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Nonlinearity and temperature dependence of drive-induced shifts in a thermal environment

Arpan Chatterjee and Rangeet Bhattacharyya *

Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata,
Mohanpur 741246, West Bengal, India

(Received 20 June 2020; accepted 28 September 2020; published 21 October 2020)

Drive-induced shifts, such as ac Stark shift and Bloch-Siegert shift, are routinely used in various spectro-
scopies. These shifts are experimentally known to show dispersive Lorentzian behavior as a function of its
characteristic frequencies in optical pumping experiments. However, the drive-induced Stark shifts, as calculated
using Floquet or dressed atom approaches, do not show the above nonlinear behavior. To address this, we
theoretically investigated the drive-induced shifts using a previously reported fluctuation-regulated quantum
master equation [A. Chakrabarti and R. Bhattacharyya, Phys. Rev. A 97, 063837 (2018)]. The shifts are obtained
as closed-form expressions over the entire detuning range of the drive. The predicted shifts match satisfactorily
with the known experimental data of the light shifts. We show that the calculated shifts are a Kramers-Kronig
pair of the drive-induced dissipation in conformity with experimental findings. Moreover, we show that at low
temperatures, i.e., for less thermal fluctuations, our results asymptotically match with the known theoretical form
of the shifts. In the high-temperature regime, we predict that the shifts decrease in magnitude and are inversely
proportional to the square of the temperature.

DOI: 10.1103/PhysRevA.102.043111

I. INTRODUCTION

Driven-dissipative quantum systems play an important role
in the fields of quantum information processing [1–5], quan-
tum metrology [6–8], quantum sensing [9–11], and others. An
accurate description of a driven-dissipative system requires
that all relevant interactions be taken into account at least up to
the second order. The observed resonance frequency of such
a system appears to be shifted when compared to an isolated
system, and a part of the shift is induced by the external drive.
The drive-induced shifts (DIS) could be Bloch-Siegert shift
originating from the counter-rotating (CR) part of the drive
[12,13], or ac Stark shift arising from the detuned corotating
part of the drive [14–18]. These shifts find specific utilities
in the study of the sidebands in the fluorescence spectrum
[19–22], the asymmetry in the Autler-Townes profile [23],
enhancement of the atomic interactions in Rydberg atoms
[24], the nonlinear Faraday effect [25], etc. Recently, Hung
et al. showed that, using the Bloch-Siegert shifts of a proton,
a power calibration can be done for the rf channels of the low
gyromagnetic ratio nuclei [26].

Both of these shifts are estimated as corrections to the
Zeeman Hamiltonian (or an effective field along the static
Zeeman field). To estimate the DIS, one may adopt the Flo-
quet formalism developed by Shirley for classical fields [27],
the method of frame transformations by Pegg and others
[15,28–30], or the method of continued fractions by Aut-
ler, Townes, and Stenholm [14,31,32]. The usual practice
for quantum fields is to employ the dressed-atom approach
[33,34]. These theoretical attempts estimate the shifts as a
power series in drive amplitude (ω1). To the leading order, it
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has been found that the shifts are proportional to the square of
the drive amplitude and proportional to the inverse character-
istic frequency (ωs; for Bloch-Siegert shift the characteristic
frequency ωs is the CR frequency while for Stark shifts it is the
detuning frequency) [12,17,33]. As such, the drive-induced
shifts (DIS) are proportional to ω2

1/ωs barring some numerical
factors.

The shift of the resonance frequency is also observed dur-
ing optical pumping experiments [35,36]. The pump beam,
aligned along the Zeeman field, has a transverse component of
oscillating fields. The oscillating fields give rise to an apparent
shift in the resonance frequency, known as the light shift. The
origin of the light shift was attributed to two separate mecha-
nisms, namely, (i) light shift due to real transition and (ii) light
shift due to virtual transition [37,38]. In one of the original
experiments of optical pumping on 199Hg vapor, it was found
that the ground state coherence, upon the absorption of a pump
photon, was converted to an excited state coherence having
different frequencies [35]. The subsequent spontaneous emis-
sion to the ground state leaves the original coherence to be
phase shifted. The repeated occurrence of this process results
in a shift of the resonance frequency, known as the light shift
due to real transition. The process has a Kramers-Kronig pair,
which is the light narrowing. The mechanism of this type of
light shift has been discussed in detail by Kastler, Mathur,
Happer, and others [37,39–42]. The light shift due to the
virtual transition was explained as ac Stark shift caused by
the oscillating electric field of the light beam [37,40]. In the
original reports, experiments were performed using circularly
polarized light, and hence the Bloch-Siegert shift was not ob-
served [35,36]. Later, the Bloch-Siegert shifts were observed
during optical pumping by Arimondo and others [43]. It is
interesting that the theoretical estimations of the light shift due
to the virtual transitions (LSVT) do not match with that of the
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regular Stark shift. The experiments show that LSVT have a
dispersive Lorentzian dependence on the offset frequency. The
shift is accompanied by an absorptive light broadening part,
which is the Kramers-Kronig pair [37,38,40–42]. We note that
the regular Stark shift, as described in the previous paragraph,
has no Kramer-Kronig pair, i.e., no absorptive component. It
is expected that the theoretical estimation of LSVT should
match with the ac Stark shift, since both the effects originate
for a magnetic dipole (spin-1/2 particle) subjected to trans-
verse oscillating fields. Since LSVT, Bloch-Siegert, and the
ac Stark shifts are induced by an externally applied oscillating
(or rotating in the case of a circularly polarized field) drive,
we broadly classify these shifts as drive-induced shifts (DIS).
It is clear from the experimental cue on LSVT that the DIS
should ideally be accompanied by a drive-induced dissipative
(DID) term as its Kramers-Kronig pair. DID terms require that
we treat our system as a driven-dissipative system and not as
an isolated quantum system subjected to an external drive.

The driven-dissipative systems are usually treated using
quantum master equations (QMEs). In the usual QME treat-
ments, one often considers the drive Hamiltonian in the first
order and applies the usual perturbation techniques to the
system-bath coupling Hamiltonian to get the Bloch equations
[44–47]. However, such approaches fail to give an explanation
of the DID from a coherently controlled drive, recently ob-
served in experiments [48]. Also, the theoretical attempts like
polaron [49], variational polaron [50], and Keldysh renormal-
ization [51] approaches obtain drive-induced shifts that are
identical (in the leading order) to the expressions obtained by
Shirley and others [27–34].

Recently, Chakrabarti and Bhattacharyya developed an ex-
perimental scheme that showed the existence of drive-induced
dissipation (DID) in a driven-dissipative system [48]. Since
the known forms of the quantum master equation do not
predict the DID, the authors proposed a theoretical framework
known as the fluctuation-regulated quantum master equation
(FRQME) to explain the observed behavior [52]. Their re-
sults (both theoretical and experimental) show an explicit
dependence of the environmental correlation time to the drive-
induced decay rates. The FRQME predicts that the DID to be
an explicit function of the correlation time of the fluctuations
(τc) of the environment. Since the DID and the corresponding
shift appear as a Kramers-Kronig pair, it is expected that the
shifts should also carry the signature of the environmental cor-
relation timescale τc. Hence, in the present work, in order to
mitigate the discrepancy in the understanding of these drive-
induced shifts, we use the FRQME. We find a closed generic
form of the shifts over the entire range of the characteristic
frequencies (ωs) and show that the calculated shifts are, in
general, nonlinear functions of ωs.

The present paper is arranged as follows. In Sec. II, we
provide a brief derivation of the FRQME. In the next section
(Sec. III), we describe the system of interest and construct
the equations of motion of its density matrix elements in the
presence of drive. In Sec. IV, we calculate the shifts from the
constructed equations of motion of Sec. III. In Sec. V, various
asymptotic limits are discussed where we tally our results with
the known forms of the shifts. Subsequently, we analyze and
compare our results with known experiments in two subsec-
tions A and B. We discuss the temperature dependence of

shifts, which is one of the key results of the present paper.
Finally, in Sec. VI, we summarize our results by pointing out
the major findings of the present work and then briefly discuss
its importance in the present understanding of the theory and
experiments.

II. QUANTUM MASTER EQUATION AND REGULATION
BY FLUCTUATIONS

The fluctuation-regulated quantum master equation
(FRQME) was introduced to explain a variety of
drive-induced phenomena of a driven-dissipative system
[52]. The primary motivation to deviate from the standard
quantum master equation (QME) is that the conventional
framework does not predict the drive-induced dissipation
or the non-Bloch decay recently witnessed in experiments
[48]. The drive terms directly appear in the first order in
the standard QME after a rotating wave approximation
(RWA). On the other hand, the drive-induced shifts are
calculated for the non-RWA part of the drive using Floquet
or renormalization techniques [27,33,51]. Such shifts are
included in the QME as a correction factor, but are not
obtained from the derivation of the QME [53]. These
calculated shifts show discrepancy with experiments as the
detuning tends to vanish [54]. To address this, Chakrabarti
et al. introduced a FRQME that can include the higher-order
influences of drive in a driven-dissipative system [52]. When
applied to small quantum systems, such a formalism naturally
predicts the DID, whose existence was confirmed earlier by
experiments [48]. Most recently, FRQME has been used in
quantum information processing to achieve the optimality
condition in the gate operation time in the case of both single
and multiple qubit gates [55].

The fluctuation-regulated quantum master equation
(FRQME) has been obtained using the concept of the
regularization by the fluctuation. Since the FRQME is
relatively new, we present a brief sketch of the derivation of
the FRQME. We begin with the assumption that the thermal
fluctuations are ubiquitous in a thermal reservoir and could be
adequately represented by a suitably chosen Hamiltonian. As
such, the complete Hamiltonian for the system and the local
environment in the frequency unit may be written as

H (t ) = H◦ + Heff (t ) + HL(t ), (1)

where H◦ is the sum of the time-independent Hamiltonian
of the system (H ◦

S ) and the local environment (H ◦
L ), Heff

contains (i) the coupling between the system and the local
environment with strength ωSL and (ii) the external drive ap-
plied to the system with an amplitude of ω1. HL(t ) denotes the
fluctuations in the local environment. Since the fluctuations
must not destroy the equilibrium of the local environment,
HL(t ) is chosen to be diagonal in the eigenbasis {|φ j〉} of
H ◦

L , represented by

HL(t ) =
∑

j

f j (t )|φ j〉〈φ j |, (2)

where f j (t )’s are assumed to be independent, Gaussian,
δ-correlated stochastic variables with zero mean and stan-
dard deviation κ , i.e., f j (t ) = 0, f j (t1) f j (t2) = κ2δ(t1 − t2).
We assume that a timescale separation exists between the
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characteristic time of evolution of the system and that of the
fluctuations, the latter being much shorter. This assumption
for a rapidly fluctuating local environment is equivalent to
the assumption that the environment has a very short mem-
ory (τc � 1/ωSL, 1/ω1). We note that such a short memory
corroborates the Markovian nature of the FRQME [47].

The integrated form of the Liouville–von Neumann equa-
tion for a finite time interval t to t + �t , for a single system
in the interaction representation, is given by

ρ̃S(t + �t ) = ρ̃S(t ) − i
∫ t+�t

t
dt1TrL[Heff (t1),

U (t1, t )ρ̃(t )U †(t1, t )], (3)

where ρ̃(t ) denotes the density matrix of a single system-
environment pair (prior to ensemble averaging) in the in-
teraction representation, Heff (t ) is the time-dependent part
of the Hamiltonian expressed in the interaction representa-
tion, ρ̃S(t ) denotes the system density matrix obtained by
taking a trace over the environment variables (denoted by
TrL), and U (t1, t ) denotes the propagator for system and the
environment pair from time t to t1 in the Hilbert space.
The commutator involving HL(t1) vanishes due to the partial
trace over environmental degrees of freedom. The trailing t
in the propagator is omitted for notational simplicity in the
rest of the document. Starting from the Schrödinger equation,
U (t1) can be expressed as

U (t1) = I − i
∫ t1

t
H (t2)U (t2)dt2

= I − i
∫ t1

t
Heff (t2)U (t2)dt2

−i
∫ t1

t
HL(t2)U (t2)dt2. (4)

The above propagator is explicitly linear in Heff . We require a
propagator having Heff in the first order, hence all preceding
evolution [U (t2)] could be approximated to be solely due to
HL. The assumption of the timescale separation ensures that
the evolution due to Heff during the interval t to t2 can be ne-
glected; the density matrix evolves from t to t2 solely under HL

with a propagator denoted by UL(t2). With this approximation,
the Eq. (4) can be written as

U (t1) ≈ I − i
∫ t1

t
Heff (t2)UL(t2)dt2 − i

∫ t1

t
HL(t2)UL(t2)dt2

≈ UL(t1) − i
∫ t1

t
Heff (t2)UL(t2)dt2, (5)

where UL(t1) = I − i
∫ t1

t HL(t2)UL(t2)dt2. We note that the
above propagator is finite in HL through the presence of UL,
but is infinitesimal in Heff .

We substitute Eq. (5) in Eq. (3), and follow the steps out-
lined by Cohen-Tannoudji et al. [47]. So, we use the Born
approximation, i.e., at the beginning of the coarse-graining
interval, the density matrix could be factorized into that of
the system and the environment under an ensemble averaging,
and then we use the coarse-graining procedure [47]. Finally,

we obtain the FRQME given in the following form:

d

dt
ρS(t ) = −i TrL

[
Heff (t ), ρS(t ) ⊗ ρeq

L

]sec

−
∫ ∞

0
dτ TrL

[
Heff (t ),

[
Heff (t − τ ),

ρS(t ) ⊗ ρeq
L

]]sec
e− |τ |

τc , (6)

where τc = 2/κ2 and the superscript “sec” stands for the sec-
ular approximation that involves ignoring the fast oscillating
terms in the quantum master equation. One of the remarkable
properties of Eq. (6), which makes it distinct from the other
QMEs, is the appearance of an exponential kernel in the
evolution of the density matrix. The kernel is often known
as the regulator, as it plays an important role to regulate
divergences of the physical observables. Such a regulator
also ensures that the environmental coherences should van-
ish within a timescale τc. Since τc is much shorter than the
system’s timescale, FRQME essentially is Markovian.

It is worthwhile to mention here that, in Eq. (6), since Heff

contains the drive term, the DIS and the DID originate from
the double commutator within the integral in the equation.
The above equation is in GKLS form, preserves the trace
of the density matrix, and is completely positive. A complete
derivation of the FRQME is given in [52] and the experimental
confirmation of the existence of DID can be found in [48].

III. DRIVE-INDUCED SHIFTS AND THEIR
KRAMERS-KRONIG PAIRS

We consider a two-level system (TLS) connected to its
local environment, which is assumed to have a large number
of degrees of freedom and is undergoing thermal fluctuations.
We model such fluctuations as additive noise, as mentioned
in the preceding section. Thus, the total Hamiltonian for the
system and its local environment could be of the form given
by Eq. (1). We assume the explicit form for H ◦

S to be ω◦σz/2
without any loss of generality, where σ indicates Pauli spin
operators for spin-1/2 particles and ω◦ is the splitting between
energy levels of the TLS in the angular frequency unit. We
make no specific choice for the bare Hamiltonian of the envi-
ronment (H ◦

L ), or for the coupling between the TLS and the
environment (HSL). Since the light shift or the Bloch-Siegert
shift does not depend on the coupling, a specific choice is
not warranted. HS(t ) is a coherent time-dependent linearly
polarized drive which acts only on the TLS and is of the form
HS(t ) = 2ω1 Ix cos(ωt ), where ω1 and ω are the amplitude and
the frequency of the drive respectively and Ix = σx/2. The
TLS is driven with a detuned drive with detuning frequency
�ω given by �ω = ω − ω◦ and CR frequency 
 = ω + ω◦.
We specifically choose a linearly polarized drive to include the
effects of the counter-rotating part of the drive in the equation
of motion in the form of the Bloch-Siegert shift.

Using the Hamiltonians stated above and the FRQME from
Eq. (6), we obtain the following equations for the density
matrix elements (ρi j , where i, j ∈ 1, 2 and 1,2 represent the
energy eigenstates of the TLS). We note that the drive shows
the usual Bloch like behavior in the first order but for the
second order, due to the presence of drive-drive self terms,
the equation of motion deviates from the usual Bloch form.
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The set of equations for the density matrix in the interaction
picture (only for the drive part) is given as follows:

˙ρ11 = i

2
ω1(eit�ωρ12 − e−it�ωρ21)

− ω2
1[J (�ω) + J (
) + c.c.](ρ11 − ρ22),

˙ρ22 = − i

2
ω1(eit�ωρ12 − e−it�ωρ21)

− ω2
1[J (�ω) + J (
) + c.c.](ρ22 − ρ11),

˙ρ12 = i

2
ω1(e−it�ωρ11 − e−it�ωρ22)

− 2ω2
1[J (−�ω) + J (
)]ρ12

+ 2ω2
1ρ21 J (�ω) e−2it�ω,

˙ρ21 = − i

2
ω1(eit�ωρ11 − eit�ωρ22)

− 2ω2
1[J (�ω) + J (−
)]ρ21

+ 2ω2
1ρ12 J (−�ω) e2it�ω, (7)

where J (�ω) and J (
) are the spectral densities correspond-
ing to the rotating and counter-rotating frequencies of the
drive, and c.c. denotes the complex conjugate of the preceding
terms. The overhead dot represents the total time derivative
of the density matrix which is assumed to be approximately
equal to the coarse-grain time derivative within the coarse-
graining timescale �t . The functional form of J as a function
of a generic frequency ωs is given by

J (ωs) = 1

4

∫ ∞

0
dτ eiωsτ e−|τ |/τc (8)

with the additional properties

J (−ωs) = J�(ωs). (9)

In the equation of motion, the terms involving explicit time
are the result of going to the interaction picture, which differs
from the drive frequency by an amount �ω = ω − ω◦. Such
time dependence could be easily removed by moving to a so-
called rotating frame of reference where the observables can
be defined as Mα (t ) = e−i Iz�ω t Iα ei Iz�ω t with α = x, y, z.

Moreover, the oscillations in the off-diagonal elements of
the density matrix with frequency 2�ω survive due to the
secular approximation [47] that sets up a cutoff frequency
(1/�t) over which all fast fluctuations are averaged out and
the slow ones are retained.

The spectral densities calculated from the drive has a real
as well as a complex part. The real part corresponds to the
decay from the drive, that has been studied and experimentally
verified in [48], and the imaginary part is the source of all
kinds of shifts due to the presence of the drive in the system.
In this paper, We only focus on the shift terms and analyze
their behavior in the light of the FRQME.

IV. DRIVE-INDUCED SHIFTS FROM THE FRQME

The resonant shifts are calculated using off-diagonal ele-
ments of the above density matrix for the TLS. To this end,
we define the density matrix elements in the following way:

ρ̃11 = ρ11, ρ̃22 = ρ22, (10a)

ρ̃12 = ρ12 ei�ωt , ρ̃21 = ρ21 e−i�ωt , (10b)

ρ̃+ = ρ̃12 + ρ̃21, ρ̃− = i (ρ̃12 − ρ̃21). (10c)

In terms of ρ̃+ and ρ̃−, Eq. (7) simplifies to

˙̃ρ+ = −ωd+ ρ̃+ + (�ω − 
BS) ρ̃−,

˙̃ρ− = −ωd− ρ̃− − (�ω − 
BS + ωLS) ρ̃+ − ω1(ρ̃11 − ρ̃22),

(11)

where

ωd+ = ω2
1

2

[
τc

1 + 
2τ 2
c

]
, (12a)

ωd− = ω2
1

2

[
τc

1 + 
2τ 2
c

+ τc

1 + �ω2τ 2
c

]
, (12b)


BS = ω2
1

2

[

τ 2

c

1 + (
τc)2

]
, (12c)

ωLS = −ω2
1

2

[
�ωτ 2

c

1 + (�ωτc)2

]
. (12d)

In the above, ωd+ and ωd− are two dissipative rates due
to the external drive. ωLS and 
BS represent the light shift
and the Bloch-Siegert shift, respectively. So, it is clear from
the above expressions that both the light shift and the Bloch-
Siegert shift, i.e., DIS, could be generally expressed as

ωDIS = ω2
1

2

(
ωsτ

2
c

1 + ω2
s τ

2
c

)
, (13)

where ωs is a symbolic representation for the characteristic
frequency of a DIS, e.g., for Bloch-Siegert shift ωs = 
 and
for light shift ωs = −�ω.

V. RESULTS AND DISCUSSIONS

Figure 1 shows the behavior of light shifts (ωLS) as a
function of inverse detuning frequency. For an intuitive under-
standing, we consider the shift at two extreme limits of �ωτc.
(a) In the high detuning limit, i.e., �ω 
 1/τc, the shift can
be written as ωLS ∼ ω2

1/2�ω (shown by dashed straight lines
in Fig. 1). This form exactly matches with the leading order
shift term calculated for the ac Stark shift using Floquet or
continued fraction methods for classical fields or from dressed
states approaches for the quantum fields [27–34]. We note that
the high detuning limit implies that a direct substitution �ω =
0 is not allowed in the above expression. (b) On the other
hand, in the limit of near-resonant excitation, or low detuning,
i.e., �ω � 1/τc, the shift is obtained as ωLS ∼ ω2

1�ωτ 2
c /2.

Therefore, at low detuning, the light shift is proportional to
the detuning frequency and vanishes for �ω = 0.

Overall, the light shift shows a dispersive behavior, as was
observed and explained originally by Cohen-Tannoudji et al.
[37,38]. A comparison to LSVT shows that 1/τc plays the
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FIG. 1. Plots of the calculated shifts and the fitting of the earlier
reported data of the light shift by Tamarat et al. [18]. The red and
the green open circles represent the experimental light shift data for
ω1 = 153 and 93 MHz, respectively, for two different molecules, as
reported by Tamarat et al. [18]. We fit these data using the Eq. (13)
and the fit is plotted with the solid line. For a comparison, the dashed
lines are used to show the conventional linear fit of the data (also
calculated by Tamarat et al. [18]). The fitting yields the values of τc

as ∼ 50 and 77 ns. The range of τc values are in agreement with
the range of values reported by Izeddin et al. [56]. We note that
both the fits are completely equivalent within the experimental errors.
But the fit with Eq. (13) in solid lines show remarkable departure
from the linear behavior and completely matches with the dispersive
Lorentzian behavior reported elsewhere (see Fig. 2).

same role as the  factor in Eq. (17) of Kastler’s paper or in
the works of Cohen-Tannoudji et al. [35,37,38]. We note here
that the calculated DIS follows the same dispersive behavior
and is a nonlinear function of its characteristic frequency. To
emphasize the nonlinearity of ωDIS and its dependence on the
timescale of the correlation of the fluctuations, we plot the
shift as a function of its characteristic frequency for different
values of τc in the next figure.

Figure 2 shows that DIS has a dispersive Lorentzian be-
havior with extrema at ±1/τc, which can be calculated from
Eq. (13). The distance between the extrema (2/τc) is but a
measure of how the generic shift spreads out as a function
of the inverse characteristic frequency ωs. The figure shows
that at very low τc, the departure of the shifts from linearity
is prominent even for small values of inverse detuning fre-
quency. On the other hand, at a high τc limit, it retains the
linear shape for a larger range. Moreover, to study the explicit
dependence of τc in the expression of shifts, a series expansion
is performed in terms of ωs in different asymptotic limits. For
the near-resonant excitation of TLS in magnetic resonance
and in optical experiments, a physically meaningful limit is
ωs � 1/τc, and in this limit the DIS can be expanded as

ωDIS ≈ ω2
1

2

[
ωsτ

2
c − ω3

s τ
4
c + · · · ]. (14)

On the other hand, in optical experiments [e.g., terahertz
(THz) spectroscopy, pump-probe spectroscopy, etc.] in the
case of off-resonant detuned drive, the other limit ωs 
 1/τc

FIG. 2. Plot of the generic drive-induced shift ωDIS as a function
of the inverse characteristic frequency for different values of τc.
The values of τc are chosen in the nanosecond range, a typical
timescale for quantum dots [56]. Also the drive amplitude is set to
ω1 = 150.0 MHz as typically used in optical pumping experiments
[18]. The solid straight line denotes the common asymptote of the
plotted curves, which clearly shows that ωDIS deviates from linearity
depending on the values of τc. The inset in the lower-right corner
shows the complete LSVT behavior as depicted in one of the earliest
reports by Kastler [37]. The similarity between Kastler’s work and
ours is clearly evident (we note that for light shift ωs = −�ω).

is more realistic. In this limit, the expansion of DIS is given
by

ωDIS ≈ ω2
1

2

[
1

ωs
− 1

ω3
s τ

2
c

+ · · ·
]
. (15)

We note that this expression has the usual form of ac Stark
shift or Bloch-Siegert shift in the leading order in inverse
characteristic frequency, with correction terms involving τc

present in all higher orders [27–34].
It is important to note that the parameters responsible for

the systematic expansion of the density matrix are the strength
of the drive (ω1) and the correlation time of the environment
(τc). As long as their product is sufficiently smaller than one,
i.e., ω1τc � 1, the expansion is rapidly convergent. This con-
dition originates from the timescale separation between the
system and the environment beyond which the FRQME is no
longer valid.

In the case of Bloch-Siegert shift, the expansion is per-
formed only in the limit 
τc 
 1 because for the high CR
frequencies the other limit becomes unimportant. A notable
exception is liquid-state magnetic resonance experiments,
where τc is typically in the picoseconds timescale [48], and
hence with Larmor frequency in the range of hundreds of
MHz it is quite possible to achieve 
τc � 1. In the limit

τc 
 1, the Bloch-Siegert shift recovers its usual form
[12,13] in the first order in CR frequency, and eventually, the
higher orders become τc dependent like the light shifts. The
expressions are similar to Eq. (15) with �ω is replaced by

. Unlike Shirley et al. [27] or Cohen-Tannoudji et al. [33],
this analysis is restricted to the second-order contribution of
the drive to the drive-induced shifts. However, even within a
second-order theoretical framework, one can easily observe
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that the shifts deviate prominently from the standard expres-
sion of ω2

1/ωs as a function of ωs.

A. Comparison with experiments

Our expressions of the dispersive nature of the light shift
match fairly well with the original reports of LSVT [35]. In
optical experiments, unless the drive is near resonance, the
experiments are done mostly with high detuned frequency.
Therefore, the drive-induced shift or the light shifts obtained
there explicitly shows a linear dependence on the inverse
detuning frequency, as observed in [18]. The experiments
were not performed for a sufficiently wide range of �ω to
have a fair comparison with our expressions. However, later
experiments by Appelt et al. on rubidium in a high-pressure
optical pumping cell show the dispersive nature of the light
shift with the variation of the optical pump wavelength [57].
We note that these experimental results are explained as an
effect of the collision-based spin-exchange process, similar to
a light shift due to a real transition. Subsequent experiments
by Savukov et al. with K atoms in He-buffer gas cell also
find the dispersive nature of the light shift as a function of
the wavelength of the pump. Their work confirms that, at suf-
ficiently small detuning of the pump laser, the shift becomes
vanishingly small and eventually disappears at the center of
resonance [54], which exactly matches with our calculation.

For a comparative study, a plot of the surroundings of the
resonance and our result is given in Fig. 1. The experimental
data are extracted from [18] in which the data of the light shift
are given for the inverse detuning range −0.0125 to 0.0125
MHz−1. Figure 1 shows that our results are in good agreement
with the experimental data of the light shifts given for two
different drive powers, namely 93 and 153 MHz. Moreover,
as evident in Fig. 2, the calculated behavior of the light shift
completely matches with the earlier reports of the dispersive
Lorentzian-like behavior of LSVT by Kastler [37]. Therefore,
the two figures complete the comparison of our results to the
entire range of reported light shifts (linear as well as nonlinear
regimes).

B. Temperature dependence of the shifts

The fluctuations in the local environment of the system are
assumed to originate from the thermal processes. Also, experi-
mental validations of drive-induced dissipations in liquid-state
nuclear magnetic resonance (NMR) show a temperature de-
pendence of the timescale of the fluctuations [48]. Therefore,
we venture to use a scaling argument that the average energy
of the fluctuations may be equated to the characteristic pa-
rameters (such as τc) of the fluctuations (h/τc ≈ kBT ), where
the symbols have their usual meanings. As a consequence, the
drive-induced shifts become temperature dependent through
τc. A tentative plot of the DIS (ωDIS) as a function of temper-
ature is shown in Fig. 3. At low temperatures (i.e., high τc),
DIS tends to ≈ ω2

1/ωs, barring a numerical factor, as shown
earlier. This form is independent of τc and hence does not
depend on the temperature. In Fig. 3, this limit is indicated
by the horizontal dashed line near the top of the figure. But
for very low τc, which corresponds to higher fluctuations,
i.e., high temperature, the temperature dependence of ωDIS is

FIG. 3. Plot of the generic shift ωDIS as a function of the tem-
perature. In this figure, the parameters are normalized to unity, i.e.,
ω1 = ωs = 1.0. The horizontal dashed line corresponds to the known
form of ac Stark shift in the low-temperature regime [27–34]. The
dashed-dot curve shows the shifts decay with the increase in temper-
ature following 1/T 2 behavior, where T is the temperature.

pronounced, and the leading behavior is given by ωDIS ∝ 1
T 2 .

Also, for the near-resonant excitation �ω → 0, the nutation
frequency which depends on ωDIS becomes temperature depen-
dent, even in the cases where Lamb shift could be neglected,
i.e., for the weak system-environment coupling regime.

VI. CONCLUSION

We have used the fluctuation-regulated quantum master
equation (FRMQE) to calculate an explicit closed-form ex-
pressions of drive-induced shifts (DIS), such as ac Stark
shift and Bloch-Siegert shift. We obtained the generic drive-
induced shift to be a dispersive Lorentzian function of
its characteristic frequency, which at the appropriate limits
matches with the hitherto known forms of ac Stark shift or
Bloch-Siegert shift. The dispersive Lorentzian forms of DIS
help to explain the observed dispersive nature of the light
shift due to virtual transitions [35,37,38]. The DIS are found
to be the Kramers-Kronig pair of experimentally observed
drive-induced dissipation (DID) terms [48]. In line with the
observed experimental temperature dependence of DID terms,
we find DIS terms to be temperature dependent. At low
temperatures, the DIS are shown to assume a limiting value
independent of temperature and are identical to the hitherto
known form of DIS. At high temperatures, the DIS are pre-
dicted to decrease as the inverse square of the temperature. We
note that, although the analysis was performed with a TLS,
FRQME could easily be extended to atoms with high spins
or more than two levels. For two energy levels having a well-
separated transition frequency from other levels in a multilevel
system, TLS remains a fair approximation, and, as such, the
calculated shifts could be used even for multilevel quantum
systems. The closed form of DIS obtained by us results from
a complex interplay between the drive, dynamical fluctuations
of the environment, and the system of interest (i.e., TLS),
which cannot be realized within the model framework of

043111-6



NONLINEARITY AND TEMPERATURE DEPENDENCE OF … PHYSICAL REVIEW A 102, 043111 (2020)

a simple system connected to its environment. Therefore,
our analysis of such drive-induced shifts provides a deeper
understanding of the theoretical formulation of the driven-
dissipative system. Also, most recent studies on the spectrum
of atoms near strong magnetic fields (magnetic fields from
rotating stars, e.g., neutron stars) proposed the Bloch-Siegert
shifts as a reason for the variations of the fundamental astro-
physical constants of nature over time [58]. Therefore, in such
a scenario our analysis of such shifts will provide additional
insights into determining the variations of the fundamental
constants of nature. Finally, we envisage that our results can
be used to develop an experimental protocol for measuring the

autocorrelation time (τc) of the fluctuations (or the strength of
the fluctuations κ2 = 2/τc) by careful measurements of the
drive-induced shifts in near-resonance conditions.
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