODUCTION

The Frenkel-Kontorova model (FKM) was introduced to
describe the structure and the dynamics of a crystal lattice
near a dislocation core. It consists of a chain of particles with
long-range spring interactions, placed in a sinusoidal poten-
tial. Its main characteristic is the competition between the two
length scales promoted by these two potentials. Depending on
whether the ratio between the interparticle distance and the
substrate period is rational or irrational, the particle config-
uration becomes commensurate or incommensurate with the
substrate. A system in the incommensurate phase can undergo
the so-called Aubry phase transition, characterized by the
transition from an unpinned to a pinned configuration when
the strength of the substrate potential is increased [1]. This
transition is identified by a change in the particle positions
and in the phonon spectrum of the ground-state configura-
tions. The FKM has proven useful to describe a multitude
of condensed-matter systems. Some examples are the study
of dislocation dynamics in solids [2], surfaces and adsorbed
atomic layers [3], incommensurate phases in dielectrics [4],
crowdions [5], magnetic chains [6], Josephson junctions [7],
and tribology [8] using the Frenkel-Kontorova-Tomlinson
model [9,10].

Although effective, the FKM uses a nonrealistic infinite-
range spring interaction potential. It is therefore beneficial
to develop a fully controlled system where the effect of
realistic interaction potentials can be tested. Cold-atom sys-
tems are ideal candidates for this purpose due to their high
degree of control and flexibility. The introduction of op-
tical lattices allowed for the study of several models that
explain different condensed-matter phenomena such as the
superfluid–Mott insulator phase transition [11,12], Anderson
localization [13,14], and the effects of quantum magnetism
[15]. Furthermore, long-range interactions can be achieved
using atomic species with high permanent dipolar moments
[16], dipolar molecules [17], ultracold ions [18], or Rydberg-
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dressed atoms [19]. In particular, Rydberg-dressed atoms
have the advantage of enabling the control of the range
and functional dependence of the interaction potentials, us-
ing various Rydberg states for the dressing. These dressed
states are achieved by weakly admixing excited Rydberg
states with the ground state, using near-resonant light [20]
(see Fig. 1).

In this work, we propose the implementation of the FKM
with cold Rydberg dressed atoms in an optical lattice. We
show that, by using Rydberg dressing and realistic experimen-
tal parameters, it is possible to realize at least two different
variants of the FKM. As shown in Sec. II, we concentrate in
particular on a springlike interaction potential, similar to the
original FKM, and a repulsive potential. In Sec. III we calcu-
late the phase diagrams of the system for both cases, which
feature the characteristic incommensurate and commensurate
configurations. We show how the equilibrium configurations
take the form of different devil’s staircases as the amplitude
of the lattice potential is varied. In Sec. IV we concentrate
on the system in the incommensurate configuration. We show
that, depending of the interaction potential, it is possible to
observe either an Aubry-type transition or a crossover from an
unpinned phase to a pinned phase. Interestingly, the crossover
is characterized by the excitation of a soft mode, resembling
the phason mode typical of infinite systems. In Sec. V we
report our conclusions.

II. SYSTEM

Our system, which is depicted in Fig. 1, consists of N
atoms arranged in a one-dimensional (1D) chain placed in a
tunable optical lattice, and a dressing field that produces the
Rydberg dressed states. We limit the interactions to nearest
neighbors since the densities are such that any n-body poten-
tial is a sum of two-body potentials.1 Indicating with xi and
Pi the particle positions and their momenta, the energy of the

1We checked this explicitly in our case.
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FIG. 1. Schematic of the system for the realization of the
Frenkel-Kontorova model. An ensemble of atoms in a 1D optical
lattice interacts via Rydberg-dressed potentials. The inset shows how
the interatomic potentials can be realized by dressing the atoms’
ground state with the Rydberg levels.

system is

E =
N∑

i=1

P2
i

2m
+ 1

2

N−1∑
i=1

c1Vint(xi+1 − xi )

+
N∑

i=1

[V0 − V0 cos (2πxi/b)], (1)

where Vint(xi+1 − xi ) is the normalized nearest-neighbor inter-
action between the particles, c1 is a coefficient that accounts
for the amount of Rydberg admixture in the dressed state, V0

is the depth of the lattice potential, and b is the lattice spacing.
m is the mass of the atoms.

We study the system for two different interaction po-
tentials that can be realistically implemented. One is a
springlike potential and the other a repulsive potential, as
depicted in Figs. 2(a) and 2(b), respectively. The derivation
of these potentials from the Rydberg spectrum is shown in the
Appendix A. The functional form of the springlike potential
is

Vint = −1

1 + c0(r − r0)2
+ e−c2(r−r′

0 )

c1
, (2)

where r0, c0, c1, c2, and r′
0 are parameters that depend on the

details of the Rydberg dressing. The shape of the repulsive
potential is instead given by

Vint = 1

1 + ec0(r−r0 )
+ e−c2(r−r′

0 )

c1
. (3)

FIG. 2. Normalized interatomic potentials obtained by dressing
the atoms with Rydberg states, as explained in the text. (a) The
springlike potential. (b) The repulsive potential.

In order to give a specific example, we choose 87Rb atoms
dressed with the Rydberg levels 60P1/2 or 60S1/2, to realize the
two interaction potentials, springlike or repulsive, respectively
(details are in the Appendix A). The dressing of the atoms can
be realized by a two-photon transition in the case of 60S1/2,
using two lasers at 421.67 and 1013.76 nm for the 5S1/2 →
6P1/2 and 6P1/2 → 60S1/2 transitions, respectively. While the
dressing using 60P1/2 can be realized by a single-photon
transition 5S1/2 → 60P1/2, addressed by a 297.11-nm laser.
With these parameters we have r0 = 3.5 μm, c0 = 1.4 μm−1,
c1/kB = 248.9 nK, c2 = 145.0 μm−1, and r′

0 = 1.8 μm for
the repulsive potential and r0 = 2.4 μm, c0 = 12.9 μm−1,
c1/kB = 783.6 nK, c2 = 263.0 μm−1, r′

0 = 1.8 μm for the
springlike potential.

Concerning the tunable optical lattice, it is possible to real-
ize it by interfering two light beams at an angle. This angle can
then be varied to change the lattice spacing [21,22] allowing
for lattice periods in the desired range, which in this work
we choose to be 1.9–4.5 μm. The system that we propose
can be practically implemented. Indeed, Rydberg-dressed
atoms have proven to be stable against losses in an optical
lattice [23].

III. PHASE DIAGRAMS

In this section, we compute the phase diagram for the
ground state of the system for both the dressed potentials.
As mentioned above, the FKM is characterized by two length
scales, which in our case are the lattice spacing b and the
distance a that minimizes Vint. The mean interatomic distance
ã that minimizes E when V0 �= 0 will, therefore, result from
the competition between these two length scales. In partic-
ular, depending on which value ã takes, the phase diagram
breaks between commensurate and incommensurate phases.
In a commensurate configuration, the positions of the atoms
can be expressed as xQ+i = xi + Rb, where Q and R are in-
tegers and i denotes the index of the particle. Therefore, the
mean interparticle distance is the rational number ã/b = R/Q.
An incommensurate configuration is instead characterized by
an irrational value of ã/b.

To compute the ground state and derive the phase diagrams,
we use the generalized simulating annealing algorithm [24].
We find the minimum of the energy functional (1) for different
values of V0 and b, with the condition that all the particles
are at rest (Pi = 0). For both cases, we consider a system of
N = 50 atoms. In the repulsive case, we add hard walls to
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FIG. 3. Phase diagram showing ã/b as a function of a/b and V0/c1 for (a) the springlike potential and (b) the repulsive potential. Each
color represents a different lock-in region, characterized by a commensurate configuration where ã/b is rational.

confine the system and prevent the particles from separating
indefinitely. Such hard walls could be realized using the tech-
nique of reference [25]. We chose the distance between the
confining walls so that a = 3.17 μm. In the springlike case, a
is instead fixed by the minimum of the interaction potential,
which in our specific case is at a = 2.44 μm.

The resulting phase diagrams are shown in Fig. 3, where
we report ã/b as a function of a/b and V0. In particular, the
colored regions indicate the largest lock-in regions for ã/b,
corresponding to commensurate configurations. The white
regions are characterized by smaller lock-in regions and in-
commensurate configurations. In both phase diagrams, for
V0 = 0 the system is in the so-called floating phase where a/b
can take any value. As V0 is increased, commensurate config-
urations become more energetically favorable and the phase
diagram starts to break into lock-in regions. Indeed, around
each rational value of a/b there are intervals in which ã/b take
the same rational value. The amplitude of the lock-in regions
increases as V0 increases. For the trivial case V0/c1 � 1 all the
particles are pinned in the minima of the lattice potential and
therefore only commensurate configurations are possible.

Let us first analyze the springlike interaction case, which
is the one more similar to the original FKM. In Fig. 4(a)
we report ã/b as a function of a/b for three values of V0/c1,
indicated as black horizontal lines in Fig. 3. As can be seen in
Fig. 4(a.1), for small but finite values of V0/c1 small intervals
of zero slope start to appear in the curve ã/b vs a/b. Such
intervals are centered around commensurate values of a/b and
correspond to ã/b taking the same rational value (horizontal
dashed lines). As the curve is a combination of zero and
nonzero slope regions, it is referred to as an incomplete devil’s
staircase. The lock-in regions exist because the transition
from a rational to an irrational value involves the creation of
a discommensuration, which costs energy. This can be seen
in Fig. 4(b.1), where we report the energy per particle as a
function of a/b. As a/b moves away from a rational value,
the energy per particle starts to increase. When this energy
exceeds the energy required to create a discommensuration,
a transition to an incommensurate phase occurs. As reported
in Figs. 4(a.2) and 4(a.3), when V0/c1 is further increased,
the width of the lock-in regions increases and incommensu-
rate configurations start to disappear. Eventually, as shown in
Fig. 4(a.3), the curve ã/b vs a/b becomes a complete devil’s
staircase. The transition from an incomplete to a complete
devil’s staircase is of special interest for some condensed-
matter systems like, e.g., polymers. Also, in this case, moving
away from the center of the lock-in region leads to an increase

of the energy per particle, until “jumping” to the next lock-in
region becomes energetically favorable.

The same analysis for the repulsive case is reported in
Figs. 4(c) and 4(d). In this case, an anomalous incomplete
devil’s staircase is formed in the function ã/b vs a/b. The
anomaly is in the fact that the lock-in regions are not char-
acterized by a zero slope, and therefore are a mixture of
commensurate and incommensurate configurations. This is
reflected also in Fig. 3(b), where a large part of the phase
diagram is not covered by commensurate configurations.
The anomalous lock-in regions increase as V0 is increased,
but the slope remains finite even for large values of V0,
therefore, the devil’s staircase remains always incomplete.
Similar to the springlike interaction potential, the lock-in
regions are characterized by the increase of the energy per
particle as the system moves away from the center of the
region.

IV. INCOMMENSURATE CONFIGURATIONS

The competition between the lattice potential and the in-
teratomic potential becomes apparent when the two systems
are incommensurate with each other, i.e., when the ratio a/b
is highly irrational and quite far from a rational value. In
this section, we analyze the behavior of such a system. We
first look at how the ground-state configuration of the particle
undergoes a phase transition from an unpinned phase to a
pinned phase. The pinned phase is characterized by the par-
ticles taking only a handful of specific locations with respect
to the lattice potential. We then study the phonon spectrum
of the ground state and see how the transition changes with
the two dressed interaction potentials. In the original FKM,
an incommensurate system containing infinite particles can
undergo a phase transition called the Aubry phase transi-
tion when V0/c1 crosses a critical point [26]. This can also
be interpreted as a transition from an unpinned phase to a
pinned one. Additionally, this type of transition is character-
ized by the appearance of a gap for the minimum frequency
in the phonon spectrum [27]. For our finite system of parti-
cles, we observe an analogous Aubry-type transition for the
springlike case, while we observe a smooth crossover for the
repulsive case.

In Fig. 5 we report xi/b mod 1, which gives the particle
position with respect to the lattice phase, as a function of
V0/c1, for both the dressed potentials. To provide a specific
example, we chose the configuration with a/b = 0.873. In the
trivial case of V0/c1 ≈ 0, the particles are not restricted to any
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FIG. 4. (a.1)–(a.3) and (c.1)–(c.3) show the mean interparticle distance with respect to the ratio a/b for springlike and repulsive potentials,
respectively. (b.1)–(b.3) and (d.1)–(d.3) show the energy per particle (Ē ) with respect to the ratio a/b. Here, V0/c1 = 0.006, 0.03, 0.09 and
0.0015, 0.015, 0.04 for springlike and repulsive potentials, respectively. The horizontal dashed lines show the locations of a few rational values
of ã/b.

particular position with respect to the lattice. In the springlike
case, as V0 is increased, there is a rather abrupt transition
to a configuration where the number of allowed positions
is drastically reduced. The system is in the unpinned phase
until V0/c1 = 0.19, after which it undergoes a steep transition
to the pinned phase. For the repulsive case, we observe a
relatively smoother crossover between V0/c1 = 0.03 and 0.04

from the unpinned phase to the pinned phase, as can be seen
in Fig. 5(b).

Another signature of the transition can be found in the
phonon spectrum of the ground-state configurations. An in-
finite incommensurate system in the unpinned phase presents
a gapless Goldstone mode called phason. The phason is as-
sociated to the invariance of the uniform relative translation
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FIG. 5. Particle position with respect to the lattice potential for
each value of V0/c1 for (a) the springlike and (b) the repulsive
case, respectively. Here, the system is incommensurate with the ratio
a/b = 0.873.

of the phases of modes with relatively irrational periodicities.
As the system undergoes the Aubry transition to the pinned
phase, this mode disappears. This is a consequence of the
pinning of the particles to the substrate, not allowing for the
dynamics of this zero-frequency mode. Since our system is
finite, such phason mode does not appear in the unpinned
phase. However, as we show here below, for the springlike
case we observe a similar kind of transition while, for the
repulsive case, a soft mode appears in correspondence of the
crossover from the unpinned to pinned phase. A soft mode is
an excitation above the ground state whose energy vanishes in
the limit N → ∞ [28], where it becomes a phason.

We calculate the phonon spectrum of different configura-
tions using the previously calculated ground states and the
introduction of the dynamical matrix, defined as

Dkl = ∂2E

∂xk∂xl

∣∣∣∣
{xG

i }
, (4)

where Dk,l are the elements of the dynamical matrix and {xG
i }

is the ground-state particle configuration. The eigenvalues of
this matrix are λ j for j = 1, N and they are related to the
frequencies of the possible phonon modes ω j , as ω2

j = λ j .
For convenience, we introduce the adimensional phonon fre-
quency ω̄ j , defined as ω̄ j = ω j

√
ma2/c1 where m is the mass

of the particles.
In Figs. 6(a.1) and 6(b.1) we report the frequency of the 15

lowest-energy modes for the springlike and repulsive cases,
respectively. The blue dots are for the unpinned phase and the
red triangles are for the pinned phase. To provide a specific
example, we chose a/b = 0.873. For both dressed potentials,
the minimum frequency is almost zero below the transition,
while the gap becomes larger in the pinned phase. In both
cases, we can observe the formation of a staircase in the

FIG. 6. (a.1) Adimensional frequencies for the 15 lowest modes
of the phonon spectrum for the springlike case for V0/c1 = 0.180
(blue dots) and V0/c1 = 0.201 (red triangles). (b.1) The same for the
repulsive case for V0/c1 = 0.012 75 (blue dots) and V0/c1 = 0.024
(red triangles). (a.2), (b.2) Show the frequency of the lowest mode as
a function of V0/c1. In all cases the system is incommensurate with
the ratio a/b = 0.873.

phonon spectrum as V0 is increased. This behavior is similar to
the one of the original FKM, in which a staircase formation is
also observed in the phonon spectrum in the incommensurate
case [27].

In Figs. 6(a.2) and 6(b.2) we report the lowest-energy mode
ω̄0 as a function of V0/c1, for the springlike and repulsive case,
respectively. For the springlike case the gap opens up suddenly
for V0/c1 � 0.19, indicating indeed that the system undergoes
the Aubry-type transition from the unpinned to the pinned
phase, in agreement with Fig. 5(a). For the repulsive case,
instead, the energy of ω̄0 first decreases until it approaches
zero for V0/c1 � 0.032. For this value, the system supports
a soft mode, similar to the infinite FKM. As V0/c1 is further
increased, the energy of ω̄0 increases again, and the system
crosses over to the pinned phase. As a/b moves away from
an irrational value and approaches a rational one, both the
Aubry-type transition for the springlike case and the crossover
for the repulsive case happen for lower values of V0/c1, until
a commensurate configuration is reached.

V. CONCLUSIONS

In conclusion, we have proposed a system of Rydberg
dressed atoms in an optical lattice as a platform for the
study of the FKM with realistic potentials. We have re-
ported the phase diagrams for two dressed potentials that can
be realized experimentally. We have shown that, depending
on the shape of the interaction potential, the system can
exhibit different behaviors. In particular, with a springlike
potential, the phenomenology is very close to the original
FKM, while for a repulsive potential, the system exhibits

043308-5



JORGE MELLADO MUÑOZ et al. PHYSICAL REVIEW A 102, 043308 (2020)

some anomalous features. This is particularly apparent in
incommensurate configurations, where the springlike case un-
dergoes an Aubry-type transition as the height of the lattice
is increased, while the repulsive case is characterized by a
relatively smooth crossover from the unpinned to the pinned
phase.

The required Rydberg dressing can be implemented using
the details from the Appendix A. In order to find the ground
states, a possible experiment could involve cooling the atoms
in a lattice, setting the lattice depth to the desired value and
then slowly raising the strength of the Rydberg dressing fields
to introduce the interatomic potential. This is achievable in
current experiments, for example, those in [20,29], where
interesting many-body dynamics enabled by Rydberg dress-
ing has been observed. For the specific case described at the
end of Sec. II, the phase diagram could be explored with
samples at temperatures ranging from a few nK to tens of nK.
Such temperatures should be sufficiently low to distinguish
between the different locking regions, as reported in Fig. 4.
The observables discussed in our work could be extracted in
an experiment using established techniques like the quantum
gas microscope (see, e.g., [20,29] and references therein).
This would allow one to measure the position of each single
atom, and therefore evaluate ã and xi/b mod 1 and reconstruct
the phase diagrams.

Producing Rydberg-dressed atoms with lifetimes long
enough to observe the FKM physics is a challenging task,
due to unwanted off-resonant scattering. It is important to
notice that, for the specific case presented, and considering
current laser technology, the timescale for the dressing of each
atom is limited to ∼10 ms, because of off-resonant scattering.
This can, however, be overcome by quickly repumping to
the Rydberg-dressed state, keeping the average number of
Rydberg-dressed atoms constant. This effect could be strongly
reduced employing higher power lasers that will allow to
obtain the targeted level of Rydberg admixture with larger
detunings.

Phenomena like ionization by blackbody radiation and
avalanche ionization can affect the effective implementation
of the proposal. However, these are not fundamental limita-
tions: Blackbody radiation can be strongly suppressed, even
using cryogenic systems [30,31], and the very low densities
discussed in this work should prevent the onset of avalanche
mechanisms like the one discussed in [32].

The proposed system can be extended to other kinds of
interaction potentials, including attractive ones, using dif-
ferent dressing schemes. It is relatively straightforward to
set up moving optical lattices to implement the Frenkel-
Kontorova-Tomlinson model and perform tribology studies
with unprecedented control. This will allow one to access
the spectrum reported in Fig. 6, in particular, it would be
interesting to probe the onset of the soft modes, for which the
underlying optical lattice should slide almost without friction.
Previous implementations of this system with cold ions have
proven both theoretically [33,34] and experimentally [18,35–
37] that cold-atom systems are an excellent platform to study
nanofriction and other phenomena related to the properties
of the FKM. Another extremely interesting direction could
be to extend the system in two dimensions, where numerical
calculations are difficult, and where an experimental imple-
mentation could provide new insight.
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APPENDIX A: RYDBERG DRESSING

In this Appendix, we will discuss how we get the Rydberg-
dressed potentials we use in this work. To first order, the
interaction between Rydberg-dressed atoms can be easily cal-
culated assuming a simple dipole-dipole interaction between
atoms excited to Rydberg levels. In Ref. [38], the authors
calculated the potential between Rydberg-dressed atoms using
such an approximation and only considering a single Rydberg
level. In practice, as the Rydberg levels are closely spaced,
multiple Rydberg levels have to be considered. Additionally,
the dipole-dipole interaction studied in Ref. [38] requires an
electric field. The potentials derived in this work are, however,
for the zero electric field case. Importantly, in our analysis, we
consider multiple Rydberg levels.

In general, the Hamiltonian for two atoms interacting with
a light field nearly resonant with a Rydberg level can be
written as

H (t ) = h̄

[∑
i

ωi(|g, ri〉 〈g, ri| + |ri, g〉 〈ri, g|) +
∑
i, j

(ωi + ω j )(|r j, ri〉 〈r j, ri| + |ri, r j〉 〈ri, r j |)

+
∑

i

2�ie
−iωLt (|g, g〉 〈g, ri| + |g, g〉 〈ri, g|) + 2�∗

i eiωLt (|g, ri〉 〈g, g| + |ri, g〉 〈g, g|)

+
∑
i, j

2�ie
−iωLt (|g, r j〉 〈ri, r j | + |r j, g〉 〈r j, ri|) + 2�∗

i eiωLt (|ri, r j〉 〈g, ri| + |r j, ri〉 〈ri, g|)

+
∑

i, j,k,l

Di jkl (R) |ri, r j〉 〈rk, rl | + D∗
i jkl (R) |rk, rl〉 〈ri, r j |

]
. (A1)

Here, the state |g, ri〉 denotes that the first atom is its ground state (|g〉) and the second atom is in the ith Rydberg state (|ri〉). h̄ωi

is the energy of the ith Rydberg state with respect to the ground state, ωL/(2π ) is the frequency of the dressing laser, �i/(2π )
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FIG. 7. Top panel. (a) The energy of the state dressed by 60S1/2 Rydberg level for 87Rb atoms as a function of interatomic distance.
Here �t/2π = 8 MHz and �t/2π = 30 MHz. The fit (red line) function is 248.9/(1 + e1.382(x−3.494) ) + e−145(x−1.811). For the numerical
diagonalization, 243 Rydberg states were used, and the Rydberg-Rydberg interaction included dipole-dipole, quadrupole-dipole, and
quadrupole-quadrupole terms. Inset shows how the interaction between Rydberg atoms changes as a function of interatomic distance. The
dressed line shows where the dressed laser is resonant. Lower panel. (b) The energy of the state dressed by 60P1/2 Rydberg level for 87Rb atoms
as a function of interatomic distance. Here �t/2π = 15 MHz and �t/2π = −70 MHz. The fit function is 783.6/[1 + 12.95(x − 2.44)2] +
e−263(x−1.813). For the numerical diagonalization, 282 Rydberg states were used, and the Rydberg-Rydberg interaction included dipole-dipole,
quadrupole-dipole, and quadrupole-quadrupole terms. Inset shows how the interaction between Rydberg atoms changes as a function of
interatomic distance. The dressed line shows where the dressed laser is resonant.

is the Rabi frequency induced by the dressing laser for the transition |g〉 → |ri〉, and Di jkl (R) is the interaction between Rydberg
level pairs (ri, r j ) and (rk, rl ) as a function of interatomic distance R.

We can go to a rotating frame of reference using the following unitary transformation:

U (t ) = |g, g〉 〈g, g| +
∑

i

e−iωLt (|g, ri〉 〈g, ri| + |ri, g〉 〈ri, g|) +
∑

i j

e−2iωLt (|ri, r j〉 〈ri, r j | + |r j, ri〉 〈r j, ri|). (A2)

The Hamiltonian in this rotating frame becomes

Hr = U (t )H (t )U †(t ) + ih̄U (t ) dU †(t )/dt

= h̄

[∑
i

�i(|g, ri〉 〈g, ri| + |ri, g〉 〈ri, g|) +
∑
i, j

(�i + � j )(|r j, ri〉 〈r j, ri| + |ri, r j〉 〈ri, r j |)

+
∑

i

2�i(|g, g〉 〈g, ri| + |g, g〉 〈ri, g|) + 2�∗
i (|g, ri〉 〈g, g| + |ri, g〉 〈g, g|)

+
∑
i, j

2�i(|g, r j〉 〈ri, r j | + |r j, g〉 〈r j, ri|) + 2�∗
i (|ri, r j〉 〈g, ri| + |r j, ri〉 〈ri, g|)

+
∑

i, j,k,l

Di jkl (R) |ri, r j〉 〈rk, rl | + D∗
i jkl (R) |rk, rl〉 〈ri, r j |

]
, (A3)

where �i = ωi − ωL is the detuning of the laser from the transition formed by |g〉 and |ri〉. We are interested in coupling the laser
light to a single Rydberg state rt , where t denotes the target state. To do this we choose a laser wavelength such that �i � �r for
all i �= t . In this case we can neglect all levels |g, ri �=t 〉 and |ri �=t , g〉 as such states will not be excited. We keep the levels |ri, r j〉
as Di jkl (R) is of the same order of magnitude as �t and that is where the R dependence will come from. In such a scenario, the
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Hamiltonian reduces to

Hr = h̄

[
�t (|g, rt 〉 〈g, rt | + |rt , g〉 〈rt , g|) +

∑
i, j

(�i + � j )(|r j, ri〉 〈r j, ri| + |ri, r j〉 〈ri, r j |)

+ 2�i(|g, g〉 〈g, rt | + |g, g〉 〈rt , g|) + 2�∗
i (|g, rt 〉 〈g, g| + |rt , g〉 〈g, g|)

+
∑

i

2�i(|g, rt 〉 〈ri, rt | + |rt , g〉 〈rt , ri|) + 2�∗
i (|ri, rt 〉 〈g, rt | + |rt , ri〉 〈rt , g|)

+
∑

i, j,k,l

Di jkl (R) |ri, r j〉 〈rk, rl | + D∗
i jkl (R) |rk, rl〉 〈ri, r j |

]
. (A4)

We numerically diagonalize the above Hamiltonian to
get the dressed eigenstate and extract the eigenvalue clos-
est to the state |g, g〉. For an atom dressed primarily with
the 60S1/2 Rydberg state of 87Rb atom, the lowest eigen-
value as a function of the interatomic distance is shown in

Fig. 7(a). Similarly, if the dressing laser is tuned near the
60P1/2 Rydberg level, we get a dressed potential as shown in
Fig. 7(b).

For the numerical diagonalization, we modified the Python
library named ARC [39] to include the dressing field.
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nanofriction: Structural phases in few-atom chains, Phys. Rev.
Res. 2, 013380 (2020).

[38] J. E. Johnson and S. L. Rolston, Interactions between rydberg-
dressed atoms, Phys. Rev. A 82, 033412 (2010).
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