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Vortex-antivortex physics in shell-shaped Bose-Einstein condensates
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Shell-shaped hollow Bose-Einstein condensates (BECs) exhibit behavior distinct from their filled counterparts
and have recently attracted attention due to their potential realization in microgravity settings. Here we study
distinct features of these hollow structures stemming from vortex physics and the presence of rotation. We focus
on a vortex-antivortex pair as the simplest configuration allowed by the constraints on superfluid flow imposed
by the closed-surface topology. In the two-dimensional limit of an infinitesimally thin shell BEC, we characterize
the long-range attraction between the vortex-antivortex pair and find the critical rotation speed that stabilizes
the pair against energetically relaxing towards self-annihilation. In the three-dimensional case, we contrast the
bounds on vortex stability with those in the two-dimensional limit and the filled sphere BEC, and evaluate the
critical rotation speed as a function of shell thickness. We thus demonstrate that analyzing vortex stabilization
provides a nondestructive means of characterizing a hollow sphere BEC and distinguishing it from its filled
counterpart.
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I. INTRODUCTION

From the microscopic to the astronomical, shell-shaped
Bose-Einstein condensates (BECs) have made their appear-
ance in fascinating ways. In the laboratory realm of ultracold
gases, the bosonic optical-lattice setting is renowned for
its “wedding-cake” structures [1–5] consisting of Mott-
insulating layers sandwiching superfluid shells, while other
instances of such shells include Bose-Fermi mixtures [6–8].
In superfluid helium droplets, introduction of other molecules
in the center of the droplet leads to development of super-
fluid solvation shells around it [9,10]. In the stellar realm,
extremely high densities in neutron stars offer the possi-
bility of hosting condensed phases of subatomic particles,
and some observed behavior has indicated shell-shaped su-
perfluid regions [11–14]. BEC shells are expected to have
dramatically different features from their filled counterparts in
collective mode structure [15–17], thermodynamics [18,19],
and time-of-flight properties [20–22]. A proposed “bubble
trap” geometry [23] in laboratory settings would allow for
the realization of BEC shells in free space and the con-
trolled tuning from a filled sphere to a topologically distinct
[15,16] hollowed out three-dimensional (3D) structure to a
two-dimensional (2D) spherical surface. While so far gravi-
tational sag has prevented the creation and analysis of free
standing hollow shells on Earth, the advent of experiments in
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microgravity [24,25] holds promise. In particular, one experi-
ment in the recently launched Cold Atomic Laboratory (CAL)
aboard the International Space Station specifically designed
to realize a hollow bubble geometry [26,27] has provided
impetus for probing the unique topological and geometric
aspects of BEC shells.

Integral to BECs, the physics of quantized vortices [28]
calls for a study in and of itself. Emergence of quantized
vortices upon system rotation has been used as confirma-
tion of superfluidity in early BEC experiments [29,30] and
superfluid helium droplet studies [31,32] alike. In shell-
shaped structures in particular, tuning through the dimensional
crossover from a filled sphere to a thin shell, a single
vortex line passing through the filled system reduces to a
vortex-antivortex pair on the 2D shell surface. The associated
thermodynamics is highly sensitive to the closed geometry
and topology, particularly with regards to vortex-antivortex in-
duced Berezinskii-Kosterlitz-Thouless transition [33]. In the
presence of stirring or rotation, static and dynamic features of
vortices in shell BECs are expected to be significantly altered
compared to filled sphere counterparts. An extreme instance
involves possible explanations for pulsar glitches attributed
to tangles of vortices in neutron stars [13,14]. Here, we
demonstrate that even the simplest vortex configuration in a
spherical shell geometry exhibits rich physics due to interplay
between restricted flow in a closed topology and the energet-
ics of vortices in hollow structures. Topological constraints
enforce a zero circulation rule, applicable even to classical
fluids such as planetary atmospheres [34], requiring that the
vortex-antivortex pair be the minimally allowed configuration
[35,36], in contrast to a flat 2D system where a single isolated
vortex is possible. We investigate equilibrium properties of
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FIG. 1. (a) Schematic density profile of a shell-shaped BEC com-
paring a vortex-antivortex pair at the poles, rotating about the z axis
(straight dashed line) with another such pair at polar angle θ = α

(antivortex at π − α) rotating about a curved dashed line. (b) Vector
field showing superfluid flow for the vortex-antivortex pair at θ = α.
The +x direction points out of page and the colors represent the
phase S of the BEC wave function.

such a pair across the finite thickness to strictly 2D shell
regimes, establishing that upon rotation they are stable only
when at the poles. The energy barrier for stabilizing such a
pair in a shell always remains less than for a filled sphere
of the same radius, as expected from the absence of core
energy in the hollow region. Along with previous predictions
for collective mode excitations in BEC shells [15,16], these
studies provide a nondestructive means for characterizing a
hollow sphere and distinguishing it from its filled counterpart.

Our starting point for analyzing vortex structures in shell-
shaped BECs assumes a condensate wave function ψ = f eiS ,
where S represents the condensate wave-function phase and
f its amplitude. For the 2D and 3D cases, f is related to
the condensate density f 2 = ρ2D or ρ, respectively. The con-
densate velocity takes the form v = h̄∇S/m for condensate
atoms of mass m. Near the vortex center, the rotation speed of
condensate atoms exceeds the Landau criterion for destruction
of superfluidity and a vortex “core” is formed. The size of this
density depletion is set by the condensate’s healing length ξ0,
which depends on the strength of interatomic interactions.

In what follows, we first consider a 2D BEC confined to
the surface of a sphere, detailing the topological constraints
on and interactions between vortices in this closed, curved
geometry. We find that long-range attractive interactions, in-
duced by the energy gradient, tend to energetically drive a
vortex and an antivortex towards the equator, while rotation
of the system tends to drive them to opposite poles. Within
a Gross-Pitaevskii (GP) formalism that allows us to include
the interactions between condensate atoms and the nonzero
size of the vortex cores, we find the critical rotation speed
necessary to stabilize the pair. We chart the condensate flow
pattern in the presence of the associated vortex line threading
through the 2D surface system, as shown in Fig. 1(a). Turning
to thin 3D hollow shells, we use a simple slicing argument
and a local density approximation to argue that a critical
rotation speed for stabilizing a single vortex line persists in
this more realistic curved hollow system and show that its
value increases with the thickness of the shell. We perform

a fully 3D numerical solution of the equilibrium GP equation
in order to obtain energetic estimates of the critical rotation
speed for a hollow shell away from the thin-shell limit and
compare it to the case of a filled sphere. We conclude with
a brief outlook on dynamics and multivortex scenarios in the
context of BEC shells.

II. VORTICES ON A TWO-DIMENSIONAL
SPHERICAL SURFACE

While the precise distribution of vortices and superfluid
flow patterns for a hollow condensate shell depends on its
geometry and detailed energetics, the S2 topology associated
with the closed surface poses significant constraints [37]. By
way of illustration, we first discuss an infinitesimally thin,
effectively 2D shell BEC. Consider a collection of nv pointlike
vortices on the surface of the sphere having integer vorticities
�i, respectively. Units of circulation within any closed loop
on the surface can be counted using a loop integral, equiv-
alent to a surface integral via Stokes’ theorem (

∮ ∇S dl =∮
h̄
m v dl). If the loop is chosen to contain all vortices, then

the rest of the shell contains no vortices and we identify the
constraint of vanishing net vortex circulation,

∑nv

i=1 �i = 0.
Such constraints have been identified for a broader class of
compact surfaces, for instance, toroidal surfaces of revolution
in Ref. [37]. The simplest instance of vortex stabilization on
the surface of a spherically symmetric BEC, the focus of
this work, then is nv = 2 and �1 = −�2 = 1 [35,36]. This
describes a vortex carrying a single unit of angular momentum
in tandem with an identical vortex having the same vorticity
but oriented in the opposite direction, i.e., a vortex-antivortex
pair.

Further, a nonzero flow field on the condensate shell has
to satisfy the Poincaré-Hopf theorem, which states that for
a vector field everywhere tangent to the surface of a sphere,
the topological indices associated with its zeros and singu-
larities must add up to its Euler characteristic. This theorem
is equally applicable to fluid flow in other settings, such as
the Earth’s atmosphere [34]. Explicitly, denoting a topological
charge of the ith defect in a collection of nd vortices and
singular flow points on the surface of a sphere as qi implies∑nd

i=1 qi = 2. Regardless of its vorticity, �i, a point vortex here
has topological charge qi = 1, while stagnation points in the
flow contribute qi = −1. The vortex-antivortex pair (qi = 1
each) in the absence of any stagnation points in the superfluid
flow is thus the simplest allowed vortex configuration for the
condensate shell under the constraints posed by its geometry
and topology.

Two pointlike vortices carrying opposite vorticities in a
2D condensate experience an attractive interaction. Intuitively,
interactions between vortices stem from their being sources of
vorticity for the superfluid flow—as the superfluid circulates
around each vortex, this motion carries other vortices with
it. In this sense, vortex interaction energy reflects the kinetic
energy of the underlying condensate. Similar physics occurs
for a collection of current carrying wires where each wire is
affected by a Lorentz force due to magnetic fields produced
by other wires [38]. We note, however, that the dynamical
behavior of two wires carrying opposite currents is different
than that of a pair of vortices carrying opposite vorticities as
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the former repel while the latter do not. To make the superfluid
vortex case more precise, as in Refs. [39,40], we write this
effective flow-mediated interaction energy as

Ev-v = h̄2ρ2D

2m2

∫
|∇S|2dA. (1)

We evaluate this expression by solving for the inverse of the
Laplacian on the spherical shell, i.e., by finding the Green’s
function as outlined, in more detail, in Ref. [40].

For a vortex-antivortex pair situated at (θ, φ) = (α, 0) and
(π − α, 0), respectively (see examples in Fig. 1), i.e., a dipole-
like configuration symmetric about the equator of the BEC
shell, this interaction energy takes the form

Ev-av(α) = π h̄2ρ2D

m2
ln(cos α). (2)

Here, the shell topology is reflected in the logarithmic scal-
ing of interaction energy with the angular separation of
vortices, rather than with the rectilinear distance between
them, which is the case in flat superfluid topologies. For
the vortex-antivortex pair, the condensate kinetic energy de-
creases as α → π/2, resulting in an attractive interaction. In
the presence of energy and angular momentum dissipation
mechanisms [41], the vortex and the antivortex will tend to
relax towards α = π/2, the equator. In the full α = π/2 limit,
the vortices overlap and annihilate at the equator and the flow
sourced by either, and its associated kinetic energy, vanishes.
A vortex-antivortex pair in a flat 2D superfluid experiences a
similar attraction [42,43].

Given this attractive interaction, we investigate whether
external rotation of the system can stabilize the pair against
energetically relaxing towards the equator. For a rotating sys-
tem, the total energy of vortices decreases as the system’s
angular momentum increases. Since angular momentum is
maximized when the two vortices align with the rotation axis,
we expect a minimum of the total vortex energy for α = 0
and sufficiently fast shell rotation. Heuristically, transforming
the shell energy to a rotating frame with angular velocity 
,
E → E − 
〈Lz〉 implies the same conclusion.

To formalize this intuitive understanding that condensate
flow on the 2D shell pulls vortices having opposite circu-
lations closer together, but rotation pushes them apart and
towards the rotation axis, we evaluate the energy associated
with rotation to be

Erot = 
〈Lz〉 = 
ρ2D

∫
R2 sin θ dθ (d�l · �v)φ

= 4π
h̄

m
ρ2D
R2 cos α, (3)

where R is the shell radius. For α = 0, Eq. (3) reduces to the
number of atoms on the surface of the sphere rotating about
the antipodal vortex-antivortex pair. For α �= 0, the factor of
R2 cos α indicates a projection of angular momentum to the
rotation axis of a given vortex, i.e., its center. Combining
Eqs. (2) and (3), the dimensionless form of the energy per
particle in the rotating frame becomes

ε(α) = Ev-av − Erot

NER
= 1

2
ln(cos α) − 
̃ cos α, (4)

FIG. 2. (a) Dimensionless superfluid flow-based energy ε(α) [in
Eq. (4)] of a rotating 2D spherical BEC for dimensionless angular
velocity 
̃ for values that, from the top to the bottom, are (i) above,
(ii) equal to, and (iii) below the critical value 
̃c = 1

2 , where a local
minimum develops for a polar vortex-antivortex pair. (b) Dimen-
sionless energy ε2D [in Eq. (5)] obtained from the numerical GP
calculations. The curves from the top to the bottom are for 
̃ = 0.54,
0.49, and 0.45, respectively. For ease of comparison, we have shifted
energy curve offsets so as to align at α = 0. The dimensionless
energies are in units of the characteristic energy ER = h̄2/(2mR2),
where R is the spherical radius.

where N = 4πR2ρ2D is the total number of condensed atoms,
ER = h̄2/(2mR2) sets the characteristic energy scale, and 
̃ =
2m
h̄ 
R2 is a dimensionless angular velocity.

Based on this energetic form, Fig. 2(a) shows that the
energy functional exhibits differing behaviors for 
̃ above
or below a critical value 
̃c = 1

2 . The global minimum of
ε(α) is always at α = π

2 . If 
̃ � 
̃c, ε(α) monotonically
decreases with α, again implying the tendency of energeti-
cally relaxing towards the equator at α = π

2 . If 
̃ > 
̃c, ε(α)
develops a local minimum at α = 0 and a local maximum
at α = αM = cos−1(1/2
̃), decreasing for αM < α < π

2 . Any
vortex-antivortex pair initially located at 0 < α < αM tends
to stabilize along the rotation axis, while for α > αM the
pair is unstable and tends to relax towards α = π

2 (the shell’s
equator) regardless of system rotation. However, for angles
near α = π

2 , we may no longer disregard vortex core effects,
and this energy functional no longer holds.

To complete our analysis of the 2D vortex-antivortex pair
energetics, we next include the effects of actual interactions
between the atoms in the BEC. This also implies that we
consider vortices as having density depletion at their cores
over the size of the healing length ξ0 set by the strength of
these interactions instead of being pointlike. We numerically
calculate the wave function ψ2D(θ, φ) of a rotating 2D spher-
ical BEC by minimizing the energy functional in the rotating
frame (the standard GP formalism [44]),

ε2D[ψ2D] = R2
∫

sin θ dθ dφ

[
|∇ψ2D|2 + U2D

2
|ψ2D|4

+
̃ψ∗
2D(i∂φ )ψ2D

]
, (5)
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which is rendered dimensionless by ER. Here, U2D is the
dimensionless 2D effective interaction strength, which is
set to keep the typical ratio of kinetic energy to interaction
energy to be ∼5% (e.g., U2D = 1000 in our simulation). The
vortex-antivortex pair configuration is imposed by fixing
the wave-function zeros (vortex cores) at α and π − α. In
Fig. 2(b), we plot the energy functional obtained by this GP
calculation. The curves exhibit behavior above and below
a critical angular velocity 
̃c ∼ 1

2 consistent with Fig. 2(a),
confirming the stability of the vortex-antivortex pair at the
condensate shell poles for sufficiently fast rotation. Numerical
results in Fig. 2(b) also show the energy functional’s decrease
toward the global minimum at α = π/2 to be less drastic
than suggested by the analytic results in Fig. 2(a) [Eq. (4)].
This reflects the effect of density depletion at the vortex cores
moderating the intervortex interaction at close separations.

Focusing on the superfluid flow obtained from the GP wave
function, for any finite α we find that the flow pattern resem-
bles one that rotates about a string through both vortex cores,
as illustrated in Fig. 1. We employ a variational approach to
approximate the wave function by considering the shape of
such a string, parametrized in a convenient way. This allows
us to determine the condensate density and phase, and the
associated superfluid flow. We set an arbitrary conic-section
curve on the x-z plane (φ = 0 or π ) through the vortex cores
on the sphere, which takes the general form

z2 = (λ − 1)x2 + 2bx + (1 − λ sin2α − 2b sin α), (6)

with two variational parameters b and λ. We numerically
minimize the energy functional of Eq. (5) with a variational
wave function ψvar (θ, φ) = fvareiSvar , where the phase Svar is
now the azimuthal angle with respect to the variational curve
and the amplitude fvar has a variational depletion at the vortex
cores. Specifically,

fvar (θ, φ) = A
σα√

ζ 2 + σα
2

σπ−α√
ζ 2 + σπ−α

2
, (7)

where A is the normalization constant, ζ a variational param-
eter, and σα = cos−1(cos α cos θ + sin α sin θ cos φ) is the
distance from the vortex core at α. We find that the minimum
energy state corresponds to a circle string (λ = 0) passing
through the vortex cores and perpendicular to the sphere’s
surface. Further, these variational results qualitatively agree
with the GP results with respect to energy functional curves
as well as critical rotation speed.

The variational assumption of a curved string connecting
the vortex-antivortex pair relates our analysis to studies of
vortex dynamics in filled 3D spherical BECs where a phys-
ical vortex string (line) may move off axis [41,45] or bend
[46–48] due to interaction or density inhomogeneity effects.
Namely, a vortex-antivortex pair on opposite poles of a 2D
condensate shell corresponds to a straight on-axis vortex in
a 3D BEC, while the pair at angle α > 0 corresponds to
a bent vortex. This correspondence additionally informs the
understanding of vortices on a spherically symmetric BEC
undergoing dimensional crossover from a hollow 2D geom-
etry to a shell-shaped condensate having finite thickness and,
finally, to a fully filled spherical BEC. Such crossover could
be experimentally achieved by the bubble trap [23] which we
model in the next sections of this work.

The 2D condensate shell, as we have shown so far, captures
rich physics in and of itself. Here, flow-based vortex-vortex
interactions cause the simplest vortex arrangement allowed by
the shell shape—the vortex-antivortex pair—to purely attract
in the absence of rotation. Vortices can be stabilized against
the attraction by rotating the system above some critical ro-
tation speed and, with the view of dimensional crossover,
the same stabilization would occur for an equivalent single
vortex line along the rotation axis in a condensate shell away
from the truly 2D limit. Interatomic interactions within the
condensate, and consequent nonzero vortex core size, further
lessen the attractive interaction between the vortex-antivortex
pair at short intervortex separations.

III. THIN THREE-DIMENSIONAL SHELLS

Expanding on our observations in the 2D limit, we analyze
the realistic case of a thin but not perfectly 2D spherical con-
densate shell containing a vortex line (the natural extension
of the 2D shell vortex-antivortex pair) from multiple perspec-
tives. First, using a Thomas-Fermi (TF) approximation, we
compare the energetics in the thin shell with that in the case of
a filled shell. We next approach the thin shell from the 2D limit
by building up the former as several layers of latter. Finally,
we use the 3D GP energy functional analogous to Eq. (5)
[41] and include a bubble trapping potential to rigorously
corroborate the comparison and obtain accurate estimates for
critical rotation frequencies.

To estimate the energy cost of a vortex line in a shell-
shaped condensate and compare with a filled sphere, we
closely follow the approach for the latter in Ref. [41], which
is expected to be valid in the TF limit, i.e., when the con-
densate healing length is small compared to its radius (or
thickness). The situation considered here, a single vortex line
along the z axis having winding �, can be described by the
BEC wave function ψ (r) = f (r⊥, θ )ei�φ (in cylindrical polar
coordinates). Assuming an � = 1 vortex, we imagine slicing
the condensate (either filled sphere or hollow shell) into thin
sections of height dz, then integrating over z. For a harmon-
ically confined system (filled-sphere BEC), where each slice
is a disk BEC pierced through its center by the vortex core,
Ref. [41] finds the fractional energy cost of the vortex to be

E sphere
v /E sphere

0 ≈ 4π h̄2

3mU
R
(

ln
R

ξ0
− 0.399

)
. (8)

Here, U is the 3D interatomic interaction strength, ξ0 is the
coherence length at the center of the vortex-free BEC, and R
is its outer radius. We note that the vortex core size is set by
ξ0, which should be much smaller than the size of the cloud,
R/ξ0 � 1.

For a thin spherical shell having thickness δ, much smaller
than outer radius R, a similar slicing procedure now includes
two disks (at the top and bottom of the system) and a num-
ber of intervening thin annuli, all with the vortex threading
through their centers, perpendicular to the slicing plane. The
resulting fractional energy cost of the vortex in this system is

E shell
v /E shell

0 ≈ 2π h̄2

3mU
δ
(

ln
R

ξ0
+ ln

δ

ξ0
+ 4.597

)
, (9)
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where ξ0 is the coherence length at the mean radius of the
shell and we note that, as above for the sphere, we assume
δ/ξ0 � 1. We note that since R � δ for a thin shell, the first
term in parentheses dominates.

Based on this analytical calculation we conclude that the
energy cost of a vortex in a thin shell BEC scales linearly
with its thickness. In contrast, the energy cost of a vortex in a
filled sphere BEC scales linearly (with log corrections) with
its radius R. This result suggests that the dominant cost of
a vortex is its core, which has length 2R in the filled sphere
and only 2δ for the thin shell. Since in the thin shell limit
we assume a hollow BEC thickness much smaller than its
radius, the energy cost for a vortex in this geometry will be
much lower than for a similarly sized fully filled spherical
condensate.

Having compared the hollow shell with the filled sphere,
we now turn to the opposite limit of using a local density
approximation (LDA) to decompose a thin 3D shell into layers
of concentric 2D shells with radii ranging between the 3D
BEC’s inner Thomas-Fermi radius Rin = R − δ and its outer
Thomas-Fermi radius R. Within this approach, a vortex line in
the 3D condensate shell (spanning its thickness) is equivalent
to a stack of 2D vortices, each associated with one concentric
shell layer. The system’s energy functional is evaluated as

εLDA
3D =

∑
i

ε2D(ri ). (10)

Here, ε2D(ri ) is the energy of each 2D layer, taking the same
form as Eq. (5) except with the layer radius equal to ri.
The effective rotation speed for each 2D layer is scaled here
by its radius as 
̃LDA(ri) = (r2

i /R2)
̃, thus contributing an
r-dependent rotational energy to the total energy functional.
Therefore, there ought to exist a radius rc, such that the effec-
tive rotation speed is large enough to stabilize a vortex pair
on the poles for the layers with ri > rc (the “outer” layers)
but not for those with ri < rc (the “inner” layers). Since the
vortex line cannot break into parts, its stability is determined
by the layers that energetically dominate and thus depends on
both the rotation speed 
̃ (which determines rc) and the shell
thickness δ (which determines the relative energetic contribu-
tions between the outer and inner layers).

Given a fixed rotation speed, the thicker the shell, the
more the inner layers contribute to the system’s energy. Thus
we expect to identify a critical thickness beyond which the
local energy minimum for a vortex line piercing through the
poles disappears. Figure 3(a) shows the energy functional of
shell BECs having various thicknesses at 
̃ = 0.6 (with the
vortex location fixed at θ = α on each 2D layer). The critical
thickness above which the vortex line is no longer stable at the
poles in this case corresponds to δ/R = 0.222.

Conversely, for a given thickness, the LDA calculations
show a critical rotation speed that determines the stability of
the vortex line through the poles. In Fig. 3(b), we plot the
critical rotation speed as a function of BEC shell thickness and
find an approximately linear relationship. This result suggests
a nondestructive way to experimentally probe the thickness
of a BEC shell by finding the lowest rotation speed that stabi-
lizes a single vortex aligned with the rotation axis and passing
through the poles.

FIG. 3. (a) Dimensionless energy εLDA
3D [in Eq. (10)] of 3D shell

BECs as a function of vortex location for various shell thickness δ

and dimensionless rotation speed 
̃ = 0.6. The curves from the top
to the bottom are for δ/R = 0.132, 0.222, and 0.255, respectively.
The data are from the LDA calculation and are offset to level up at
the α = 0 point. (b) Critical rotation speed 
̃c versus shell thick-
ness from the LDA calculation. The leftmost data point is for a
pure 2D shell.

In using the LDA above, we ignore any possible coupling
between the 2D layers. This includes interlayer particle move-
ments that would result in a radial superfluid current and
associated kinetic energy. For a rotating 3D shell BEC having
thickness similar to the critical value (at that rotation rate), we
expect a very flat energy functional indicating an approximate
tie in the competition between outer and inner layers. In such
a case, the radial energy, mostly coming from the tilting or
bending of the vortex line, might play a significant role in
vortex stability. However, for thin enough shells, we do not
expect these effects to be important; for thin condensate shells,
effects beyond the LDA should not qualitatively change the
vortex behavior found in the LDA calculations.

To generalize our discussion further and address the lim-
itations of not only the Thomas Fermi but also the LDA,
we turn to a numerical solution of the 3D GP equation with
a vortex having vorticity � along the z axis. The resulting
energy equation for the condensate wave-function magnitude,
f , can be minimized using an imaginary-time algorithm [49].
By taking the confining potential to be a bubble trap, we can
numerically solve for the ground-state wave-function ampli-
tude and energy for a harmonically trapped filled spherical
condensate, as well as a hollow BEC shell. The choice of the
bubble trap, in particular, makes this calculation relevant for a
large class of spherically symmetric condensates of arbitrary
size, hollowness, and thickness.

In order to compare with our calculations above, we report
results on a fairly thin shell with thickness-to-radius ratio
δ/R ≈ 0.3 and confinement frequency ω0. We compare these
thin-shell results to the case of a filled sphere BEC trapped
with the same confinement frequency. In order to compare
with the Thomas-Fermi results presented thus far, we work
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with a relatively large interaction strength: for the spherical
and shell systems described above, without a vortex imposed,
the ratio of kinetic to interaction energy in the ground state
varies through the range 2%–20% (from the filled sphere to
the thin shell). Further details can be found in the Appendix.

By numerically obtaining the ground-state energy for the
no-vortex (� = 0) and single-vortex (� = 1) cases, we obtain
the critical rotation for stabilizing a vortex—at this rotation
rate, the energy of the no-vortex state and the single-vortex
state are equal. For the thin (δ/R ≈ 0.3) shell, we find 
c =
0.02ω0, whereas for the filled sphere we find 
c = 0.2ω0.
This factor of ten difference in critical rotation speeds bears
out and illustrates the much lower energy cost for a vortex in
a hollow shell, compared with a filled sphere, in accordance
with our previous discussions. Recent experiments aboard the
Cold Atom Lab [26] working to create a hollow shell-shaped
condensate have estimated confinement frequencies of 100–
1000 Hz, giving a predicted critical rotation speed of 2–20 Hz
from both the simple slicing argument in Eq. (9) and the
imaginary time numerical calculations for the BEC shell.

To consolidate our findings for thin shells and their impli-
cations, in considering a straight vortex line connecting the
poles of a spherically symmetric condensate, we always ex-
pect a much smaller energy cost for this vortex configuration
in a hollow BEC than in a filled one based on comparing the
length of the vortex core in the two systems. We have shown
this to be the case through a simple slicing argument and
a more general numerical method. We therefore expect that
vortices will be much more energetically favorable in a hollow
shell system than in a filled system of the same outer shape.
Consequently, as with flat nearly 2D BEC layers compared
to more 3D bulk structures, the spontaneous appearance of
vortices in a hollow system should happen at a lower tem-
perature than for a filled system. This is a reflection of the
Berezinskii-Kosterlitz-Thouless superfluid transition temper-
ature [33] being lower than the BEC transition temperature in
two dimensions.

Using a LDA and a fully 3D numerical method, we have
further shown that there is a critical rotation speed necessary
to stabilize a vortex line along the rotation axis and that this
critical rotation speed is much smaller for a hollow shell BEC
than for a filled-sphere condensate of the same number of
particles. Since a vortex-antivortex pair on opposite poles of
a 2D condensate shell has a 3D counterpart in the vortex
line extending along the rotation axis, this result highlights
the validity of our reasoning across hollow BECs of differing
dimensionality. Finally, we note that, as the LDA results show
that a local minimum develops at α = 0 (and at no nonzero
angle) at the critical rotation frequency, the hollowness of a
system could be probed experimentally by looking for vortex
stabilization as a function of rotation or stirring speed.

IV. OUTLOOK AND FUTURE WORK

While our focus has been on vortex stabilization and equi-
librium features, dynamic considerations may be crucial and
complex, as found in fully filled condensates. In these cases,
off-axis vortex lines are unstable even in spherical geometries
in the presence of dissipation which serves to move the vortex
line from a local to a global minimum [41]. They tend to

precess in radially symmetric 2D geometries [50] and bend
in cigar-shaped condensates [46–48]. We note that the “slic-
ing and stacking” method used above, combined with these
dynamical results, would imply that a vortex line nucleated at
a lateral offset from the rotation axis in a thin condensate shell
would be unstable to bending or dissipation-driven motion
towards the outer edge of the condensate [51]. This can be
validated using the method of images to show that a point
vortex in a 2D annular BEC has a nonzero velocity depending
on condensate radii [51,52]. In highly dissipative shell-shaped
condensates, one could characterize the dissipation-driven
motion of the vortices with the energy functional in Eq. (4)
or those computed numerically (as shown in Figs. 2 and 3).
A trajectory α(t ) that the vortices follow on the sphere could
be mapped out from the energy functional E (α) and a given
energy dissipation with time E (t ). This approach would be
complementary to existing literature employing the dissipa-
tive Gross-Pitaevskii equation for studies of, for example,
vortex-driven superfluid turbulence [53]. For a less dissipative
system, dynamical behavior of the vortex-antivortex pair, pos-
sibly moving in concert as a dipole having a fixed cord length
[54], would be of particular interest as well. In the regime of
high condensate rotation speed could stabilize a vortex line
against bending or excitations (for instance, Kelvin waves
[55,56]) through angular momentum effects similar to those
discussed above. Various experiments in related contexts hint
at this behavior, such as in Ref. [45], where a vortex line in
a prolate harmonically trapped BEC becomes more bent and
deviates more from the center of the condensate as the angular
momentum of the system decreases.

Furthermore, many BEC situations of physical relevance
are likely to involve complex multivortex dynamics. Vortices
are often nucleated as a consequence of perturbing con-
densates; the dynamical instability of vortex lines presents
a starting point for understanding subsequent reequilibra-
tion processes. In systems with fast rotation, equilibrium
and dynamic behavior induces a range of structures, includ-
ing vortex lattices [57–59], giant vortices [60], and tangles
of vortex lines. In the context of BEC shells too, we ex-
pect diverse dynamic and multivortex phenomena that are
modified in comparison with their filled counterparts due to
the different geometry and topology. For instance, compared
to the vortex lattices observed in pancake-shaped or filled
spherical condensates, the nature of the lattices in hollow
shells would be modified by the differences stemming from
topology, curvature, dimensionality, and shell thickness. In
principle, these phenomena could be systematically investi-
gated in the CAL experiment in the future, starting with the
vortex-antivortex situation and scaling up to several vortices.
Our study also offers a first step towards deconstructing the-
oretical and experimental multivortex dynamic studies in a
range of settings from CAL and other ultracold atomic sys-
tems to pulsar glitches observed in the context of neutron
stars [13,14], where Gross-Pitaevskii numerical schemes have
already proven to be relevant [61].
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APPENDIX: 3D GROSS-PITAEVSKII NUMERICS

Here we provide additional detail on the numerical solution
of the 3D Gross-Pitaevskii (GP) equation whose results are
presented in Sec. III. We describe the equilibrium (ground-
state) condensate wave function ψ (r) with the standard GP
equation, given by

[
− h̄2

2m
∇2 + V (r) + U |ψ (r)|2

]
ψ (r) = μψ (r), (A1)

where m is the particle mass, V is the trapping potential, U =
4π h̄2as/m is the interaction strength (proportional to the two-
body scattering length as), and μ is the chemical potential of
the equilibrium system [41]. We further employ dimensionless
units rescaled by an oscillator length Sl = √

h̄/(2mω0), where
ω0 is a relevant frequency.

In order to access both the harmonically trapped filled-
sphere condensate as well as hollow condensates of arbitrary
thickness and radius, we use a spherically symmetric bubble

trap [23] for the trapping potential:

V (r) = mω2
0S2

l

√
(r2 − �)2/4 + 
2

b, (A2)

where � and 
b are the effective (dimensionless) detuning
between the applied rf field and the energy states used to
prepare the condensate and the Rabi coupling between these
states, respectively. The minimum of this potential is found
at r = √

� and the frequency of single-particle small oscilla-
tions around this minimum is

√
�/
bω0.

To fix a vortex of angular momentum � along the z axis
in the system (and noting that the potential is spherically
symmetric), we take a condensate wave function of the form

ψ (r) = f (r)ei�φ, (A3)

where φ is the usual azimuthal coordinate. Plugging this form
into Eq. (A1) above results in an equation for the condensate
amplitude f and energy μ = E�. For any specific value of
�, the energy and amplitude can be straightforwardly found
numerically using the imaginary-time algorithm described in
Ref. [49]. In this work, we have used a relatively high di-
mensionless interaction strength u = 8πNas/Sl = 10 000 and
taken �/
b = 1 for simplicity. For a filled sphere, we take
the bubble-trap parameter � = 0, while the thin shell results
reported here were obtained for � = 200.
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