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We aim to create deterministic collisions between orbiting bodies by applying a time-dependent external force
to one or both bodies, whether the bodies are mutually repulsive, as in the two- or multielectron atomic case, or
mutually attractive, as in the planetary-orbit case. Specifically, we have devised a mathematical framework for
causing deterministic collisions by launching an inner orbiting body to a higher energy such that this inner body
is guaranteed to collide with the outer body. Our method first expresses the problem mathematically as coupled
nonlinear differential equations with a time-dependent driving force and solves to find a feasible solution for the
force function. Although our calculation is based strictly on classical physics, our approach is suitable for the
case of helium with two highly excited electrons and is also valid for creating collisions in the gravitational case,
such as for our solar system.
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I. INTRODUCTION

Collisions between orbiting bodies is a fascinating topic,
whether for orbiting bodies that are mutually attractive or
mutually repulsive or neither. In the attractive case, fascinating
studies of collisions include predicting planetary collisions
[1], or even controversially conjecturing that worlds have
collided [2], to launching a spacecraft to reach, and hence col-
lide with, another planet [3]. In the repulsive case, controlled
electron-electron collisions are important for precise analysis
of electronic structure, high-harmonic generation (HHG) [4],
attosecond-pulse generation via HHG, above-threshold ion-
ization [5,6], and attosecond clocking [4,7]. Controlling these
processes via laser driving fields has been of huge interest for
over a decade [8]. Here we develop a mathematical framework
for controlling the trajectories of orbiting bodies by using an
external force on one or both bodies in order to create a deter-
ministic collision between them. The mathematical equations
we develop apply whether the bodies are mutually attractive,
mutually repulsive, or neither and we show that constrained
optimization techniques suffice to obtain the trajectory in
each case. Although our analysis is classical, our technique
should be accurate for highly excited two-electron atoms [9]
and could inspire quantum-control techniques building on our
classical analysis.

Our mathematical model for controlling the trajectory of
the body is inspired by existing techniques for controlling
moving bodies. Various techniques are suggested for bodies
in a gravitational field such as thrust or expending rocket
fuel during interplanetary transport [10] or remote laser-driven
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action on the sails of gossamer spacecraft [11]. For elec-
trons in atoms, control is much better developed, such as
electromagnetic pulses applied to atomic systems [12,13].
Mathematically, we express the equation of motion, accompa-
nied by an external time-dependent force, and treat the system
as being nonrelativistic with an inverse-square-law force. For
the atomic system, this potential is the unscreened Coulomb
force and, for the gravitational case, this model represents the
standard Newtonian gravitational system. Mutual repulsion
between two bodies in the electron case, mutual attraction
between two orbiting bodies applies to the gravitational case,
and the former does not involve hard collisions, so we address
here the definition of collision so that the same term applies in
both cases.

The chief elements of our study of controlled collisions
have been explored but never in the unified way that we
present here, namely controlled collisions between two or-
biting bodies that are mutually repulsive or attractive as
in the electromagnetic and gravitational cases. In the elec-
tromagnetic case, electron-electron collisions are studied
experimentally [14,15]. Theoretically, the pulse sequences are
designed to study the electron-electron collisions [7,16,17].
In the solar system, the slingshot effect (binary collision), or
gravity assist, is used by spacecraft including Galileo, Cassini,
Dawn, and Voyager to reach their target [18]. The binary elas-
tic collision (slingshot effect) is used to calculate spacecraft
trajectories between two planets [19].

We propose a general framework for the two-body system
in which the external force is applied on one or both bodies
to create a collision, and we make the notion of collision
clear and consistent for repulsive and attractive forces. In the
atomic case, we consider a highly excited helium Rydberg
atom whose two electrons are in two different highly excited
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states [9]. This highly excited property allows the electron
trajectories to be treated as planetary atoms [20,21], which
follow closely classical trajectories so our classical analysis
should be asymptotically valid and helpful to construct quan-
tum solutions later. In the planetary system, electromagnetic
thrust forces could send spacecraft through the solar system
and beyond [22]. Perhaps our solution could help someday
with launching a spacecraft from Earth that will collide with
a menacing asteroid.

The outline of our work is as follows. In Sec. II, we provide
pertinent background on inverse-square-law dynamics of the
two-body system. Subsequently, Sec. III introduces our model
and our approach for solving the mathematics to create and
verify control collisions in the attractive and repulsive case,
respectively. We present our results in Sec. IV and discuss
these results in Sec. V. Finally, in Sec. VI we present our
conclusions.

II. BACKGROUND

We briefly summarize salient points concerning the back-
ground of the two-body system orbiting in a central potential
and we consider three different cases, i.e., repulsive, attractive,
and noninteracting (neutral) orbiting bodies. Our focus is on
the case that the two orbiting bodies do not share the same
orbit, and we refer to the body with the lower energy orbit
as the lower orbiting body. We describe two-body collisions
when an external force is applied to one (lower) or both
orbiting bodies.

A. Two orbiting bodies in a central potential

In this subsection, we describe the system comprising two
bodies orbiting in a central potential. Mathematically, we de-
scribe a unified representation of the repulsive and attractive
two orbiting bodies. We introduce the mathematical symbols
and their meaning and the equations governing their dynam-
ics.

Now we are describing the system and introducing the
symbols labeling coordinates and other quantities for the two-
body system. The two bodies in a central potential are located
at the coordinates {rı (t )} for t being the time and ı = 1 for
the first (inner) body and ı = 2 for the second (outer) body.
These coordinates are established relative to an arbitrary ori-
gin 0. Our focus is on the planar case so we reduce from
three-dimensional to two-dimensional Euclidean space. In the
electrodynamics case, these two bodies have charges Ze with
e for the nucleus with atomic number Z . In the gravitational
case, the two bodies orbiting around the central body with
mass M have masses mı . As we consider electrodynamics
and gravitational cases in one framework, we denote charges
and masses in a unified way by using symbols V equal to
Ze for the electrodynamics case, M in the gravitational case,
�ı equal to e for the electrodynamics case, and mı for the
gravitational case.

Two-body momenta are denoted pı with total kinetic and
total potential energy being

T =
2∑

ı=1

p2
ı

2mı

, U = −K
2∑

ı=1

V �ı

rı

+ K ′ �1�2

r12
, (1)

respectively, where

pı := |pı |, rı := |rı |, r12 := r1 − r2, r12 := |r12|, (2)

and K ′ = K for the repulsive case, K ′ = −K for the attractive
case, and K ′ = 0 for the case of noninteracting orbiting bod-
ies. In all these cases both bodies are attractive to the center
regardless of how they interact with each other. Dynamics
for this system is described by the (free) Lagrangian L0 =
T − U . Here K are the proportionality constants: K = G =
6.674 × 10−11 m3kg−1s−2 for the attractive case of gravitation
and K = 8.987 × 109 N m2 C−2 for the repulsive case of two
equally charged bodies in the electromagnetic case.

We solve the Lagrangian to obtain the equation of motion
for both orbiting bodies. The acceleration vector for each of
the two bodies is

r̈ı := d2rı

dt2
= −KV

�ı

mır3
ı

rı + K ′ �1�2

mır3
12

r12 (3)

for the ıth body. We have provided the relevant background
for two orbiting bodies in a central potential. Specifically, we
have described a general mathematical approach for the two
orbiting bodies that represent both repulsive and attractive
systems. This unified description of the two orbiting bodies
can be used for studying the limiting case of neutral systems,
i.e., two mutually noninteracting orbiting bodies. Now we
have equations of motion in the absence of external forces.

B. External forces

In this subsection, we discuss external forces applied to the
two-body system in a central potential. We provide theoretical
and experimental background when the external forces are
applied to the repulsive or attractive and noninteracting two
bodies orbiting in a central potential. We present a mathemat-
ical description of the external force applied to one or both
orbiting bodies.

Examples of the external forces applied to two orbiting
bodies that are mutually repulsive have been explored for
argon and helium atoms, specifically in the case of ionization.
In this case, the external forces are laser pulses. Theoretically,
linearly [16], circularly [23], and elliptically [12] polarized
laser pulses are used to study ionization processes in argon:
classical equations of motion are employed with averaging
over a large ensemble of pairs of electrons in these cases.
Elliptically polarized [24] laser pulses are used in a helium
atom to study the ionization process. Experimentally, ellip-
tically polarized pulses are applied to study the strong field
ionization of argon [25].

We provide examples of the case of two mutually attractive
bodies in a central attractive potential subject to an external
force. In the planetary system, electromagnetic thrust force
has been widely discussed for decades [26], used to make
interstellar flight possible and to propel the spacecraft with
10% of light speed [22]. However, experimental progress
either in the laboratory or in the space environment is slow
compared with theoretical progress [27]. Recently, a photon
thruster capable of amplifying the thrust was successfully
used during the laboratory settings [28,29], and a successful
space implementation of solar sail was achieved.
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FIG. 1. Sine-squared shape of the external force [F(t ) in a.u.] is
plotted vs number of cycles N for the x̂ (red solid line) and ŷ (blue
dash-dot line) components of the field, respectively.

We introduce the mathematical description of an exter-
nal force and the shape of its envelope function applied
to repulsive, attractive, and noninteracting orbiting bodies.
Mathematically, such an external force is [24]

F(t ) := F0 f (t )[cos (ω0t )x̂ + ε sin (ω0t )ŷ] (4)

in general form, for F0 the field amplitude coefficient, ω0 the
angular frequency of this field, ε the field ellipticity, and f (t )
the temporal envelope function. The envelope function f (t )
changes slowly on the T0 := 2π/ω0 time scale but is quite
free in form otherwise. We have ignored spatial dependence
in Eq. (4); of course any applied force has spatial variation,
but we focus on two extreme cases, namely identical force
applied to both orbiting bodies and the force applied only to
one body and not to the other.

We provide some examples of the pulse shape that is
widely used in repulsive orbiting bodies. Commonly used
pulse shapes include trapezoidal used in nonsequential double
ionization of He [30], Gaussian in sequential double ioniza-
tion of Ar [12], and sine squared in nonsequential double
ionization of Ar [16], represented as

f (t ) = sin2
(ω0t

2N

)
(5)

for N the number of cycles. Figure 1 shows this sine-squared
shape external force. In the next section, we describe the
effects of this external force on the orbiting bodies.

C. Creating collisions

In this subsection, we discuss two-body collisions in mutu-
ally repulsive, mutually attractive, and noninteracting orbiting
bodies in a central potential. Theoretical and experimental
background are introduced for the case that external forces
create a collision between mutually repulsive or mutually
attractive orbiting bodies.

Now we explain the two-body collisions orbiting in a cen-
tral potential. Collisions are significant scattering events that
correspond to a large change of trajectory in a short time.
Deflection is the change of the body’s velocity as a result
of collision. Rutherford scattering [31] is a special case of
repulsive forces between bodies.

We provide examples of the two-body collisions in mu-
tually repulsive and mutually attractive bodies orbiting in a
central potential. In a mutually repulsive two-body system,
the electron-electron collision is responsible for He+2 ion
studied experimentally [14,15] and theoretically [16,17] in
the nonsequential double ionization process of the two-body
atomic system. The geometric parametrization method has
been introduced to study the two elastic collisions of planetary
bodies [32]. In a planetary system, the collision of two plane-
tary bodies is used by various spacecraft to reach their target
[18] and to calculate the trajectories of spacecraft between two
planets [19].

One excellent approach to launching orbiting bodies is
to exploit the slingshot, or gravity assist, method [33]. The
gravity-assist maneuver exploits relative motion between the
body being launched and another body that increases or de-
creases the speed of the body being launched and/or guides
its direction. Multiple gravity assist has proven to be valuable
by saving propellant, time, and expense [18]. For example,
the Galileo spacecraft used gravity assist provided by Venus
plus two assists from Earth to reach its destination of Jupiter
[34]. Similarly, Cassini, Voyager 1, and Voyager 2 have used
multiple gravity-assist maneuvers to help them reach their
destination.

We summarize the background on existing methods to de-
termine whether a collision has taken place. In one case, this
assessment is performed by comparing the velocity of the two
orbiting bodies before and after the collision. The event-drive
simulation approach is used in the case of spherical bodies
collision to connect the velocity of the bodies before and after
collisions [35]. Another approach is to follow the trajectories
of the colliding bodies by solving their equation of motion
[36].

In this section, we discussed concepts, mathematics, and
methods that describe orbiting bodies, external forces, and
strong scattering events. In the next section, we proceed to de-
scribe our approach to solving forced deterministic collisions
between nonrelativistic orbiting bodies in a central potential.

III. APPROACH

In this section, we present our approach to explain the
two-body system for repulsive, attractive, and noninteracting
two orbiting bodies. We describe our model, its mathematical
representation, and our methods to solve numerically this two-
body system orbiting in a central potential, which is subject to
external forces. To validate our results, we confirm conserva-
tion of energy and momentum numerically.

A. Model

In this subsection, we introduce our model of the two-body
system orbiting in a central potential for three different cases,
i.e., repulsive, attractive, and noninteracting orbiting bodies.
We define a collision in such a way that the same term applies
in each case.

First we describe our model of two orbiting bodies in the
absence of an external force. By assuming spherical orbiting
bodies, we neglect multipolar terms. As we treat bound or-
biting bodies, at least prior to the controlled collision, only

043113-3



AKHTAR MUNIR AND BARRY C. SANDERS PHYSICAL REVIEW A 102, 043113 (2020)

elliptical orbits are treated as initial conditions. For simplicity,
we treat the case that the two orbiting bodies are corotating,
coplanar, and concentric orbits with different eccentricities.
The two bodies orbit a central potential nonrelativistically,
and we specifically focus on the simple case of the inverse
square-law force, which is readily generalizable. We prefer
the Lagrangian approach because constraints are easier to
accommodate than for the Hamiltonian.

We consider two bodies orbiting in a central potential in the
presence of an external force. In general, forces acting on the
two orbiting bodies can be independent and moreover vary in
time and in space. We consider two extreme cases pertinent
to the examples we consider: creating controlled collisions
between two highly excited electrons in a heliumlike atom
and creating controlled collisions between planetary bodies
orbiting in a gravitational field. In the former case, the force
would be an electromagnetic field with a carrier wavelength,
constrained by near-resonance conditions with orbiting fre-
quencies, that far exceeds the size of the atom. Thus the
driving force is treated as identical for both electrons and
constant in space. For the gravitational case, we consider a
thrust mechanism attached to the orbiting body, in which case
the force is time dependent but spatially independent and acts
only on the inner body and not the outer body. In the electronic
case, magnetic interactions are regarded as negligible in the
case of the electromagnetic field.

Now we discuss how to choose the shape of the external
force function. Based on numerical analysis of alternative
external force function for an elliptical orbit, the sine-squared
force emerged as the best [37]. We thus adopt this sine-
squared force function as well following this positive result.

Here we explicitly define what we mean by collision. The
concept of a collision is introduced when the lower orbiting
body, subject to external force collides with the higher orbiting
body. We define a collision in such a way that the same
term applies to both the atomic (electron-electron collision)
and planetary system (Earth-Mars collision). To define the
collision, the symbols E and τ represent the energy and time
period of the lower orbiting body, respectively.

Now we discuss a model of two orbiting bodies that are
mutually repulsive. Specifically, in the repulsive case, we
treat the helium atom as the representative two-body atomic
system. The classical decay of the orbits is neglected because
the duration of the laser field is faster than the time of decay.
Although Rydberg states were introduced for hydrogen, the
Rydberg states for high principal quantum number orbits in
two-electron atoms are analyzed [9]. In particular, we consider
two sets of high Rydberg states having principal quantum
numbers (ni = 20, nf = 30) and (ni = 100, nf = 110). In
these cases the orbiting bodies are attracted to the central body
and repel each other.

Now we explain how the precision of our classical descrip-
tion is expected to scale with principle quantum number n
by using underlying principles of the Bohr atom; the scaling
rules we obtain here provide a guide for how accurate the
classical model is, but of course a full quantum mechanical
treatment is needed to achieve highly accurate predictions
and well designed control sequences. Consider an electron
in a highly excited orbital represented by n. In atomic units,
we consider that the Bohr radius is n2 and the momentum

(which is the same as velocity in atomic units) is 1/n. We
describe the dependences of both position and momentum
variances on principle quantum number n. If we fix position
uncertainty to be n3/2 and fix the momentum uncertainty to
be n−3/2, the localized electron’s position and momentum
satisfy the Heisenberg uncertainty product relation that is
in a minimum-uncertainty state. Furthermore, the fractional
uncertainty of position is n3/2/n2 = 1/

√
n and, similarly, the

fractional uncertainty of momentum is n−3/2/(1/n) = 1/
√

n.
Thus the position and momentum uncertainties are the same.
For n = 100, the uncertainty, hence error, is about 10% and
the classical description thus has an accuracy that improves
with the square root of the principle quantum number. A
semiclassical description, perhaps using Perelomov coherent
states, could possibly provide a perturbation-based correction
method to offset this error.

We consider a model of mutually attractive and noninter-
acting two orbiting bodies. In the attractive interacting and
noninteracting cases, we consider planetary systems (Earth
and Mars) orbiting the Sun. In the attractive interacting case,
the orbiting bodies have attractive interaction with a central
body and with each other, whereas in the noninteracting case
we only consider attractive interaction of the orbiting bodies
with the central body and neglect any other interaction be-
tween the orbiting bodies.

We validate our model by checking that energy and
momentum are conserved before and after the collision.
Specifically, we consider two orbiting bodies, each with en-
ergy and momentum at the initial time t = 0, and we confirm
that, within a reasonable error tolerance, the resultant total
energy and momentum for the two bodies, which might or
might not still be in orbit after the collision, satisfy the con-
servation law at the final time t ′. As the collision is brought
about by an external force, and this external force itself has
energy and momentum, we include this external energy and
external momentum in the calculation.

B. Mathematics

In this subsection, we present the mathematics for a two-
body system orbiting in a central potential for an external
force applied on one or both bodies. To validate our results,
we check that energy and momentum are approximately con-
served before and after the collision.

We present a mathematical description of the two-body
system for an external force applied to one (lower) or both
orbiting bodies. The total two-orbiting-body Lagrangian is

L = L0 +
2∑

ı=1

rı · F ı (t ), (6)

with L0 the time-independent free (or “drift,” in the language
of control theory [38]) term and F ı (t ) the time-dependent
control force (4) acting on the ıth body. For the force act-
ing only on the lower body, we impose F2(t ) ≡ 0 and, for
the case that identical forces act on both bodies, we impose
F1(t ) ≡ F2(t ) ≡ F(t ). Motion occurs in a two-dimensional
plane with coordinates x and y and we employ unit Cartesian
coordinates x̂ and ŷ.
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Now we describe how the Lagrangian Eq. (6) is solved
by using the Euler-Lagrange equation of motion when the
external force is either coupled to the lower orbiting body or
else coupled to both bodies for the case of identical forces
applied to both. In the case that the force is applied only to
the lower body, we obtain coupled second-order differential
equations of motion, as

r̈1 = −K
V �1

m�1 r3
1

r1 + K ′ �1�2

m�1 r3
12

r12 − 1

m�1

F(t ) (7)

and

r̈2 = −K
V �2

m�2 r3
2

r2 + K ′ �1�2

m�2 r3
12

r12. (8)

Similarly, we can solve the Lagrangian (6) for the case
that an external force is coupled to both orbiting bodies. In
this case, we obtain the second-order differential equations of
motion, as

r̈1 = −K
V �1

m�1 r3
1

r1 + K ′ �1�2

m�1 r3
12

r12 − 1

m�1

F(t ) (9)

and

r̈2 = −K
V �2

m�2 r3
2

r2 + K ′ �1�2

m�2 r3
12

r12 − 1

m�2

F(t ). (10)

These equations of motion (7)–(10) apply to both cases of
repulsive and attractive forces, which extend standard de-
scriptions of classical motion by incorporating force terms
manifested as laser driving fields in the atomic case and as
thrust terms in the gravitational case.

These equations of motion for the two orbiting bodies
account for collisions when the two bodies coincide. We
formalize the definition of collision as follows, accounting
for near (quantified by small parameter ε) impact rather than
direct impact in the case of repulsive interaction.

Definition 1. For some ε ∈ (0, 1), a collision of a body
with energy E over duration τ is a fractional energy change
δE
E during fractional time δτ

τ
such that δE

E < ε and δτ
τ

> ε.
Remark 1. For an orbiting body, the fractional time is with

respect to period τ .
The fractional energy change of an orbiting body δE

E for
E is the instantaneous energy of the body at time t . The
fractional time scale of the collision is δτ

τ
for τ the period of

the orbit.
Now we describe how we validate our calculations by

checking that conservation of energy and momentum before
and after the collision holds. At the initial time (t = 0) and the
final time (t = t ′), the total two-body energy is

∑2
j=1 Ej (t ) for

Ej the energy of the j th body. For the j th body, its position rj

and velocity ṙj are specified; the corresponding total energy is

Ej = p2
j

2mj

− K
V �j

rj

+ K ′ �1�2

r12
(11)

at any time t . The total energy gain by application of the
external force (4) is

Eext =
∫ t ′

0
dt ṙ · F(t ). (12)

Mathematically, the fractional error in energy fe(E ) for the
pair of orbiting bodies is

fe(E ) =
∣∣∣∣Efinal − Einitial

Efinal + Einitial

∣∣∣∣, (13)

where

Efinal =
2∑

j=1

Ej (t ′), Einitial =
2∑

j=1

Ej (t = 0) + Eext. (14)

This quantity shows the error because energy is conserved so
a nonzero value constitutes an error. Here we are comparing
before vs after the collision but this relation is valid for any
comparison of before and after any event.

Similarly, we test conservation of vector momentum for
collision between the two bodies with

pj = m�j
ṙj , (15)

the momentum vector of the j th body. The total momentum
gain, due to application of the external force, is

pext =
∫ t ′

0
dt F(t ). (16)

The fractional error for momentum is

fe(p) =
∣∣∣∣ pfinal − pinitial

pfinal + pinitial

∣∣∣∣, (17)

where

pfinal =
2∑

j=1

pj (t ′), pinitial =
2∑

j=1

pj (t = 0) + pext, (18)

with this quantity representing the fractional error because
momentum should be conserved.

C. Methods

Now we describe our method to solve acceleration (7) and
(8) for three different cases, i.e., repulsive, attractive, and
noninteracting two orbiting bodies. We solve acceleration (9)
and (10) for an external force acting on both orbiting bodies.
We explain our numerical method for solving the problem
for each case, and we explain how we validate our results
by applying other numerical methods to check consistency.
Furthermore, we check that energy and momentum are ap-
proximately conserved for before and after the collision.

Now we explain our primary numerical technique for solv-
ing the acceleration equations, and then we explain the other
numerical techniques that we use to validate by confirming
that the same answers are obtained. As we are solving a
pair of coupled second-order differential equations over two-
dimensional vector quantities, we opt to use the well tested
and reliable Runge-Kutta (4,5) method [39]. For this tech-
nique, we first convert our second-order differential equations
into equivalent first-order equations. Then we use the initial
values, namely, positions and velocities of the two bodies,
as inputs to solve these equations for our two cases of a
two-electron atomic system [40] and for a planetary system
[41].

The numerical Runge-Kutta (4,5) method simultaneously
solves the equations of motion with local orders of both 4
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and 5 using two Runge-Kutta procedures [42]. We opt for
the Runge-Kutta (4,5) method as this method works for the
following criteria: the differential equations have smooth so-
lutions and high accuracy is needed. The Runge-Kutta (4,5)
method is built into MATLAB®, and we use temporal dis-
cretization to obtain a feasible solution.

We use three other numerical methods to validate our
results. Our first alternative is the explicit Runge-Kutta
(2,3) method [43]. Our second validation technique uses
the variable-step, variable-order Adams-Bashforth-Moulton
PECE solver [44]. Our final validation technique employs
Gear’s Method [45]. We use the same discretization time in all
four cases to compare the results for these numerical methods.

Now we explain our method for calculating and validating
approximate conservation of energy and momentum for the
two-body colliding system. Given initial position and velocity
we solve Eqs. (11) and (15) to calculate the initial energy
and momentum of the two orbiting bodies. Then we calculate
the external force function (4) and thence the external energy
(12) and momentum (16) applied to the inner orbiting body.
Subsequently, we compute the final energy and momentum by
solving the positions and velocities of the two orbiting bodies
at the final time t ′.

Based on initial and final momentum and energy, we check
whether the conservation laws have been fully respected by
our numerical calculations. The fractional error in energy
(13) and in momentum (17) is calculated by each numerical
method. The validation holds if these four numerical results
provide sufficient convergence.

In conclusion, we have introduced our model, mathemat-
ics, and method for solving a two-body system orbiting in a
central potential by considering three cases, namely, repulsive,
attractive, and noninteracting orbiting bodies. Our Methods
subsection makes clear that the equations are solved in the
same way regardless of which of these three cases applies.
In the next section, we present the results for the repulsive,
attractive, and noninteracting two orbiting bodies which are
subject to external forces.

IV. RESULTS

In this section, we present results for our three cases,
namely, repulsive, attractive, and noninteracting two orbit-
ing bodies. We present these results for specific examples,
namely, the helium atom for the repulsive case and Earth and
Mars for attractive and noninteracting cases. Causing Earth
to collide with Mars is an unlikely, and also undesirable, sce-
nario, but this example allows us to illustrate this controlled
collision in the context of broadly understood parameters. We
validate our results by calculating conservation of energy and
momentum.

A. Repulsive interaction: Collision between bound
electrons in an atom

In this subsection, we present the results for two re-
pulsively interacting orbiting bodies (electrons). The two
orbiting electrons interact attractively with the central body
(nucleus) and interact repulsively with one another. Controlled
collisions between electrons are created by applying a time-

dependent external force (electromagnetic field) and we depict
the results for two cases: with and without the external force
acting on the second electron.

In the absence of any external field, we describe the initial
position of the two orbiting electrons as shown in Fig. 2(a).
Initially, electrons are orbiting in two different orbits as de-
fined in Sec. III A. The time period for moving electrons in
the Rydberg states is well described by Wang and Robicheaux
[46].

Our result for the repulsive two-body system, with an ex-
ternal force (4), applied only to the inner orbiting body (at
ni = 20), causing the inner orbiting body to rise to the outer
orbiting body’s orbit (at nf = 30) for a collision, is presented
in Fig. 2(b). For this case, the applied laser field has N = 8
cycles with field amplitude, field ellipticity, and angular fre-
quency set at ω0 = 0.005 (a.u.), ε = 0.7, and F 0 = 0.044
(a.u.), respectively. We see clearly in Fig. 2(b) that the laser
field launches the inner orbiting body into a spiral that reaches
the outer orbiting body’s higher orbit and collides with this
outer orbiting body.

Figure 2(b) shows clearly the complex dynamics leading
to the collision. The outer electron moves in an elliptical orbit
prior to the collision, but this elliptical orbit is not evident due
to the driving force being so fast on the outer orbital time scale
that the outer orbiting body has barely moved in the depicted
time scale. We see the collision leading to the outer orbiting
body suddenly adopting a new trajectory that takes the body
to an unbound state, and the inner orbiting body changes its
motion, falling back to a lower orbit instead of going to a
higher orbit.

We can see a huge change of momentum for the outer
orbiting body upon collision and a small change of momentum
for the inner orbiting body due to the collision. These time-
dependent momenta are depicted in Figs. 2(c) and 2(d) for the
inner and outer bodies, respectively. The x and y momenta
are shown for each body as a function of the number of
cycles N . The external driving force (4) is stronger along the
x̂ axis than along the ŷ axis, and this effect is clearly shown
by the fact that the px locus has larger amplitude than the
py locus for both bodies, as depicted in Figs. 2(c) and 2(d).
Furthermore, the loci of the inner orbiting body shown in
Fig. 2(c) matches closely the locus of the driving force shown
in Fig. 1. Two kinks in the momenta of the outer orbiting body
are evident in Fig. 2(d) at the second and fifth cycle due to a
collision and a recollision, respectively, between the inner and
the outer bodies. These collisions are implicit in Fig. 2(b);
i.e., the trajectories of the two bodies involve two crossing
points that represent collisions, and the other crossing points
are “misses.”

Here we calculate the energy for the repulsive interacting
case with an external force applied only to the inner body,
discussed in Sec. II A, of each of the two orbiting bodies and
present the energy of each of the bodies and the sum energy
in Figs. 3(a), 3(b) and 3(c), respectively, over N = 8 cycles.
Although not evident in the plot, the energy of each body at
N = 0 is negative, due to the bodies being bound initially; at
N = 8, again not evident in the figure due to scale, the initial
body’s energy is negative, signifying being bound, whereas
the outer orbiting body’s energy is positive, signifying that is
has escaped the binding potential. In Fig. 3(b), we can see
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FIG. 2. Repulsive interacting case with an external force applied only to the inner body: (a) counterclockwise elliptical orbits of two bodies
(solid blue line for the inner orbit and black dash-dot line for the outer orbit) with green dots signifying initial positions, the red dot signifying
the collision point, and magenta arrows signifying directions of the orbits and the positions in the orbital plane, all quantified in atomic units.
(b) Trajectories for the inner orbiting body (blue solid line) and outer orbiting body (black dash-dot) commencing at the positions signified by
the green dots at the moment when the external field is turned on, which continues for eight cycles, and shows a collision after two cycles, and
the units of position are in atomic units. Two components of the two-dimensional momentum vector (red solid line for the x component and
blue dash-dot line for the y component), in atomic units, as a function of time counted in terms of the number of cycles N for (c) the inner
orbiting body and (d) the outer orbiting body. Values for angular frequency and field amplitude are ω0 = 0.005 (a.u.) and F0 = 0.044 (a.u.),
respectively.

more than two effective collisions: the two major peaks are
the collision and recollision discussed for Fig. 2(d), and the
other peaks are smaller collisions arising due to longer-range
repulsive interactions.

Now we present the results for the repulsive two-body
system when the inner and outer orbiting bodies are initially
at ni = 100 and nf = 110, respectively. The external force (4)
is applied to the inner orbiting body, causing the inner orbiting

FIG. 3. Repulsive interacting case with an external force applied only to the inner body: electron energy vs number of cycles N for
(a) energy of the inner orbiting body, (b) energy of the outer orbiting body, and (c) total energy (both bodies plus the driving field).
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FIG. 4. Repulsive interacting case with an external force applied only to the inner body: (a) trajectories for the inner orbiting (blue solid
line) and outer orbiting body (black solid line) commencing at the positions signified by the green dots at the moment when the external field
is turned on, which continues for eight cycles, and shows a collision after four cycles. Electron energy vs number of cycles N for (b) energy of
the inner orbiting body and (c) energy of the outer orbiting body.

body to rise to the outer orbiting body’s orbit for a collision,
as shown in Fig. 4. In this case, the field amplitude value is
F0 = 0.1948 (a.u.), whereas all other parameters are the same
as in Fig. 2.

Figure 4(a) shows clearly that the external field launches
the inner orbiting body into a spiral that reaches the outer
orbiting body’s higher orbit and collides with this outer body.
Prior to collision, the outer orbiting body moves in elliptical
orbit which is not evident in Fig. 4(a), because the driving
force is so fast on the outer orbital time scale that the outer
orbiting body has barely moved in the depicted time scale. The
outer orbiting body has adopted a new trajectory as a result of
the collision, which takes the body to an unbound state, and
the inner orbiting body changes its movement, falling back to
a lower orbit.

Figures 4(b) and 4(c) show the energy results for repulsive
orbiting bodies with an external force applied only to the inner
orbiting body over N = 8 cycles. Although not evident in the
plot, the energy of each orbiting body at N = 0 is negative,
meaning that the orbiting bodies are bound. At N = 8, again
not evident in the figure due to scale, the inner body’s energy is
negative, signifying being bound, whereas the outer orbiting
body’s energy is positive, signifying that it has escaped the
binding potential. In Fig. 4(c), the peak shows the energy gain
of the outer orbiting body during the collision.

We now present the results for the repulsive two-body sys-
tem, with an external force (4) applied to both orbiting bodies
to create the collision as shown in Fig. 5(a). For this case, the
applied laser field has N = 8 cycles with field amplitude and
field ellipticity F0 = 0.04 (a.u.), whereas all other parameters
are the same as in Fig. 2. Figure 5(a) clearly shows that the
laser field launches both two orbiting bodies into a spiral
motion away from the center. The two bodies collide with
each other after the second cycle. After collision, the outer
orbiting body suddenly adopts a new trajectory that takes the
body to an unbound state, i.e., escapes the system, and the
inner orbiting body still moves like a spiral.

Figure 5(b) depicts the energy for the repulsive interacting
case with an external force applied to both bodies, described
in Sec. II A, of each of the two orbiting bodies over N = 8
cycles. Although not evident in the plot, the energy of each
body at N = 0 is negative, due to the bodies being bound

initially; at N = 8, again not evident in the figure due to
scale, the initial body’s energy is negative, signifying being
bound, whereas the outer orbiting body’s energy is positive,
signifying that it has escaped the binding potential.

In this subsection we have explained a specific application
of our repulsive-interaction framework by analyzing a classi-
cal model for highly excited electrons in a helium atom. We
describe the initial conditions and the external force applied
to one or both electrons and show their dynamics until and
beyond collision. Then we study momenta and energy and de-
scribe features of the resultant plots. The next two subsections
follow the same structure.

B. Attractive interaction: Collision between orbiting bodies in a
gravitational central potential

In this subsection, we present our results for two attrac-
tively interacting orbiting bodies in a central potential perhaps
created by a highly massive body such as the Sun. As a
concrete example, we consider our planetary system with
Earth as the inner orbiting body and Mars as the outer body
orbiting the Sun, as an application of our technique. In the
attractive interacting case, we explore our planetary case of
Earth and Mars orbiting the Sun and ignore other bodies such
as the moon and other planets. Controlled collisions between
planetary bodies are created by applying a time-dependent
external force only to the lower orbiting body.

Concentric orbits with different eccentricities (0.017 for
Earth and 0.093 for Mars) are considered. As Earth completes
one cycle, the external thrust force is optimally applied at the
time of 1.2 Earth years. The angular frequency ω0 corresponds
to the orbital frequency for Earth, which equals one year to
complete one cycle. The external thrust force F0 ≈ 1023 N,
with function shape shown in Fig. 1, is applied to the lower
orbiting body.

Now we present dynamics for two attractively interact-
ing orbiting bodies. Figure 6(a) shows the initial positions
of the orbiting bodies at time t = 0 when no external field
is applied to the system. Initially, the external field is off
but then is turned on after 1.2 Earth years. We keep the
thrust off for 1.2 years to show dynamics of Earth’s or-
biting motion and also wait for an opportune moment to
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FIG. 5. Repulsive interacting case with an external force applied to both bodies: (a) trajectories for the inner orbiting body (blue solid line)
and outer orbiting body (black dash-dot) commencing at the positions signified by the green dots at the moment when the external field is
turned on, which continues for eight cycles, and shows a collision after two cycles, and with the units of position in atomic units. (b) Electron
energy vs number of cycles N for the inner orbiting body (red solid line) and for the outer orbiting body (green dash-dot line).

launch Earth to a higher-energy state that takes Earth close
to Mars. At the launch time, we simulate applying thrust
to Earth when Mars is on the opposite side as shown in
Fig. 6(b).

In Fig. 6(c) we see the Earth orbit for 1.2 years and then
move closer to the Sun before moving to a higher orbit. This
counterintuitive motion is a manifestation of the gravity assist
described in Sec. II C. In this case the Earth is first pushed
closer to the sun, and the external thrust force plus the Sun’s
gravity assist launches Earth away from the Sun, where it
collides with Mars as shown in Fig. 6(c).

Due to the planetary collision, Earth accelerates by fol-
lowing the nonorbiting path shown in Fig. 6(d). We choose

to switch off the external thrust after the collision, which
takes place 1.8 years after the start of the simulation, i.e., 0.6
years after the commencement of the thrust. Subsequent to the
collision, we simulate the case of the thrust continuing to show
clearly Earth’s slow deceleration, which appears in Fig. 7(a).

We calculate the energy (discussed in Sec. II A) of each
of the two orbiting bodies and present the energy of each of
the bodies in Figs. 7(a) and 7(b), respectively, over two Earth
years. Initially, Earth’s energy, presented in Fig. 7(a), depicts
an almost-straight line displaying constant orbit energy due to
the external thrust force being off during this time. After the
thrust is applied at 1.2 years, energy increases as the external
thrust force launches Earth towards the Sun, where gravity

FIG. 6. Attractive interacting case: elliptical orbits of Earth (the green dot signifies Earth in a given time and the solid blue line is the
trajectory of Earth’s orbit) and Mars (the magenta dot signifies Mars in a given time and the black dash-dot line is the trajectory of Mars’
orbit); a red dot for the Sun at one focus for (a) Earth and Mars’ initial position at time t = 0, (b) when the external thrust force acts on Earth,
(c) gravity assist creates a collision between Earth and Mars, and (d) Earth and Mars’ dynamics after the collision.
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FIG. 7. Attractive interacting case: energy of the (a) inner orbiting body and (b) outer orbiting body plotted vs number of Earth years (N).
Two components of the two-dimensional momentum vector (red solid line for the x component and blue dash-dot line for the y component) vs
time counted in terms of the number of Earth years for (c) the inner orbiting body and (d) the outer orbiting body.

assist propels the Earth to collide with Mars. The energy peak
in Fig. 7(a) indicates Earth’s energy during its collision with
Mars causing the Earth to accelerate even further from the
Sun, helped by continuation of the thrust force. Figure 7(b)
shows the energy of Mars, where the steep falling line depicts
the influence of Mars’ strong attraction with Earth when Earth
is nearby.

Now we present the momentum of each orbiting body
when both bodies interact attractively. These time-dependent
momenta are depicted in Figs. 7(c) and 7(d) for the inner and
outer bodies, respectively. The x and y momenta are shown for
each body as a function of the number of Earth years. Earth
momentum loci Fig. 7(c) reveals that, when the external thrust
force is turned off, the Earth usually orbits the central body for
the 1.2 years. After 1.2 Earth years, the external thrust force is
applied to Earth which is clearly evident from their momen-
tum loci. The x component of momentum Fig. 7(c) depicts an
almost-straight line that represents a strong attraction between
Earth and Mars before they collide. Figure 7(d) shows the x
and y momenta of Mars which represent Mars motion in the
orbit.

In this subsection by analyzing planetary two orbiting bod-
ies Earth and Mars, we explained the specific application
of our attractive interaction framework. The external thrust
force is applied to the inner-orbiting body and shows the
dynamics before and beyond the collision. We study the mo-
menta and energy of each orbiting body and identify the
features in the subsequent plots. The next subsection fol-
lows the same structure of this subsection and the previous
subsection.

C. Noninteracting orbiting bodies

In this subsection, we treat the case of two noninteract-
ing orbiting bodies. Specifically, we reconsider the case of
interacting bodies, in our case Earth and Mars, but neglect
the attractive interplanetary interaction as a way to test our
technique and intuition. In this case, the two orbiting bodies
interact only with the central body that creates an attractive
potential but the two orbiting do not interact with each other
in the mathematical simulation. This case is quite artificial
but elucidates how attractive and repulsive forces meet in our
formalism that accommodates both these cases. In this case,
we create controlled collision between planetary bodies by
applying a time-dependent external force only to the lower
orbiting body.

We present our results for two noninteracting orbiting bod-
ies with only the inner orbiting body being subjected to an
external thrust force. Concentric orbits with different eccen-
tricities (0.017 for Earth and 0.093 for Mars) are considered
but with the Earth-Mars interaction neglected. Similar to the
previous subsection, Earth completes one cycle; the external
thrust force is opportunistically applied at 1.2 Earth years af-
ter commencement of the simulation. The angular frequency,
strength of the thrust force, and thrust-force function shape
are the same as in the previous subsection. We ignore the
mutually attractive force between Earth and Mars, which is
approximately 0.0099% of the total force produced by the
interaction between the central body and each orbiting body.

Now we present the dynamics of the two noninteracting
orbiting bodies. As in the previous subsection, the external
thrust force is first switched off for 1.2 Earth years and turned
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FIG. 8. Noninteracting case: energy of the (a) inner orbiting body and (b) outer orbiting body plotted vs the number of Earth years (N).
Two components of the two-dimensional momentum vector (red solid line for the x component and blue dash-dot line for the y component) vs
time counted in terms of the number of Earth years for (c) the inner orbiting body and (d) the outer orbiting body.

on at this time when Mars is on the opposite side. After ap-
plying the external thrust force, the Earth is first pushed closer
to the Sun, and the external thrust force plus the Sun’s gravity
assist launches Earth away from the Sun where it collides with
Mars, a dynamic similar to that shown in Fig. 6(c).

Now we calculate the energy (discussed in Sec. II A) of two
noninteracting orbiting bodies. Figures 8(a) and 8(b) show the
energy of Earth and Mars, respectively, over two Earth years.
As in the previous subsection, Earth’s energy is presented
in Fig. 8(a) and displays an almost-straight line displaying
constant orbit energy due to external thrust force being off
during this time and then increases when the external thrust
force launches Earth towards the Sun. The energy in the plot
peak of Fig. 8(a) depicts the Earth’s energy during its collision
with Mars causing the Earth to accelerate even further from
the Sun, helped by continuation of the thrust force. Figure 7(b)
shows the energy of Mars, where in this case the steep falling
line disappears, describing no attraction when Earth is nearby.

We present the results for our case of two noninteracting
orbiting bodies whose momenta are plotted over two Earth
years. The x and y momenta are shown for each body as a
function of time quantified by Earth years. Figure 8(c) depicts
the Earth momentum loci, which shows that Earth moves in a
normal orbit for 1.2 Earth years, but, when the external thrust
force is applied, Earth leaves the orbit. As in the previous
subsection, the x component of Earth’s momentum did not
depict a strong attraction with Mars before the collision. Mars’
x- and y-momentum loci in Fig. 8(d) shows that it moves
independently in its orbit.

In this subsection we have explained a specific application
of our noninteractive framework by analyzing two planetary

orbiting bodies Earth and Mars. The external thrust force is
applied to the inner-orbiting body and we show the dynamics
before and after collision while maintaining the thrust force
well beyond the collision time to be able to check easily con-
servation of momentum and energy. We study the momenta
and energy of each orbiting body and describe features in the
resultant plots.

D. Verifying conservation laws

In this subsection, we validate our results by using
four different numerical methods; validation holds if these
four numerical results demonstrate sufficient convergence.
Conserved quantities such as energy and momentum are cal-
culated by each numerical method and we present these results
in a table and explain. Specifically, we validate the repulsive
and attractive cases; numerical results for the noninteracting
case are quite similar to the attractive case so we do not need
to validate this third case as validating the first two suffices.

Table I shows the discrepancy for energy and momentum
conservation in each of the repulsive (atomic) and attractive
(planetary) cases as fractional errors, i.e., how much the con-
servation rule has been violated, which should only be within
numerical approximation errors. These four calculations are
performed using four numerical solvers in MATLAB®. Our
calculations follow from Eqs. (13) and (17) to obtain the
fractional error in energy and momentum. The first column
in Table I shows the four different numerical solvers and we
employ MATLAB® terminology for these solvers.

These results in Table I closely agree for all four numerical
methods applied to the repulsive and attractive cases for two
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TABLE I. Fractional error (fe) for momentum p and energy
E for repulsive and attractive cases. The first column shows nu-
merical methods using MATLAB® terminology. The second and
third columns show fe for momentum p and energy E conserva-
tion in the repulsive case and the fourth and fifth columns for the
attractive case. The ODE MATLAB® solvers are ode45 for the
explicit Runge-Kutta (4,5) method, ode23 for the explicit Runge-
Kutta (2,3) method, ode113 for the variable-step, variable-order
Adams-Bashforth-Moulton PECE solver, and ode15s for the back-
ward differentiation formula (also known as Gear’s method).

Solver Repulsive Attractive

fe(p) fe(E ) fe(p) fe(E )

ode45 0.017802 0.71180 0.625 0.910
ode23 0.017803 0.71196 0.638 0.917
ode113 0.017804 0.71181 0.654 0.925
ode15s 0.017804 0.71183 0.654 0.925

orbiting bodies with ode45 yielding the best result in each
case. Thus our numerical results validate our ode45 solver
results.

V. DISCUSSION

We have developed an approach to create a deterministic
collision between two orbiting bodies by considering three
cases: where the two bodies are mutually attractive or re-
pulsive or noninteracting. Furthermore, we consider, for the
repulsive case, both instances of a force acting only on the
lower body, which pertains to each of the three cases, and to
the force applying equally to both bodies, which is pertinent
to the case of controlling two-electron atoms in a heliumlike
atom.

Our method involves writing coupled differential equa-
tions that include an external driving force with a convenient
time-dependent shape. The task of solving force parameters
is achieved by using the Runge-Kutta (4,5) method for dif-
ferential equations. We validate these results using alternative
numerical methods and thus show that we have a trustworthy,
accurate method for causing collisions. As examples, we treat
a classical two-electron helium atom and planetary collisions
in our solar system. Although our theory is based on standard
principles of classical mechanics, we have successfully ad-
dressed the challenges of devising one method for the distinct
scenarios of both repulsive and attractive central potentials,
devised an efficient method for obtaining successful control
sequences that work in both scenarios, incorporated energy
and momentum of the control pulses into the equations to
ensure simulations meet stringent conservation laws, and used
these conservation laws to validate our results.

Typically the helium atom would be treated quantum me-
chanically, but a classical treatment becomes increasingly
valid for highly excited electrons. In such cases, a classical
treatment could be valuable for applying control techniques
to highly excited two-electron atoms, which are known some-
times as two-electron Rydberg atoms. Our choice of force
pulse shape for causing electron-electron collisions is com-
mensurate with past treatments of inducing collisions and so

should be feasible. As the size of the external force is much
broader than the size of the atom in the repulsive case, we
include the case where an external force is acting on both
bodies. As repulsive bodies can collide without genuine con-
tact, we have been careful to introduce a rigorous definition of
collision.

In the attractive case, we discuss how a controlled thrust
could launch Earth into a collision with Mars. Although this
scenario is infeasible and undesirable, the didactic appeal of
relating our method to tangibility of our planetary motion
makes our approach intuitively clear. More practically, our
method relates to rocket launches, and we have cited appro-
priate references for making this connection. Notably, our
technique reveals a gravitational assist, which arises directly
and naturally from our numerics without having had to insert
this method artificially.

As an artificial but instructive case, we study the Earth-
Mars collision while ignoring their mutual gravitational
attraction. In this noninteracting case, we obtain almost identi-
cal results for thrust force and motion except that the attractive
case shows Earth and Mars would slow down during the
collision and then move apart whereas, in the noninteracting
case, Earth and Mars do not slow down during the collision.

VI. CONCLUSION

In conclusion, we have introduced a unified mathemati-
cal framework for solving two orbiting bodies in a central
potential for three different cases, i.e., repulsive, attractive,
and noninteracting orbiting bodies, with an external force
applied to one or both bodies. This framework is used to solve
driving-force parameters to cause deterministic collisions, and
we validate our results by showing that conservation laws hold
up to numerical error. Furthermore, we have been careful to
define collisions mathematically so that contact is not required
and then show these collisions in momentum and energy
plots.

Our approach to electron-electron collisions, pertinent to
the case that both electrons are “planetary,” is a radical de-
parture from standard electron-electron collision theory and
could open new avenues for studying electronic properties
of effective two-electron atoms. Although planetary-atom
behavior in heliumlike atoms has been studied in some
ways, collisions between planetary electrons in helium have
not been studied before, and our classical model provides
insight and guidance on how to create deterministic colli-
sions, but of course a fully quantum treatment is needed
to obtain exquisitely accurate laser-pulse design for quan-
tum control. Embarking into collision dynamics between
planetary electrons of helium could help to elucidate and
quantify the electronic structure and usher in new atomic
phenomenology. Our classical analysis is a zeroth-order ap-
proximation to a full quantum treatment and inspires the
possibility of using Perelomov coherent states [47,48] to
obtain more accurate pulse design by perturbing around
coherent states that closely approximate mean dynamics
of planetary electrons over several orbits. In contrast to
previous work, which can involve ensembles of classi-
cal trajectories or, alternatively, wave-packet dynamics in
a quantum treatment, our approach is strictly classical and
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deterministic with a single pair of orbiting bodies. The
gravitational case of Earth-Mars collisions is fanciful but
didactically valuable. Our approach can serve as a foun-
dation for practical controlled collisions between orbiting
bodies.
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[6] D. B. Milošević, G. G. Paulus, and W. Becker, Phys. Rev. Lett.
89, 153001 (2002).

[7] P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).
[8] C. Winterfeldt, C. Spielmann, and G. Gerber, Rev. Mod. Phys.

80, 117 (2008).
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