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Nonequilibrium dynamics of the anyonic Tonks-Girardeau gas at finite temperature
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We derive an exact description of the nonequilibrium dynamics at finite temperature for the anyonic Tonks-
Girardeau gas, extending the results of Atas et al. [Phys. Rev. A 95, 043622 (2017)] to the case of arbitrary
statistics. The one-particle reduced density matrix is expressed as the Fredholm minor of an integral operator,
with the kernel being the one-particle Green’s function of free fermions at finite temperature and the statistics
parameter determining the constant in front of the integral operator. We show that the numerical evaluation
of this representation using Nyström’s method significantly outperforms the other approaches present in the
literature when there are no analytical expressions for the overlaps of the wave functions. We illustrate the
distinctive features and novel phenomena present in the dynamics of anyonic systems in two experimentally
relevant scenarios: the quantum Newton’s cradle setting and the breathing oscillations initiated by a sudden
change of the trap frequency.
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I. INTRODUCTION

In recent years considerable efforts have been made in
order to understand the principles underlying the nonequi-
librium dynamics of integrable and nonintegrable isolated
many-body systems. The results of a large body of literature
can be succinctly summarized as follows. After a quench,
nonintegrable (chaotic) systems are described in the long-
time limit by a Gibbs (thermal) ensemble [1–3]. Integrable
systems, however, fail to thermalize, and their asymptotic
properties are described by a generalized Gibbs ensemble
(GGE) [4,5] which needs to take into account all the local
and quasilocal integrals of motion of the system [6–8]. In the
case of near-integrable systems we encounter the phenomenon
of prethermalization [9–16], which is characterized by a qua-
sistationary state with almost integrable features at short to
moderate times, reaching thermal equilibrium only after very
long time.

The main impetus behind these theoretical develop-
ments was a series of experiments with ultracold atomic
gases [17–25], of which the quantum Newton’s cradle (QNC)
experiment of Kinoshita et al. [26] stands out. Trapped ul-
tracold atomic gases represent the perfect testing ground for
the investigation of nonequilibrium dynamics of quantum
many-body systems due to their unprecedented level of con-
trol of control over interactions, dimensionality, and even
statistics, which allows for the realization of integrable and
nonintegrable systems which can be accurately monitored
over long timescales. In addition, these systems are also
characterized by weak coupling to their environment, which
means that to a good approximation they can be considered
as isolated.

One of the most important models that can be realized
with ultracold atoms is the Lieb-Liniger model [27], which
describes one-dimensional bosons with repulsive contact in-

teractions. In a homogeneous system and for arbitrary values
of the repulsion, the Lieb-Liniger model is integrable and
the wave functions, energy spectrum, and low-lying excita-
tions can be obtained using the Bethe ansatz [27–29]. In
typical experiments the system is confined to one dimen-
sion by using a strong transverse optical trap, while in the
longitudinal direction there is a harmonic potential which
breaks integrability. In the limit of infinite repulsion between
the particles, the Lieb-Liniger model describes the so-called
Tonks-Girardeau gas [30], which is integrable in both ho-
mogeneous and inhomogeneous cases using Bose-Fermi
mapping [30–36].

A natural generalization of the Lieb-Liniger model in the
case of arbitrary statistics is given by the anyonic Lieb-
Liniger model introduced in [37] (see also [38,39]). This
model has been studied intensely in the last decade, and
a large body of knowledge has been steadily accumulat-
ing, including the properties of the ground state [38,40],
form factors [41], the asymptotic behavior of the cor-
relation functions for homogeneous [42–47] and trapped
systems [48–50], and entanglement [51,52]. The nonequilib-
rium properties after particular quenches at zero temperature
were studied in [53–55]. Experimental proposals of realizing
one-dimensional (1D) anyonic systems with ultracold atoms
in optical lattices using various methods such as Raman-
assisted tunneling [56,57], periodically driven lattices [58], or
multicolor lattice-depth modulation [59,60] have reignited in-
terest in the study of systems with fractional statistics [61–95].

The majority of the analytical and numerical investigations
of the nonequilibrium dynamics in the literature treat the case
of zero temperature. However, experiments are realized at
nonzero temperatures, and therefore it is important to have
analytical tools to study finite temperature dynamics. Another
reason why it is important to derive finite-temperature results
is to establish a priori bounds on the physical parameters
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for which phenomena predicted at zero or low tempera-
tures can still be seen and not be washed out by thermal
fluctuations.

In this paper we investigate the finite-temperature dynam-
ics of the anyonic Tonks-Girardeau gas focusing on two
experimentally relevant scenarios: the quantum Newton’s cra-
dle setting and the breathing-mode oscillations after a quench
of the trap frequency. At first glance it would seem that the
knowledge of the wave functions, which can be obtained using
the Anyon-Fermi mapping [64,65], would make the task of
computing physical relevant observables like the momentum
distribution an easy one. This is, however, an unwarranted
assumption due to the fact that a brute force approach of
computing the one-particle reduced density matrix (RDM)
requires a computational cost which increases exponentially
with the number of particles. A numerical efficient method
to compute the dynamical RDM of impenetrable bosons at
zero temperature was derived by Pezer and Buljan in [96].
The main computational cost of this method is represented
by the calculation of the determinant and inverse of a matrix
whose dimension is equal to the number of particles, and the
elements are given by the overlaps of the wave functions.
This method is extremely efficient when the overlaps can be
computed analytically, and it was extended in the anyonic case
by del Campo in [53].

The generalization for impenetrable bosons at finite tem-
perature was introduced rather recently by Atas et al. in [97]
(for the so-called “emergent eigenstate solution” of the
bosonic Tonks-Girardeau (TG) gas valid at any temperature
see [98]). They considered that in the initial state the sys-
tem is described by a grand-canonical ensemble and made
use of Lenard’s formula [99], which expresses the RDMs
of bosons in terms of an infinite series involving the RDMs
of free fermions. This series in the case of the one-particle
RDM is the first Fredholm minor of an integral operator with
the kernel given by the one-particle RDM of free fermions
at finite temperature. Truncating the expression for the free
fermionic RDM after a finite number of terms (this is perfectly
justified because each term is multiplied by the Fermi-Dirac
occupation factor), the authors of [97] were able to obtain
an expression for the bosonic RDM which is almost identical
with that derived at zero temperature in [96] with two dif-
ferences: the wave function overlaps are now “dressed” with
the square root of the Fermi-Dirac occupation factors, and
the dimension of the matrix now is equal with the truncation
level. Our derivation presented in this paper in the case of
the anyonic Tonks-Girardeau gas follows along similar lines
and makes use of the anyonic generalization of Lenard’s
formula [65], but for the numerical treatment we prefer a
different approach. When the overlaps can be calculated an-
alytically, the numerical method derived in [97] is almost
always preferable; however, when this is not possible, which
is the case in many physical relevant situations like in the
QNC setting, a more efficient numerical method is based
on the evaluation of the Fredholm minor using Nyström’s
method [100,101]. A detailed comparison of the two methods
can be found in Appendix D, where it is shown that for
moderate or large number of particles and especially at finite
temperatures, Nyström’s method can be even several orders of
magnitude faster than the overlap approach.

Similar to the bosonic analysis in [97], we consider the
nonequilibrium dynamics in two interesting and experimen-
tally relevant situations. In the QNC setup the application of
the Bragg pulse (we use the Bragg pulse modeling introduced
in [31,102]) produces a nonsymmetric momentum distribution
which is a distinct feature of anyonic systems [40,44,53,85].
In [102], which treated the bosonic case, two different
timescales were discovered: one of rapid trap-insensitive re-
laxation right after the application of the pulse followed
by slow periodic behavior. This separation of timescales
is also present in the anyonic system. During the periodic
behavior the momentum distribution presents alternatively
fermionic and anyonic characteristics. This phenomenon,
which we call “periodic dynamical fermionization,” is even
more pronounced in the dynamics of the anyonic gas after a
quantum quench of the trapping frequency, which produces
breathing-mode oscillations. In this case we also observe
another many-body collective effect similar to the one discov-
ered in [103] for the bosonic Tonks-Girardeau gas, which is
characterized by an additional narrowing of the momentum
distribution when the gas is maximally compressed. In the
anyonic case this narrowing decreases as the statistics param-
eter increases (κ = 0 for bosons and κ = 1 for fermions) and
eventually disappears for the fermionic system.

The plan of the paper is as follows. In Secs. II and III
we introduce the anyonic Tonks-Girardeau model, its eigen-
functions, and the one-particle RDM. The derivation of the
anyonic generalization of Lenard’s formula is presented in
Sec. IV, and the details of the two numerical methods can
be found in Sec. V. The nonequilibrium dynamics in the
QNC setup and after a quantum quench of the trap frequency
is studied in Secs. VI and VII. We conclude in Sec. VIII.
Some information about the Fredholm minors, the RDMs
of free fermions, and two useful theorems are presented
in Appendixes A, B, and C. A detailed comparison of the
two numerical methods used in this paper can be found in
Appendix D.

II. THE ANYONIC TONKS-GIRARDEAU GAS

We consider a one-dimensional system of N anyons in-
teracting via a repulsive δ-function potential in the presence
of a confining time-dependent external potential. The second
quantized Hamiltonian is

H =
∫

dx
h̄2

2m
(∂x�

†)(∂x�) + g�†�†�� + V (x, t )�†� ,

(1)
with the anyonic fields �†(x), �(x) satisfying the following
commutation relations:

�(x)�†(y) = e−iπκε(x−y)�†(y)�(x) + δ(x − y) , (2a)

�(x)�(y) = eiπκε(x−y)�(y)�(x) , (2b)

with κ ∈ [0, 1] the statistics parameter and ε(x) =
|x|/x , ε(0) = 0. Varying the statistics parameter κ in the
[0,1] interval and for x �= y the anyonic commutation
relations (2) interpolate continuously between the canonical
commutation relations for bosons (κ = 0) and the canonical
anticommutation relations for fermions (κ = 1). At
coinciding points, x = y, the commutation relations are
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bosonic in nature. We should point out that an equally valid
choice of interval for the variation of the statistics parameter
is given by κ ∈ [−1, 0] with the fermionic system described
by κ = −1. In (1) h̄ is the reduced Planck constant, m is
the mass of the particles, g quantifies the strength of the
repulsive interaction, and V (x, t ) is the time-dependent
external potential. We are going to mainly consider the case
of the parabolic confining potential with time-dependent
frequency V (x, t ) = mω2(t )x2/2, but the considerations of
this section are also valid in the case of more complicated
time-dependent external potentials.

When V (x, t ) = 0 the Hamiltonian (1) describes the inte-
grable anyonic Lieb-Liniger model [37,38,43], which is the
natural generalization to arbitrary statistics of the bosonic
Lieb-Liniger model [27]. Introducing the Fock vacuum |0〉
defined by �(x)|0〉 = 〈0|�†(x) = 0 for all x and 〈0|0〉 = 1
the eigenstates of the Hamiltonian (1) are

|ψN (t )〉 = 1√
N!

∫
dz1 · · · dzN ψN,A(z1, . . . , zN | t )

× �†(zN , t ) · · · �†(z1, t )|0〉 , (3)

with �†(z, t ) = eiHt�†(z)e−iHt . The N-body anyonic wave
function ψN,A satisfies

ψN,A(. . . , zi, zi+1, . . . | t ) = eiπκε(zi−zi+1 )

× ψN,A(. . . , zi+1, zi, . . . | t ) . (4)

This shows that the wave function is symmetric under the
permutation of two particles when the system is bosonic
(κ = 0) and antisymmetric when the system is fermionic
(κ = 1). For an anyonic system, κ ∈ (0, 1), the previous rela-
tion reveals the broken space-reversal symmetry characteristic
of 1D anyons, which results in a nonsymmetric momentum
distribution.

The first quantized version of (1) is

H =
N∑

i=1

[
− h̄2

2m

∂2

∂zi
2

+ V (zi, t )

]
+ 2g

∑
1�i< j�N

δ(zi − z j ) ,

(5)

and in this paper we are going to consider the Tonks-Girardeau
limit (g → ∞) of the Hamiltonian (5), which imposes an
additional hard-core constraint on the wave function of the
anyonic system ψN,A(. . . , z, . . . , z, . . . )| t ) = 0. In this limit
the anyonic system described by (5) can be investigated by
considering a dual system of N free fermions described by the
Hamiltonian

HF =
N∑

i=1

[
− h̄2

2m

∂2

∂zi
2

+ V (zi, t )

]
, (6)

and the wave functions can be determined employing the
Anyon-Fermi mapping [64,65] [z = (z1, . . . , zN )]:

ψN,A,ν(z| t ) = A(z)B(z)ψN,F,ν(z| t ) , (7)

where

A(z) =
∏
j<k

ei πκ
2 ε(z j−zk ) , B(z) =

∏
j>k

ε(z j − zk ) , (8)

and ψN,F,ν(z| t ) are the wave functions of the dual fermionic
system. In (7) the wave functions also depend on ν =
(ν1, . . . , νN ), which identify the single-particle energy levels.
The fermionic wave functions are Slater determinants [which
are eigenstates of (6) and constitute a basis of the Fock space]
of the single-particle (SP) wave functions

ψN,F,ν(z| t ) = 1√
N!

detNi, j=1φνi (z j, t ) , (9)

where HSP(z, 0)φνi (z) = Eνiφνi (z) and ih̄∂φνi (z, t )/∂t =
HSP(z, t )φνi (z, t ) with HSP(z, t ) = −(h̄2/2m)(∂2/∂z2) +
V (z, t ). At t = 0 the energy of the N-body state (9) is
EN,ν = ∑N

i=1 Eνi .

We should point out that the Anyon-Fermi mapping re-
mains valid even in the case of a general potential energy
as long as it includes a hard core of radius a � 0 [65,99].
In the case of hard-wall boundary conditions or when the
systems are subjected to a confining external potential, the
same boundary conditions hold for the anyonic and fermionic
systems and the energy eigenvalues are equal. In the case of
periodic or twisted boundary conditions the situation is more
complicated (see [65,99]).

III. ONE-BODY REDUCED DENSITY MATRIX

In this paper we are interested in investigating the dynam-
ics of the anyonic one-body reduced density matrix at finite
temperature defined by [z̄ = (z1, . . . , zN−1)]

ρ (1)(x, y| t ) =
∞∑

N=1

∑
ν

p(N, ν)N
∫

dz1 · · · dzN−1

× ψN,A,ν(z̄, x| t )ψ∗
N,A,ν(z̄, y| t ), (10)

with p(N, ν) the probabilities of an arbitrary statistical en-
semble. Following [97] (see also [104] for the lattice case),
we consider the system initially in thermal equilibrium de-
scribed by the grand-canonical ensemble with p(N, ν) =
e−(EN,ν−μN )/kBT0/Z , μ the chemical potential, and T0 the equi-
librium temperature at t = 0. Z = ∑

N,ν e−(EN,ν−μN )/kBT0 is the
grand-canonical partition function, and ψN,A,ν(z̄, x| t ) are the
evolved wave functions obtained from ψN,A,ν(z̄, x| 0) with
the Hamiltonian (5). From the one-body density matrix we
can obtain two very important and experimentally accessible
quantities: the real-space density ρ(x, t ) = ρ (1)(x, x| t ) and
the momentum distribution

n(k, t ) =
∫∫

e−ik(x−y)ρ (1)(x, y| t ) dxdy . (11)

We should point out that while the real-space density is in-
dependent of the statistics [this can be seen easily from the
Anyon-Fermi mapping (7) and (10)], the momentum distribu-
tion is highly dependent on κ .

043303-3
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IV. ANYONIC GENERALIZATION OF LENARD’S FORMULA

In the 1960s Lenard used the Bose-Fermi mapping to derive an expansion of the bosonic reduced density matrices in terms of
the fermionic reduced matrices [99]. Lenard’s result is valid not only for the one-body RDM but also for the more general case
of the n-body density matrices defined by

ρ (n)(x, y| t ) =
∞∑

N=n

∑
ν

p(N, ν)
N!

(N − n)!

∫
dz1 · · · dzN−nψN,A,ν(z̃, x| t )ψ∗

N,A,ν(z̃, y| t ) , (12)

with x = (x1, . . . , xn) , y = (y1, . . . , yn), and z̃ = (z1, . . . , zN−n). The anyonic generalization of Lenard’s formula was derived
in [65]. In order to make the paper self-contained, here we rederive it in the particular case of the one-body density matrix. We
will need a simple result [65,99].

Lemma 1. For any symmetric function f (z1, . . . , zn), a constant ξ , and I an interval in the domain � we have∫
�

dz1 · · ·
∫

�

dzn ξσ (I ) f (z1, . . . , zn) =
n∑

j=0

Cn
j (−1 + ξ ) j

∫
I

dz1 · · ·
∫

I
dz j

∫
�

dz j+1 · · ·
∫

�

dzn f (z1, . . . , zn) , (13)

where σ (I ) counts the number of variables z1, . . . , zn contained in I .
We start from the definition of the reduced density matrix (10). Using the Anyon-Fermi mapping (7) for the wave functions

we have

ψN,A,ν(z̄, x| t )ψ∗
N,A,ν(z̄, y| t ) =

∏
1� j�N−1

[ei πκ
2 [ε(z j−x)−ε(z j−y)]ε(x − z j )ε(y − z j )]ψN,F,ν(z̄, x| t )ψ∗

N,F,ν(z̄, y| t ) ,

= (−eiπκε(y−x) )σ (I )ψN,F,ν(z̄, x| t )ψ∗
N,F,ν(z̄, y| t ) , (14)

with z̄ = (z1, . . . , zN−1) and I = [x, y] when y > x and I = [y, x] when x > y. Introducing ξ = −eiπκε(y−x) and plugging the
previous result in (10) followed by the application of the Lemma 1 we find

ρ (1)(x, y| t ) =
∞∑

N=1

∑
ν

p(N, ν)N
∫

dz1 · · · dzN−1 ξσ (I )ψN,F,ν(z̄, x| t )ψ∗
N,F,ν(z̄, y| t ) ,

=
∞∑

N=1

∑
ν

p(N, ν)N

(
N−1∑
j=0

CN−1
j (−1 + ξ ) j

∫
I

dz1 · · ·
∫

I
dz j

∫
dz j+1 · · ·

∫
dzN−1ψN,F,ν(z̄, x| t )ψ∗

N,F,ν(z̄, y| t )

)
.

In the last relation changing the order of the summation we can identify in the right-hand side the reduced density matrices of
free fermions, denoted by ρ

(n)
F [for an alternative definition equivalent with (12) in the case of fermions see (B1)], obtaining

ρ (1)(x, y| t ) =
∞∑
j=0

(−1 + ξ ) j

j!

∫
I

dz1 · · ·
∫

I
dz j ρ

( j+1)
F (z1, . . . , z j, x; z1, . . . , z j, y| t ) ,

=
∞∑
j=0

(−1 + ξ ) j

j!
[ε(y − x)] j

∫ y

x
dz1 · · ·

∫ y

x
dz j ρ

( j+1)
F (z1, . . . , z j, x; z1, . . . , z j, y| t ) . (15)

The reduced density matrices of free fermions are computed in Appendix B. Using formula (B10) in (15) we obtain the main
result of this section: the anyonic generalization of Lenard’s formula for the one-body RDM is

ρ (1)(x, y| t ) =
∞∑
j=0

(−γ ) j

j!

∫ y

x
dz1 · · ·

∫ y

x
ρ

(1)
F

(x z1 · · · z j

y z1 · · · z j
; t

)
, γ = ε(y − x)(1 + eiπκε(y−x) ) , (16)

where we have used the notation introduced in (A3) and ρ
(1)
F (x, y| t ) = ∑∞

i=0 fiφi(x, t )φ∗
i (y, t ) with fi = [e(Ei−μ)/kBT0 + 1]−1 the

Fermi-Dirac occupation factor. The j = 0 term of (16) is given by ρ
(1)
F (x, y| t ), which is the one-body reduced density matrix of

the dual fermionic system.

V. FREDHOLM MINOR REPRESENTATION
FOR THE REDUCED DENSITY MATRIX

While it is useful to derive the short distance expansion
of the one-body RDM [105–107], the numerical implemen-
tation of Lenard’s formula (16) is computationally involved,
even if we truncate the series after the first few terms. The
efficient calculation of physical relevant quantities, such as

the momentum distribution, and not only for large values of
k, requires a more computationally friendly representation
of (16). A more fruitful approach is to realize that (16) is
the first Fredholm minor [see formula (A5)] of an integral
operator 1 − γ ρ̂

(1)
F with kernel ρ

(1)
F (λ,μ| t ), which acts on

an arbitrary function like
∫ y

x ρ
(1)
F (λ,μ| t ) f (μ) dμ and γ is

defined in (16) [99,106,107]. Introducing the resolvent kernel
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of this integral operator, which satisfies

RF (λ,μ| t ) = ρ
(1)
F (λ,μ| t )

+ γ

∫ y

x
ρ

(1)
F (λ, ν| t )RF (ν, μ| t ) dν , (17)

and using the identity (A8) we find

ρ (1)(x, y| t ) = RF (x, y| t ) det
(
1 − γ ρ̂

(1)
F

)
. (18)

The representation (18) for arbitrary statistics was first de-
rived in [65]. An efficient numerical evaluation of (18) [or,
equivalently, of (16)] in the case of impenetrable bosons at
zero temperature was proposed by Pezer and Buljan in [96]
and in the case of arbitrary statistics by del Campo in [53].
The finite-temperature generalization for impenetrable bosons
was derived by Atas et al. in [97]. In this paper we are going
to use another approach based on the numerical evaluation
of the resolvent and Fredholm determinant using Nyström’s
method [100,101]. In addition, we will also derive the anyonic
generalization of the result obtained in [97]. In Appendix D
we show that when there is no analytical formula for the
overlaps of the single-particle wave functions (which is the
case in many experimentally relevant cases such as the QNC
setup), this approach significantly outperforms the methods
of [96] and [97] for moderate and large number of particles at
zero and finite temperatures.

The starting point of both methods is represented by the
truncation of the sum which describes the free fermionic one-
body density matrix after the first M terms:

ρ
(1)
F (x, y| t ) 


M−1∑
i=0

fiφi(x, t )φ∗
i (y, t ) . (19)

The truncation parameter M has to be chosen such that the
discarded terms in the infinite sum are negligible. At zero
temperature we have M = N , with N the number of particles
in the system and ρ

(1)
F (x, y| t ) = ∑N−1

i=0 φi(x, t )φ∗
i (y, t ). It is

also assumed that the SP wave functions {φi(x, t )}M−1
i=0 are

known either analytically or by numerically solving the time-
dependent Schrödinger equation.

A. Numerical evaluation of the RDM using Nyström’s method

Assuming that we know the one-body RDM of free
fermions ρ

(1)
F (λ,μ| t ), probably the simplest method of

evaluating (18) is by solving the integral equation satis-
fied by the resolvent (17) followed by the evaluation of
the Fredholm determinant. Equation (17) is a Fredholm
integral equation of the second kind with a smooth ker-
nel which can be very easily and accurately solved using
Nyström’s method (Chap. 18 of [100]), and, as it was
shown in [101], the same method can be used to evalu-
ate the Fredholm determinant. Briefly, the necessary steps
are the following. Consider a quadrature (for a pragmatic
introduction in numerical integration with quadratures, see
Chap. 4 of [100]) with positive weights which approximates
the integral over [x, y] of an arbitrary function f (λ) (reason-
ably well behaved) as∫ y

x
f (λ)dλ 


m∑
j=1

w j f (λ j ) . (20)

In (20) {w j}m
j=1 are called the quadrature weights and {λ j}m

j=1
the quadrature points or abscissas. Using this quadrature the
integral equation (17) for μ = y can be written as

RF (λ, y| t ) = ρ
(1)
F (λ, y| t )

+ γ

m∑
j=1

w jρ
(1)
F (λ, λ j | t )RF (λ j, y| t ) . (21)

Considering (21) at all points of the quadrature {λ j}m
j=1 we

obtain the following system of m linear equations:(
1 − γ ρ̄

(1)
F

)
R = ρ , (22)

with ρ̄
(1)
F a square matrix of dimension m and elements

w jρ
(1)
F (λi, λ j | t ) and

R = [RF (λ1, y| t ), . . . , RF (λm, y| t )]T ,

ρ = [
ρ

(1)
F (λ1, y| t ), . . . , ρ (1)

F (λm, y| t )
]T

. (23)

Then R = (1 − γ ρ̄
(1)
F )

−1
ρ and RF (x, y| t ) can be computed

using the solution for R and (21) for λ = x. Therefore, for the
computation of RF (x, y| t ) we need only to solve the system of
linear equations (22), followed by the use of the interpolation
formula (21). The evaluation of the Fredholm determinant is
even simpler [101] and is given by

det
(
1 − γ ρ̂

(1)
F

) = det
(
δi j − γw

1/2
i ρ

(1)
F (λi, λ j | t )w1/2

j

)m

i, j=1
.

(24)

We make two observations. First, the outlined derivation does
not depend explicitly on the truncation level M, so in principle
it is also valid if we would know the free fermionic RDM
through other methods and not from (19). Second, it is also
valid at zero temperature. In this case Eq. (19) reduces to its
zero-temperature expression.

In summary, the numerical evaluation of the reduced den-
sity matrix (18) using Nyström’s method consists of the
following steps: (a) determination (analytically or numeri-
cally) of the SP wave functions {φi(x, t )}M−1

i=0 ; (b) solving the
linear system (22) with the free fermionic RDM given by (19);
(c) determination of RF (x, y| t ) using the solution of the linear
system and interpolation formula (21); and (d) computation of
the Fredholm determinant using (24).

B. Numerical evaluation of the RDM using the truncated basis

In this section we are going to obtain the generalization to
arbitrary statistics of the numerical method derived in [97] for
impenetrable bosons. It will be useful to introduce the notation

φ̃i(λ, t ) =
√

fi−1φi−1(λ, t ) , i = 1, . . . , M , (25)

in terms of which (19) takes the form ρ
(1)
F (λ,μ| t ) =∑M

i=1 φ̃i(λ, t )φ̃∗
i (μ, t ). We want to obtain numerically man-

ageable expressions for the resolvent and Fredholm determi-
nant in the truncated basis {φ̃i(λ, t )}M

i=1.
Resolvent kernel in the truncated basis. By plugging the

truncated expression for ρ
(1)
F (λ,μ| t ) in the integral equation
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satisfied by the resolvent kernel Eq. (17) we obtain

RF (λ,μ| t ) =
M∑

j=1

φ̃ j (λ, t )φ̃∗
j (μ, t ) + γ

M∑
j=1

φ̃ j (λ, t )Aj (μ, t ) ,

(26)
where we have introduced

Aj (μ, t ) =
∫ y

x
φ̃∗

j (ν, t )RF (ν, μ| t ) dν .

The Aj coefficients can be determined by multiplying Eq. (26)
with φ̃∗

j (λ, t ) and integrating over the [x, y] interval. We find

Aj (μ, t ) =
M∑

i=1

Si j (t )[φ̃∗
i (μ, t ) + γ Ai(μ, t )] , (27)

with S(t ) a square matrix of dimension M with elements

Si j (t ) =
∫ y

x
φ̃i(λ, t )φ̃∗

j (λ, t ) dλ . (28)

We want to rewrite the previous results in a matrix form trans-
parent notation. We introduce two column vectors defined
by A = (A1, . . . , AM )T and φ̃∗ = (φ̃∗

1 , . . . , φ̃∗
M )T . Then, (27)

can be written as (1 − γ ST ) A = ST φ∗ or, equivalently, as
A = (1 − γ ST )−1ST φ∗. From this last relation and Eq. (26)
we see that

RF (λ,μ| t ) =
M∑

i, j=1

φ̃i(λ, t )

× (δi j + γ [(1 − γ ST )−1ST ]i j )φ̃
∗
j (μ, t ) ,

=
M∑

i, j=1

φ̃i(λ, t )(1 − γ ST )−1
i j φ̃∗

j (μ, t ) , (29)

which represents the resolvent kernel in the truncated basis.
Fredholm determinant in the truncated basis. Now we are

going to show that in the truncated basis we have

det
(
1 − γ ρ

(1)
F

) = det(1 − γ S) . (30)

We point out that in the left-hand side of the previous relation
we have a Fredholm determinant [see Eq. (A4)], while on
the right-hand side we have a usual determinant of a square
matrix of dimension M. From the definition of the Fredholm
determinant we have [see (A3) and (A4)]

det
(
1 − γ ρ

(1)
F

) = 1 +
∞∑

n=1

(−γ )n

n!

∫ y

x
dξ1 · · ·

∫ y

x
dξn

× ρ
(1)
F

(
ξ1 · · · ξn

ξ1 · · · ξn
; t

)
. (31)

On the other hand, using the von Koch formula for the deter-
minant we have

det(1 − γ S) =1 +
∑
n=1

(−γ n)

n!

M∑
k1,··· ,kn=1

det
(
Skp,kq

)n

p,q=1
.

(32)

We will show that (a) all the terms with n > M in the right-
hand side of (31) vanish and (b) for all n � M the terms in the

expansions (31) and (32) are equal, proving (30). Let n � M.
Then

ρ
(1)
F

(
ξ1 · · · ξn

ξ1 · · · ξn
; t

)
=

∣∣∣∣∣∣∣∣
a2

1 a1 · a2 · · · a1 · an

a2 · a1 a2
2 · · · a2 · an

...
...

. . .
...

an · a1 an · a2 · · · a2
n

∣∣∣∣∣∣∣∣
,

with ai = [φ̃1(ξi, t ), . . . , φ̃M (ξi, t )] and scalar product ai ·
a j = ∑M

k=1 aika∗
jk . From this representation we see that the

only nonvanishing terms in the expansion are the ones with
n � M. (If n > M we would have on the right-hand side
the Gram determinant of a number of vectors which is
larger than the dimension of the linear space and therefore
is equal to zero.) Using Theorem (1) of Appendix C we
obtain

ρ
(1)
F

(
ξ1 · · · ξn

ξ1 · · · ξn
; t

)

= 1

n!

M∑
k1,··· ,kn=1

∣∣∣∣∣∣∣∣
a1k1 a1k2 · · · a1kn

a2k1 a2k2 · · · a2kn
...

...
. . .

...

ank1 ank2 · · · ankn

∣∣∣∣∣∣∣∣

2

, (33)

with aik = φ̃k (ξi, t ). In the case of the von Koch expan-
sion (32), employing Theorem 2 of Appendix C we have

M∑
k1,··· ,kn=1

det
(
Skp,kq

)n

p,q=1

= 1

n!

M∑
k1,··· ,kn=1

∫ y

x
dξ1 · · ·

∫ y

x
dξn

∣∣∣∣∣∣∣∣
a1k1 a2k1 · · · ank1

a1k2 a2k2 · · · ank2
...

...
. . .

...

a1kn a2kn · · · ankn

∣∣∣∣∣∣∣∣

2

.

(34)

Then (30) follows from (34) and (33), and the fact that detA =
detAT for an arbitrary square matrix A. An alternative deriva-
tion of this result can be obtained using Plemelj’s formula for
the Fredholm determinant as in [108].

Plugging (29) and (30) in (18) and using (1 − γ ST )−1 =
[(1 − γ S)−1]T we obtain

ρ (1)(x, y| t ) =
M−1∑
i, j=0

√
fiφi(x, t )Qi j (x, y| t )

√
f jφ

∗
j (y, t ) , (35)

with

Q(x, y| t ) = [P−1(x, y| t )]T det P(x, y| t ) . (36)

In (35) and (36) Q and P are square matrices of dimension M
with indices i, j = 0, . . . , M − 1 and the elements of P are

Pi j (x, y| t ) = δi j − γ
√

fi f j

∫ y

x
φi(λ, t )φ∗

j (λ, t ) dλ , (37)

with γ = ε(y − x)(1 + eiπκε(y−x) ).
In the bosonic case (κ = 0) (35) reproduces the re-

sult from [97] and for κ = 1 it reduces to ρ (1)(x, y| t ) =∑M−1
i=0 fiφi(x, t )φ∗

j (y, t ), which is just the free fermionic re-
sult as expected. At zero temperature the occupation factors
become zero for M > N − 1 and we obtain the results de-
rived in [53,96]. The necessary steps required to compute
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the RDM of an anyonic system using the method presented
in this section are the following: (a) determination of the
SP wave functions; (b) calculation of the wave-function
overlaps and of the matrix P using (37); (c) computation
of the matrix Q (36); and (d) performing the summation
in (35).

C. Comparison of the two methods

A detailed analysis of the complexity of the two meth-
ods outlined above can be found in Appendix D. We have
two distinct situations. If the overlaps of the wave functions∫ y

x φi(λ, t )φ∗
j (λ, t ) dλ can be analytically computed then the

truncated basis method (35) is the method of choice and will
be used in Sec. VII. If the overlaps are not amenable to ana-
lytical calculations and numerical integration is required, then
Nyström’s method is preferable with the exception of the case
of a small number of particles (or truncation level M) and large
|x − y|. In particular, Nyström’s method is extremely efficient,
especially at finite temperatures (see Appendix D), because (a)
M increases with temperature and (b) due to the exponential
decay<the RDM is concentrated in a narrow strip |x − y| < C
with the contributions from |x − y| > C being negligible.

VI. ANYONIC QUANTUM NEWTON’S CRADLE

As a first application of the formalism developed in the
previous sections we are studying the dynamics of the any-
onic TG gas in the QNC setting at finite temperature. In the
original experiment [26] a quasi-1D gas of 87Rb atoms in a
weakly harmonical potential in the longitudinal direction was
subjected to a sequence of Bragg pulses designed to split
the system in two counterpropagating halves. After a short
dephasing period the atoms continued to collide repeatedly
for hundreds of times without thermalizing, as in the case
of a three-dimensional system. Such long-lived nonthermal
states are called prethermal, and they are a consequence of the
near integrability of the system under consideration. Recent
realizations of similar or slightly modified setups involving
dipolar dysprosium atoms were reported in [109,110]. Theo-
retical and numerical investigations of impenetrable bosons
in the QNC setup using the quench action [111,112] and
the numerical method presented in Sec. V B were previously
performed both at zero [102] and finite temperature [97]. A
comprehensive numerical treatment of the finite coupling case
using the generalized hydrodynamics [113,114] can be found
in [115] (see also [116]).

For the modeling of the Bragg pulse, which initiates the
oscillation, we are going to use the results of [31,102]. In the
notation and terminology of the latter reference we are going
to consider the case of the so-called Kapitza-Dirac pulse,
which can be described by the operator (h̄ = kB = 1)

U (q, A) = exp

(
−iA

∫
cos(qz) �†(z)�(z) dz

)
. (38)

For any state of the system ψ〉 the effect of this instantaneous
pulse is to produce a new state |ψq,A〉 = U (q, A)|ψ〉. In typical
experiments A ∼ 1 and q ∼ 2πn with n the density. The long-
pulse Bragg regime can be modeled as in [97] by adding to

the harmonic potential a periodic lattice potential VB(z, t ) =
�(t ) cos(2qz), with �(t ) a sequence of two square pulses.

The evolution of the system after the Bragg pulse is driven
by the Hamiltonian (5) with g = ∞. The dual fermionic sys-
tem describes free fermions in a harmonic potential V (z, t ) =
mω2z2/2 for which the single-particle wave functions are the
well-known Hermite functions

φ j (z) = e−mω2z2/2 1√
2 j j!

(
mω

π

)1/4

Hj (
√

mw z) , (39)

with Hj (z) denoting the Hermite polynomials and Ej = ω( j +
1/2). The harmonic oscillator length is lho = √

1/mω. The
action of the Bragg pulse (38) on the SP wave functions is
given by U (q, A)φ j (z) = e−iA cos(qz)φ j (z). The time-evolved
wave functions can be determined using the propagator of the
quantum harmonic oscillator [102]

φ j (z, t ) =
∫ +∞

−∞
K (z, u| t )e−iA cos(qu)φ j (u) du , (40)

with (see 2.5.18 of [117])

K (z, u| t ) =
(

mω

2π i sin(ωt )

)1/2

× exp

(−mω(z2 + u2) cos(ωt ) + 2mωzu

2i sin(ωt )

)
.

(41)

Using the Jacobi-Anger expansion ez cos θ = I0(z) +
2

∑∞
k=1 Ik (z) cos θ (9.6.34 of [118]) with Ik (z) =∫ π

0 ez cos θ cos(kθ ) dθ/π the modified Bessel function of
the first kind in the form e−iz cos θ = ∑∞

k=−∞ Ik (−iz)e−ikθ and
the identity (7.374(8) of [119])∫ +∞

−∞
e−(u−z)2

Hj (αu) du = √
π (1 − α2) j/2Hj

(
αz√

1 − α2

)
,

we find [102]

φ j (z, t ) =
∞∑

n=−∞
In(−iA)e−inq cos(ωt )(z+n q sin(ωt )

2mω
)

× φ j

(
z + n

q sin(ωt )

mω

)
e−iω( j+ 1

2 )t . (42)

The wave functions are periodic in time with period T =
2π/ω, and at first impression it would seem that also the real-
space density and one-particle density matrix have the same
periodicity. However, using the fact that In(−iA) = I−n(−iA),
it is easy to see that

φ j

(
z, t + π

ω

)
= e−i( j+ 1

2 )πφ j (z, t ) , (43)

which implies that all the n-particle reduced matrices are in
fact periodic with period T = π/ω. This is due to the fact that
in their definition (12) the wave functions appear in the form
ψN,A,νψ

∗
N,A,ν, and from the Anyon-Fermi mapping (7) we have

ψN,A,ν

(
z| t + π

ω

)
= A(z)B(z)e

−i
∑

ν j
(ν j+ 1

2 )π
ψN,F,ν(z| t ) .

Therefore it will be sufficient to study the dynamics of
the real-space density and momentum distribution for t ∈
[0, π/ω]. We should point out that this periodicity is particular
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FIG. 1. Dynamics of the momentum distribution of impenetrable anyons (κ = 0 first column, κ = 0.33 second column, and κ = 0.66
third column) and free fermions (κ = 1) in the QNC setup. The last column presents the dynamics of the real-space density, which is
independent of statistics. Here N = 10, A = 1.5, qlho = 10.73 (q = 6π , lho = 0.57, ω = 3), and the initial dimensionless temperature is
θ0 = 0.083 (T0 = 0.25). The time step is �t = π/(40ω) and q̃ = qlho.

to the TG regime and is no longer valid in the case of finite
coupling.

It will be useful to introduce a dimensionless initial
temperature defined by θ0 = T0/Nω. In Fig. 1 we present

the dynamics of the momentum distribution and real-space
density in the QNC setup for N = 10 anyons at initial dimen-
sionless temperature θ0 = 0.083 with A = 1.5 and q = 6π

the parameters of the Bragg pulse. In the first three columns
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FIG. 2. Evolution of the momentum distribution immediately af-
ter the pulse in the QNC setup. The parameters of the system are the
same as in Fig. 1.

we plot the momentum distributions of impenetrable bosons
(κ = 0) and anyons with κ = 0.33 and κ = 0.66 together with
the momentum distribution of free fermions (κ = 1). For all
values of the statistics parameter the evolution during a period
is similar: immediately after the Bragg pulse the momentum
distribution presents local maxima at ±q and ±2q followed
by the well-known oscillations. The distinguishing feature of
the anyonic particles is the nonsymmetric momentum distri-
bution, which is most visible in the vicinity of t = pπ/ω

with p = 0, 1, 2, . . . . This is a well-known characteristic of
1D anyons [40,44,53,85] and is a result of the broken space-
reversal symmetry [see (4) and (2)]. During the evolution we
see that for all values of κ the overlap between the momentum
distribution of anyons and free fermions becomes significant
and reaches its minimum in the vicinity of t = pπ/ω with
p = 0, 1, 2, . . . . In the bosonic case a similar phenomenon
was first described in [120] in the context of breathing oscilla-
tions, and it was dubbed (periodic) dynamical fermionization.
The dynamics of the real-space density is presented in the last
column of Fig. 1.

It was discovered in [102] that there are two different
timescales in the QNC evolution. In addition to the slow
in-trap periodic behavior presented in Fig. 1, the system also
exhibits rapid relaxation immediately after the pulse, which
is shown in Fig. 2. The amplitude of this relaxation is largest
for the bosonic system and monotonically decreases as we in-
crease the statistics parameter, so it can be said that is directly
proportional with the degree of “interaction” of the system.
In the case of the fermionic system (which is noninteracting)
we see that the momentum distribution is almost unchanged
immediately after the pulse.

The dependence of relaxed momentum distribution func-
tion on the Bragg momentum q and the parameter A can be
found in Fig. 3. If A is too small, the Bragg pulse will not
remove the majority of particles from the vicinity of k = 0
and the periodic oscillations will not be clearly visible. In the
bosonic case for A = 1.5 the characteristic ghost shape of the

FIG. 3. Dependence of the relaxed momentum distribution func-
tion for N = 10 particles on the Bragg momentum q and A. In the first
column A = 1 and in the second column A = 1.5. The initial dimen-
sionless temperature is θ0 = 0.083 (T0 = 0.25), lho = 0.57, ω = 3,
and t = �t with �t = π/(40ω).

relaxed momentum distribution is clearly visible and becomes
more pronounced with increasing Bragg momentum q. Also,
as expected, the width of the momentum distribution is a
monotonically increasing function of both q and A. In the case
of anyonic particles the relaxed distribution is asymmetric
with respect to k = 0.

The influence of the initial temperature on the relaxed
momentum distribution is shown in Fig. 4. As the initial
temperature increases, the ±q satellites become less and less
pronounced and the observation of the oscillations becomes
harder.

VII. DYNAMICS IN A HARMONIC TRAP
WITH TIME-DEPENDENT FREQUENCY

Another experimentally relevant situation that we are going
to investigate is the dynamics of a gas in a harmonic potential
with time-dependent frequency V (z, t ) = mω2(t )z2/2. We are
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FIG. 4. Dependence on the initial temperature of the relaxed
momentum distribution. Here N = 10, A = 1.5, q = 6π , lho = 0.56,
ω = 3, and t = 2�t with �t = π/(40ω).

going to denote the frequency of the potential at t = 0 by
ω0. At t = 0 the SP wave functions are given by (39) with
ω = ω0. The study of the dynamics in this case is significantly
simplified by the fact that the time evolution of the wave func-
tions is given by the following scaling transformation ([121],
Chap. VII of [122]):

φ j (z, t ) = 1√
b(t )

φ j

(
z

b(t )
, 0

)
ei mx2

2
ḃ(t )
b(t ) −iE jτ (t ) , (44)

with b(t ) the solution of the second-order differ-
ential equation b̈ + ω2(t )b = ω2

0/b3, also known as
the Ermakov-Pinney equation, with initial conditions
b(0) = 1, ḃ(0) = 0, and τ (t ) = ∫ t

0 dt ′/b2(t ′). Equation (44)
represents the unique time-dependent solution of the
Schrödinger equation ih̄∂φ j (z, t )/∂t = HSP(z, t )φ j (z, t )
with HSP(z, t ) = −(h̄2/2m)(∂2/∂z2) + V (z, t ), where
HSP(z, 0)φ j (z) = ω0( j + 1/2)φ j (z).

Using the formula for the Slater determinant (9) and the
fact that the Anyon-Fermi mapping is unchanged by the
scaling transformation, the N-body anyonic wave function
satisfies

ψN,A,ν(z| t ) = 1

bN/2
ψN,A,ν(z/b| 0)e−i

∑
j Eν j τ

× ei ḃ
b

∑
j mz2

j /2 . (45)

Inserting (45) in the definition of the one-body density ma-
trix (10), we find [120] (see also [123,124])

ρ (1)(x, y| t ) = 1

b
ρ (1)

(
x

b
,

y

b
| 0

)
e−i ḃ

b
m(x2−y2 )

2 . (46)

The momentum distribution function can also be written as
(we perform the change of variables x′/b, y′/b → x, y)

n(k, t ) = b
∫

dxdy ρ (1)(x, y| 0)e−ib[ḃ m(x2−y2 )
2 +k(x−y)] . (47)

The simplification introduced by Eq. (46) is now evident.
The study of the dynamics is now reduced to the calcula-

FIG. 5. Evolution of the real-space density (upper panel) and
momentum distribution (lower panels) of an anyonic TG gas of
N = 10 particles after a confinement quench of the frequency with
ε = 35 and initial dimensionless temperature θ0 = 0.02 (T0 = 1.2).

tion of the initial (t = 0) reduced density matrix at thermal
equilibrium supplemented by the solution of the Ermakov-
Pinney equation. In this case the it is preferable to numerically
evaluate the initial RDM using the method of Sec. V B due
to the fact that the off-diagonal overlaps can be analytically
calculated [125]. Following [97] we introduce ξ = z/lho and
ϕ j (ξ ) = √

lhoφ j (z). Then for j �= k we have (formula B.16
of [125])∫

ϕ j (ξ )ϕ∗
k (ξ ) dξ = e−ξ 2 [Hj+1(ξ )Hk (ξ ) − Hj (ξ )Hk+1(ξ )]

2(k − j)(2 j+kπ j!k!)1/2
.

(48)
For the diagonal elements it seems that a similar formula does
not exist, but an efficient recursive formula can be devised as

043303-10



NONEQUILIBRIUM DYNAMICS OF THE ANYONIC … PHYSICAL REVIEW A 102, 043303 (2020)

FIG. 6. Momentum distribution (first three columns) and real-space density (last column) of an anyonic TG gas after a confinement quench
of the frequency for selected values of t . We use the same parameters as in Fig. 5 and �t = 2π/ω1.

follows [97]. We define a sequence of functions {Mj (ξ )}∞j=0
with M0(ξ ) = 0 and the general term satisfying

Mj (ξ ) =
√

π

2
erf(ξ ) − 1

2 j j!

∫
e−ξ 2

H2
j (ξ ) dξ , (49)

where erf(ξ ) = 2
∫ ξ

0 e−t2
dt/

√
π is the error function. Using

the recurrence relation for Hermite polynomials Hj+1(ξ ) =
2ξHj (ξ ) − H ′

j (ξ ) we find

Mj+1(ξ ) = Mj (ξ ) + e−ξ 2

2 j+1( j + 1)!
Hj (ξ )Hj+1(ξ ) . (50)
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Using (48), (49), and (50), all the elements of the matrix P
defined in (37) can be calculated analytically without resorting
to time-consuming numerical integration.

We are going to consider the situation when initially the
gas is in thermal equilibrium at temperature T0 in the presence
of the harmonic potential V (z) = mω2

0z2/2 and perform an
instantaneous change of the trapping frequency from ω0 to
ω1 at t = 0. The quench strength will be parameterized by
a dimensionless parameter ε = ω2

0/ω
2
1 − 1. For this particu-

lar quench the Ermakov-Pinney equation takes the form b̈ +
ω2

1b = ω2
0/b3 with the solution b(t ) = [1 + ε sin2(ω1t )]1/2,

which describes periodic oscillations between 1 and ω0/ω1

with period T = π/ω1.
The breathing-mode dynamics of the anyonic TG gas ini-

tiated by the quench of the frequency is presented in Fig. 5.
While the real-space density displays undamped oscillations
with period T = π/ω1, the dynamics of the momentum dis-
tribution displays a richer structure. Similar to the case of
impenetrable bosons at zero temperature studied in [120]
and the QNC case (see the previous section), the momentum
distribution of the TG anyonic gas displays alternatively any-
onic and fermionic features. This dynamical fermionization
occurs rapidly for t close to zero and T , as it can be seen
in Fig. 6, where we present the momentum distribution for
anyonic gases with κ = {0, 0.33, 0.66, 1} at selected values of
t . The overlap between the anyonic and fermionic momentum
distribution is very large for almost the entire period, with
the exception of a time interval around t = T/2 where the
system recovers the initial anyonic distribution rescaled by a
factor bmax > 1. At zero temperature and for κ = 0 we have
bmax = ω0/ω1 and n(k, T/2) = bmax n(bmax p, 0) [120].

Another interesting feature of the momentum distribution
is that it displays narrowing and broadening cycles occurring
at twice the rate of the real-space density. This phenomenon
was first identified in the bosonic case in [97], further
studied in [103], and it can be clearly seen in Fig. 5. While
the fermionic system presents narrowing of n(k, t ) at ω1t =
π/2 + π l with l = 1, 2, . . . , in the anyonic case the momen-
tum distribution presents an additional narrowing at ω1t = π l
when the gas is maximally compressed. This narrowing is the
largest for κ = 0, and as we increase the statistics parameter

it decreases in an asymmetric (with respect to k) fashion
until it disappears for the fermionic system. In [97,103] it
was argued that this phenomenon is a collective many-body
bounce effect due to the increased thermodynamic pressure
of the maximally compressed gas which acts as a potential
barrier.

VIII. CONCLUSIONS

In this paper we have derived an exact description of
the nonequilibrium dynamics of an anyonic TG gas at finite
temperature, generalizing the results of [97]. The evolution
of the anyonic one-particle RDM after a quantum quench
from an initial thermal state is given by the Fredholm minor
of an integral operator, with the kernel being the thermal
RDM of free fermions. The statistics parameter enters in the
constant in front of the integral operator. We have argued
that when the overlaps of the evolved wave functions can-
not be calculated analytically, the most efficient numerical
evaluation of the RDM is based on Nyström’s method of
solving Fredholm integral equations of the second kind. We
have investigated the nonequilibrium dynamics of the anyonic
TG gas in two experimental relevant scenarios: the QNC
and the breathing oscillations initiated by a sudden quench
of the trapping frequency. A natural extension of our work
would be to investigate the finite-temperature dynamics of
the bipartite entanglement, as it was already noticed in [126]
that Nyström’s method is more efficient in computing the
entanglement entropy in situations in which the overlap matrix
cannot be computed analytically. Other promising avenues of
research are the investigation of the anyonic spectral func-
tion [127], entanglement revival [128], or the nonequilibrium
quantum thermodynamics [129]. This will be deferred to fu-
ture publications.
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APPENDIX A: FREDHOLM MINORS

In this Appendix we present some basic definitions and useful formulas involving Fredholm minors which were used in the
main text. Consider a Fredholm integral equation of the second kind (for more information on Fredholm integral equation see
Chap. II of [130] or Chap. I of [131]),

g(λ) = f (λ) + γ

∫
�

K(λ,μ)g(μ) dμ , (A1)

where f (λ) is a continuous complex function defined on the bounded set �, and the kernel K(λ,μ) is a continuous complex
function of λ and μ on � × �. The set � may be a bounded interval or the reunion of a finite number of such intervals. The nth
Fredholm minor of the integral operator K̂ is given by the series

Dn

(
λ1 · · · λn

μ1 · · · μn

∣∣∣γ)
= K

(
λ1 · · · λn

μ1 · · · μn

)
+

∞∑
p=1

(−γ )p

p!

∫
�

· · ·
∫

�

K
(
λ1 · · · λn ν1 · · · νp

μ1 · · · μn ν1 · · · νp

)
dν1 · · · dνp , (A2)
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where we have introduced the notation

K
(
λ1 · · · λn

μ1 · · · μn

)
=

∣∣∣∣∣∣∣∣
K(λ1, μ1) K(λ1, μ2) · · · K(λ1, μn)
K(λ2, μ1) K(λ2, μ2) · · · K(λ2, μn)

...
...

. . .
...

K(λn, μ1) K(λn, μ2) · · · K(λn, μn)

∣∣∣∣∣∣∣∣
. (A3)

The series (A2) converges for all values of the parameter γ , and Dn is antisymmetric in both λi’s and μi’s by construction.
Particular cases of the series which will play an important role in our analysis are the n = 0 case known as the Fredholm
determinant

D(γ ) ≡ det(1 − γ K̂) = 1 +
∞∑

p=1

(−γ )p

p!

∫
�

· · ·
∫

�

K
(
ν1 · · · νp

ν1 · · · νp

)
dν1 · · · dνp , (A4)

and the first minor (n = 1)

D
(

λ

μ

∣∣∣γ)
= K(λ,μ) +

∞∑
p=1

(−γ )p

p!

∫
�

· · ·
∫

�

K
(
λ ν1 · · · νp

μ ν1 · · · νp

)
dν1 · · · dνp . (A5)

If D(γ ) �= 0, a solution of the integral equation (A1) is given by

g(λ) = f (λ) + γ

∫
�

R(λ,μ) f (μ) dμ , (A6)

with the function R(λ,μ) called the resolvent kernel, which satisfies

R(λ,μ) = K(λ,μ) + γ

∫
�

K(λ, ν)R(ν, μ) dν (A7)

and is given by

R(λ,μ) = D
(

λ

μ

∣∣∣γ)
/det(1 − γ K̂) . (A8)

Formula (A8) is a particular case of a more general identity first proved by Hurwitz [132] and possibly rediscovered many
times [133], which relates the nth minor to the resolvent kernel

Dn

(
λ1 · · · λn

μ1 · · · μn

∣∣∣γ)
= det(1 − γ K̂)R

(
λ1 · · · λn

μ1 · · · μn

)
. (A9)

APPENDIX B: REDUCED DENSITY MATRICES FOR FREE FERMIONS

Here we compute the n-body RDMs for free fermions in a time-dependent confining potential following Lenard [99]. Using
the symmetry of the fermionic wave functions, we see that an alternative definition for the fermionic RDMs is given by

ρ
(n)
F (x, y| t ) =

∞∑
N=n

∑
ν

p(N, ν)
N!

(N − n)!

∫
dzn+1 · · · dzNψN,F,ν(x, z̃| t )ψ∗

N,F,ν(y, z̃| t ) , (B1)

with x = (x1, . . . , xn) , y = (y1, . . . , yn), and z̃ = (zn+1, . . . , zN ). The wave functions are given by the Slater determinants (9),
and we are going to consider the grand-canonical ensemble with p(N, ν) = e−(EN,ν−μN )/kBT0/Z .

As a starting point we will derive a preliminary result. Consider

G =
∑

ν

e−(EN,ν−μN )/kBT0ψN,F,ν(x1, . . . , xN | t )ψ∗
N,F,ν(y1, . . . , yN | t ) . (B2)

The summand is symmetric in νi’s and vanishes when two of them are equal, which means that G can written as

G = 1

N!

∑
ν1

· · ·
∑
νN

e−(
∑

i Eνi −μN )/kBT0ψN,F,ν(x1, . . . , xN | t )ψ∗
N,F,ν(y1, . . . , yN | t ) . (B3)

Using the sum over the permutations form of the determinant, we find

G = 1

(N!)2

∑
ν1

· · ·
∑
νN

(
N∏

j=1

e−(Eν j −μN )/kBT0

)(∑
P∈SN

(−1)P
N∏

j=1

φν j (xP( j), t )

)(∑
Q∈SN

(−1)Q
N∏

j=1

φ∗
ν j

(yQ( j), t )

)
,

= 1

(N!)2

∑
ν1

· · ·
∑
νN

(
N∏

j=1

e−(Eν j −μN )/kBT0

) ∑
P∈SN

∑
R∈SN

(−1)R
N∏

j=1

φν j (xP( j), t )φ∗
ν j

(yRP( j), t ) ,
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= 1

(N!)2

∑
P∈SN

∑
R∈SN

(−1)R
N∏

j=1

∑
ν j

e−(Eν j −μN )/kBT0φν j (xP( j), t )φ∗
ν j

(yRP( j), t ) ,

= 1

N!
f
(x1 · · · xN

y1 · · · yN
; t

)
, f(x, y| t ) =

∑
ν

e−(Eν−μN )/kBT0φν (x, t )φ∗
ν (y, t ) , (B4)

where SN is the group of permutations of N elements, (−1)P is the signature of the permutation P, and in the second line we have
used the fact that every permutation Q can be written as Q = RP with signature (−1)R+P. In a similar fashion we can compute
the grand-canonical partition function as

Z =
∞∑

N=0

∑
ν

e−(EN,ν−μN )/kBT0 =
∞∑

N=0

∑
ν

e−(EN,ν−μN )/kBT0

∫
dz1 · · ·

∫
dzN |ψN,F,ν(z1, . . . , zN )|2 ,

=
∞∑

N=0

1

N!

∫
dz1 · · ·

∫
dzN f

(x1 · · · xN

y1 · · · yN
; t

)
= det(1 + f̂) , (B5)

which shows that the partition function can be expressed as the Fredholm determinant of an integral operator with kernel f(x, y| t ).
Inserting p(N, ν) = e−(EN,ν−μN )/T /Z in Eq. (B1), we find ρ

(n)
F (x, y|t ) = H/Z , where

H =
∞∑

N=n

∑
ν

e−(EN,ν−μN )/kBT0
N!

(N − n)!

∫
dzn+1 · · ·

∫
dzNψN,F,ν(x, z̃, | t )ψ∗

N,F,ν(, y, z̃, | t ) ,

=
∞∑

N=n

1

(N − n)!

∫
dzn+1 · · ·

∫
dzN f

(x1 · · · xn zn+1 · · · zN

y1 · · · yn zn+1 · · · zN
; t

)
,

= Dn

(x1 · · · xn

y1 · · · yn

∣∣∣ − 1
)

, (B6)

which shows that H is the nth Fredholm minor of the integral operator with kernel f(x, y| t ) and γ = −1 [see (A2)]. Collect-
ing (B5) and (B6) and plugging in the definition (B1) we find

ρ
(n)
F (x, y| t ) = Dn

(x1 · · · xn

y1 · · · yn

∣∣∣ − 1
)
/det(1 + f̂) . (B7)

We can further simplify this expression by considering the resolvent kernel associated to the integral operator 1 + f̂, which will
be denoted by F (λ,μ| t ) and satisfies the integral equation

F (λ,μ| t ) +
∫

f(λ, ν| t )F (ν, μ| t ) dν = f(λ,μ| t ) . (B8)

Expanding F (λ,μ| t ) in the orthonormal system φi(λ, t )φ∗
j (μ, t ) we obtain

F (λ,μ| t ) =
∞∑

i=0

1

1 + e(Ei−μ)/kBT0
φi(λ, t )φ∗

i (μ, t ) , (B9)

which shows that F (λ,μ| t ) is in fact ρ
(1)
F (x, y| t ), the one-body RDM of free fermions. From (B7) and Hurwitz’s identity (A9)

we obtain the final expression for the n-body reduced density matrices of free fermions,

ρ
(n)
F (x, y| t ) = ρ

(1)
F

(x1 · · · xn

y1 · · · yn
; t

)
, (B10)

with ρ
(1)
F (λ,μ| t ) = F (λ,μ| t ) defined in (B9). For a recent utilization of (B7) and Lenard’s formula for n = 2 in the context of

the full counting statistics of the bosonic Tonks-Girardeau gas see [134].

APPENDIX C: TWO THEOREMS ON GRAM DETERMINANTS

Here we state and prove two theorems on Gram determinants which are useful in deriving the identity (30), which establishes
the equivalence in the truncated basis of the Fredholm determinant with the determinant of the overlaps.

Theorem 1. Let a1, . . . , an be n linearly independent vectors in an M-dimensional space with ai = (ai1, . . . , aiM ) and the
scalar product ai · a j = ∑M

k=1 aika∗
jk (the star denotes complex conjugation). Then the Gram determinant of the vectors a1, . . . , an
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defined by

� =

∣∣∣∣∣∣∣∣
a2

1 a1 · a2 · · · a1 · an

a2 · a1 a2
2 · · · a2 · an

...
...

. . .
...

an · a1 an · a2 · · · a2
n

∣∣∣∣∣∣∣∣
(C1)

can be expressed as

� =
∑

1�k1<···<kn�M

∣∣∣∣∣∣∣∣
a1k1 a1k2 · · · a1kn

a2k1 a2k2 · · · a2kn
...

...
. . .

...

ank1 ank2 · · · ankn

∣∣∣∣∣∣∣∣

2

, (C2a)

= 1

n!

M∑
k1=1

· · ·
M∑

kn=1

∣∣∣∣∣∣∣∣
a1k1 a1k2 · · · a1kn

a2k1 a2k2 · · · a2kn
...

...
. . .

...

ank1 ank2 · · · ankn

∣∣∣∣∣∣∣∣

2

, (C2b)

where |A|2 = |A||A∗| for any matrix A.
Proof. Using the linearity of the determinant with respect to columns we have

� =

∣∣∣∣∣∣∣∣∣

∑M
k1=1 a1k1 a∗

1k1
a1 · a2 · · · a1 · an∑M

k1=1 a2k1 a∗
1k1

a2
2 · · · a2 · an

...
...

. . .
...∑M

k1=1 ank1 a∗
1k1

an · a2 · · · a2
n

∣∣∣∣∣∣∣∣∣
,

=
M∑

k1=1

a∗
1k1

∣∣∣∣∣∣∣∣
a1k1 a1 · a2 · · · a1 · an

a2k1 a2
2 · · · a2 · an

...
...

. . .
...

ank1 an · a2 · · · a2
n

∣∣∣∣∣∣∣∣
,

=
M∑

k1=1

· · ·
M∑

kn=1

a∗
1k1

a∗
2k2

· · · a∗
nkn

∣∣∣∣∣∣∣∣
a1k1 a1k2 · · · a1kn

a2k1 a2k2 · · · a2kn
...

...
. . .

...

ank1 ank2 · · · ankn

∣∣∣∣∣∣∣∣
. (C3)

From the last relation we can see that when two k’s are equal the summand vanishes, which means that we have

� =
∑

1�k1···kn�M

∑
P∈SN

a∗
1kP(1)

a∗
2kP(2)

· · · a∗
nkP(n)

∣∣∣∣∣∣∣∣
a1kP(1) a1kP(2) · · · a1kP(n)

a2kP(1) a2kP(2) · · · a2kP(n)
...

...
. . .

...

ankP(1) ankP(2) · · · ankP(n)

∣∣∣∣∣∣∣∣
,

=
∑

1�k1···kn�M

(∑
P∈SN

(−1)Pa∗
1kP(1)

a∗
2kP(2)

· · · a∗
nkP(n)

)∣∣∣∣∣∣∣∣
a1k1 a1k2 · · · a1kn

a2k1 a2k2 · · · a2kn
...

...
. . .

...

ank1 ank2 · · · ankn

∣∣∣∣∣∣∣∣
,

=
∑

1�k1<···<kn�M

∣∣∣∣∣∣∣∣
a1k1 a1k2 · · · a1kn

a2k1 a2k2 · · · a2kn
...

...
. . .

...

ank1 ank2 · · · ankn

∣∣∣∣∣∣∣∣

2

, (C4)

which proves (C2a). Then (C2b) follows from the fact that the square modulus of the determinant is a symmetric function in k’s
and vanishes when two of them are equal.
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Theorem 2. Let φ1(x), . . . , φn(x) linear independent functions defined on the interval [a, b]. Then

� =
∣∣∣∣
∫ b

a
φi(x)φ∗

k (x) dx

∣∣∣∣ ,

= 1

n!

∫ b

a
dx1 · · ·

∫ b

a
dxn

∣∣∣∣∣∣∣∣
φ1(x1) φ1(x2) · · · φ1(xn)
φ2(x1) φ2(x2) · · · φ2(xn)

...
...

. . .
...

φn(x1) φn(x2) · · · φn(xn)

∣∣∣∣∣∣∣∣

2

. (C5)

Proof. The Gram determinant can also be written as

� =
∫ b

a
dx1 · · ·

∫ b

a
dxn

∣∣∣∣∣∣∣∣
φ1(x1)φ∗

1 (x1) φ1(x2)φ∗
2 (x2) · · · φ1(xn)φ∗

n (xn)
φ2(x1)φ∗

1 (x1) φ2(x2)φ∗
2 (x2) · · · φ2(xn)φ∗

n (xn)
...

...
. . .

...

φn(x1)φ∗
1 (x1) φn(x2)φ∗

2 (x2) · · · φn(xn)φ∗
n (xn)

∣∣∣∣∣∣∣∣
,

=
∫ b

a
dx1 · · ·

∫ b

a
dxn φ∗

1 (x1) · · · φ∗
n (xn)

∣∣∣∣∣∣∣∣
φ1(x1) φ1(x2) · · · φ1(xn))
φ2(x1) φ2(x2) · · · φ2(xn))

...
...

. . .
...

φn(x1) φn(x2) · · · φn(xn)

∣∣∣∣∣∣∣∣
,

due to the fact that in the first determinant the integration variable x j appears only in the jth column. In the last relation we can
see that the right-hand side is unchanged if we permute the integration variable. Then we can write

� = 1

n!

∫ b

a
dx1 · · ·

∫ b

a
dxn

∑
P∈SN

φ∗
1 (xP(1) ) · · · φ∗

n (xP(n) )

∣∣∣∣∣∣∣∣
φ1(xP(1) ) φ1(xP(2) ) · · · φ1(xP(n) ))
φ2(xP(1) ) φ2(xP(2) ) · · · φ2(x(n) ))

...
...

. . .
...

φn(xP(1) ) φn(xP(2) ) · · · φn(xP(n) )

∣∣∣∣∣∣∣∣

= 1

n!

∫ b

a
dx1 · · ·

∫ b

a
dxn

(∑
P∈SN

(−1)Pφ∗
1 (xP(1) ) · · · φ∗

n (xP(n) )

)∣∣∣∣∣∣∣∣
φ1(x1) φ1(x2) · · · φ1(xn))
φ2(x1) φ2(x2) · · · φ2(xn))

...
...

. . .
...

φn(x1) φn(x2) · · · φn(xn)

∣∣∣∣∣∣∣∣
,

which proves our theorem. Theorem 2 is also known as Andréief’s integration formula [135].

APPENDIX D: COMPARISON OF THE TWO
NUMERICAL METHODS

In this Appendix we compare the efficiencies of the two
numerical methods presented in Secs. V A and V B, which
can be used to compute the reduced density matrices of im-
penetrable anyons. We consider the case when the overlaps of
the wave functions cannot be calculated analytically, as in the
QNC setup (see Sec. VI).

Both methods require the knowledge of the SP wave
functions, which can be calculated either analytically (in
some cases) or numerically, solving the time-dependent
Schrödinger equation. In general, the wave functions are
highly oscillatory functions, and in order to accurately cal-
culate the RDM they need to be computed on a fine grid in
an appropriate chosen domain. If the wave functions need to
be evaluated for values different from the grid points we will
use interpolation. If we have computed such a sampling of
the wave functions on the equidistant grid X = (x1, . . . , xn)
(n is the number of grid points), then we can very easily
obtain a sampling of the free fermionic RDM on X × X which
then can be used for the two-dimensional (2D) interpola-
tion of ρ

(1)
F (x, y| t ). In order to see this, consider the matrix

with elements Ai j = f 1/2
i φi(x j, t ), where fi is the Fermi-Dirac

function and i = 0, . . . , M − 1 , j = 1, . . . , n. (This is the

M × n matrix constructed by putting on row i the wave func-
tion φi, evaluated on grid X and multiplied by f 1/2

i .) Then
the n × n values of ρ

(1)
F (x, y| t ) for x, y ∈ X × X are given by

the matrix AT A∗, where AT is the transposed matrix and A∗
is the complex conjugate. We point out that the computation
of the free fermionic RDM on the 2D grid from the sampled
wave functions can be done very quickly. (Even in the case
of the largest grid that we have employed, with n = 3600 the
construction of the matrices and the matrix product took less
than a second on a normal laptop.)

A correct evaluation of the efficiency of the two methods
should take into account, in addition to the floating-point
operations required in each case, the number of calls required
by each method for φi(x, t ) or ρ

(1)
F (x, y| t ), when x �= X or

x, y �= X × X . This is because while function interpolation
is very efficient, it is still time consuming compared with a
floating-point operation. On our system the time for a call
of an interpolated wave function was tφ ∼ [1.5, 2.5] × 10−6 s
and for an interpolated fermionic RDM tρ ∼ [4, 5] × 10−6 s.

Analysis of the method based on the overlaps. In general,
the most time-consuming component of this method is the
computation of the wave-function overlaps. Needless to say,
the utilization of a general-purpose adaptive subroutine, while
very accurate, would be time consuming. In order to minimize
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 7. First column: Real and imaginary part of ρ (1)(x, y| t ) for N = 10 bosons (κ = 0 and fixed values of y and t) at different temperatures
in the quantum Newton’s cradle setting (lho = 0.56, ω = 3, q = 4π, A = 1.5). Here y = 2, t = 2�t,�t = π/40ω, θ0 = 0 (a), θ0 = 0.011 (d),
and θ0 = 0.025 (g). Middle column: Evaluation time (logarithmic scale) of the RDM using Nyström’s method tN (disks) and overlaps method
tO (triangles) for the data in the first column. Last column: Plots of the ratios tO/tN from the middle column.

the number of calls to the interpolated wave functions, it is
preferable to use a quadrature rule whose points and weights
can be computed accurately and fast. We have used the
Clenshaw-Curtis quadrature, which has a computational cost
of O(p log2 p), using Waldvogel’s FFT algorithm [136] (p is
the number of points of the quadrature). It can be argued that a
more suitable choice of quadrature would be Gauss-Legendre,
but for smooth functions it seems that Clenshaw-Curtis per-
forms as well [137], and our numerical experiments confirm
this hypothesis. Using a quadrature with p points, in order to
compute the overlaps we need M p calls of the interpolated
wave functions and then M(M + 1)p/2 multiplications. [Only
M(M + 1)/2 integrals are independent; the rest can be ob-
tained from complex conjugation.] The computation of the
inverse and the determinant of P both require O(M3) oper-
ations; Q requires M2 multiplications while the summation
in (35) requires 2M calls of the interpolated wave functions
and M2 multiplications. Therefore the evaluation time of the
truncated basis method for a quadrature with p points and
truncation level M is approximately

tO =
(

p log2 p + 2M3 + 2M2 + M(M + 1)

2
p
)

tF

+ M(p + 2)tφ , (D1)

where tF is the time required by a floating-point operation.
Analysis of Nyström’s method. If we use a quadrature with

m points, due to the fact that ρ (1)(x, y| t ) = [ρ (1)(y, x)| t )]∗, the
construction of the matrix ρ (1)(λi, λ j | t ) requires m(m + 1)/2
calls of the interpolated RDM, and the solution of the linear
system (22) requires O(m3) + O(m2) operations. [The O(m2)
comes from the multiplication of the aforementioned matrix
with w j .] The Fredholm determinant also requires O(m3) +

O(m2) operations, and the interpolation formula (21)
requires O(m) operations and m + 1 calls of the interpolated
RDM. Therefore the approximate evaluation time of Nys-
tröm’s method is

tN = (m log2 m + 2m3 + 2m2 + m)tF

+ 1
2 (m + 1)(m + 2)tρ . (D2)

Taking into account that tρ ∼ 2tφ and that it is sensible to
assume that p ∼ m (this was true in all our numerical in-
vestigations), from (D1) and (D2) we can already estimate
which method is more competitive. Because we are dealing
with smooth functions and kernels, in general the number
of quadrature points required increases monotonically with
|x − y|. For m < M (D2) is smaller than (D1), which shows
that Nyström’s method is more efficient for small to mod-
erate values of |x − y| and moderate to large number of
particles (or equivalently, at higher temperatures). When M
is small and |x − y| is large, the overlaps method is more
efficient.

The middle column of Fig. 7 presents the evaluation time
of ρ (1)(x, 2| 2�t ) at different temperatures for a bosonic sys-
tem of N = 10 particles in the quantum Newton’s cradle
setup characterized by lHO = 0.56, ω = 3, q = 4π, A = 1.5,
and �t = π/40ω. The evaluation times are obtained by in-
creasing the number of quadrature points until the relative
difference between two successive evaluations is smaller than
0.5 × 10−3. At zero temperature (M = N − 1), from Fig. 7(b)
we can see that for small to moderate values of the spatial
separation Nyström’s method is more efficient (tN < tO), but
the situation is reversed for large values of |x − 2|. The last
column of Fig. 7 presents the results for tO/tN . If tO/tN > 1
then Nyström’s method is more efficient, and when tO/tN < 1
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FIG. 8. The same quantities as in Fig. 7 for t = 20�t and y = 12 (a), y = 15 (d), and y = 20 (g).

the opposite is true. Already for θ0 = 0.011 when M = 30
we see from Fig. 7(e) that tO/tN > 1 for all values of x
shown (outside of this interval the RDM is negligible), and
for θ0 = 0.0025 [Fig. 7(h)] when M = 60 Nyström’s method
is almost everywhere more than ten times faster than the
method based on the overlaps. Figure 8 presents similar re-

sults for the same setup at t = 20�t and y = 12 (θ0 = 0),
y = 15 (θ0 = 0.011), and y = 20 (θ0 = 0.025). Even though
the support of the RDM is now larger, the same conclu-
sions can be drawn: with increasing M and temperature
Nyström’s method is far more efficient than the overlaps
method.
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