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Critically enhanced spin-nematic squeezing and entanglement in dipolar spinor condensates
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We study the quantum critical effect enhanced spin-nematic squeezing and quantum Fisher information (QFI)
in the spin-1 dipolar atomic Bose-Einstein condensate. We show that the quantum phase transitions can improve
the squeezing and QFI in the nearby regime of the critical point, and the Heisenberg-limited high-precision
metrology can be obtained. The different properties of the ground squeezing and entanglement under even and
odd number of atoms are further analyzed, by calculating the exact analytical expressions. We also demonstrate
the squeezing and entanglement generated by the spin-mixing dynamics around the phase-transition point. It is
shown that the steady squeezing and entanglement can be obtained, and the Bogoliubov approximation can well
describe the dynamics of spin-nematic squeezed vacuum state.
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I. INTRODUCTION

Spin squeezing has attracted much attention in precision
metrology since it was first established by Kitagawa and Ueda
[1]. In the past two decades, spin-squeezed states have been
widely used in high-precision measurements to beat the stan-
dard quantum limit (SQL) [2–8] which is the best estimation
limit of separable states with N particles and the scale is
1/

√
N . In Ref. [1], two different mechanisms were proposed

to generate spin-squeezed states: one-axis twisting (OAT) and
two-axis twisting (TAT). The precision allowed by OAT and
TAT states scales with 1/N2/3 and 1/N , respectively. The best
precision of TAT squeezed states is known as the Heisenberg
scaling. In experiments, the TAT squeezed states are hard to
achieve, whereas the OAT ones have been applied in Ram-
sey spectroscopy, atom interferometers, and high-precision
atomic clocks.

The nonlinearity of Bose-Einstein condensates (BECs)
caused by atomic collisions can create spin-squeezed states
and is proved to be an ideal candidate for high-resolution
quantum metrology [9,10]. In particular, the spinor atomic
BECs have arisen much interest [11–18] due to their signif-
icant roles in studying the quantum metrology of many-body
spin systems. Basically, these works can be sorted into two
categories: spin-1/2 and integer-spin atomic systems. Com-
pared with spin-1/2 atoms, whose states can be uniquely
specified by different components of the total spin vector
Ŝ = (Ŝx, Ŝy, Ŝz ), spin-1 atoms require additional spinor de-
grees of freedom to describe, associated with the quadrupole
or nematic tensor operator Q̂i j (i, j ∈ x, y, z) [19–25]. These
additional degrees of freedom concomitantly offer more de-
grees of freedom to squeezing and entanglement. Recently,
the spin-nematic squeezing was observed in experiment by

the nonlinear collisional dynamics of spinor BEC, and the
squeezing can be improved on the SQL by up to 8–10 dB [19].

In spinor atomic BECs, besides nonlinear collisional in-
teractions, there is also long-range magnetic dipole-dipole
interaction (MDDI) [26–35]. According to the recent exper-
imental and theoretical observation in 23Na, 87Rb, and 52Cr
atoms, the MDDIs are, indeed, not negligible for these spinor
condensates. Particularly, the achievements in spinor BECs
provide a highly tunable and controllable system where the
spin interactions, including the MDDI, can be accurately en-
gineered [26,27,30,36]. The relative strength of the dipolar
interaction and the spin exchange interaction describes a rich
phase diagram [27,28,35]. These transitions between differ-
ent phases are of interest with respect to spin squeezing and
entanglement.

The present paper concerns generating highly spin-nematic
squeezing and metrologically useful entanglement in different
phases of spin-1 dipolar condensate including an ensemble of
N atoms. Both the ground states and the dynamical behavior
for them are considered. As the same as the usual spin squeez-
ing, in spin-nematic squeezing, entanglement is also induced
in an ensemble of atomic spins. Quantum Fisher informa-
tion (QFI) [37,38], which plays a central role in quantum
metrology, is able to detect useful multipartite entanglement.
It is proved that QFI can perform even better than the spin-
squeezing parameter in the detection of non-Gaussian states
[39]. Thus, we can characterize the metrologically useful en-
tanglement with QFI. In the SQL, the QFI F ∝ N is reached
when uncorrelated atoms are used, whereas in the Heisenberg
limit (HL), F ∝ N2 is possible by using entangled states.

Under our considered system, in the ground-state case,
there are three sharp changes for both the squeezing and the
QFI at the phase-transition points. More specifically, with
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the change in MDDI, the QFI ranges from unentangled state
scaled as N to a highly entangled state scaled, such as N2. It
enables precision metrology to reach the Heisenberg scalar.
The optimal squeezing, similar to TAT ∝ 1/N , can occur
nearby the regimes of vanished MDDI but at where the be-
havior is quite different for even and odd N . In the dynamics
case, we focus on the steady squeezing nearby the critical
point at which the spin transfer rates are very low. In this
case, it is possible to obtain an analytical prediction for the
spin-nematic squeezed vacuum state and QFI by adopting the
Bogoliubov approximation. We also show that the analytical
results are in well agreement with the numerical calculations.
Our results shed new light on obtaining metrologically useful
entanglement to improve the precision of quantum metrology
using spinor BECs.

This paper is organized as follows. In Sec. II, we introduce
the physical model of a spin-1 dipolar condensate and present
the spin-nematic squeezing parameter and QFI. In Secs. III
and IV, we study the critical effect enhanced spin-nematic
squeezing and QFI in the cases of ground states and dynamics,
respectively. Finally, a conclusion will be presented in Sec. V.

II. FORMULATION

A. Model

We consider a trapped gas of N bosonic atoms with hy-
perfine spin f = 1. Atoms interact via s-wave collisions and
dipolar interaction. Assuming all spin components share a
common spatial mode φ(r), under the single-mode approxi-
mation, the total spin-dependent Hamiltonian reads [27–29]

Ĥ = (c′
2 − c′

d )Ŝ2 + 3c′
d Ŝ2

z + 3c′
d â†

0â0. (1)

The total many-body angular momentum operator
is Ŝ = ∑

α,β âαFαβ âβ (α, β ∈ 0,±1) with F being
the spin-1 matrices and âα being the annihilation
operator associated with the condensate mode, and the
magnetization is defined as Sz = â†

1â1 − â†
−1â−1. The

rescaled collisional and dipolar interaction strengths,
respectively, are given by c′

2 = (c2/2)
∫

dr|φ(r)|4 and
c′

d = (cd/4)
∫

dr dr′|φ(r)|2|φ(r′)|2(1–3 cos2 θe)/|�r − �r′|3
with θe being the polar angle of (�r − �r′). Here,
c2 = 4π h̄2(a2 − a0)/(3M ) with M being the mass of the
atom, and a0,2 being the s-wave scattering length for two
spin-1 atoms in the symmetric channel of the total spin 0
and 2, respectively. The strength of the MDDI is given by
cd = μ0g2

F μ2
B/4π with μB as the Bohr magneton and gF as

the Landé g factor.
To proceed, it is convenient to rescale the Hamiltonian by

using |c′
2| as the energy unit, which yields the dimensionless

Hamiltonian,

Ĥ/|c′
2| = (±1 − c)Ŝ2 + 3cŜ2

z + 3câ†
0â0. (2)

The sign of “ +′′ (“−′′) corresponding to c′
2 > 0 (c′

2 < 0),
which is determined by the type of atoms: for c′

2 < 0 (as
for 87Rb) the interaction term favors the ferromagnetic phase;
whereas for c′

2 > 0 (as for 23Na), the antiferromagnetic phase
minimizes the interaction energy. Here, c ≡ c′

d/|c′
2| is the

relative strength of the dipolar interaction with respect to the
spin exchange interaction and is treated as a control parameter.

Fortunately, the sign and magnitude of the dipolar interaction
strength c′

d can be tuned via modifying the trapping geometry
[27] or a quick rotating orienting field [30], and the contact
interaction strength c′

2 is also tunable via Feshbach resonance.
Without loss generally, throughout this paper, we focus on the
case of antiferromagnetic Bose-Einstein condensate such that
c′

2 > 0.
Due to the dipolar interaction, more new quantum phases

can be found by tuning the values of c [27]. The c-dependence
ground state of Hamiltonian (2) can be found by minimizing
〈Ĥ〉 in the |S, m〉 basis, which is defined by

Ŝ2|S, m〉 = s(s + 1)|S, m〉, Ŝz|S, m〉 = m|S, m〉, (3)

where m = 0,±1, . . . ,±S. For a given total number of atoms
N , the allowable values of S are S = 0, 2, 4, . . . , N for even
N , and S = 1, 3, 5, . . . , N for odd N .

B. Spin-nematic squeezing parameter and quantum
Fisher information

In the case of spin-1 atomic Bose-Einstein condensates,
the multipolar moments can be specified in terms of both
the spin vector Ŝi and nematic tensor Q̂i j (i, j ∈ x, y, z) which
constitute SU(3) Lie algebra. Based on the definition of the
operator Q̂i j [19–22],

Q̂yz = i√
2

(−â†
1â0 + â†

0â−1 + â†
0â1 − â†

−1â0),

Q̂xz = 1√
2

(â†
1â0 − â†

0â−1 + â†
0â1 − â†

−1â0),

Q̂xx = 2

3
â†

0â0 − 1

3
â†

1â1 − 1

3
â†

−1â−1 + â†
1â−1 + â†

−1â1,

Q̂yy = −1

3
â†

1â1 + 2

3
â†

0â0 − 1

3
â†

−1â−1 − â†
1â−1 − â†

−1â1,

Q̂zz = 2

3
â†

1â1 − 4

3
â†

0â0 + 2

3
â†

−1â−1,

there are two different spin-nematic squeezing parameters in
the SU(2) subspaces, {Ŝx, Q̂yz, Q̂zz − Q̂yy} and {Ŝy, Q̂xz, Q̂xx −
Q̂zz}, which are defined by [19,22]

ξ 2
x(y) = 2〈[�(Sx(y) cos ϕ + Qyz(xz) sin ϕ)]2〉min

|〈Q̂zz − Q̂yy(xx)〉|
, (4)

where the minimization is over all the quadrature angle ϕ. A
state is spin nematic squeezed if ξ 2

x(y) < 1.
Below, we focus on the squeezing in the {Sx, Qyz, Q+}

subspace with Q̂+ = Q̂zz − Q̂yy. The spin-nematic squeezing
parameter may be reduced as

ξ 2
x = A − √

B2 + C2

|〈Q+〉| , (5)

by finding the optimal squeezing angle,

ϕopt =
{

1
2 arccos

( −B√
B2+C2

)
, B � 0,

π − 1
2 arccos

( −B√
B2+C2

)
, B > 0,
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where we define

A = 〈
S2

x + Q2
yz

〉
, B = 〈

S2
x − Q2

yz

〉
,

C = 〈SxQyz + QyzSx〉. (6)

A wide variety of spin-squeezing techniques have been
used to show sub-SQL of metrological sensitivity. To better
understand the behavior of enhanced metrological sensitivity,
we can evaluate the QFI in the 
̂ = {Ŝx, Q̂yz, Q̂+} subspace.

According to Refs. [4,25,40–43], the QFI F with respect to
measured phase θ , acquired by an SU(2) rotation on the input
state ρ̂in, can be explicitly derived as

F [ρ̂(θ ), 
̂�n] = �nC�nT , (7)

where

ρ̂(θ ) = exp(−iθ
̂�n)ρ̂in exp(iθ
̂�n), (8)

with 
̂�n = 
̂ · �n being the generator of rotation and �n being
the unit length vector. Here, the matrix element for the sym-
metric matrix C is

Ckl =
∑
i 
= j

(pi − p j )2

pi + p j
[〈i|
k| j〉〈 j|
l |i〉 + 〈i|
l | j〉〈 j|
k|i〉],

where pi(|i〉) are the eigenvalues (eigenvectors) of ρ̂(θ ). From
Eq. (7), one finds that to get the highest possible estimation
precision θ , a proper direction �n should be chosen for a
given state, which maximizes the value of the QFI. With the
help of the symmetric matrix, then, the maximal QFI in the
{Ŝx, Q̂yz, Q̂+} subspace can be obtained as

Fmax = 4 max
{
(�
⊥)2

max, (�Q+/2)2}
= max{2(A +

√
B2 + C2), (�Q+)2}, (9)

where 〈Q+〉 is normalized by dividing 2 since |〈Q+〉|max =
2N . In Eq. (9), the maximal possible value of the QFI is
F = 4N2, which can be obtained only by the fully particle
entangled states. On the other hand, separable states can give
at most F = 4N , such as |0, N, 0〉 state. The factor 4 in the
scaling of characteristic limits of the QFI is due to SU(3) Lie
algebra [25]. In terms of the definition in Eq. (9), a state is
entangled in the {Ŝx, Q̂yz, Q̂+} subspace if QFI F > 4N .

In what follows, we will study the spin-nematic squeezing
and QFI in the cases of ground states and spin-mixing dynam-
ics, respectively, when c′

2 > 0.

III. SPIN-NEMATIC SQUEEZING AND QUANTUM FISHER
INFORMATION IN GROUND STATES

Now, we will consider the spin-nematic squeezing and QFI
in the case of ground states. Numerically, it is convenient to
expand the ground state as

|G〉 =
∑
m,k

gm,k|m, k〉, (10)

in the Fock basis |m, k〉 ≡ |N1, N0, N−1〉 with the notations
N1 = k, N0 = N − 2k + m, and N−1 = k − m. Here, m =
−N,−N + 1, . . . , N for a given m, the allowable values of k
satisfy the relation max(0, m) � k � Int[ N+m

2 ], where Int[x]
is a function for getting the integer part of x. Since Hamil-
tonian (2) commutes with Ŝz, the ground state must lie in a
certain m subspace, then, the matrix elements of Hamiltonian
(2) become Hm,k,m,k′ = 〈m, k|H |m, k′〉. The amplitudes gm,k

can be obtained just by numerically diagonalizing the Hamil-
tonian. Hence, the expectation values given in Eq. (6) read

A =
∑
m,k

g2
m,k[(2N − 4k + 2m − 1)(2k − m) + 2N], (11)

and

√
B2 + C2 = 4

∑
m,k

|gm,kgm,k+1|
√

(N − 2k + m − 1)(N − 2k + m)(k + 1)(k + 1 − m). (12)

We can also find the expectation value of Q+,

〈Q+〉 =
∑
m,k

g2
m,k (6k − 2N − 3m), (13)

as well as the corresponding fluctuation,

(�Q+)2 = 9

[∑
m,k

g2
m,k (2k − m)2 −

(∑
m,k

g2
m,k (2k − m)

)2]

+
∑
m,k

g2
m,k[2k(k + 1) − m(2k + 1)]. (14)

Substituting the above equations into Eqs. (5) and (9), we
can obtain the spin-nematic squeezing and QFI in the case
of ground states.

Figures 1 and 2 illustrate the c dependence of the spin-
nematic squeezing (10 log10 ξ 2

x ) and QFI for N = 100 (even
number) and N = 101 (odd number), respectively. From
Figs. 1 and 2, we can see there are three sharp changes for

both the squeezing and the QFI when c = −0.5, c = 0, and
c = 1. The squeezing can be found in the region −0.5 < c <

1. When c < −0.5, there is neither squeezing (ξ 2
x = 1) nor en-

tanglement (F max = 2N) since the ground state is a Fock state
with all the population in either the m f = 1 or −1 state for
both the even and the odd N . When c � 1, there is no squeez-
ing (ξ 2

x � 1) but highly entangled states. For instance, when
c = 1, |G〉 = |N/2, 0, N/2〉 (assuming N to be even) is the
twin-Fock state [15,44–46], which is a deeply entangled state
in the picture of particles. Recently, Luo et al. demonstrated
near-deterministic generation of this state of 11 000 atoms in
87Rb BEC [15]. Whereas for c > 1, |G〉 ≈ |S = N, m = 0〉
is the so-called Dicke state [16,27,47] which is a massively
entangled state of all the atoms (F max ≈ 2N2). Zhang and
Duan [16] have proposed a robust method to generate this
state in a spinor BEC. From Fig. 1, we can clearly find that
the optimal squeezing occurs around c = 0, but the behavior
is different for even and odd N in this regime. Actually, for
c = 0, the spin-nematic squeezing is not well defined for even
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FIG. 1. The c dependence of the spin-nematic squeezing ξ 2
x for

N = 100 and N = 101. The inset shows its 〈Q+〉 with respect to c.

N , therefore, we should discuss the results for even and odd N
separately when c = 0.

For c = 0 and even N , the ground-state |G〉 is the spin-
singlet state [11],

|S = 0, m = 0〉 =
N/2∑
k=0

g̃k|k, N − 2k, k〉, (15)

with g̃k ≡ g0,k where the amplitudes obey the recursion
relation,

g̃0 = 1√
N + 1

, g̃k = −
√

N − 2k + 2

N − 2k + 1
g̃k−1. (16)

After computing the recursion relation, we get

g̃k = (−1)k

√
N + 1

k−1∏
x=0

√
N − 2x

N − 2x − 1
. (17)

The spin-singlet state is a quantum superposition of a chain of
Fock states in which the number of atoms in state m f = ±1 is
equal. To get some insight, we first calculate the expectation

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8
(a)

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8
(b)

FIG. 2. The c dependence of the maximal QFI divided by 4N2

for (a) N = 100 and (b) N = 101.

values given in Eqs. (6) for this state, which yields

A =
√

B2 + C2 = 4N (N + 3)

15
, (18)

and the expectation value of Q+ is 〈Q+〉 = 0. Thus, the spin-
nematic squeezing parameter of the spin-singlet state is the
0/0 type. It is undefined at this point for even N , although
the squeezing is strongest when c → 0 (as shown in Fig. 1).
However, it has QFI, and the optimal value is

F max = (�Q+)2 = 4(�
⊥)2
max

= 16N (N + 3)

15
, (19)

which is the Heisenberg scalar. It indicates that the spin-
singlet state features genuine multipartite entanglement of the
entire ensemble and will be useful for quantum metrology.
This conclusion is consistent with the earlier paper reported
by Tóth [48].

For c = 0 and odd N , the ground state is |G〉 = |S =
1, m = 0〉 which is given by

|S = 1, m = 0〉 = c0

n∑
k=0

ck|k, N − 2k, k〉. (20)

After computing the recursion relation, the amplitudes
read

ck = (−1)k

√
3(2n − 2k + 1)

(k + 1)

k−1∏
x=0

√
(x + 2)(2n − 2x)

(x + 1)(2n − 2x − 1)
,

(21)

and the normalization constant c0 is given by

c0 =
(

n∑
k=0

c2
k

)−1/2

= 1√
4n2 + 8n + 3

, (22)

with n = (N − 1)/2.
By substituting the ground-state |S = 1, m = 0〉 into

Eqs. (6), we find

〈Q+〉 = −4N + 6

5
, (23a)

(�Q+)2 = 128(N − 1)(N + 4)

175
, (23b)

A = 12N2 + 36N + 12

35
, (23c)

√
B2 + C2 = 12N2 + 36N − 48

35
. (23d)

Then, the value of spin-nematic squeezing is

ξ 2
x = 5

2N + 3
. (24)

This squeezing value is quite similar to the TAT case which
∝1/N for N � 1 [1]. According to Eq. (9), the maximal QFI
of ground-state |S = 1, m = 0〉 is

F max = 4(�
⊥)2
max = 48N (N + 3)

35
− 72

35
, (25)
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TABLE I. The ground-state |G〉, the spin-nematic squeezing ξ 2
x ,

the maxima QFI F max around the critical points c < −0.5, c =
0, c >= 1 for even N .

c <−0.5 0 1 >1

|G〉 |N,±N〉 |0, 0〉 ∣∣ N
2 , 0, N

2

〉 ≈|N, 0〉
ξ 2

x 1 Undefined 1 >1
F max 2N 16N (N+3)

15
N2

2 + N ≈2N2

which also is the Heisenberg scalar. To better show these
results, Tables I and II lists the ground states |G〉, the spin-
nematic squeezing parameter ξ 2

x , and the maximal QFI F max

around the critical points for even (odd) N .

IV. SPIN-NEMATIC SQUEEZING AND QUANTUM FISHER
INFORMATION DYNAMICS

We, now, turn to study the spin-nematic squeezing and QFI
generated by the spin-mixing dynamics of the dipolar spinor
condensate with even N .

A. Numerical results

The spin-mixing dynamics generated squeezing and QFI
can be studied by numerically evolving an initial state under
the total spin-dependent Hamiltonian. Here, we consider two
different initial states of the system, namely, |0, N, 0〉 and
|N/2, 0, N/2〉, and, then, let the states become free dynamic
evolution. Hamiltonian (2) conserves both the total particle
number N and magnetization Sz, in general, the evolution
states have the form

|�(t )〉 =
N/2∑
k=0

gk (t )|k〉, (26)

where |k〉 ≡ |k, N − 2k, k〉 represents the Fock state.
Here, the spin-nematic squeezing parameter can be re-

duced to

ξ 2
x = A′ − 2|B′|

|3〈a†
1a1〉 − N | , (27)

with 〈a†
1a1〉 = ∑N/2

k=0 |gk|2k and

A′ =
N/2∑
k=0

|gk|2[(k + 1)(N − 2k) + (N − 2k + 1)k], (28a)

TABLE II. The ground-state |G〉, the spin-nematic squeezing
ξ 2

x , the maxima QFI F max around the critical points c < −0.5, c =
0, c >= 1 for odd N .

c <−0.5 0 1 >1

|G〉 |S, ±N〉 |1, 0〉 ∣∣ N+1
2 , 0, N−1

2

〉 ≈|N, 0〉
ξ 2

x 1 5
2N+3 1 >1

F max 2N 48N (N+3)−72
35

N2−1
2 + N ≈2N2

FIG. 3. The c dependence of the time average of 〈ξ 2
x 〉t for two

different initial states |0, N, 0〉 and |N/2, 0, N/2〉 with N = 2000.
The shaded area indicates the region of squeezed states. The inset
shows the time average of the population for the mF = 0 component.

B′ =
N/2∑
k=1

g∗
kgk−1k

√
(N − 2k + 2)(N − 2k + 1). (28b)

We can also find the maximal QFI as

F max = max{4(A′ + 2|B′|), (�Q+)2}, (29)

where

(�Q+)2 = 2
N/2∑

k

|gk|2k(k + 19) − 36

(
N/2∑

k

|gk|2k

)2

. (30)

The spin-mixing dynamics will quickly drive the system
into a quasisteady state [11,12,27], that is, the average number
of atoms in the spin components will remain unchanged for a
long time. The c dependence of the quasi-steady-state squeez-
ing as well as population of the m f = 0 component for two
different initial states |0, N, 0〉 and |N/2, 0, N/2〉 are plotted in
Fig. 3. As shown in Fig. 3, the quasi-steady-state behavior dis-
play a sudden change when c → 1. For initial-state |0, N, 0〉,
we can get steady squeezing (≈−5 dB) in the regime of c >

1, whereas the case for initial-state |N/2, 0, N/2〉 will be the
opposite. The detailed dynamical behaviors of the squeezing
for these states around the critical point c = 1 are shown
in Fig. 4. As is shown, the spin-nematic squeezing can be
improved on the SQL by up to 20 dB around the critical point
before reaching the steady squeezing.

We note that the preparation of highly entangled ideal
twin-Fock state |N/2, 0, N/2〉 may pose an experimental chal-
lenge. Below, we focus on the case of initial states |0, N, 0〉 to
understand the steady squeezing behavior shown in Figs. 3
and 4. In terms of the spin-nematic squeezing parameter
given in Eq. (27), we can find that the squeezing depends on
the atomic population. When c → 1, there is essentially no
population transfer from the mode m f = 0 to the other two
modes m f = ±1, and, hence, 〈N0〉/N → 1 which corresponds
to squeezed vacuum for the m f = ±1 modes [19–22]. Once
c deviated from 1, as evolution time is increased, the ratio
N0/N will decrease until reach the quasisteady state due to
the spin-mixing dynamics. In Fig. 5, we show the dynamical
behavior of N0/N as well as the corresponding squeezing. As
is shown, when c < 1, the average number of atoms in the
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FIG. 4. Time dependence of the spin-nematic squeezing param-
eter ξ 2

x for different initial states, |0, N, 0〉 (blue thick line) and
|N/2, 0, N/2〉 (red thin line). Here, N = 2000.

m f = 0 mode descend rapidly, and the spin-nematic squeezed
vacuum only keeps for a very short time. Whereas c > 1, due
to the small spin-mixing parameter 1 − c in Hamiltonian (2),
the ratio N0/N will fall slowly before reaching the quasisteady,
like-damped oscillation. Corresponding to the evolution of
N0/N , there is a damped oscillations of the squeezing, and the
quasisteady squeezing can be obtained. However, we should
point out that the steady squeezing is not a spin-nematic
squeezed vacuum, and it is a difficult task to write out the
explicit form of them.

Next, we analytically analyze the dynamical behavior of
the squeezed vacuum with the Bogoliubov approximation
around c → 1.
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-20
0
20
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0.9

0.95
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(b) 0 0.5 1 1.5 2

-20

-10

0

FIG. 5. Time dependence of average number of atoms in the
mf = 0 mode normalized by the total number of atoms N with dif-
ferent c. The insets show the correspondent spin-nematic squeezing
parameter. The initial state of the system is |0, N, 0〉 with N = 2000.

B. Bogoliubov approximation

We, now, use the Bogoliubov approximation to replace the
annihilation and creation operators for the condensate with
number N , that is, a0 ≈ a†

0 ≈ √
N . Up to phase factor that we

may neglect since we are later concerned only with expecta-
tion values where the phase would cancel out. Therefore, we
can introduce the operators,

Kx = 1

2
(a†

1a†
−1 + a1a−1), Ky = − i

2
(a†

1a†
−1 − a1a−1),

(31)

Kz = 1

2
(a†

1a1 + a−1a†
−1),

which belong to the SU(1,1) group and satisfy [Kx, Ky] =
−iKz, [Ky, Kz] = iKx and [Kz, Kx] = iKy.

Using the definitions in Eq. (31), the effective Hamiltonian
of Eq. (2) is given by

Heff ≡ αKz + βKx, (32)

with c-dependence parameters,

α = 2[(1 − c)(2N − 1) − 3c], β = 4(1 − c)N. (33)

In terms of the SU(1,1) operators, Eq. (6) may be expres-
sed as

A = 4N〈Kz〉,
√

B2 + C2 = 4N |〈K+〉|, (34)

where K+ = K†
− = Kx + iKy = a†

1a†
−1. Therefore, the spin-

nematic squeezing parameter and QFI can be reduced to

ξ 2
x = 2〈Kz〉 − 2|〈K+〉|, (35)

F max = 8N (〈Kz〉 + |〈K+〉|), (36)

since �Q+ → 0.
To get the explicit form of both the squeezing and the QFI,

we only need to calculate the expectation values 〈Kz〉 and
〈K+〉. With the help of the time-evolution operator U (t ) =
exp[−iHefft], we have

〈Kz〉 = 〈0, N, 0|U †(t )KzU (t )|0, N, 0〉

= Γ1(1 + Γ 2)

2(1 − Γ 2)2
, (37)

|〈K+〉| = |〈0, N, 0|U †(t )K+U (t )|0, N, 0〉|
= Γ1Γ

(1 − Γ 2)2
, (38)

where

Γ = |β sin(θt )|√
α2 − β2 cos2(θt )

, Γ1 = α2 − β2

α2 − β2 cos2(θt )
,

θ = 1

2

√
α2 − β2. (39)

If c > 1, we have α2 > β2, a direct calculation yields

ξ 2
x = Γ1

(1 + Γ )2
, F max = 4NΓ1

(1 − Γ )2
, (40)

and the optical values are given by(
ξ 2

x

)
min = |α| − |β|

|α| + |β| = 2c + 1

4N (c − 1) + 2c + 1
, (41)
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FIG. 6. Comparison of dynamical behaviors of ξ 2
x (a) and (b) and

F max/(4N ) (c) and (d) for the exact numerical solution and Bogoli-
ubov approximate solution with different c’s. Here, N = 1000.

F max(topt ) = 4N (|α| + |β|)
|α| − |β| = 4N(

ξ 2
x

)
min

, (42)

when topt = π/
√

α2 − β2. The above results are valid when
c → 1+, which corresponds to the spin-nematic squeezed vac-
uum.

Figure 6 shows the comparison of squeezing and QFI be-
tween the exact solutions and the Bogoliubov approximation
for different c’s. As is shown, with the increasing of c, the
squeezing and QFI are enhanced, and the Bogoliubov approx-
imation solutions are in agreement with the exact ones when
c → 1+. However, for a long time, the squeezing is not a
squeezed vacuum as shown in Figs. 4 and 5, and, hence, the
Bogoliubov approximation will be invalid.

V. CONCLUSION

To summarize, we have studied the spin-nematic squeezing
and QFI under the ground state and spin-mixing dynamics of
a antiferromagnetic spin-1 Bose-Einstein condensate, respec-
tively. We have shown that the quantum phases which depend
on the relative strengths of the spin exchange and dipolar inter-
actions can generate highly entangled ground states in several
limits, and enable precision metrology to reach the HL. We
have also studied the quantum critical effect enhanced spin-
nematic squeezing and entanglement in the dynamics case. It
indicated that the spin-nematic squeezing can be enhanced to
≈−20 dB before arriving the steady values ≈−5 dB. We also
demonstrated that the Bogoliubov approximation can well de-
scribe the dynamics of spin-nematic squeezed vacuum state.

Finally, it should be pointed out that our paper, here,
has neglected any external magnetic filed. The presence of
external fields will affect the orientation of the spin and,
hence, change the phase diagram. The effect of the magnetic
field on spin-1 condensates without MDDI is currently
under study [15,16,21]. The quantum phase transition due
to the quadratic Zeeman shift may also demonstrate some
similar squeezing behavior as our case. Therefore, the
quantum critical effect enhanced spin-nematic squeezing and
entanglement should also be expected in the case of the spinor
BEC in an external magnetic.
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