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Excitations and number fluctuations in an elongated dipolar Bose-Einstein condensate
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We study the properties of a magnetic dipolar Bose-Einstein condensate in an elongated (cigar shaped)
confining potential in the beyond quasi-one-dimensional regime. In this system the dipole-dipole interactions
develop a momentum dependence related to the transverse confinement and the polarization direction of the
dipoles. This leads to density fluctuations being enhanced or suppressed at a length scale related to the transverse
confinement length, with local atom number measurements being a practical method to observe these effects
in experiments. We use mean-field theory to describe the ground state, excitations, and the local number
fluctuations. Quantitative predictions are presented based on full numerical solutions and a simplified variational
approach that we develop. In addition to the well-known roton excitation, occurring when the dipoles are
polarized along a tightly confined direction, we find an “antiroton” effect for the case of dipoles polarized
along the long axis: A nearly noninteracting ground state that experiences strongly repulsive interactions with

excitations of sufficiently short wavelength.
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I. INTRODUCTION

Ultracold atomic gases are superb systems for exploring
many-body physics with well-characterized and controllable
microscopic parameters. Recently, dipolar Bose-Einstein con-
densates (BECs) have been used to reveal a rotonlike
collective mode [1]. This excitation was prepared by tuning
the short-ranged contact interactions when the condensate was
confined in an elongated geometry with the atomic dipoles
polarized along one of the tightly confined directions (e.g., see
a = /2 case in Fig. 1). Evidence for the roton was provided
by the observation of unstable dynamics [1] and using Bragg
spectroscopy to probe the excitations [2]. If the roton is tuned
to zero energy the elongated dipolar condensate can transition
into a supersolid state of matter (i.e., spontaneously modu-
lated along z), as observed recently in three labs [3-5]. In
order to observe these phenomena the experiments need to be
in the regime where the interaction energies are much larger
than the zero point energy of the transverse confinement [i.e.,
far outside the quasi-one-dimensional (quasi-1D) regime].

Fluctuation measurements in quantum systems can be used
to reveal the interplay of quantum statistics and interactions.
In quantum gases it is of interest to make local measure-
ments of fluctuations [6-9], e.g., using optical imaging to
measure atom number statistics in a small region of interest, as
have been demonstrated in a number of experiments [10-17].
There has also been theoretical interest in the local fluctua-
tions of quasi-two-dimensional (or pancake-shaped) dipolar
BECs [18-21]. A key prediction being that a roton excitation
causes the condensate to exhibit large fluctuations for mea-
surement cells of size comparable to the roton wavelength.

In this paper we develop formalism for describing the
ground state and excitations of an elongated dipolar con-
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densate in the beyond-quasi-1D regime relevant to current
experiments. To simplify our treatment we neglect trapping
along the weakly confined direction (along the z axis in
Fig. 1), and take the system to be uniform. We also develop
a variational approach (justified by comparison to full numer-
ical calculations) for computing the system properties.

The variational approach also affords us insight into the
momentum dependence (along the z axis) of interactions and
its effect on the excitations. This momentum dependence
arises from the dipole-dipole interactions (DDIs) under the
transverse confinement; thus it is sensitive to the dipole ori-
entation and introduces the transverse confinement as a new
length scale for the system. For the case of dipoles polar-
ized along the tightly confined direction the interactions are
strongly repulsive at long wavelengths (i.e., a high speed
of sound) and weakly repulsive or attractive at wavelengths
comparable to, or shorter than, the confinement length. In-
deed, for sufficiently strong DDISs this latter effect leads to the
formation of the roton excitation, i.e., the attractive character
of the interactions causes a local minima in the excitation dis-
persion relation. Interestingly the contrasting case of dipoles
polarized along the long axis has received less attention. Here
the interaction is weakly repulsive at long wavelengths (i.e.,
a low speed of sound), but becomes strongly repulsive at
wavelengths shorter than the confinement length. Indeed, in
this case the ground state experiences a weak interaction, yet
a strong repulsive interaction occurs between the condensate
and short wavelength excitations. We refer to this as an “an-
tiroton” effect, in that it causes a significant upward shift in
the energy of higher-momentum excitations. Interestingly, this
effect also causes the dynamic structure factor (characterizing
the dynamics of the density fluctuations) to spread its weight
over many bands.

©2020 American Physical Society


https://orcid.org/0000-0002-8463-2712
https://orcid.org/0000-0002-8194-7612
https://orcid.org/0000-0003-4772-6514
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.043306&domain=pdf&date_stamp=2020-10-07
https://doi.org/10.1103/PhysRevA.102.043306

SUKLA PAL, D. BAILLIE, AND P. B. BLAKIE

PHYSICAL REVIEW A 102, 043306 (2020)

FIG. 1. Schematic diagram: A one-dimensional Gaussian cell of
length L (shown by magenta surface profile) along the axial direction
(z axis) is used to measure atom number in an elongated dipolar
BEC. The dipole magnetic moment u,, makes angle o with the axial
direction, and we show cases where the dipoles are polarized along
(¢ = 0) and transverse (o« = 7 /2) to the long axis.

Finally we apply our theory to study the local number
fluctuations, determined by measuring the number of atoms in
a small Gaussian cell of finite length L, as indicated in Fig. 1.
Such measurements can be made in experiments using finite
resolution absorption imaging, with the length scale L being
adjustable by merging the results of camera pixels (e.g., see
Ref. [12]). We show that these measurements can be used to
reveal the key features of the excitations and fluctuations of
an elongated dipolar condensate. Our findings should serve
as motivation for experiments to make the first fluctuation
measurements of a dipolar BEC.

The outline of the paper is as follows. We begin in Sec. 11
with a general discussion of fluctuation measurements in
ultracold gases. We also describe the mean-field formalism
for the ground state and excitations of the elongated dipolar
system and develop a variational approximation. Following
that in Sec. III we consider the ground state, excitations, and
structure factors for several cases that illustrate the system
properties, including the antiroton effect and the development
of a roton excitation. In Sec. IV we present results for the atom
number fluctuations and make comparisons to the variational
approach. Finally, we conclude in Sec. V.

II. FORMALISM

A. Basic theory of local number fluctuations

Previous experiments with an elongated Rb BEC [10-12]
have measured number fluctuations using in situ absorption
imaging in a manner similar to what we consider here. The fi-
nite imaging resolution (cf. the Gaussian surface representing
the imaging system point spread function in Fig. 1) means that
these measurements effectively count the number of atoms
within a cell. Here we take the cell to be described by the
weight function A(z) = +/2¢~/F, representing an imaging
system that has a resolution length of L along z, and the
transverse directions are considered completely unresolved
(cf. [10-12]). In practice the minimum value of L (~1 pum) is
set by the details of the imaging system, but larger values can
be trivially arranged by combining the measurements from

neighboring cells. The observable of interest is the number
of atoms in the cell, which for the case of a cell centered at the
origin is given by

N, = / dz A(2)i(2), (1)

where 7i(z) = f dp T (x)¥(x) is the linear density operator,
with ¥ being the field operator for the system and p = (x, y)
representing the transverse coordinates. Here we will consider
the case of a dipolar BEC that is translationally invariant along
z such that the linear density is uniform, i.e., n = (7i(z)). The
fluctuations in the measurement of the number of atoms in
the cell is given by AN? = (N, = N.)?), where N, = (N,) =
/27nL is the mean atom number. For the a translationally
invariant system this can be evaluated as

dk
ang =n [ SErats. @
2w
where %, (k,) = 2r L% %/? is the Fourier transform of
cell geometry function t5(A) = [dz [dz’ A(Z)A(Z)S(z —
7 — A) = /27 L e 2"/2L We have also introduced the static
structure factor

S(k;) = %/dz(éﬁ(z) 87 (0))e k= 3)

as the Fourier transform of the density correlation function,
where §7i(z) = ii(z) — n is the density fluctuation operator.
When the system exhibits density correlations at a length scale
comparable to the cell size, we expect these to be revealed in
the measured number fluctuations. Indeed, a focus here will be
the influence of density correlations arising from the interplay
of the DDI and transverse confinement.

For a cell that is much longer than any of the relevant
correlation lengths' of the system, the number fluctuations
approach a thermodynamic limit that is universal for com-
pressible superfluids [8] (also see [18,22])

kgT

AN} = N, —,
mc

“)
where c is the speed of sound, T is the temperature, and m is
the atomic mass.

On the other hand, for a cell that is much shorter than
all relevant correlation lengths, the particles can be treated
as independent, which gives rise to Poissonian statistics for
the fluctuations, i.e., AN} = N.. Equivalently [from Eq. (2)]
this arises from the static structure factor having the (uncorre-
lated) high-k, limit § — 1. So far it has not been practical for
experiments to make measurements in this limit using optical
imaging, as this would typically require L < 1 pum.

B. Mean-field formalism

Here we outline the mean-field description appropriate to
a dipolar BEC under transverse harmonic confinement. We
introduce the relevant Gross-Pitaevskii and Bogoliubov—de

'This includes the density healing length, thermal coherence
length, and any additional length scales introduced by the interac-
tions.
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Gennes formalism, and briefly describe the numerical meth-
ods we employ to solve the associated equations.

1. Gross-Pitaevskii theory

The condensate field ¥ (x) = (y(x)) satisfies the nonlocal
Gross-Pitaevskii equation (GPE) Lgpyy = uyr, where

2\72

Lop = —

2m

+V(p)+ / dXUx —x)ly ), (5)

V(p) = im(wix® + w}y?) is the transverse harmonic confine-
ment, with angular frequencies w, and w, along the two
transverse directions, and w is the chemical potential. The
two-body interactions are described by the potential

U(r) = g8(r) 4 Uqa(r), (6)

which contains the short-ranged contact interaction with
coupling constant g, = 4wh’as/m, where ag is the s-wave
scattering length. The long-ranged DDI is described by

384a

Uga(r) = i

[1—3(- f,)"], (7)

where the coupling constant g,y = 4n % aqq/m introduces the
dipole length a,, that relates to the magnetic moment of the
atoms as agg = o uim /127 7i%. The form of the DDI depends
on the dipole polarization direction. Here we take the dipole
moment u,, to lie in the yz plane at an angle of « to the z
axis, i.e., K, = up(cosaz + sinay) (see Fig. 1). However,
we present results here only for the two extreme cases of ¢ =
0 and 7 /2.

We restrict our attention to ground states that are uniform
along z (i.e., we do not consider the possibility of ground
states that break the translational symmetry, such as super-
solids). Thus the ground-state solution takes the form ¥ (x) =
J/nx(p), where x is the unit normalized transverse mode
and n is the specified linear density. In this case the GPE
simplifies to

LEpx = 1X, (8)
where
22

Lop = =L+ V() +nF {O ) Fllx (0P, (9)

with F, the Fourier transform in p and Uk) =
[dre®*TU(r).

2. Bogoliubov-de Gennes formalism

We also want to consider the elementary excitations of
the condensate within the framework of Bogoliubov the-
ory [22,23]. This allows us to express the quantum field
operator as

U=y + Y [uje " by —vp B ], (10)
[

where {u_j(p), vi j(p)} are the quasiparticle modes with
respective eigenvalues {Ej ;} and bosonic mode operators
{IA)kz s IQZ j} satisfying the commutation relations [131(z s 132i j,] =
Sk.k;8;. The quantum number k. characterizes the wave vec-
tor of the quasiparticle along z, while the quantum number j

describes the transverse degrees of freedom. The quasiparti-
cle properties are determined by solving the Bogoliubov—de
Gennes equations

Uy i Ly — —Xi. Uy i
S ) o
Uk, j X, —(Ly, — 1)/ \vgj
where Ly, = EJG-P +ep, +Xe, e, = hzkzz/Zm, and the ex-
change term is

X f(0) = nx(p)F, {UKFplx(0)f(0)}}.  (12)

The speed of sound can then be identified from the slope of
the lowest excitation band in the long-wavelength limit, i.e.,
as

1 0. j=0
hoook o

4

13)

Cq =

We have explicitly labeled the speed of sound with the dipole
angle « for future convenience.

From the solution of the GPE (8) and BdG equations (11)
we can calculate the dynamic and static structure factors of
the system. While our primary interest is in the static structure
factor it is useful to first introduce the dynamic structure fac-
tor, which describes the system response to a density coupled
probe. For a dilute condensate this can be evaluated as [24,25]

Sthey ) = > |8mi[*[1 + 27 (Ei )8 (0 — Exj/R),  (14)
Jj

where
Sy = / dpu (0 = vi,@]xe) (15

and f(E) = (£/%T — 1)~ is the Bose factor. In cold-gas
experiments Bragg spectroscopy (e.g., see [26,27]) is sen-
sitive to the zero-temperature dynamic structure factor [i.e.,
Eq. (14) with f — 0] and Petter er al. [2] have used Bragg
spectroscopy on an elongated dipolar condensate to quantify
the roton excitation spectrum. The static structure factor is
obtained by integrating S(k;, @) over frequency, yielding

Sk = Y [sm [0+ 2 (Ex) ] (16)

J

3. Numerical methods

We solve the GPE (8) by discretizing x(p) on a two-
dimensional numerical grid and using discrete Fourier trans-
forms to apply the kinetic-energy operator. We also use a
Fourier transform to evaluate the interaction term [i.e., con-
volution in Eq. (9)] in k space, but with a cutoff interaction to
improve accuracy (e.g., see [23,28]). The GPE is solved using
a gradient flow technique [29]. The BdG equations are solved
using large-scale eigensolvers.

For the o = 0 case with w, = w, the problem is cylindri-
cally symmetric, and x reduces to being a function of p = |p|.
We can then solve for the ground state and the excitations
on a one-dimension numerical grid using Bessel transforma-
tions [23].
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C. Variational theory

A simple variational theory for the elongated dipolar BEC
has been developed in Refs. [30,31] for the case o = 7 /2.
Here we briefly review this theory and extend it to the « = 0
case. The basis of the variational theory is to approximate
the transverse mode of the condensate using the Gaussian
XV (p) = ﬁe‘(”xzﬂ’z/ m/2 " with variational parameters /
and 7 describing the mean width and anisotropy, respectively.
For our case (uniform density n along z) this formalism re-
duces to a simple energy functional

Eul,m) = EL + 5nUq(0), A7)

LAY (RS S WL (18)
= = 5 - — | — w
L5 gz " n 4 \n vl

is the single-particle energy associated with the transverse
degrees of freedom and

1 2—n—23cos’a
(g + gt Z S @) g
27112(8 + 8dd T ) (19)

where

Ua (O) =

is the effective interaction’ obtained by integrating out x .
The parameters {/, n} are determined by minimizing Eq. (17).
The variational theory also furnishes a description of the
excitations under the same shape approximation [30,32],
ie., by setting ug j=o(p) = ur x"*(p) and vy j=o(p) —
Vi, x " (p). This approximation neglects excited transverse
modes and thus captures a single excitation band. Under this
approximation the BdG excitation energy becomes

E = \/ ex.[er. +2n0, (k)] (20)

where u, =coshd, v, =sinhd, with tanh2¢, =

nUy(k;)/lex. + nUy(k,)]. Here the k,-space interaction is
well approximated as

Outh) = Ual0) + 555 A, Q3% Bi( — Q2). (2D)
where A, = 3(% — cos?a). For n =1 this expression

gives the exact result using Q2 = k%1% [33]. For n # 1 there
is no exact result; however, an accurate approximation can be
obtained by setting

Q> = Lq (K2, (22)

where g, () is a scaling parameter. In Ref. [30] the ¢ = 7 /2
case was examined and g, 2(n) = /1 was found to be a good
approximation. Following a similar approach we have found
that for « = 0 a good approximation is obtained with go(n) =
(%)4/5 (see Fig. 2). We view this as an important result
of this work that significantly extends the applicability of the
variational approach to elongated dipolar BECs. In Table I we
give the exact limiting values of U,, which is important in
understanding the behavior of the elongated dipolar system.

2Qur notation here preempts that this is the k. = 0 limit of the k.-
space interaction we introduce later.

2 ‘ |
gs=10 N ga—
15} e :

=

N~

numerical
analytic ansatz ccecoeeco

k.l

FIG. 2. Comparison of analytical and numerical results for the
k,-space interaction for the variational Gaussian function and « = 0.
Results are shown for several values of n and g, = 0. Since the
results for  and 1/n are identical we only show cases with n < 1.
The analytic result is given by Egs. (21) and (22) with go(n) =
(%)4/ 5. The numerical result is obtained by evaluating U™ (k,) =

ST A TG I

The slope of the variational result (20) gives the speed of

sound as
0 —  /n0,(0)/m. (23)

In the beyond-quasi-1D regime the same shape approximation
for the excitations tends to result in a higher speed of sound
than that obtained from the full BdG calculations and Eq. (23)
becomes inaccurate. To obtain a better estimate of the speed of
sound from the variational theory we use the thermodynamic
expression ¢ = /n(du/on)/m (also see [34]), which allows
us to obtain an expression for the speed of sound directly from
derivatives of energy functional (17). This gives

U, U, (0) n?
c;ar _ nUy(0) + ( )n_’ (24)
m on 2m

where the n dependence of U, (0) arises because 7 and [ de-
pend on n [see Eq. (19)] (i.e., revealing the beyond-quasi-1D
behavior of the system).

The static structure factor obtained using the variational
description of the excitations is

€k,
var
kZ

$“ (k) =

[1+27(E™)] (25)

TABLE 1. Limiting behavior of U, (k).

Uy (k: = 0) Uy (k; — 00)
a=0 2 (85 — 8aa) 527 (85 + 8aa)
=7 (e + gdd%) 527 (8 — 8aa)
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TABLE II. Interaction parameters and features of the three cases
considered in this section.

Sec. lIT A Sec. IIIB Sec. IIIC
Regime Contact dominated DDI dominated
I, direction a=0 a=7 a=7
Agaq 130800 1308(10 130800
a 140ay 140ay 115a,
Feature Antiroton Roton

III. SYSTEM PROPERTIES

We begin by examining the basic properties of the ground
states and their spectra for the two dipole orientations. This
allows us to quantify the regimes where both orientations are
stable, note important features in the excitation spectra and
structure factors, and make some comparisons between the
full mean-field theory and the variational theory. To illustrate
the system behavior in this section we consider a '**Dy con-
densate with n = 2.5 x 10 um in an isotropic transverse trap
of frequency w, /27 = 150 Hz. This regime (i.e., condensate
density and transverse confinement frequency) is similar to
that used in recent experiments with dipolar quantum gases in
cigar shaped potentials [1-5].

We consider three different cases for the interaction
parameters, which are given in Table II. In all cases
ngs/2ml2 ~ 30eh, and nguq/2mwl} ~ 30€n,, where Iy, =
Vh/mwy, and e, = fiw,, are the transverse confinement
length and energy scale, respectively. Importantly, this means
the system is well beyond the quasi-1D regime® necessitating
the variational description as a minimal model. While the
values of a; and ay, are similar (i.e., ~10%ay) for these cases,
the difference a; — ayq being positive (i.e., contact interaction
dominated) or negative (i.e., DDI dominated) is important. For
example, we do not consider a DDI dominated case for « = 0
since it is mechanically unstable in this regime. On the other
hand, the @ = Z system is metastate in the DDI dominated

2
regime and can develop a roton excitation.

A. Contact dominated case with « = 0 (antiroton)

The spectrum for the « = 0 case of Table II is given in
Fig. 3(a), with the condensate density shown in the inset.
The lowest band of excitations is seen to have a small region
over which it increases linearly with k, near k, = 0, revealing
the long-wavelength phonon behavior. In general the low-
est excitation band is well above the free particle result ¢,
demonstrating the importance of interactions.

The variational solution has / = 0.87 um and n = 1, and
is in good qualitative agreement with the GPE solution. The
variational spectrum E;* (20) agrees well with the lowest
BdG band for k, < 0.5 um~!. For k, > 0.5 um™~! the varia-
tional spectrum departs from the lowest BdG band and is seen
to ascend crossing many excited bands.

3The quasi-1D regime requires both ng,/2m 12, and nggq /27l to
be smaller than €.

1.2

(kHz)
o o
o © -

Eyj/h
=}
~

 (pm)

0 10 20 30 40 50 60 70
k. (um™!)

FIG. 3. Properties of excitations for a '*‘Dy elongated dipolar
system with o = 0, a; = 140ay, and a4, = 130.8a,. (a) The BdG
excitation energy E;_; for even parity modes (blue dots), variational
E;™ (solid black line), and free-particle €, (black dashed line) dis-
pe}sion relations. The red dashed line indicates the linear phonon
spectrum. The inset shows |y | with the black dotted line indicating
where the | x¥*|? is 1/e of its peak value. (b) S(k.) at T = 0 obtained
from BAG and variational theories. (Inset) k,-space interaction (21).
(¢) S(k., w) obtained from BdG results. (d) S(k,) as in (b), but over
a larger k, range. In (b) and (d) the static structure factor for a;y = 0
and a; = 9.17a, (gray line) is also shown. Results are for isotropic
transverse confinement w, /2w = 150 Hz and n = 2.5 x 10* um.
The § functions in the definition of S(k,, @) are frequency broadened
by Gaussian of width 50 Hz.

The ground state and excitations can be qualitatively un-
derstood from Up(k,) [see Eq. (21) and Table I], which
characterizes the k, dependence of the interaction, and is
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shown in the inset to Fig. 3(b). We see that ﬁo(kz) mono-
tonically increases with increasing k, and saturates at large
k.. The k. dependence arises from the transverse confine-
ment and /,, gives a characteristic length scale dividing the
low-k, and high-k, behavior. The condensate interactions are
described by Uy(0) [i.e., see Eq. (17)]. For the « = 0 case
the DDI and contact terms offset at k, = 0 so that Uy(0) is
small and positive, so that the condensate particles are only
weakly interacting. As a result the condensate is narrow and
dense, i.e., the variational width / is only slightly greater
than the transverse confinement length (/,, = 0.64 pwm). The
non-zero-k, behavior is revealed in the excitation spectrum,
which directly depends on Uy (k,) [see Eq. (20)]. In particular,
the rapid increase in Uy(k,) with increasing k, causes the
excitation energy to be shifted much higher than the free
particle result €, . The difference between the variational and
lowest band of the BdG spectrum at high k, occurs because the
same-shape approximation used to derive Eq. (20) fails, and
the excitations take a different shape to reduce overlap with
the condensate.

Despite the contrasting behavior of the full BdG and vari-
ational spectra the respective T = 0 static structure factors
are in good agreement [see Figs. 3(b) and 3(d)]. We observe
that the static structure factor slowly approaches the inco-
herent limit S(k, — oo) =1 for k; > 1/£5°, where &5° =

Ii//mnUy(k, — 00), is the healing length obtained using the
high-k, limit of the interactions (see Table I). Here 1/£5° ~

11.8 um™', with subplot (d) verifying that this sets the char-
acteristic scale for S(k.) to approach the incoherent limit. For
reference we also show the static structure factor for a contact
interacting BEC of scattering length a; ~ 9.17a,, chosen to
match the speed of sound of the system with DDIs. We see that
the static structure factors for both cases agree for k, — 0, but
that the contact result approaches the incoherent limit much
more rapidly with increasing k.

In Fig. 3(c) we show the T = 0 dynamic structure fac-
tor (14), to reveal how much each BdG excitation band
contributes to the density response. At low k, only the lowest
band has significant weight, whereas with increasing k, many
bands contribute. This multiband behavior is quite novel for
a condensate, where normally the lowest band carries the ma-
jority of the weight [also compare to S(k;, w) for the cases we
examine in Secs. [II B and III C], and could be revealed using
Bragg spectroscopy. Qualitatively we see that E;™ crosses
the excited BAG bands at a similar point to when they begin
contributing significant weight to the structure factor. We also
note that the particular bands that are excited correspond to
those with m, = 0, where m, is a quantum number associated
with the z projection of the angular momentum.*

We refer to the o« = 0 case and its peculiar behavior ex-
plored in this subsection as arising from the antiroton effect,
i.e., from an interaction that gets more strongly repulsive with
increasing k.. We choose this terminology to emphasize the
contrast to the usual roton regime in a dipolar BEC, which

“For a radially symmetric trap and « = 0 the system has radially
symmetry. Thus m, is a good quantum number and only m, =0
modes can contribute nonzero matrix elements in Eq. (15).

(kHz)

Eyj/h

w/2m (kHz)

k. (um™)

FIG. 4. Properties of excitations for a '**Dy elongated dipolar
system with o = 7 /2, a; = 140ay, and a4y = 130.8ay. (a) The BdG
excitation energy E;_; for even parity modes (blue dots), with the
variational E*" (solid black line) and free-particle ¢, (black dashed
line) dispersion relations shown. The red dashed line indicates the
linear phonon spectrum. The inset shows |x |* with the black dotted
line indicating where the |x¥|? is 1/e of its peak value. (b) Zero
temperature static structure factor obtained from BdG and variational
theories. (Inset) Variational k,-space interaction. (c) Dynamic struc-
ture factor obtained from BdG results. Other parameters as in Fig. 3.

occurs when the interaction strength decreases with increasing
k, (see Sec. III C).

B. Contact dominated case with a = 7 /2

The spectrum for the « = /2 and a; = 140ay case of
Table II is given in Fig. 4(a), with the condensate density
shown in the inset. Here the condensate is anisotropic in the
transverse plane arising from magnetostrictive effects of the
dipoles being polarized along y. The variational solution has
I =1.5 pm and n = 1.9, and is qualitatively similar to the
GPE solution. The lowest BAG band of excitations is in good
agreement with the variational result over the full k, range.
Also the shift of the lowest band from the free particle result
at high &, is smaller than for the o« = 0 case.

The ground state and excitations can be qualitatively un-
derstood from U, s2(k;) shown in the inset to Fig. 4(b). For
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this orientation of dipoles the interaction has a maximum
at k, = 0, where the contact interaction and DDI contribu-
tions add together. This causes the condensate to experience
a strong repulsive interaction and it broadens to lower its
density in response. The energy is also reduced by the system
distorting in the transverse plane, i.e., 1 increases to reduce
U, ,2(0) (see Table I). As k; increases U, /2(k;) monotonically
decreases, saturating to a small repulsive interaction (since
gs > gaqq for this case) at high k.. As in the @ = 0 case [, gives
a characteristic length scale dividing the low-k, and high-k,
behavior. The weak repulsive interactions at high k, explain
the relatively small shift in the lowest BAG band from the
free particle dispersion relation. The 7 = 0 static structure
factor Fig. 4(b) shows good agreement between the variational
and BdG results, with the dynamic structure factor [Fig. 4(c)]
showing that most of the weight comes from the lowest band.

C. DDI dominated case with & = /2 (roton)

The DDI dominated case with « = /2 and a, = 115ay
shares many features with the case considered in the last
subsection, and here we mainly focus on the new aspects.

For this case the variational solution has [ = 1.3 um and
n = 2.7. Being in the DDI dominated regime, i.e., a; < dqq,
the effective interaction U, ,2(k;) becomes negative at high k,
[see inset to Fig. 5(b) and Table I]. This attractive interaction
causes a roton excitation to form, identified as a local mini-
mum in the dispersion relation. We have labeled the energy of
this minimum as € in Fig. 5(a) and denote the wave vector
where it occurs as k.. Because /, gives a characteristic length
scale where U, /2 switches over to being attractive, we have
kiot ~ 1/lno. The T = O static structure factor Fig. 5(b) now
exhibits nonmonotonic behavior and has a peak at interme-
diate k, values near k.. The qualitative agreement between
the variational and BdG results for S(k;) is less good in this
regime because the magnitude of the peak is sensitive to the
energy of the roton, which in turn is sensitive to the precise
details of the system. In Fig. 5(d) we show how the roton
energy varies with ay. It first emerges around a, = 116.5a9
and then decreases with decreasing a;. The BdG results show
that the roton goes to zero energy at a critical a; value of
a* ~ 114.2ay at which point the system becomes unstable.
The variational result predicts this instability to be at the lower
value of 112.1ay.

D. Speed of sound and stability

In Fig. 6 we show the speed of sound over a wide parameter
regime, including the cases studied in Figs. 3-5. The speed of
sound is determined by the k, — O interactions of the system
(see Table I), and most strikingly we see in these results that,
even though the density is the same, the speed of sound for
« = /2 is much higher than the o« = 0 case. We also see
that the @ = 0 system becomes unstable when a, reduces to
be equal or less than ay;. At this point the speed of sound
goes to zero (i.e., the compressibility diverges) and the gas
mechanically collapses. For the o« = 7 /2 case, the unstable
point instead arises from the roton excitation going soft, oc-
curring when a; ~ 114.2q, [see Fig. 5(d)].

0
112 1125 113 1135 114 1145 115 1155 116 1165 117
as/ag

FIG. 5. Properties of excitations for a '*‘Dy elongated dipolar
system with « = /2 and a, = 115ay. (a) The BdG excitation energy
Ey ; for modes that are of even parity in x and y (blue dots), with
the variational E*" (solid black line) and the free-particle dispersion
€, (black dashed line) dispersion relations shown. The red dashed
line indicates the linear phonon spectrum using the variational speed
of sound. The local minimum of the dispersion relations identifies
the roton excitation (filled circles). The inset shows |x|*> with the
black dotted line indicating where the | x‘|? is 1/e of its peak value.
(b) Zero temperature static structure factor obtained from BdG and
variational theories. (Inset) Variational k,-space interaction. (c) Dy-
namic structure factor obtained from BdG results. (d) The roton
energy from the variational and BdG calculation as a function of
ag, shown from when it appears until it goes to zero energy. Other
parameters as in Fig. 3.

We also compare the variational and BdG predictions for
the speed of sound in Fig. 6. This shows that the varia-
tional formalism provides an accurate estimate of the speed
of sound, and that the corrected form presented in Eq. (24)
significantly improves upon the bare variational result of
Eq. (23).
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FIG. 6. Speed of sound and stability. The speed of sound versus
a, for an elongated dipolar system at o = 0 (lower curves) and o =
/2 (upper curves). We show both the BAG and variational results
[see Egs. (13), (24), and (23)]. The left-hand termination point of the
curves marks where the system is unstable. Other parameters as in
Fig. 3.

IV. NUMBER FLUCTUATION RESULTS

In Fig. 7 we show the relative number fluctuations,
ANL2 /Nr, as a function of cell size for the three cases consid-
ered in Sec. III. For comparison we also include the results of
a similar calculation for a contact interacting condensate with
as = 140ay. We show results for zero [Fig. 7(a)] and nonzero
[Figs. 7(b) and 7(c)] temperatures. Our full numerical results
are obtained by constructing the static structure factor from
the BAG solution on a dense k, grid and then numerically
integrating Eq. (2) for each cell size L.

A. Small and large cell behavior

Independent of temperature, for small cell sizes the fluctu-
ations approach the Poissonian limit, where AN} is equal to
the mean number of atoms in the cell, N; . This occurs because
the particles are uncorrelated on small length scales.

In the large cell limit the behavior is strongly dependent on
the temperature. At zero temperature the relative fluctuations
decrease as ~L~! with increasing cell size. Since N o L, this
means that ANL2 — const, as revealed in the inset to Fig. 7(a).
At nonzero temperatures the relative fluctuations plateau to
a constant value, i.e., realizing the thermodynamic behavior
of Eq. (4). This plateau is strongly dependent on the dipole
orientation «, as the thermodynamic limit is sensitive to the
speed of sound (cf. Fig. 6) and thus the k, — 0 behavior of
the interactions (cf. Table I). Notably, for « = 0 where the
DDIs significantly reduce the speed of sound, we observe
stronger fluctuations in the large cell limit. For the o« = 7 /2
cases, the fluctuations in the thermodynamic limit are similar
to the contact interacting case. The speed of sound for dipolar
systems in this case is sensitive to magnetostriction [e.g., the
role of 7 in Uy 2(0); see Table I].

For comparison to our full numerical results in the large
cell limit we can develop a simple approximation based on

a=§,a; = 115a9 E

a =7, as = 140ay

contact case

10" a'=0,a,; = 140a as = 140ay

1600
1400

102 F 1200
=
< 1000
<

800

600

102 107 10° 10
L (pm)

AN} /Ny

107! :
1078 102 1071 10° 10° 102 103
L (pm)

FIG. 7. Relative number fluctuations of an elongated dipolar
condensate versus linear cell size for (a) T =0, (b) T = 5 nK, and
(¢) T = 50 nK. Solid lines are calculated using the GPE ground state
and BdG excitations for the three cases considered in Sec. III and a
contact interactions only case with a; = 140ay. The dashed lines are
approximate large-cell results based on the variational speed of sound
(see text) plotted for L > 10 um and the filled circles in (b) and
(c) indicate Az. In all subplots the transverse confinement length is
shown for reference. The inset of (a) shows the (unscaled) number
fluctuations calculated at 7 = 0 using the GPE ground state and
BdG excitations for large cells. The inset of (b) shows the full results
(solid lines) compared to the numerically integrated variational result
(dotted) (see text).

the variational speed of sound from Eq. (24). Setting E/* =
helk, (k; < 1/l) the leading-order behavior of the static
structure factor is

hlk
S(k, - 0) = | , T =0, (26)
2mcey
kgT
S(kz—>0)=—2, T > 0. 27
m(c;ar)
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We then make the approximation
AN} ~ N;S(1/L), (28)

which assumes that the fluctuations are dominated by exci-
tations with a wavelength comparable to the cell size (e.g.,
see [18]). This yields the dashed lines in Fig. 7. We note that
the finite temperature result using this expansion is just the
thermodynamic limit (with the variational speed of sound),
while the zero-temperature result gives the L' scaling found
in the numerical results. The slight shift of these results
from the full numerical solution arises from the difference
in the variational speed of sound from the BdG result. We
also mention that the thermodynamic limit as 7 — 0 is non-
trivial since the low-temperature thermal wavelength® A; =
hcy /kpT diverges, while the thermodynamic result only holds
for L > Ar.

B. Intermediate cell sizes: Peak and dip features

An interesting feature of the results in Fig. 7 is the non-
monotonic behavior of the relative number fluctuations with
cell size. This feature occurs in many of the dipolar results,
but is not observed in the contact interacting case. The inset
to Fig. 7(b) compares the full BAG results to the fluctuations
evaluated from Eq. (2) using the variational static structure
factor. This shows that for most cases the two approaches
are qualitatively in good agreement over the full range of
cell sizes considered. The peak for the a; = 115a¢ result is
in poorest agreement. This is because the precise details of
the roton are important, and the variational theory predicts a
higher roton energy in this regime [see Fig. 5(d)]. However,
we conclude that in general the variational theory we have
developed provides a qualitatively good description.

In the o = O elongated dipolar condensate we observe a
suppression in fluctuations for moderate cell sizes. This is
related to the suppression in density fluctuations at moderate
k. that we previously noted in the static structure factor (see
Fig. 3). For all temperatures considered and at intermediate
cell sizes (i.e., L ~ ly,) the o = 0 system has the lowest
relative number fluctuations compared to the other cases in
Fig. 7. This feature becomes a local minimum (i.e., dip) when
the temperature is in the range 0.2 nK < 7' < 300 nK. The
lower-temperature limit is when the thermodynamic plateau is
first high enough to create a minimum. The upper temperature
limit is when thermal excitation of modes with k, ~ 1/l
is strong enough to overcome the suppression.® Most exper-
iments operate at temperatures well within this temperature
range and the dip feature should be observable.

In the @« = 7 /2 cases we observe enhancement of fluctua-
tions at moderate cell sizes. This relates to the enhancement

5In general we define the thermal wavelength as Ay = 1/k,,
where k. satisfies Ey, j—o = kzT . For example, for low temperatures
Ey_  j—o ~ hcyk; and we have Ay = lic, /kpT .

®This behavior is well captured by the variational structure fac-
tor (25), which approximately relates to the number fluctuations
through Eq. (28). Here the intrinsic suppression is described by
the T = 0 static structure factor Sy = ¢, /E™, while the thermal
excitation is described by 2f + 1. A

102F (wa) ' DDI dominatted " [contact dbminaled ]
~
Z
o
Z 10"t ]
q peak, a = m/2
g _\
- \
B
<
5 10°¢ . E
d ]
g I e
g & dip, a =0
101k [——i roton 4
16— : : ‘
®) [ == f o=l
14+ S i
— o3
gi 12+ ‘z‘ i
= 1 a =0, a; = 140qy 4
N dip
£ -
~ 0.8r L L Frea i
—
S o6t )
s Lpeak
g | ]
3 0.4
0ol Ldip .
0 | . ! . ! '

110 115 120 125 130 135 140
as/ag

FIG. 8. Peak and dip features in the relative number fluctuations.
(a) The maximum (peak) and minimum (dip) value of ANLZ /N, for
o =m/2 and o = 0, respectively. Results shown for 7" = 50 nK
from the BAG (blue lines) and variational (black lines) theories.
The small magenta bar indicates the a, range over which the roton
occurs in the spectrum of the o = 77 /2 system. (b) The cell size Lyeax
and Lg, where the peak and dip occur, respectively, corresponding
to the results in (a). The inset to (b) uses the a, = 140qa, results
from Fig. 7(c) to illustrate the peak and dip in the relative number
fluctuations for the « = 7 /2 and o = 0 cases, respectively.

in density fluctuations at moderate k, values in the static
structure factor noted earlier (see Figs. 4 and 5). For all
temperatures considered and at intermediate cell sizes the
o = /2 systems have larger relative fluctuations than the
other cases in Fig. 7. This can emerge as a local maximum
(i.e., peak) depending on the temperature and the relative
strength of the dipole-dipole and contact interactions. For the
a; = 115ay case, this peak is apparent at all temperatures,
including T = 0. This occurs because the interactions are
attractive for k, 2 1/ly,. For the a; = 140qq case, where the
interactions are weakly repulsive at high k., a peak occurs
when the modes with enhanced fluctuations become thermally
activated. In the 7 = 5 nK results of Fig. 7 these modes are
not accessed (i.e., Ay > l,) and there is no peak, while for
the T = 50 nK results these modes are activated and a peak
develops.

In Fig. 8 we explore how the peak and dip features in the
relative fluctuations change with ay, and show the cell size
where these features occur. These results show that the peak
and dip features occur at all values of a; considered where the
respective system is stable. In Fig. 8(a) we see the peak feature
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for o« = 7 /2 diverges as the roton softens [cf. Fig. 5(d)]. We
note that the roton only appears in the excitation spectrum
in the small range a* < a; < 116.5a; thus a peak in the
relative fluctuations does not directly relate to the roton. We
also compare the full numerical results for the peak and dip
features to those extracted from the variational approximation
and find qualitatively good agreement over a wide parameter
regime.

V. CONCLUSIONS

In this work we have studied the properties of an elongated
dipolar condensate, with a focus on excitations and local
number fluctuations. We have considered the role of dipole
orientation, demonstrating that the excitation properties are
markedly different for the dipole being along or orthogonal
to the long axis of the system. In particular the speed of sound
is extremely sensitive to the dipole orientation, and this is
revealed in the number fluctuations for large cells. Also the
dipole orientation can cause a peak or dip to emerge in the
fluctuations as a function of cell size, related to the momentum
dependence of the DDIs in the confined system. We note that
experiments with dipolar BECs have previously measured the
collective excitations and anisotropic effects on the excitation
spectrum [35-37], although not in the elongated system.

In addition to full numerical calculations of this system
using the GPE and BdG equations we presented a simple
variational theory based on the assumption that the condensate
profile in the transverse plane is Gaussian. The variational
theory is applicable in the regime of experimentally relevant
parameters (e.g., see [1-5]) and is much easier to calculate
compared to the full theory. We have used this theory to cal-
culate the excitation spectrum, including the speed of sound,
structure factors, and fluctuations. The analytical expression

for the dispersion relation in this approach is obtained using
the same shape approximation, i.e., under the additional as-
sumption that the excitations have the same transverse profile
as the condensate, which restricts calculations to the lowest
excitation band.

The type of measurements needed to count atom numbers
in finite cells has already been demonstrated in previous ex-
periments with a Rb condensate in an elongated trap [10,11]
and should be readily applied to current dipolar condensate
experiments. Measuring the peak or dip feature in the fluc-
tuations will require having in sifu imaging resolution ~I,,
which is possible with high numerical aperture imaging sys-
tems. Our results also demonstrate that these features will be
prominent for typical temperatures realized in experiments
(i.e., ~10'-10? nK). Furthermore, if it is possible to deter-
mine system densities and interactions accurately, fluctuation
measurements might be a useful form of thermometry.

In this work we have neglected the effects of beyond
meanfield corrections. For instance, these can give rise to a
supersolid state for « = 7 /2 and a; < a* or to a macrodroplet
for « = 0 and a, < ayy. These corrections will tend to shift
our results slightly, such as the scattering length where the
roton goes soft (e.g., see [30]). A general discussion of beyond
mean-field effects on fluctuation measurements would be an
interesting extension for future work, and certainly could be
an avenue to get better insight into the liquid and solidlike
transitions seen in dipolar gases (e.g., see [38—41]).
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