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Vortex structures in photodetachment by few-cycle circularly polarized pulses
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Generation of electron vortices in photodetachment of H− by circularly polarized laser pulses is analyzed by
means of strong-field approximation and by numerically solving the time-dependent Schrödinger equation. A
very good agreement is shown for the magnitude and the phase of the probability amplitude of photodetachment
from both approaches. We demonstrate that spiral-like patterns in the probability amplitude of detachment,
observed for a pair of counter-rotating circularly polarized laser pulses, cannot be associated with nonvanishing
topological charge vortices. The latter can be generated, on the other hand, by a circularly polarized laser pulse
or a sequence of such pulses with corotating polarizations. Such interpretation of our results follows from the
hydrodynamical formulation of quantum mechanics and its generalization to arbitrary parametric spaces.
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I. INTRODUCTION

In recent years, an increased interest has been shown
to investigate the generation of electron vortices in pho-
toionization. In Ref. [1], for instance, the authors analyzed
a single-electron photoionization of He by a sequence of
two counter-rotating, circularly polarized attosecond pulses.
Their study showed that photoelectron momentum distribu-
tions exhibit a helixlike structure, with maximal and minimal
probabilities following a Fermat spiral. The precise shape
of the spiral depends on the time delay between pulses
and their relative carrier-envelope phase. As argued, nonzero
carrier-envelope phases and long time delays lead to dense
helices for which vortices can be observed. Similar depen-
dence on laser field parameters has been seen in the case of
diffraction-interference patterns arising in fundamental pro-
cesses of quantum electrodynamics [2] and in ionization [3].
Based on the analysis presented in Refs. [2,3], one can an-
ticipate that helical and vortex structures in photoelectron
momentum distributions are also due to the diffraction and
interference of quantum-mechanical probability amplitudes
associated with each pulse. Furthermore, it has been shown
in Ref. [4] that the number of “spiral arms” depends on the
number of photons absorbed from the laser field, provided that
each pulse is long enough. On the contrary, vortices discussed
in the current paper are not referred to helical patterns men-
tioned in Refs. [1,4], but to a local structure of the phase. The
latter has been analyzed in both position and momentum space
in atomic and electronic collisions [5,6], where it was related
to the angular momentum transfer. Naturally, one may expect
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that helical probability distributions might be associated with
nonvanishing topological charge vortices. However, only a
detailed analysis of the phase of the probability amplitude of
the process can truly identify quantum vortex structures.

As we will show in this paper, spiral distributions do not
always lead to nonvanishing topological charge vortex struc-
tures. This is important in light of various works that were
stimulated by Ref. [1]. Similar analyses have been carried
out, for instance, for double ionization of He [7]. These
studies were extended to photoionization of diatomic or tri-
atomic ionic molecules as H2

+ [8] and H3
2+ [9] driven by

bichromatic laser pulses in the corotating or counter-rotating
configurations. In both cases, helical patterns with single and
multiple arms (depending on the relative frequency of the
driving field or its helicity) in the photoelectron distributions
were predicted. Interference effects in such distributions were
also analyzed.

Pengel et al. [10] reported on experimental evidence of
spiral-like structures in the electron momentum distribution
when considering ionization of K atoms by circularly polar-
ized, time-delayed pulses. In Ref. [11], two supercontinuum
light pulses with different central frequencies were used to
ionize Na atoms. Special attention was paid to the symme-
try of the resulting momentum distribution as interpreted by
interference effects among electron wave packets with dif-
ferent quantum numbers. Even though the above-mentioned
experiments revealed the spiral-type photoelectron momen-
tum distributions, their actual vortex structure remains to be
confirmed.

Our aim here is to study the formation of vortex struc-
tures in the momentum space during photodetachment of H−
anion (s electron). To this end, we calculate the probability
amplitude of detachment from the strong-field approximation
(SFA) [12–14] and, independently, by numerically solving
the time-dependent Schrödinger equation (TDSE). Note that,

2469-9926/2020/102(4)/043117(11) 043117-1 ©2020 American Physical Society

https://orcid.org/0000-0002-0856-8800
https://orcid.org/0000-0001-8097-2480
https://orcid.org/0000-0003-0970-3477
https://orcid.org/0000-0002-3402-1577
https://orcid.org/0000-0003-2636-6222
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.043117&domain=pdf&date_stamp=2020-10-27
https://doi.org/10.1103/PhysRevA.102.043117


LEI GENG et al. PHYSICAL REVIEW A 102, 043117 (2020)

in contrast to photoionization, in photodetachment the elec-
tron does not interact with the long-range Coulomb potential
created by a positively charged parent ion. For this reason,
we expect that the SFA (which for this particular system is
also gauge invariant [15]) will lead to accurate qualitative
and quantitative predictions. For our numerical illustrations,
we choose a driving field consisting of single or double
laser pulses with corotating or counter-rotating circular po-
larizations. We analyze the phase of the resulting momentum
probability amplitude and the circulation around its nodal
points in order to determine whether or not nonvanishing
topological charge vortices are formed. It is worth mentioning
that, in Refs. [15–17], the generation of propagating electron
Bessel states in photoionization (or photodetachment) was
studied. However, vortices in the momentum space analyzed
in this paper are very different entities. In contrast to the
treatment developed there (which was based on the properties
of Bessel states in the configuration space), we carry out our
analysis under the scope of the hydrodynamical formulation
of quantum mechanics.

This paper is organized as follows. In Sec. II, we describe
the general properties of electron vortex in the configuration
space and their generalization to other parametric spaces. In
Sec. III, we introduce the probability amplitude of detachment
under the scope of both the SFA and TDSE. In Sec. III A,
we define the topological charge of the resulting electron
wave packets. As mentioned above, we consider three types
of circularly polarized laser fields: a single pulse and two
pulses with either corotating or counter-rotating polarizations.
Their properties are described in Sec. III B. Numerical results
obtained from SFA and TDSE are compared in Sec. IV.
Section IV A contains a detailed analysis of the magnitude
and phase of the detachment probability amplitude for the
driving fields considered here. We determine the regions in the
momentum space where vortices are formed. In Sec. IV B, we
calculate the topological charge of final electrons. In Sec. V,
we compare SFA results for different pulse intensities. Finally,
we draw our conclusions in Sec. VI.

Unless stated otherwise, numerical results are presented
in atomic units (a.u.), i.e., we set h̄ = |e| = me = 1. How-
ever, in our derivations we keep the electron mass (me) and
charge (e < 0) explicitly. Our results are shown in terms of
the atomic units of momentum, pat = αmec, and electric field,
Eat = α2mec2/(|e|a0), where α is the fine-structure constant,
c is the speed of light (equal to 1/α in a.u.), and a0 is the Bohr
radius.

II. ELECTRON VORTEX STRUCTURES

We start by analyzing a general electron wave function
ψ (r) in the configuration space. The concepts of nodes and
vortices are related, as both are zeros of the complex wave
function ψ (r) [meaning that the real and imaginary parts
of ψ (r) vanish at those points]. They can form, in general,
various geometrical structures such as isolated points, curves,
or surfaces which may intersect with each other. In particular,
if we restrict our analysis to a two-dimensional (2D) plane
(denoted below by �) in the three-dimensional configuration
space, the zeros of the wave function appear on that plane
as curves or individual points. Now, in order to distinguish

between nodes and vortices, we define the velocity distribu-
tion

v(r) = 1

me

Re [ψ∗(r)(−i∇)ψ (r)]

|ψ (r)|2 , (1)

and project it onto the plane �. If the plane is perpendicular
to the unit vector N, i.e., it is defined by the equation

� : N · r − d = 0, (2)

with d being an arbitrary real number, then the longitudinal
velocity distribution is

v‖(r) = v(r) − [v(r) · N]N, (3)

where r satisfies Eq. (2). Furthermore, the circulation of the
velocity distribution (3) is quantized. Namely, in the absence
of a magnetic field,∮

K
mev‖(r) · dr = 2πm, (4)

where m = ±1,±2, . . . for a vortex and m = 0 for a node.
Here K denotes a closed path (oriented counterclockwise) in
the plane (2) and m is the so-called topological charge or
winding number [18–20]. So the node can be regarded as
a special case of the vortex with zero strength (topological
charge) [21]. For simplicity, in the remaining part of the pa-
per, the vortex is referred to as a nonvanishing topological
charge vortex. The points belonging to the path K can be
parametrized as a function r(u), with 0 � u � u0. However,
as the curve K is closed, the condition r(0) = r(u0) must be
satisfied.

To proceed with our analysis, we represent the complex
wave function ψ (r) in terms of two real functions R(r) and
S(r),

ψ (r) = R(r)eiS(r). (5)

Clearly, the phase of the wave function S(r) = arg[ψ (r)] mod
2π is not uniquely defined. However, as was pointed out by
Dirac [22], in order to ensure that the wave function is single
valued, the condition∮

K
∇S(r) · dr = 2πm, m = 0,±1,±2, . . . (6)

must hold. Hence, by circulating around the vortex, the phase
of the wave function changes continuously between S0 and
S0 + 2πm (m �= 0). This is not the case for the nodes. In most
cases, the latter form curves and S(r) jumps across them by π ,
meaning that S(r) = S0 or S(r) = S0 + π around a standard
node. It may also happen that the nodal curve is tangent to
the plane �. In this case, we will observe an isolated zero for
which, in the close vicinity, the phase of the wave function
takes nearly the same values. As a result, the circulation of
∇S(r) along a closed contour encircling the nodes is zero
(m = 0).

In closing this section, a couple of remarks should be made.
First of all, Eq. (4) is typically written in terms of the field
v(r) rather than v‖(r) (see, for instance, [18–20]). The point
is, however, that the circulation of the normal component of
v(r) along the contour K is identically equal to zero. This
leaves us with Eq. (4). Second of all, it follows from Eqs. (1)
and (5) that mev(r) = ∇S(r). It is not surprising therefore that
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FIG. 1. Situations which may lead to misinterpretation of nu-
merical results. (a) The vortex curve intersects twice the plane �

at points A and B, which are very close to each other (red curve).
The circulation around a closed loop enclosing them will identify the
two vortices as a single nonvortex node. (b) The vortex curve comes
very close to the plane �. However, it does not cross it (blue curve).
The numerical analysis identifies a nonvortex nodal point. In order
to obtain a proper interpretation, it becomes necessary to redefine
the velocity field v‖(r) by shifting or rotating the plane defined by
Eq. (2).

the conditions (4) and (6) are equivalent, and both can be
used to determine the topological charge m. Finally, we stress
that vortices are determined numerically, i.e., with a finite
resolution. This could lead to misinterpretation of numerical
results. For instance, one could meet the situations illustrated
in Fig. 1. The red curve here intersects the plane � at two
points, A and B. If such points are close enough (i.e., the
distance between them is similar or smaller than the numerical
accuracy) one cannot recognize them as individual vortices.
This is due to the fact that the circulation around a contour
K , surrounding both of them, vanishes. It may also happen
that the vortex curve approaches the plane very closely but it
does not intersect it (blue curve). In this case the circulation
vanishes as well. One can see that in both cases the numerical
analysis would fail in determining the vortex character of the
curve. If this happens, it is necessary to select another plane
and analyze a new vector field (3) in the vicinity of the curve.
The point is that the strength of the vortex defined by the value
of m is independent of that choice.

The discussion above concerns the wave function in the
configuration space. However, as proposed by Berry [23], it
can be generalized to an arbitrary complex function f (R)
depending on three real parameters R = (Rx, Ry, Rz ). For the
function f (R) and the parametric space R, we shall choose
the probability amplitude of photodetachment A(p) and the
momentum space p, respectively. This will allow us to inves-
tigate the nodes and vortex structures in photodetachment, as
introduced in the next section.

III. PROBABILITY AMPLITUDE OF DETACHMENT
AND FORMATION OF VORTEX STRUCTURES

In this paper, we analyze the photodetachment from H−
under the scope of the SFA [15,24]. The interaction between
the active electron and neutral core is modeled as a zero-range
potential (ZRP). The bound state wave function for the ZRP
(s states) is given by [15,24]

�s(r) = 〈r|�s〉 ≈ 1√
4π

A

r
e−κr, (7)

where A and κ are constant. While κ determines the bound-
state energy E0 = −(αc)2meκ

2/2, A is a fitting parameter
that can be adjusted such that the detachment probabilities
are consistent with either experimental results or with the ab
initio TDSE calculations. In our analysis we use the values
κ = 0.2354 a.u. and A = 0.75 a.u., following Ref. [24]. We
consider detachment by a single ultrashort laser pulse of cir-
cular polarization, or by two such pulses in the corotating or
counter-rotating configurations. The laser field is treated in the
dipole approximation, i.e., we use a time-dependent vector
potential A(t ) to define our field. Furthermore, we impose
the conditions A(t < 0) = A(t > Tp) = 0 for a finite pulse or
train of pulses. Here Tp defines the full duration of the single
or double pulse.

In this section, we present the probability amplitude of
photodetachment A(p) calculated in the SFA in the length
gauge (for more details on the derivations we refer the reader
to Ref. [15]). Even though the SFA leads to gauge-invariant
results when the unperturbed electron ground state is given by
Eq. (7), the length gauge seems to be favorable as it requires
less computational effort. For this reason, this is our choice
of gauge and we shall use the following expression for the
probability amplitude [15]:

A(p) = −i
∫ Tp

0
dt〈ψp(t )|ĤI(t )|�s(t )〉. (8)

Here, |ψp(t )〉 represents the Volkov solution [25] of the
electron in the laser field whereas ĤI(t ) is the interaction
Hamiltonian, both in the length gauge. The latter is given by

ĤI(t ) = −eE (t ) · r, (9)

where E (t ) = −∂t A(t ) is the electric field defining the laser
pulse. Furthermore, |�s(t )〉 is the unperturbed ground-state
wave function of the negative ion such that 〈r|�s(t )〉 =
�s(r)e−iE0t , where E0 is the bound-state energy (|E0| =
0.754 eV) and �s(r) is given by Eq. (7). By introducing
the corresponding Volkov solution, we arrive at the following
expression for the probability amplitude:

A(p) =ie
∫ Tp

0
dt E (t ) · �̃s[p − eA(t )] exp

(
i

[
p2

2me
− E0

]
t

− i

me

∫ t

0
dt ′

[
eA(t ′) · p − e2A2(t ′)

2

])
, (10)

where we have introduced the function

�̃s(p) = i∇p�̃s(p) = −i
4
√

πA

(κ2 + p2)2
p, (11)

and �̃s(p) is the Fourier transform of Eq. (7). In contrast to
Ref. [24], where the saddle-point method is used to approxi-
mate the time integral in Eq. (10), we calculate it numerically.

Once the amplitude A(p) is obtained from Eqs. (11) and
(10), one can determine the probability distribution of pho-
todetachment [15],

P̄ (p) = 1

(2π )3
|A(p)|2. (12)

This will be done in Sec. IV for three different configurations
of the driving field (see below).
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For the numerical solution of the TDSE, we consider the
electron wave function ψ (r, t ) interacting with both the laser
field and a Yukawa potential of the form

V (r) = −1.1αc
e−r/a0

r
. (13)

Note that the parameters used to define our short-range po-
tential are such that the electron affinity of the negative ion
is the same in both SFA and TDSE. The Hamiltonian, which
governs the temporal evolution of the electron, is therefore
given by

H (t ) = − ∇2

2me
+ V (r) + i

e

me
A(t ) · ∇, (14)

where higher order terms in the vector potential are neglected.
As one can see, we use our Hamiltonian in the velocity gauge,
as our method to solve TDSE is gauge invariant.

By expanding the electron wave function in spherical har-
monics and projecting the final state onto the scattering state
of the pure Yukawa potential (13), we find out that the proba-
bility amplitude of detachment takes the form

A(p) = 2π

p

∑
l,m

(−i)l eiδlYlm( p̂)

×
∫ rmax

0
dr ψlm(r, t f )rRpl (r). (15)

Here, p̂ = p/p defines the polar and azimuthal angles of the
electron momentum, Rpl is the radial part of the scattering
state, and δl is the phase shift. Furthermore, t f is the final
time of propagation and ψlm(r, t ) are the components defining
the expansion of ψ (r, t ) in the spherical harmonics Ylm(r̂). In
other words, ψlm(r, t ) are such that

ψ (r, t ) = 1

r

lmax∑
l=0

l∑
m=−l

ψlm(r, t )Ylm(r̂), (16)

with r̂ = r/r. For numerical methods, we use the finite dif-
ference method to discretize the radial coordinate r and the
Cranck-Nicholson propagator to determine the evolution of
the electron from the initial to the final state.

A. Circulation and topological charge

Before defining the driving field used in our numerical
illustrations, we describe here how to calculate the topological
charge around a closed loop K in a 2D plane. In momentum
space, the topological charge is [cf. Eq. (4)]

m = 1

2π

∮
K

v(p) · d p, (17)

where v(p) is an analog to the velocity field (1). It is now
defined as

v(p) = 1

|A(p)|2 Re [A∗(p)(−i∇p)A(p)], (18)

where A(p) is the complex probability amplitude (10) and
∇p is the gradient calculated with respect to the momentum
coordinates. To parametrize the path K , we consider a circular

contour of radius pr centered at p = 0, namely, we choose

K : p2
x + p2

y = p2
r ; pz = 0. (19)

Therefore, it becomes natural to introduce the polar coordi-
nates (pr, ϕ) such that

px = pr cos ϕ, py = pr sin ϕ, pz = 0. (20)

Hence, the probability amplitude becomes also a function
of those variables, i.e., A(pr, ϕ) ≡ A(pr cos ϕ, pr sin ϕ, 0). It
follows from Eq. (17) that the topological charge m ≡ m(pr )
is given by

m(pr ) = 1

2π

∫ 2π

0
prv(p) · eϕdϕ = 1

2π

∫ 2π

0
prv‖(pr, ϕ)dϕ,

(21)
where

prv‖(pr, ϕ) = 1

|A(pr, ϕ)|2 Im [A∗(pr, ϕ)∂ϕA(pr, ϕ)], (22)

and eϕ is the angular unit vector. It should acquire integer
values forming a “staircase” plot as a function of pr and
it provides information about the number of vortex points
surrounded by the closed path. This will be illustrated in
Sec. IV B.

The probability amplitudes in quantum mechanics are
defined up to a global phase. It means that we can rede-
fine the probability amplitude of photodetachment such that
A′(p) = exp[i�(p)]A(p), where �(p) is an arbitrary con-
tinuous phase. Although the “velocity” (in the momentum
space) v(p) introduced above (which is related to the Berry
connection [23]) is gauge dependent, the topological charges
are independent of a chosen phase �(p). The same con-
cerns nodal surfaces and vortex curves, as the phase factor
exp[i�(p)] never vanishes.

B. Laser field

In our numerical calculations, we shall use a circularly
polarized laser pulse (or train of such pulses) propagating
along the ez axis. The polarization plane, therefore, is the xy
plane. Each individual pulse consists of Nosc = 3 field oscilla-
tions within a sine-squared envelope. The integer Nrep = 1, 2
determines the number of pulses and δ defines its polarization
(δ = ±π/4 for circularly polarized fields) [see Eqs. (24) and
(25) below]. With this in mind, we define the electric field as
follows:

E (φ) = Eat

√
I

Iat
[F1(φ)ex + F2(φ)ey]. (23)

Here Iat = 3.51 × 1016 W/cm2 is the atomic unit of inten-
sity, I is the intensity of the light field, φ = ωt is its phase,
and ω = 2π/Tp. Furthermore, the laser carrier frequency is
ωL = ωNoscNrep which corresponds to the wavelength λL =
2πc/ωL. In Eq. (23), we have introduced the electric field
shape functions, Fj (φ), j = 1, 2, which are given by

F1(φ) =
[
sin

(Nrepφ

2

)]2

sin(NrepNoscφ) cos(δ), (24)

F2(φ) = −
[
sin

(Nrepφ

2

)]2

cos(NrepNoscφ) sin(δ), (25)
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FIG. 2. Parametric plots of the vector potential A(φ) [Eq. (26)] (upper row) and electric field E (φ) [Eqs. (23)–(25)] (lower row) for three
types of driving fields used in this paper. In all cases the intensity is I = 2.5 × 1011 W/cm2, each individual pulse comprises three oscillations
(Nosc = 3), and the laser field wavelength is λL = 4000 nm. While case I (left column) illustrates the properties of a single light pulse (Nrep = 1)
of circular polarization (δ = π/4), case II (middle column) and case III (right column) relate to trains of two pulses (Nrep = 2) with corotating
(δ = π/4) and counter-rotating (δ = π/4 for φ ∈ [0, π ] and δ = −π/4 for φ ∈ [π, 2π ]) polarizations, respectively.

for φ ∈ [0, 2π ] and zero otherwise. In numerical calcula-
tions, we shall use I = 2.5 × 1011 W/cm2 and λL = 4000 nm.
Note that, for Nrep > 1 we can change the polarization phase
from pulse to pulse. Our aim in this paper is to compare
the photoelectron probability distribution of detachment for
three cases of the driving field: single laser pulse (Nrep = 1,
δ = π/4), two corotating (Nrep = 2, δ = π/4), and counter-
rotating identical pulses (Nrep = 2, δ = π/4 for t � Tp/2 and
δ = −π/4 for t > Tp/2). We label those three cases as case
I, case II, and case III, respectively. In case II and case III,
we keep Nosc = 3 and λL = 4000 nm unchanged. So ω in
these two cases changes, i.e., the pulse duration Tp doubles.
Basically, in case II, we have two identical pulses of case I
sequentially. In case III, we have the same pulse of case I and
another counter-rotating pulse sequentially.

Finally, the vector potential describing the driving field is
given by

A(φ) = − 1

ω

∫ φ

0
E (φ′)dφ′, (26)

and, for our current parameters, we have that

∫ 2π

0
Fj (φ

′)dφ′ = 0, j = 1, 2. (27)

This ensures that A(0) = A(2π ) = 0, i.e., the vector potential
vanishes for t < 0 and t > Tp.

In Fig. 2, we show the temporal evolution of the tips of
the vector potential (upper row) and electric field (lower row)
for the driving fields in case I (left column), case II (middle
column), and case III (right column). All curves, which are
generated by changing the phase φ from 0 to 2π , start and
end at the origin of coordinates. While in case I both A(φ) and
E (φ) evolve counterclockwise by making one complete turn
around the spiral, in case II the fields complete two turns in the
same direction. In case III the vector potential evolves coun-
terclockwise for 0 � φ � π and clockwise for π < φ � 2π

by following the same path; however, the electric field not
only changes its direction but also follows a different path
(see the lower-right panel), such that the symmetry up-down
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FIG. 3. Color maps of the probability distributions P̄ (p) [Eq. (12)] in the px py plane (pz = 0) calculated from the SFA [Eq. (10)] (upper
row) and the numerical solution of the TDSE (lower row), in atomic units. While the left column concerns case I, the middle and right columns
are for cases II and III, respectively (see Fig. 2). Both momentum distributions from the two methods exhibit very similar structures and differ
approximately by a scaling factor equal to 4/3, that can be incorporated into the SFA by multiplying the parameter A in (7) by around 1.15.

is preserved. In consequence, the momentum probability dis-
tribution also acquires this property.

IV. PROBABILITY DISTRIBUTION OF
PHOTOELECTRONS IN THE MOMENTUM SPACE

In this section, we present the probability distribution of
electrons P̄ (p) [Eq. (12)] in photodetachment driven by laser
fields in three cases described in Fig. 2. In Fig. 3, we show
such distributions obtained from SFA [Eq. (10)] (upper row)
and by solving the TDSE (lower row) for case I (left col-
umn), case II (middle column), and case III (right column).
Our results are presented in the px py plane, namely, P̄ (p)
is calculated for pz = 0. By comparing the upper and lower
rows, we see that the SFA leads to accurate qualitative results.
The difference is in a common scaling factor. By multiplying
the SFA distributions by a factor of roughly 4/3 we obtain a
very good quantitative comparison. Note that this factor can
be assimilated into the parameter A in Eq. (7). Such a good
agreement between both treatments is expected due to the
absence of a Coulomb interaction with the parent atom when
the electron is in the continuum. However, the SFA presents
several advantages over the solution of the TDSE, including
the simplicity of numerical calculations together with a larger
accuracy (i.e., fine details can be better displayed), and the
possibility to analyze photodetachment in a broader range of
field intensities and frequencies. This is provided that the total
probability of detachment, as computed from our method, is

always smaller than 1 (for restrictions of our model, we refer
the reader to Ref. [15]). Such condition is fulfilled for all
calculations presented in this paper. Consider the probability
distribution P̄ (p) [Eq. (12)] for case I (left column of Fig. 3).
This distribution is characterized by strong interference ef-
fects where regions of high probability appear as concentric
rings separated by annular zones of low probability (in the
terminology coined in Ref. [4], those rings correspond to zero-
start spirals). This is particularly visible in the negative part
of the px axis. Nevertheless, in the positive px axis some of
the rings seem to partially merge together in order to produce
a modulated electron supercontinuum [15,26–28]. As one of
the conditions for the generation of vortices is the vanishing of
the wave function, for |p|/pat > 0.1, we expect to find them
in the negative part of the px axis. This is because the rings
do not merge there, and deep minima between zones of high
probability are observed.

For a laser field consisting of two corotating light pulses
(case II, middle column of Fig. 3), the interference effects
are more pronounced as compared to case I. Namely, we
observe many more large-probability rings which are fully
separated at all angles ϕp, i.e., no supercontinuum is formed.
In contrast, the counter-rotating configuration (case III, right
column of the same figure) leads to a completely different
pattern, in which case multiarm spiral-like structures, sim-
ilar to what was predicted in, e.g., Refs. [1,4], dominate
the probability distribution and no concentric rings can be
distinguished.
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FIG. 4. Magnitude (upper row) and phase (lower row) of the probability amplitude A(p) calculated from the SFA formalism [Eq. (10)]
in the px py plane (pz = 0). While the left column corresponds to case I, the middle and right columns correspond to case II and case III,
respectively [see Fig. (2)]. The magnitude of probability amplitudes is raised to the power ν = 0.5 in order to better display details of the
vortex structures and nodal lines.

A. Phase and magnitude of the probability amplitude

It follows from Sec. II that the probability amplitude van-
ishes at the photoelectron momenta that correspond to either
vortices or nodes. To distinguish between them, it is necessary
to analyze the behavior of the amplitude’s phase in the vicinity
of those points. If the phase varies continuously between 0 and
an integer multiple of 2π by following a closed path around
the zero of A(p), we have a vortex. In contrast, if the phase
remains approximately constant or jumps by π , we have a
zero-strength vortex. Hence, in order to determine whether
or not vortices are formed during photodetachment, we an-
alyze separately the phase, SA(p) = arg [A(p)] mod 2π , and
magnitude, |A(p)|, of the probability amplitude in the SFA
[Eq. (10)]. This is shown in Fig. 4 for case I (left column), case
II (middle column), and case III (right column). For the sake
of comparison, in Fig. 5 we show the same but obtained from
the numerical solution of the TDSE. By comparing Figs. 4
and 5 we see that the strong-field approximation gives similar
results as compared to those of TDSE; however, there are
some differences. The main difference between those two
figures is for case III (right columns) at low photoelectron
momenta (−0.05αmec < px < 0 and py ≈ 0). While the SFA
predicts there the formation of two separated nodal surfaces,
the TDSE shows that both of them merge or approach each
other very closely. Nevertheless, no vortices are formed (see
the lower-right panel of Fig. 5). The magnitude and phase of
the probability amplitude obtained from both treatments are
very similar in the remaining regions of momentum space,
except of case I (upper-left and lower-left panels of the same

figures). The SFA locates a local minimum (but not a node) on
the right-hand side of the plots; however, the TDSE identifies
there a vortex-antivortex pair. This will be analyzed below.

First, we consider case I calculated by solving numerically
the TDSE (left column of Fig. 5). It seems that the probability
amplitude vanishes at six different points for the momentum
range considered here (|p|/αmec < 0.1). One pair of them,
located at px < 0 is rather difficult to resolve. The interpreta-
tion of such a structure as either two separate vortices or as
a single broad local minimum (both shown in Fig. 1) is not
possible. This is due to the lower resolution of the TDSE (as
compared to SFA) and the inherent computational difficulties
while solving it. However, the remaining four points of van-
ishing probability are well resolved and, from the amplitude’s
phase, one can recognize that these are vortices. In particular,
at the right portion of the plots we observe the formation
of a vortex-antivortex pair located close to each other. This
corresponds to the situation illustrated by the red curve in
Fig. 1.

When the SFA is used for case I (left column of Fig. 4),
the low-energy structure (px < 0) can be better resolved than
in Fig. 5. This time, we observe the formation of two well-
defined vortices with topological charges m = 1. In contrast
to the TDSE, the rightmost vortex-antivortex pair appears
here as a single local minimum, which corresponds to the
blue curve in Fig. 1. This, in turn means that, while the SFA
predicts a vortex curve which approaches closely the px py

plane and turns around before crossing it, the TDSE predicts
that such curve comes back shortly after traversing that plane.
For this reason, two vortices with opposite winding numbers
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FIG. 5. The same as those in Fig. 4 but calculated from the numerical solution of the TDSE.

are observed in the TDSE instead of one local minimum as in
the SFA.

For a driving field consisting of two corotating pulses (case
II), the same vortices and points of small probability as in
case I are observed. This is true for both SFA and TDSE
by comparing the left and middle panels of Figs. 4 and 5
independently. However, in each case an additional nodal ring
appears. The concentric rings are nonvortex nodal curves as,
by crossing them, the phase of A(p) changes abruptly by π .
This indicates that vortex structures in the probability ampli-
tude of detachment are created by a single pulse. The train
of identical pulses does not affect the vortex pattern, but only
adds extra nonvortex nodal lines into the distribution.

Finally, the counter-rotating configuration (case III) leads
to spiral-like nonvortex curves, as shown in the right columns
of Figs. 4 and 5. Hence, we stress that helixlike structures in
the probability distribution of photoelectrons are not related
to vortices.

In summary, after analyzing the phase and magnitude of the
probability amplitude of photodetachment in the given plane
of momentum space, we conclude that single and double coro-
tating laser pulses lead to the generation of vortex structures in
photodetachment with topological charges m = ±1. However,
two counter-rotating pulses create spiral-like structures which
do not have vortex character. This will be further analyzed in
the next section.

B. Topological charge in photodetachment

In Sec. III A, we have defined the circulation and the topo-
logical charge of photoelectrons in the momentum space. Here
we shall relate to those concepts. As we have shown above,
both SFA and TDSE lead to similar probability amplitudes

(phase and magnitude), for the laser parameters considered in
this paper. Thus in the following we shall present the results
from the SFA only.

In the lower row of Fig. 6, we plot prv‖(pr, ϕ) [Eq. (22)]
as a function of the azimuthal angle ϕ (pr has been fixed to
0.2αmec in each panel). In the upper row, we show the wind-
ing numbers m(pr ) calculated from (21) for different closed
paths, as defined by the parametrization (20). Our results
are shown for case I (left column), case II (middle column),
and case III (right column). The main conclusions from this
figure stem from the behavior of the topological charges; it
can be seen that, for a single pulse and for two pulses with
corotating polarizations (cases I and II, respectively), m(pr )
acquires integer values while forming a staircase structure
as a function of pr . The increments in the winding number
happen when the integration contour encircles new vortex
points [22]. However, a close inspection of the topological
charges reveals points with noninteger values. This anomaly
appears when the path K goes across (or passes very close
to) a vortex structure; as the probability amplitude vanishes
there, both v(p) [Eq. (18)] and the line integral are not ac-
curately evaluated which, in turn, creates numerical errors in
the determination of m(pr ) [Eq. (21)]. For pr > 0.1αmec, we
observe the systematic increase of m(pr ) by 1. This is due to
the fact that for such momenta the vortices are located only on
the negative px axis, where even for a single pulse the strong
diffraction-interference pattern is detected.

Let us go back to case III. From the upper-right panel of
Fig. 6, we see that m(pr ) is always zero. This means that no
vortices are enclosed by the circular path K , independently of
its radius pr . Furthermore, the quantity prv‖(pr, ϕ) shown in
the lower-right panel of Fig. 6 behaves similarly to a negative
sinusoidal function of ϕ (pr constant). Hence, its integral
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FIG. 6. Topological charge m(pr ) [Eq. (21)] as a function of pr (upper row) and the quantity prv‖(pr, ϕ) [Eq. (22)] as a function of ϕ

(lower row). We use the system of coordinates defined in Eq. (20). Our results are shown for case I (left column), case II (middle column), and
case III (right column).

from 0 to 2π vanishes, leading to null topological charges.
This is not the case for photodetachment driven by single or
corotating pulses (see the lower-left and lower-middle panels
of Fig. 6). This confirms that the spiral-like patterns in the
probability distribution are not necessarily related to vortices.
Furthermore, by comparing the upper-left and upper-middle
panels of Fig. 6, we see that the number of vortices, their
position, and topological charges are already defined by the
single pulse. Hence, the second corotating pulse does not
affect the vortex structures.

In Fig. 7, we compare the topological charges calculated
based on the SFA and TDSE for case I. There are some differ-
ences between both calculations in the low-energy region of
the figure (see the red and blue lines). The differences among
them is caused by a difference in the positions of vortices.
On the other hand, the results from two methods completely
coincide in the high-energy region. In the following, we give
a simple theory to predict the positions of the staircase in
that region. If an electron absorbs m photons of energy h̄ωL,

its kinetic energy becomes p2
r

2me
= mωL − Up + E0, where Up

is the maximum temporal ponderomotive energy. Its helicity
is m. The winding number calculated for a contour of fixed
radius pr also equals m. The step position corresponds to a
destructive interference which is observed between two mul-
tiphoton peaks. For simplicity, we take the midpoint between
two peaks, which results in

m∗ =
p2

r
2me

− Up + E0

ωL
− 0.5. (28)

In Fig. 7, we see that this simple estimate works very well in
the high-energy area [the green line corresponds to Eq. (28)],
although it may not be a perfect multiphoton case. In this way,
we can also understand why the winding number for case
III equals zero: when there is a pair of identical pulses with
counter-rotating circular polarization, the electron may absorb
a photon with helicity +1 and −1.

To summarize, we have presented an example of the pho-
toelectron momentum distribution of the spiral-type behavior
that does not exhibit a quantum vortex structure. This finding

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
-2

0
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4

6

8

10

12
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TDSE
theory

FIG. 7. Topological charges m(pr ) calculated as a function of
momentum pr [Eq. (21)] from SFA (solid blue line) and TDSE (solid
red line). The results concern case I, when a circularly polarized
laser pulse interacts with a H− anion. The green curve represents
the prediction of Eq. (28).
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FIG. 8. Magnitude (upper row) and phase (lower row) of the probability amplitude A(p) calculated from the SFA formalism [Eq. (10)]
in the px py plane (pz = 0). While the left column corresponds to case I (I = 2.5 × 1011 W/cm2), the middle and right columns correspond
to case IV (I = 1 × 1011 W/cm2) and case V (I = 1 × 1012 W/cm2), respectively. The magnitude of probability amplitudes is raised to the
power ν = 0.5 in order to better display details of the vortex structures.

is not necessarily universal, but indicates that the notions of
spiral and vortex are not equivalent. Moreover, the lack of
helix patterns does not mean the absence of vortex structures
in the distribution.

V. DEPENDENCE ON THE PULSE INTENSITY

So far, we have analyzed the magnitude and phase of
the probability amplitude of photodetachment obtained from
both SFA and TDSE methods at the fixed pulse intensity,
I = 2.5 × 1011 W/cm2. The purpose of this section is to
demonstrate how the intensity of the driving pulse affects the
vortex structures analyzed in this paper. As has been seen,
the results of TDSE are similar to those of SFA. Therefore, we
only consider the SFA results in this section. For the purpose
of demonstration, we only focus on case I with varied pulse
intensities. Namely, we consider case IV with a lower inten-
sity, I = 1 × 1011 W/cm2, and case V with a higher intensity,
I = 1 × 1012 W/cm2. All other pulse parameters are the same
as those in case I. In Fig. 8, we compare the magnitude and
phase of the probability amplitude in cases I, IV, and V.

First, we consider the magnitude of probability distribu-
tions shown in Fig. 8. One can find that the ring with the
highest amplitude moves outward with the increase of the
pulse intensity. This is simply because the vector potential
increases with increasing the intensity. On the other hand,
the right parts of the rings merge together when the intensity
increases. It can be understood through the so-called Keldysh
parameter [12] γ = √|E0|/2Up, where Up = e2E2

0 /(4meω
2
L)

is the maximum ponderomotive energy of the electron in the

laser field and ωL = Noscω is the laser carrier frequency. The
higher intensity means a smaller Keldysh parameter, which
implies that the detachment process is closer to the picture
of tunneling [29]. The Keldysh parameter in cases I, IV, and
V is about 1.6, 1, and 0.5, respectively. Although case V is
not a perfect tunneling case, we still cannot distinguish the
multiphoton peaks on the right side of the rings.

Then, we analyze vortex structures for these three cases.
First, we compare the low photoelectron momenta regimes
of case I and case IV. We observe that two close vortices on
the left with the topological charge m = 1 shown in Fig. 4
get closer, and almost emerge into a new vortex with the
topological charge m = 2 in case IV. On the right, two vor-
tices disappear and the node changes into a vortex with the
topological charge m = 1 in case IV. By comparing the low
photoelectron momentum regimes of case I and case V, we
can find that there are many new vortex structures emerging on
the right in case V. But in both cases IV and V, the vortices in
the high photoelectron momentum regime remain unchanged.
They are always located on the negative ex axis.

From the above observation, we can see that the pulse
intensity does not only affect the shape and magnitude of the
momentum spectra, but also dramatically changes the gener-
ation and annihilation of vortex structures in the momentum
space.

VI. CONCLUSIONS

We have analyzed the formation of vortices in photode-
tachment of H− by circularly polarized laser pulses. Three
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different cases have been considered: when the negative ion
interacts with either a single pulse or pairs of identical pulses
with corotating and counter-rotating circular polarizations. As
we have shown, the single and corotating configurations lead
to the formation of multiple vortices. This is in contrast to
the case of two counter-rotating laser pulses. In this case,
we have observed the spiral-like structures in the probabil-
ity distribution of photoelectrons that cannot be associated
with nonvanishing topological charge vortices. This statement
was confirmed by calculating the topological charges m(pr ),
which are identically zero in the counter-rotating configura-
tion.

In closing, we would like to emphasize a distinction
between the following concepts: spiral patterns in the momen-
tum space, electron vortex states (EVSs), and vortex structures
in the momentum space. While helical patterns are frequently
related to vortices, we have illustrated that no topological
charge can be ascribed to them. On the other hand, EVSs, as
studied for instance in Refs. [15–17] and in the review articles
[19,20], do carry an intrinsic nonvanishing orbital-angular
momentum (m �= 0). While the probability current density

of EVSs will swirl around the propagation direction of an
electron, it will appear as a ringlike structure in momentum
space. On contrary, the vortex structures discussed in this
paper are local structures in the momentum space. Irrespec-
tively of the definition of the current, in both EVS and local
vortex cases, the same quantization conditions involving the
current are satisfied with integer topological charge m. This
is a fundamental property fulfilled by any quantum vortex, as
already indicated by Dirac in [22].
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