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Sub-Poissonian atom-number distributions by means of Rydberg dressing
and electromagnetically induced transparency
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A method is proposed to produce atomic ensembles with sub-Poissonian atom-number distributions. The
method consists of removing the excess atoms using the interatomic interactions induced by Rydberg dressing.
The selective removal of atoms occurs via spontaneous decay into untrapped states using an electromagnetically
induced transparency scheme. Ensembles with the desired number of atoms can be produced almost determinis-
tically. Numerical simulations predict a strong reduction of the atom-number fluctuations, with the variance 20
times less than the Poisson noise level (the predicted Fano factor is F � 0.05). Strikingly, the method is suitable
for both fermions and bosons. It solves the problem of the atom-number fluctuations in bosons, whose weak
interactions have usually been an obstacle to controlling the number of atoms.
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I. INTRODUCTION

Ensembles of a few ultracold atoms are basic tools for
quantum information and precision measurements [1,2]. They
can be used as model systems to investigate few-body quan-
tum phenomena like tunneling [3–6], interactions [7–10],
Efimov states [11,12], and quantum correlations [13–15]. To
fully exploit the potential of few-atom systems in these ap-
plications, the number of atoms N must be controlled with
high precision. In general, the precise control of N is not
trivial because the production of ultracold atoms is affected
by atom-number fluctuations caused by Poisson statistics and
technical noise. Reducing, or even suppressing, atom-number
fluctuations is a prerequisite for quantum computation based
on atomic ensembles [16–20] and is the first step in many
entanglement protocols to achieve measurement precision be-
yond the shot noise [21–26].

To produce ensembles of a few atoms (up to 100), the
usual experimental procedure consists of removing the excess
atoms by means of interatomic interactions. The atoms whose
interatomic interaction energy surpasses the atom trap depth
are eventually lost, resulting in an atomic ensemble with sub-
Poissonian atom-number distribution. This procedure relies
on the precise experimental control of the interatomic interac-
tions and the atom trap parameters [27–29]. Different kinds of
interactions have been used, including dispersive s-wave inter-
actions [30], Pauli blockade in fermions [31,32], three-body
inelastic collisions [33,34], and light-assisted two-body col-
lisions [35–37]. All these studies show important differences
between fermions and bosons. Fermions provide a greater ca-
pacity to produce the desired N in a deterministic way thanks
to the strong repulsive interactions originating from the Pauli
principle. Ensembles of up to ten ground-state fermions have
been achieved with high fidelity [31]. In contrast, bosons offer
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less favorable conditions due to their weaker interactions.
Besides the experimental efforts, the fluctuation factor (Fano
factor) achieved with bosons is typically F � 0.5, which is
half that of the Poisson distribution. Reducing the Fano factor
to lower values remains a desired objective.

This paper presents an alternative method that is suitable
for both fermions and bosons. To produce sub-Poissonian
distributions, the method uses the interatomic interactions
induced by the so-called Rydberg dressing [38,39]. This con-
sists of slightly mixing a ground state with a highly excited
Rydberg state through nonresonant laser coupling. In this way,
the ground state partially acquires the strong interaction prop-
erties of the Rydberg states [40–43]. As shown in this paper,
these interactions enable the removal of the excess atoms and
the production of strongly sub-Poissonian distributions. As
opposed to previous works, atom losses are induced by spon-
taneous decay into untrapped states in an electromagnetically
induced transparency scheme. Numerical calculations predict
Fano factors as low as F � 0.05. Starting with a random num-
ber of atoms in a magnetic trap, the proposed method induces
spontaneous atom loss until the target number of atoms is
reached.

II. METHOD TO GENERATE SUB-POISSONIAN
DISTRIBUTIONS

The method uses the atomic-level structure of Fig. 1. All
atoms are initially prepared in the same Zeeman ground state,
|g〉. Atoms interact with each other by means of Rydberg
dressing. For this, the state |g〉 is slightly mixed with a Ry-
dberg state |r〉 using an off-resonant laser field with Rabi
frequency �S and detuning �S � �S. The AC Stark shift
of the collective ground state |gN 〉 ≡ |g1, g2, ..., gN 〉 can be
approximated by (Appendix A),

�AC(N ) � �2
S

4�S
N − �4

S

16�3
S

N2, (1)
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FIG. 1. Energy-level scheme. The initial ground state |g〉 is
slightly mixed with a Rydberg state |r〉 by an off-resonant laser field
with Rabi frequency �S and detuning �S. This field is used to induce
interatomic interactions between the Rydberg-dressed ground-state
atoms. The ground state |g〉 is coupled to state |e〉 using a laser field
with Rabi frequency �p and detuning �p. At the same time, |e〉 is
resonantly coupled to a second Zeeman ground state |q〉 with Rabi
frequency �c � �p, thus creating a �-type electromagnetically in-
duced transparency configuration. The decay rates of |e〉 and |r〉 are
�e and �r , respectively. The black dots represent a possible initial
population in |g〉.

where the nonlinear term in N originates from the Rydberg
blockade mechanism, i.e., the suppression of multiple Ryd-
berg excitations due to the strong dipolar interactions. This
term represents the interatomic interaction energy that enables
the controlled removal of atoms.

The method consists of removing the excess atoms until the
ensemble only contains the target number of atoms NT. The
goal is that the magnetic trap contains NT atoms at the end
of the process. The target state is |gNT〉. Atoms are removed
by means of spontaneous decay from the short-lived state
|e〉 into magnetically untrapped states. The precise control of
the spontaneous decay rate is achieved by means of electro-
magnetically induced transparency (EIT). For this, a weak
laser beam couples |g〉 to |e〉 with Rabi frequency �p and
detuning �p while another laser beam resonantly couples |e〉
to a second Zeeman ground state |q〉 with Rabi frequency
�c � �p. The method requires that the atom loss rate �N is
close to zero for N = NT and increases as |N − NT| increases.
This condition is fulfilled when the field �p is resonant with
the transition |gNT〉 ↔ |gNT−1e〉 (this is the standard notation of
the collective symmetric states [16]; see below). This occurs
for

�p = �AC(NT − 1) − �AC(NT)

� − �2
S

4�S
+ (2NT − 1)δ, (2)

where

δ = �4
S

16�3
S

(3)

is the characteristic energy shift of the interatomic interaction.
The detuning �p has higher-order terms in N that are not writ-
ten in Eq. (2). It is not worth writing those terms here because

their relative value is small. Nonetheless, higher-order terms
will be used in the calculations for high numerical precision.

To verify that the EIT scheme enables the removal of ex-
cess atoms, we need to calculate the atom loss rate �N as a
function of N . For this, we numerically solve the Schrödinger
equation

d

dt
|ψN (t )〉 = − i

h̄
HN (t )|ψN (t )〉, (4)

where HN (t ) is the Hamiltonian of the light-atom coupling for
an ensemble with N atoms. The Hamiltonian in the interaction
picture is given by (within the rotating-wave approximation)

HN = − h̄

2
(�pe−i(�p+�l )t σ̂eg + �cσ̂eq + �Se−i�St σ̂rg + H.c.)

− ih̄
�e

2
σ̂ee − ih̄

�r

2
σ̂rr, (5)

where σ̂μν = ∑N
j=1 σ

( j)
μν are the collective symmetric opera-

tors and σ
( j)
μν = |μ j〉〈ν j | are the atomic transition operators

of atom j, with μ, ν = g, q, e, r. The detuning �l is added
to the field �p in order to simulate an unintended frequency
shift caused by possible experimental errors. In all numerical
simulations, we use the decay rate of state |5P〉 of rubidium,
�e = 2π × 6 MHz [44], and the decay rate of the Rydberg
state |70P〉, �r = 2π × 100 Hz [45] (without black-body ra-
diation [46–48]). Equation (4) is solved using the basis of
symmetric states,

|gαqβeγ rη〉 =
√

α!β!γ !

N!

∑
k

Pk{|g〉α|q〉β |e〉γ |r〉η}, (6)

where α + β + γ + η = N , η = 0, 1, and Pk{·} denotes the
complete set of the N!/(α!β!γ !) possible permutations of the
single-atom states.

The atom loss rate is calculated as �N = �ePe, where
Pe = ∑N

j=1 |〈e j |ψN 〉|2 is the total population in |e〉, and |ψN 〉
is the steady-state wave function of the ensemble with N
atoms. We have checked that spontaneous decay from |r〉 is
negligible in comparison with spontaneous decay from |e〉.
In fact, the Rydberg population, Pr � (N�2

S)/(4�2
S), is only

∼7% of the total population for N = NT in the numerical
examples of this study. Figure 2 shows the atom loss rate �N

for the target number NT = 8. There is a sharp minimum at
NT, where the EIT effects are maximum. Thus, for any initial
atom number higher than NT, atom losses occur quickly until
the number of atoms stabilizes for N = NT, resulting in a sub-
Poissonian atom-number distribution. Figure 2 compares the
numerical results obtained using the multiatom Hamiltonian
HN [Eq. (5)] with the results obtained using an approximate
formula derived from the optical Bloch equations of a three-
level atom (see Appendix B). Only the numerical solution is
accurate, as only this is calculated considering all collective
states. Nonetheless, the approximate formula from the optical
Bloch equations follows the same tendency as the numerical
solution, and we use it to verify the underlying EIT origin of
the atom-light coupling.
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FIG. 2. Atom loss rate as a function of the number of atoms in
the ensemble. The target number is NT = 8 and the interaction energy
shift is δ = 2π × 20 kHz [see Eq. (3)]. The laser parameters are
�c = 2π × 2 MHz, �p = 2π × 400 kHz, and �S = 2π × 300 MHz
[from these parameters we obtain �p � −2π × 2.2 MHz and �S �
2π × 54 MHz, using Eqs. (2) and (3)]. The results are obtained
from numerical simulations using the multiatom Hamiltonian of
Eq. (5) (red triangles) and from the approximate formula described in
Appendix B (black circles).

III. SELECTIVE REMOVAL OF EXCESS ATOMS

Once we know the atom loss rate �N as a function of
N , we can simulate the atom loss dynamics leading to sub-
Poissonian distributions. The simulations assume that the
initial number of atoms is unknown and follows Poissonian
statistics. The numerical simulations are carried out using the
stochastic method of quantum trajectories [49,50]. We simu-
late a high number of quantum trajectories and calculate the
mean value N and the variance σ 2(N ) of the number of atoms.
Each quantum trajectory represents a thought experiment in
which the initial number of atoms N0 is randomly chosen
according to the initial Poissonian distribution. To consider
possible errors of the laser frequency locking system, the
simulations include a random shift �l in the detuning of the
laser field �p [see Eq. (5)]. For each quantum trajectory, this
frequency shift is chosen from normally distributed random
numbers with the standard deviation σ 2(�l ). In this way,
for each quantum trajectory, we calculate the series of times
{tN0 , tN0−1, tN0−2, . . .} at which the ensemble loses one atom,

N0
tN0−−→ N0 − 1

tN0−1−−−→ N0 − 2
tN0−2−−−→ · · · . (7)

This series of times is obtained using the condition
that spontaneous decay occurs when the squared norm
of the wave function has decreased to |〈ψN |ψN 〉|2 = rN ,
where {rN }N=1,...,N0 is a series of random numbers be-
tween 0 and 1 [49,50]. This condition can be rewritten
as exp [−(tN−1 − tN )�N ] = rN . From this expression, we
can easily calculate the time interval between two events,
tN−1 − tN = − log rN/�N , thus obtaining the series of times
{tN0 , tN0−1, tN0−2, . . .} of the spontaneous decay events of the
quantum trajectory.

Spontaneous decay leads to the selective removal of
atoms through optical pumping into magnetically untrapped
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FIG. 3. Evolution of the number of atoms for the target number
NT = 8. The interaction energy shift is δ = 2π × 20 kHz. The laser
parameters are the same as those in Fig. 2. Two initial Poissonian
distributions are considered, with mean numbers N0 = 26 (red solid
line) and N0 = 40 (blue dotted line). Each curve is obtained by av-
eraging 2 × 104 simulated quantum trajectories. The variance of the
random frequency noise is σ 2(�l ) = 2π × 6 kHz. (a) Mean number
of atoms as a function of time. The black solid curve shows one
of the individual quantum trajectories with N0 = 29. (b) Variance of
the number of atoms as a function of time. The variance is strongly
sub-Poissonian when N � NT.

states. For this purpose, the states |g〉, |q〉, and |e〉 must be
conveniently chosen. One possibility could be, for exam-
ple, the rubidium states |g〉 ≡ |5S1/2, F = 2, mF = 1〉, |q〉 ≡
|5S1/2, F = 1, mF = −1〉, and |e〉 ≡ |5P3/2, F = 1, mF = 0〉.
The probability that an atom decays from |e〉 into a ground
state other than |g〉 is 95% of the total decay probability [44].
In this case, the atom is optically pumped outside the basis
of states, and it cannot be part of the collective dark state of
the EIT scheme of Fig. 1. This is guaranteed by the offset
magnetic field of the trap, which breaks the degeneracy of the
ground state with Zeeman shifts typically of the order of a
few megahertz [51]. The atom that decays ends up in a mag-
netically untrapped ground state like |5S1/2, F = 1, mF = 1〉
or |5S1/2, F = 2, mF = −1〉, which does not interact with the
laser fields �p and �c, and which eventually leads to the loss
of the atom.

IV. RESULTS

Figure 3 shows the mean number of atoms N and the
variance σ 2(N ) as a function of time in two simulated cases.
The target number is NT = 8 in both cases, and the initial
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FIG. 4. Probability of finding N atoms (wide blue bars) with the
same parameters as in Fig. 2 at the time when N = NT (t � 200 μs).
The narrow red bars represent the Poissonian distribution, for
comparison.

mean numbers are N0 = 26 and N0 = 40, respectively. Each
curve is obtained from 20 000 quantum trajectories (this is
enough to converge). The mean number N decreases very
quickly in the beginning of the process due to the high decay
rates when |N − NT | is large (see Fig. 2). The mean number
stabilizes when it reaches the target number NT . This happens
at t � 200 μs. At this moment, the laser fields must be turned
off adiabatically, avoiding any remaining population in states
|q〉 or |r〉. This is accomplished by turning off the laser fields
in order, first �p, then �c, and finally �S [52]. The atom
number distribution is clearly sub-Poissonian. The variance
has values as low as σ 2(N ) � 0.4. This corresponds to a Fano
factor of F = σ 2(N )/N � 0.05, which is 20 times less than
that of the Poisson noise level (FPoisson = 1). Interestingly,
both the minimum variance and the time at which N = NT

are practically independent of the initial mean number N0.
This enables one to produce the desired number of atoms
in a deterministic way without knowing the initial number
of atoms. Figure 4 shows the probability distribution of the
number of atoms at the time when N = NT .

We have investigated the impact of an unintended fre-
quency mismatch between the lasers and the atomic transi-
tions caused by possible errors in the experimental system.
EIT is very sensitive to two-photon detunings caused by
inaccurate frequency locking of any of the two fields [52].
To investigate this effect, we have realized stochastic simu-
lations assuming a random frequency shift of the field �p,
with values of σ 2(�l ) between 2π × 6 kHz and 2π × 65 kHz
[see Eq. (5)]. Figure 5 shows the variance of the number of
atoms σ 2(N ) for different cases with target numbers NT = 4,
8, and 20. The minimum of σ 2(N ) is reached approximately
at the time at which N = NT. As σ 2(�l ) increases, the atom
number fluctuations get larger and less sub-Poissonian. This
is because the difference between �NT and �NT+1 becomes
smaller (see Fig. 2), thus making the minimum of �N at NT

less pronounced. In general, σ 2(�l ) should be smaller than δ

[see Eq. (3)] for an effective reduction in atom-number fluc-
tuations. The numerical simulations show that Fano factors as
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FIG. 5. Effect of the random laser frequency shift for three dif-
ferent target numbers, NT = 4, 8, and 20. (a) Simulations for target
number NT = 4. The interaction energy shift is δ = 2π × 50 kHz.
The variance of the random frequency shift is σ 2(�l )/(2π ) = 6 kHz
(black), 30 kHz (red), and 65 kHz (orange). The laser parameters are
�c = 2π × 2 MHz, �p = 2π × 400 kHz, and �S = 2π × 200 MHz
[from these parameters we obtain �p � −2π × 2.9 MHz and �S �
2π × 50 MHz, using Eqs. (2) and (3)]. (b) Simulations for target
number NT = 8. The interaction energy shift is δ = 2π × 20 kHz.
The variance of the random frequency shift is σ 2(�l )/(2π ) = 6 kHz
(black), 30 kHz (red), and 65 kHz (orange). The laser parameters are
�c = 2π × 2 MHz, �p = 2π × 400 kHz, and �S = 2π × 300 MHz
(�p � −2π × 2.2 MHz, �S � 2π × 54 MHz). (c) Simulations for
target number NT = 20. The interaction energy shift is δ = 2π ×
5 kHz. The variance of the random frequency shift is σ 2(�l )/(2π ) =
6 kHz (black), 18 kHz (blue), and 30 kHz (red). The laser pa-
rameters are �c = 2π × 1 MHz, �p = 2π × 200 kHz, and �S =
2π × 300 MHz (�p � −2π × 1 MHz, �S � 2π × 38 MHz).
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low as F � 0.05 can be achieved with a good control of the
laser frequencies.

The effect of thermal movement is negligible in com-
parison to the considered effect of random laser frequency
mismatch. This is because thermal movement causes the same
Doppler shifts in both single-photon transitions, |g〉 ↔ |e〉 and
|q〉 ↔ |e〉, thus leaving the energy of the two-photon transition
|g〉 ↔ |q〉 unchanged. Since the EIT signal depends on two-
photon detunings much more than on single-photon detunings
[52], thermal movement at typical ultracold temperatures can
be neglected.

V. DISCUSSION

This paper has described a method for the generation of
strongly sub-Poissonian atom-number distributions. The de-
sired number of atoms NT can be achieved in an almost
deterministic way. The reduction of atom-number fluctua-
tions is accomplished by removing the excess atoms through
spontaneous emission into untrapped states. This is an impor-
tant difference from previous works, in which the removal
of atoms was accomplished by making the trap shallower
than the interatomic interaction energy of the excess atoms
[27–37]. Therefore, the control of the trap parameters is less
relevant in this paper. On the other hand, this paper requires
the precise stabilization of the laser frequency with kilo-
hertz resolution. This can be achieved with state-of-the-art
laser technology [53]. Also, coherent ultraviolet light for Ry-
dberg dressing has been experimentally demonstrated with
sufficiently high power [54,55]. Another requirement is that
the atoms must be contained within the effective volume of
the Rydberg dressing mechanism, whose critical distance is
R = |C6/(2h̄�S)|1/6 [38,39]. For principal quantum numbers
n � 70, the van-der-Waals coefficients are of the order of
C6 � 10−57 J m6 [10,56], corresponding to critical distances
of ∼3.5 μm. The required atomic confinement can be pro-
vided by tight magnetic microtraps [57].

The advantage of Rydberg dressing is that the interatomic
interactions are equally suitable for both fermions and bosons.
In general, the Rydberg blockade is a promising resource for
atom number control in small atomic ensembles. There are
previous works which used resonant excitation into a Rydberg
state in order to control N . In a pioneering experimental work,
atoms were sequentially transferred one-by-one between two
ground states, thus creating sub-Poissonian distributions with
N = 1 and 2 [58]. Another work proposed a method to fil-
ter out single Rydberg atoms from ensembles with unknown
numbers of atoms [59].

To conclude, this paper proposes an efficient solution to
the problem of the probabilistic loading of atom traps. The
ability to reduce atom-number fluctuations and to control the
number of atoms in a deterministic way is an enabling toolbox
for quantum technologies based on ultracold atoms as well as
for fundamental studies of few-body interactions.

APPENDIX A: AC STARK SHIFT INDUCED
BY RYDBERG DRESSING

The AC Stark shift is the interaction energy between the
off-resonant laser field �S and the blockaded atomic ensem-
ble. The matrix of the atom-field interaction Hamiltonian in
the basis of states {|gN 〉, |gN−1r〉} is

HS = − h̄

2

(
0

√
N�S√

N�S 2�S

)
,

where the factor
√

N accounts for the collective enhancement
of the Rabi frequency. Equation (1) is calculated in a trivial
way from the series expansion of the low-energy eigenvalue
of HS, as shown in Refs. [38,60].

APPENDIX B: DECAY RATE FROM THE OPTICAL
BLOCH EQUATIONS

There is an approximate way to estimate the decay rate �N

by using the optical Bloch equations of a three-level atom in
an EIT configuration. The population in the intermediate state
|e〉 of the stationary solution is given by [61]

Pe = �p

�e

4�2
p�p�e(

�2
c − 4�2

p

)2 + 4�2
p�

2
e

. (B1)

To calculate the population in |e〉 for N atoms, the right side
of Eq. (B1) has to be multiplied by N , and the detuning �p

has to be substituted by 2(NT − N )δ, which is the frequency
mismatch between the transition |gN 〉 ↔ |gN−1e〉 and the laser
field �p [see Eqs. (1) and (2)]. The formula for N atoms
involves two approximations. First, it neglects the small pop-
ulation in the Rydberg state. Second, it does not consider that
the transition |gN 〉 ↔ |gN−1e〉 has an energy different than that
of the transition |gN−1e〉 ↔ |gN−2e2〉, and therefore the col-
lective state cannot be expressed as the product of individual
atomic states. Nevertheless, the formula reproduces the same
tendency as the numerical simulations with the multiatom
Hamiltonian of Eq. (5), as we can see in Fig. 2. Although only
the numerical simulations with the multiatom Hamiltonian are
precise, the approximate formula provides better understand-
ing of the EIT origin of �N as a function of N .
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