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Vortex streets and honeycomb structures in photodetachment driven
by linearly polarized few-cycle laser pulses
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Generation of electron vortices in photodetachment driven by linearly polarized laser pulses is demonstrated,
both within the strong-field approximation and by numerically solving the time-dependent Schrödinger equation.
The sensitivity of the resulting vortex patterns in the momentum distributions of photoelectrons to the laser pulse
parameters (including the pulse duration, its intensity, and the carrier-envelope phase) is analyzed. It is shown
that, for a nonzero carrier-envelope phase of the driving pulse, vortex structures in the probability amplitude of
detachment occur, similar to von Kármán vortex streets in fluid mechanics. In addition, hexagonal regions of
high probability (honeycomb patterns) are observed, with vortex-antivortex pairs located at their vertices.
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I. INTRODUCTION

Vortex formation is a common phenomenon [1]. Its in-
vestigations in physics (mostly in aero- and hydrodynamics)
were initiated by von Helmholtz [2] and Thomson [3]. In
quantum mechanics this concept was studied mainly in the
context of superfluidity and superconductivity [4,5]. However,
in recent years the topic has become very popular also in
other branches of fundamental and applied physics. The corre-
sponding achievements have been described recently in many
review articles and books (see, e.g., [6–13] and references
therein).

Typically, vortexlike motion is stimulated by forces that
have helical structure. For instance, large-scale vortices in
the atmosphere (such as tropical cyclones) are generated by
the presence of the Coriolis force. In quantum mechanics,
for instance, vortexlike motion of probability fluid has been
mostly investigated either in magnetic fields [10,14–24] (as
the magnetic component of the Lorentz force has a form
similar to the Coriolis one) or in circularly polarized laser
pulses [25,26]. However, it is well known that vortices can be
created by disturbances that do not possess helical structures.
A good example is the von Kármán vortex street (see, e.g.,
[27]) generated in air behind an obstacle, or in water by a
paddle moving back and forth in a quasiperiodic motion. Such
vortex streets were also predicted in a Bose-Einstein con-
densate while being caused by an obstacle potential moving
at a constant velocity [28–30]. In light of these examples
the following question arises: Can vortices caused by linear
disturbances also be generated within quantum Schrödinger
theory? This is a valid question, as the latter can be formu-
lated in terms of hydrodynamical equations for the flow of
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probability fluid [31,32]. In the current paper, we provide the
answer to this question while considering photodetachment of
H− ions by linearly polarized laser pulses.

In quantum mechanics, vortex electrons carry orbital angu-
lar momentum (OAM) along the axis of propagation [6–13].
They can be generated, for instance, in ionization or detach-
ment driven by circularly polarized laser pulses [25,26], in
which case the OAM is transferred from laser photons to
electrons. Another physical mechanism of generating vortex
electrons, involving ionization by a linearly polarized laser
field instead, was investigated in [33]. In this case, however,
the electron vorticity depends entirely on the initial electron
state and orientation of the target, not on the laser field. This
is in contrast to the analysis presented in our paper, where
detachment of an s-electron by a linearly polarized laser field
leads to the formation of vortex-antivortex pairs and the von
Kármán vortex streets.

In light of our paper, it is important to mention the
work of Larionov et al. [34], where ionization of a two-
dimensional hydrogen atom by a few-cycle, flat-top laser
pulse was considered. Their treatment, based on perturbation
methods and the solution of the time-dependent Schrödinger
equation (TDSE), demonstrated that linearly polarized pulses
can, in fact, create electron vortices. However, their analy-
sis was limited to studying the magnitude of the probability
amplitude of ionization. In contrast, our derivations here are
based on the strong-field approximation (SFA) [35–37] for
photodetachment, and both the magnitude and the phase of
the corresponding probability amplitude are determined. This
is necessary to discriminate between vortices and antivortices
unmistakably. In addition, we focus here on the influence
of laser pulse parameters on the resulting vortex structures
in photodetachment. Similarly to Ref. [34], we compare our
results with the numerical solution of the TDSE.

As was already described in Ref. [34], the formation of
quantum vortices is closely related to destructive interference
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effects, since it is necessary that the wave function vanishes
at well-defined regions in space for vortices to be present.
This is in contrast to fluid mechanics, where the fluid density
is always nonzero. We note that the relationship between
quantum vortices and destructive interferences was initially
studied by Dirac [38] and further developed by Hirschfelder
et al. [39] (for more information, see, e.g., Ref. [40]). Other
modern descriptions of vorticity and interferences driven by
linear disturbances, based on the Hamilton-Jakobi formalism,
can be found in Refs. [41–43].

This paper is organized as follows. In Sec. II, we de-
scribe the main properties of vortex structures arising from
the hydrodynamical formulation of quantum mechanics. Such
properties are generalized to an arbitrary three-dimensional
parametric space in Sec. III. This allows us to analyze the vor-
tex structures in the momentum distribution of photoelectrons.
In Sec. IV, we introduce the SFA framework of photodetach-
ment, and we describe briefly the method of solving TDSE.
Our model of a laser pulse used in calculations is introduced
in Sec. IV B. Section V contains our numerical results. In
Sec. V A, we explore the influence of the carrier-envelope
phase of the laser pulse on the momentum distribution of
photoelectrons and on the formation of vortex structures.
The sensitivity of our results to the pulse duration and its
intensity are analyzed in Secs. V B and V C, respectively. In
Sec. V D we demonstrate how vortices and antivortices in the
momentum distributions of photoelectrons may be created (or
annihilated). Finally, we present our conclusions and perspec-
tives in Sec. VI.

Unless otherwise stated, we use atomic units (a.u.) for
which h̄ = 1. However, in our derivations we present the
electron charge (e < 0) and mass (me) explicitly. Some of our
numerical illustrations are shown in terms of the atomic unit of
momentum, p0 = αmec, and the atomic unit of electric field,
Eat = me(αc)2/(a0|e|). Here α is the fine-structure constant,
c represents the speed of light (in atomic units c = 1/α), and
a0 = 1/(αmec) is the Bohr radius.

II. QUANTUM VORTICES

Quantum vortices arise in the hydrodynamical formulation
of quantum mechanics, which is due to Madelung [31]. They
are associated with the notion of probability fluid, which is
described by the density and velocity distributions, ρ(r, t )
and v(r, t ), respectively. For electrons (of mass me) these
distributions are defined by the wave function ψ (r, t ),

ρ(r, t ) = |ψ (r, t )|2,

ρ(r, t )v(r, t ) = 1

me
Re (ψ∗(r, t )[−ih̄∇]ψ (r, t )), (1)

and they satisfy the hydrodynamical equations [32,44],

∂tρ(r, t ) + ∇ · [ρ(r, t )v(r, t )] = 0,

∂tv(r, t ) + [v(r, t ) · ∇]v(r, t ) = −∇V (r, t )

me
+ f Q(r, t ).

(2)

Here, V (r, t ) is an external potential whereas f Q(r, t ) is the
so-called internal quantum force per unit mass,

f Q(r, t ) = h̄2

2m2
e

∇
[

1√
ρ(r, t )

∇2
√

ρ(r, t )

]
. (3)

Up to now we have kept the Planck constant, so one can see
that the force (3) has purely quantum character and vanishes
in the limit h̄ → 0. Hereafter, we set h̄ = 1.

The velocity distribution is directly related to the phase of
the wave function, S(r, t ) = arg[ψ (r, t )] modulo 2π ,

v(r, t ) = 1

me
∇S(r, t ). (4)

However, the phase S(r, t ) is not uniquely defined at the point
r where the wave function is zero. Note that a vanishing
complex wave function results in two separate conditions,
Reψ (r, t ) = 0 and Imψ (r, t ) = 0, each of them defining a
two-dimensional surface in the configuration space. Their in-
tersection can be a surface, a line, or an isolated point. The
latter is rather exceptional and we do not encounter such a
case in our calculations. When traversing a nodal surface,
both the real and imaginary parts of ψ (r, t ) change their sign,
which means that the phase of the wave function jumps at the
nodal surface by π . Another situation is met at nodal lines (the
formation of nodal lines or surfaces and their mapping into
different planes are illustrated in Appendix for a particular
hydrogen bound-state wave function). Let us consider a closed
contour C that encircles such line. If the line has a vortex
character, the phase of the wave function changes from 0 to
2π along the contour C such that the quantization condition
holds,

me

∫
C

v(r, t ) · dr = 2πm, m = ±1,±2, . . . , (5)

with m called the winding number or the topological charge.
It is important to stress that this feature and the resulting
condition (5) are valid even when the contour C approaches
the vortex line. In this case, the velocity (4) becomes infinite
in order to satisfy Eq. (5). This happens because the phase of
the wave function S(r, t ) is singular at vortex points.

In addition, we note that Eq. (5) was determined by Dirac
while analyzing the wave function of a charged particle in
the presence of electromagnetic fields, close to the nodal
points [38]. Most importantly, the vortexlike character of
those points can be unambiguously determined only by an-
alyzing the phase of the wave function describing the system.
In the next section, we will generalize this description to an ar-
bitrary complex function. This will allow us to analyze vortex
structures in the probability amplitude of photodetachment in
Sec. V.

III. GENERALIZATIONS

Let us consider a complex function A(p) that depends on a
vector parameter p. Following the ideas developed originally
by Berry [45] (see also Refs. [46–48]), we define the Berry
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connection for the phase factor A(p)/|A(p)|,

v(p) =Re (A∗(p)[−i∇p]A(p))

|A(p)|2

=A∗(p)

|A(p)| [−i∇p]
A(p)

|A(p)| = ∇p(arg[A(p)]), (6)

where ∇p denotes gradient in the parametric space. This
vector-valued function is the analog of the velocity distribu-
tion (4) and can be viewed, in light of the Bohm trajectories
(see, e.g., Ref. [49]), as an analog of the ratio of momentum
to the corresponding mass associated with the function A(p)
defined in an abstract space of parameters p. That is why we
use the same notation, but we distinguish (4) and (6) by their
arguments. Similar to the configuration space (see Sec. II), we
define a vortex line in the parametric space. Namely, along
a vortex line, the function A(p) vanishes and, for any closed
contour C encircling it, the quantization condition holds,∫

C
v(p) · d p = 2πm, m = ±1,±2, . . . . (7)

Although the Berry connection (6) is gauge-dependent [it de-
pends on the local change of phase A(p) → ei�(p)A(p) with a
continuous function �(p)], the winding number m in (7) and
the position of the vortex lines are gauge-invariant. Note that
one can define the Berry connection directly for the function
A(p). In this case, it represents the analog of the momentum
density (or probability current) distribution.

To further investigate the vortices of A(p), we shall use
the concept of the Poincaré section, which in our case is,
in principle, an arbitrary plane in the parametric space. We
note that such a concept is commonly used in the analysis
of quasiperiodic and/or chaotic motion in the classical me-
chanics [50,51]. However, we extend its definition to interpret
our numerical results of phase and modulus of the function
A(p). In doing so, we define a flat two-dimensional section
(in the three-dimensional space), where the local properties
of this function can be analyzed. This is in contrast to a
two-dimensional projection, where local details are blurred
due to averaging over the third dimension. Our Poincaré plane
is characterized by a unit vector N perpendicular to it, and by
a real number d (|d| represents its distance to the origin of
coordinate system). Thus, the equation defining the Poincaré
section has the form

N · p = d. (8)

In addition, we introduce two unit vectors, e1 and e2, that
are perpendicular to N and together form the right-handed
system of vectors, such that N = e1 × e2. Then the plane can
be defined parametrically as p(u, v) = p0 + ue1 + ve2, where
p0 determines a specific point on the plane and (u, v) are arbi-
trary real parameters. In this Poincaré section, while the vortex
lines are represented as isolated points, the nodal surfaces are
mapped into lines. It may also happen that a 3D vortex line
(or parts of it) belongs to the Poincaré section. In such a case,
the discrimination between a vortex line and a nodal surface
is (in principle) not possible, unless another Poincaré section
is chosen (see Appendix). In doing so, the vortex line appears
now as an isolated nodal point for which the phase of A(p)
adopts all possible values, modulo 2π , around it.

Let p0 define the position of the vortex in the parametric
space. Then the contour C can be chosen as a circle of ra-
dius pr such that p(ϕ) = p0 + pr (cos ϕe1 + sin ϕe2) ∈ C for
ϕ ∈ [0, 2π ]. With this choice the circulation around the vortex
point p0 is equal to∫ 2π

0
prv‖(ϕ)dϕ = 2πm(pr ), (9)

where

v‖(ϕ) = v(p(ϕ)) · (− sin ϕe1 + cos ϕe2), (10)

and the integer function m(pr ) indicates how many vortices
(together with their multiplicities) are surrounded by the con-
tour C.

In closing this section, let us note that, from a mathematical
point of view, the concept of vorticity can be introduced for
any complex function of two or three variables. However,
not all such functions have physical relevance. Below we
investigate an example of a function that is related to physical
measurements.

IV. PHOTODETACHMENT

Until now our considerations have been general. In the
following, we shall apply them to investigate the formation of
quantum vortices in photodetachment from the atomic anion
H−.

A. Numerical methods

The theoretical analysis of photodetachment from nega-
tively charged ions offers certain advantages as compared
to photoionization from neutral atoms or positive ions. An
appropriate description of low-energy photoionization needs
to account for the temporal evolution of the electron in the
presence of both the laser field and the Coulomb poten-
tial. However, in photodetachment, when the emitted electron
evolves in the continuum, no interaction with a long-range
Coulomb potential is present and the SFA, in its original
formulation, is fully justified.

In essence, in the SFA, the exact electron scattering state
(which contains information about the interaction with the
binding potential and the light field) is approximated by a
laser-dressed electron plane wave (the Volkov solution [52]).
Such an approximation breaks the gauge invariance of the
theory, and, in general, the SFA leads to different predictions
when the velocity or length gauges are used. However, as was
noticed by Gribakin and Kuchiev [53] and corroborated in
Ref. [26], both gauges give the exact same results when, in
photodetachment, the unperturbed ground-state wave function
is modeled as the bound state of a zero-range potential. This
is the case analyzed in the present paper.

In the following, we shall analyze the photodetachment
from H− driven by a linearly polarized laser pulse of duration
Tp (see Sec. IV B). The probability amplitude of detachment
in the momentum space, A(p), under the scope of the SFA
(length gauge) is given by [26]

A(p) = ie
∫ Tp

0
dt E (t ) · �̃0(p − eA(t ))eiS(p,t ), (11)
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where

S(p, t ) =
[

p2

2me
− E0

]
t

− 1

me

∫ t

0
dt ′

[
eA(t ′) · p − e2A2(t ′)

2

]
, (12)

E0 is the ground-state energy of the anion, A(t ) is the vector
potential defining the laser pulse, whereas E (t ) = −∂t A(t ) is
the corresponding electric field. Here we have introduced the
function

�̃0(p) = i∇p�̃0(p), (13)

where �̃0(p) represents the Fourier transform of the unper-
turbed ground-state wave function, �0(r). In our calculations,
we chose the latter as the bound state of a zero-range potential
(s-symmetry) [26,53],

�0(r) = �s(r) = 1√
4πa0

A

r
e−κr/a0 . (14)

The constants κ and A are dimensionless and have been
set to A = 0.75 and κ = 0.2354. While κ is determined by
the ground-state energy E0 = −α2mec2κ2/2 = −0.754 eV
[26,53], the constant A is, in fact, a fitting parameter that
can be adjusted according to the results obtained by dif-
ferent approaches, for instance by solving the TDSE for a
model short-range binding potential. To calculate the prob-
ability amplitude A(p) in Eq. (11), we perform the integral
over time numerically, i.e., we calculate A(p) in the length
gauge. Although it can be derived also in the velocity gauge,
the numerical results arising from both formulations are
identical [26].

For the numerical solution of the TDSE, the wave function
describing the electron dynamics is calculated at every time
step of its evolution. By using the single-active electron ap-
proximation and by considering only the velocity gauge (we
have checked that our TDSE results are gauge-independent),
the full Hamiltonian describing the system is given by

H (t ) = − ∇2

2me
+ V (r) + i

e

me
A(t ) · ∇, (15)

where V (r) = V (r) is modeled by the spherically symmetric
Yukawa potential,

V (r) = −1.1αc
e−r/a0

r
. (16)

The parameters in (16) have been adjusted such that the
ground-state energy is consistent with that arising in the SFA.
For our calculations, the electron wave function is expanded
using spherical harmonics,

ψ (r, t ) = 1

r

lmax∑
l=0

l∑
m=−l

ψlm(r, t )Ylm(r̂), (17)

where r̂ = r/r determines the polar and azimuthal angles in
the configuration space. The radial coordinate r is discretized
by the finite-difference method with a maximum grid point
rmax. The Crank-Nicolson propagator is used to determine
the wave function evolution from the initial to the final state,

which is then projected onto the scattering state for the static
potential (16) to obtain the ionization momentum spectrum.
Hence, the probability amplitude of photodetachment, under
the scope of the TDSE, can be expressed as follows [54]:

A(p) = 2π

p

lmax∑
l=0

l∑
m=−l

(−i)l eiδlYlm( p̂)

×
∫ rmax

0
dr ψlm(r, t f )rRpl (r), (18)

where p̂ = p/p determines the polar and azimuthal angles in
momentum space, δl is the phase shift, and Rpl stands for
radial part of the scattering state. According to these defini-
tions, for both the SFA and TDSE, the total photodetachment
probability is equal to

Ptot =
∫

d3 p

(2π )3
|A(p)|2 =

∫
d3 p

(2π p0)3

∣∣p3/2
0 A(p)

∣∣2
, (19)

where p0 is the atomic unit of momentum and p3/2
0 A(p)

defines the dimensionless momentum distribution or the prob-
ability amplitude in atomic units.

To guarantee the convergence of our results from the nu-
merical solution of the TDSE, we have chosen a spatial grid in
radial coordinates with rmax = 1120 a.u. and grid spacing δr =
0.01 a.u. (namely 1.12 × 105 points are used); the maximum
azimuthal number in the decomposition (17) is lmax = 50. The
time step for the temporal evolution is δt = 0.01 a.u. Such
parameters are used in all our TDSE simulations to obtain
convergent results.

B. Laser pulse

For our numerical illustrations, we choose a three-cycle
(Nosc = 3), linearly polarized laser pulse with a sine-squared
envelope. The propagation and polarization directions coin-
cide with the ez and ex axis, respectively. The electric field
defining such a pulse is given by

E (φ) = F (φ)ex, (20)

where

F (φ) = E0 sin2
(φ

2

)
sin(Noscφ + χ ) (21)

for φ ∈ [0, 2π ] and 0 outside this interval. Here, φ = ωt is
the phase of the laser field, ω = 2π/Tp, whereas Tp is the
pulse duration. Additionally, χ represents the carrier-envelope
phase (CEP), E0 = Eat

√
I/I0 is the amplitude of field oscil-

lations with I being the maximum temporal intensity of the
pulse, whereas I0 = 7.02 × 1016 W/cm2 is the atomic unit of
intensity. The vector potential associated with this light field
is given by

A(φ) = f (φ)ex, (22)

where

f (φ) = − 1

ω

∫ φ

0
dφ′ F (φ′). (23)

To estimate approximately the strength of the field-ion in-
teraction, we introduce here the so-called Keldysh parameter
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FIG. 1. The vector potential (upper panel) and the electric field
(lower panel) as functions of the phase φ for the pulse defined by
(21). Here, we set Nosc = 3, I = 5 × 1011 W/cm2, and λ = 4000 nm.
While the solid blue line relates to χ = 0, the dashed red curve is for
χ = π/2.

[35] γ = √|E0|/2Up, where Up = e2E2
0 /(4meω

2
L) is the max-

imum ponderomotive energy of the electron in the laser field,
and ωL = Noscω is the laser carrier frequency. The Keldysh
parameter will be calculated for the field intensities and fre-
quencies used in this paper.

In Fig. 1 we show the evolution of the x-components of
the vector potential multiplied by the electron charge, eAx(φ)
[Eq. (23), upper panel], and electric field, eEx(φ) [Eq. (21),
lower panel], as functions of the phase φ, for the laser pulse
described above. We choose the wavelength λ = 4000 nm and
the peak intensity I = 5 × 1011 W/cm2. While the solid blue
lines relate to a zero CEP (χ = 0), the dashed red lines are
for χ = π/2. Note that, for the light fields considered here,
both the electric field and the vector potential vanish at φ � 0
and φ � 2π . Since our laser pulses are axially symmetric, the
photodetachment amplitude will depend only on two compo-
nents of momentum: parallel p‖ = px and perpendicular p⊥
to the polarization axis. Moreover, the nodal surfaces of the
probability amplitude are also axially symmetric, and vortex
lines appear as circles with centers located along the ex axis.
Due to this symmetry, we can choose the Poincaré section
as the xz-plane. In doing so, the nodal surfaces are seen as
symmetric lines with respect to the polarization axis, and
vortex lines appear as two single points located at (px,±pz ).
If for the vortex point (px, pz ) the topological charge is m,
then for its twin point (px,−pz ) it has to be −m, as both of
them belong to the same closed vortex line.

V. NUMERICAL ANALYSIS

To analyze the formation of vortices in photodetachment,
we present the magnitude and the phase of the probability
amplitude, A(p), for the driving field described above. Our
results have been obtained within the SFA theory [Eq. (11)]

FIG. 2. Color mappings of the magnitude of the dimensionless
probability amplitude of detachment |p3/2

0 A(p)|ν (where p0 = αmec
is the atomic unit of momentum and ν = 0.5 has been chosen for vi-
sual purposes), and its phase arg [A(p)] for a three-cycle laser pulse
of wavelength λ = 4000 nm, peak intensity I = 5 × 1011 W/cm2,
with CEP of either χ = 0 (left panels) or χ = π/2 (right panels).
The strength of field oscillations is E0 = 2.7 × 10−3 a.u. and the
Keldysh parameter is γ ≈ 1.0. While the upper part of this figure
corresponds to the SFA results [Eq. (11)], the lower part corresponds
to the TDSE results [Eq. (18)]. The Poincaré section coincides with
the px pz-plane, i.e., we set py = 0.

as well as from solving the TDSE [Eq. (18)]. The objective
here is to investigate the role of the CEP, laser field intensity,
and pulse duration in the formation of vortex structures in the
resulting electron momentum distributions.

A. CEP effects

In the upper part of Fig. 2 (labeled as “SFA analysis”), we
show the results obtained from the SFA formalism [Eq. (11)].
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We present the magnitude of the probability amplitude of
detachment raised to the power ν = 0.5 (for visual purposes),
|p3/2

0 A(p)|ν , and its phase, arg [A(p)]. The Poincaré section
coincides with the px pz-plane (i.e., we set py = 0). The pa-
rameters of the driving laser field have been introduced in
Sec. IV B. While the CEP in the left panels is zero, in the
right panels it is π/2. From the upper left panel we see
that, for χ = 0, no isolated nodes are present in the Poincaré
section, meaning that only nodal surfaces exist in the 3D
momentum space. Furthermore, by inspecting the phase of
the probability amplitude (lower left panel, SFA analysis) we
conclude that no vortex structures are formed, as arg [A(p)]
jumps by π while crossing a nodal surface. From the upper
right panel of the SFA calculations (χ = π/2) we observe
the formation of a honeycomb-like structure in the momen-
tum distribution of photoelectrons; hexagonal zones of large
probability are surrounded by lines of low probability, with
nodes found at some of its vertices. By looking at the phase
(lower right panel, SFA analysis) one can see the presence of
actual vortex lines. The latter are identified as isolated nodes
in our Poincaré section, with the phase changing from 0 to
2π around them. In particular, at low photoelectron energies
(pr = √

p2
x + p2

z < 0.2αmec) vortices with topological charge
m > 0 and their antivortices (with topological charge −m) are
observed. However, at larger energies they merge together,
which leads to their mutual annihilation (as will be discussed
in Sec. V D).

Next, we compare the results obtained from the SFA and
the direct numerical solution of the TDSE. For this purpose,
in the lower part of Fig. 2 (labeled as “TDSE analysis”) we
present the results for the probability amplitude of detachment
calculated from the TDSE [Eq. (18)]. We find that the results
from both treatments agree well with each other. Nevertheless,
there are certain differences that stand out. For instance, for
a vanishing carrier-envelope phase (χ = 0) the SFA predicts
the formation of well-defined nonvortex nodal surfaces across
the whole range of momentum considered here. However, the
TDSE shows a not so well-defined series of lines located at
very similar positions in the Poincaré section (see the left
panels of Fig. 2). This may be caused by the rescattering
effects present in the TDSE. For χ = π/2, the TDSE predicts
the formation of the same honeycomb patterns analyzed above
with vortices and antivortices located at some of the corners
of the hexagonal patterns (see the right panels of Fig. 2). Note
that now the symmetry px → −px is broken, which again
can be attributed to the rescattering effects. Despite these
differences, the overall agreement between TDSE and SFA
is very good.

As has already been discussed in Ref. [34], the origin
of nodal surfaces and vortex lines is due to the interference
of probability amplitudes leading to the same final state of
a given momentum, but by different intermediate states (in
fact, this is the common interpretation of vortex structures
observed not only in quantum physics, but also in classical
electrodynamics and optics [11]). As such, the interference
pattern is very sensitive to changes of external forces. For
χ = 0, in the SFA we observe only nodal surfaces. As we have
checked, this happens because some of the nodal surfaces of
the real and imaginary parts of A(p) coincide. These par-
ticular nodal surfaces are gauge-invariant, as their positions

FIG. 3. The same as in the upper part of Fig. 2 (SFA analysis)
but for a 13-cycle laser pulse. Again, the field strength is E0 = 2.7 ×
10−3 a.u. and the Keldysh parameter is γ ≈ 1.0.

and shapes are independent of a momentum-dependent phase
factor that multiplies the amplitude (the same concerns the
vortex lines). The presence of a nodal surface of the complex
amplitude is exceptional. Namely, with small changes of the
laser pulse parameters, the real and imaginary nodal surfaces
change their shapes, and instead of common surfaces, we
either obtain vortex lines at their intersections, or the zeros
of probability amplitude completely disappear. In particular,
the change of CEP can lead to such effects. Our numerical
analysis shows that the vortex lines emerge for all CEP except
0 and π . On the other hand, for a shorter pulse of Nosc = 2,
the gauge-invariant nodal surfaces also exist only for χ = 0 or
π . For all other values of CEP, the amplitude A(p) does not
exhibit any zeros. This raises another question: Do vortices
exist for longer pulses? This problem is considered in the next
section.

B. Pulse duration (Nosc) effects

Up to now, we have seen that the CEP plays a fundamental
role in the control of vortex structures in photodetachment
driven by short laser pulses. However, it would be interesting
to explore the effect of pulse duration as well. As both the SFA
and the TDSE lead to very similar results, in the following we
shall only present the numerical calculations based on the SFA
[i.e., the probability amplitude of detachment is obtained from
Eq. (11)]. In Fig. 3, we show the magnitude of the probability
amplitude, raised to the power ν = 0.5, and its phase for the
laser pulse (21) comprised of Nosc = 13 oscillations. The laser
peak intensity and wavelength are still the same (namely, I =
5 × 1011 W/cm2 and λ = 4000 nm, respectively). We also
choose the same Poincaré section (px pz-plane). Our results
are presented for χ = 0 (left panels) and χ = π/2 (right
panels). For χ = 0, we observe the presence of multiple nodal
surfaces (lines of zero probability along our chosen plane) and
no nodal lines (no isolated points of vanishing probability).
From the amplitude’s phase (lower-left panel), we conclude
that no vortices are formed when the CEP vanishes. However,
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for χ = π/2 both nodal surfaces and nodal lines are present
(upper-right panel) and new pairs of vortices and antivortices
are created (lower-right panel). Note, however, that the color
maps shown in the left and right panels of Fig. 3 are rather
similar. This supports the commonly accepted assumption
that, for long pulses, the CEP does not play a significant role in
the ionization or detachment dynamics. Nevertheless, we ob-
serve densely distributed vortices in our numerical results for
χ = π/2. In fact, had our figures had a smaller resolution, the
vortex lines would not have been distinguished from simple
nonvortex nodal lines. For this reason it would be difficult (if
not impossible) to observe the differences created by a CEP in
experimental setups. This is another example that shows that
for very short pulses some seemingly hidden properties of the
ionization distributions can be displayed or revealed in a more
transparent form.

Ultrashort laser pulses (few cycles) are characterized by
a very broad frequency spectrum. Therefore, it becomes
questionable to ascribe a definite number of photons to the
detachment process for small Nosc. Nevertheless, for a pulse
comprising 13 cycles within the sin2 envelope, one can ap-
proximate the number of photons necessary to detach the
electron. For the laser field considered in this section (Nosc =
13 and λ = 4000 nm), we assume that each light quanta has
an energy ωL ≈ 0.31 eV. For the ionic target H− the electron
affinity is |E0| = 0.754 eV, hence at least three photons are
necessary to promote the outermost electron to the continuum.
This is in contrast to the analysis developed in Ref. [34],
where it is assumed that the carrier frequency of the driving
field is larger than the absolute value of the binding energy.

C. Intensity effects

We consider the photodetachment from H− by a laser
pulse that is ten times more intense as compared to the one
shown in Fig. 1. Namely, we set now the peak intensity
I = 5 × 1012 W/cm2 while keeping the same number of field
oscillations (Nosc = 3) and wavelength (λ = 4000 nm). The
magnitude (raised to the power ν = 0.5) and phase of the
probability amplitude of detachment, A(p) [Eq. (11)], are
shown in the upper and lower panels of Fig. 4, respectively.
The Poincaré section is the px pz-plane, and we present our
simulations for the CEPs: χ = 0 (left panels) and χ = π/2
(right panels). While for χ = 0 only nodal surfaces appear in
the momentum distribution, for χ = π/2 a rich combination
of nodal surfaces and nodal lines can be observed. Further-
more, in the latter case, the probability distribution exhibits
a characteristic honeycomb pattern (upper-right panel) with
vortices at the corners of each hexagon (lower-right panel).
In comparison to the case shown in the right panels of Fig. 2
(SFA analysis), obtained at a lower field intensity, the hexag-
onal regions of large probability are now denser and better
defined, whereas vortices are observed at larger photoelectron
energies. In fact, as will be shown in the next section, pairs
of vortices and antivortices are observed in this probability
distribution.

D. Vortex-antivortex creation and/or annihilation

To analyze the formation or annihilation of vortices, in
Fig. 5 we present the same as in Fig. 4 but this time the

FIG. 4. The same as in the upper part of Fig. 2 (SFA analysis) but
for the laser pulse peak intensity I = 5 × 1012 W/cm2. The magni-
tude of the probability amplitude (upper panels) is raised to the power
ν = 0.5. Now, the strength of field oscillations is E0 = 8.4 × 10−3

a.u. and the Keldysh parameter is γ ≈ 0.32.

Poincaré section (px pz-plane) is defined in polar coordinates
(px = pr cos ϕ and pz = pr sin ϕ). Our results here are shown
for a more narrow range of momenta pr and polar angles
ϕ as compared to Fig. 4, such that the fine details can be
observed. It can be seen that, for χ = 0, the phase of the prob-
ability amplitude jumps by π while crossing a nodal surface
(lower-left panel of Fig. 5). For χ = π/2, such a nodal surface
(visualized as a line in our Poincaré section) splits into the

FIG. 5. The same as in Fig. 4 but for a Poincaré section (px pz-
plane) in polar coordinates (see the text). The magnitude of the
probability amplitude (upper panels) is raised to the power ν = 0.5.
For χ = π/2 the nodal surface splits into the von Kármán street
of vortices and antivortices. With increasing the radial momentum
pr , vortices and antivortices approach each other, leading to their
annihilation. Hence, for sufficiently large energies of photoelectrons
no vortex structures are observed.
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von Kármán street of vortices and antivortices. The separation
between them decreases with increasing pr = √

p2
x + p2

z . The
behavior of the phase around them (see the lower-right panel
of Fig. 5) indicates that the pair of vortices rotates in opposite
directions, i.e., they are characterized by opposite winding
numbers m = ±1. Moreover, for sufficiently large momentum
they annihilate each other and the vortex structure disappears.
The annihilation process is represented by the connection of
vertical green (light gray) ribbons, as shown in the lower-right
panel of Fig. 5. In this context, it can be said that vortices and
antivortices behave somehow as particle-antiparticle pairs,
with the topological charge taking the place of the electric
charge. Namely, when they encounter each other, mutual an-
nihilation leads to the disappearance of vorticity.

VI. CONCLUSIONS

We have analyzed the formation of vortex structures in
photodetachment of the H− anion driven by linearly polarized
laser pulses. According to our numerical simulations, zero
CEPs (modulo π ) lead to momentum distributions character-
ized by multiple nodal surfaces and no vortices in the SFA.
In contrast, for nonvanishing CEPs, both nodal surfaces and
vortex lines are present, leading to von Kármán-type streets
of vortices. Furthermore, for χ = π/2 the spectra of photo-
electrons exhibit hexagonal zones of high probability. Those
zones form a honeycomb structure with pairs of vortices and
antivortices located at the corners of the hexagons. Such pairs
annihilate each other at large photoelectron energies. Even
though our theoretical analysis predicts the formation of vor-
tices for long driving pulses, we do not expect them to be
easily seen in realistic experimental setups. This is due to the
finite resolution inherent to them. One can also anticipate from
our investigations that the favorite conditions for observing
vortex structures (such as von Kármán streets or honeycomb
patterns) are met for few-cycle pulses, at least for the sym-
metric envelopes considered here. One can expect that these
vortex structures can significantly be changed if asymmetric
envelopes or bichromatic pulses are applied. Investigation of
such possibilities is, however, beyond the scope of the present
paper.

In conclusion, we have shown that linearly polarized pulses
can generate vortical structures in photodetachment. An active
control of the CEP can be used to modify the vortex struc-
tures of the resulting photoelectron momentum distributions.
Consequently, as the probability distribution of photoelec-
trons in the momentum space is sensitive to the parameters
defining the light field, it could be possible to develop novel
diagnostic techniques. In principle, one could determine the
carrier-envelope phase and intensity of the laser pulse by
inspecting the location of vortices in a given Poincaré section.
This is provided that the driving pulse is sufficiently short.
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APPENDIX: NODAL SURFACES AND VORTEX LINES

To illustrate the formation of nodal surfaces and vortex
lines, we take as an example the bound state of a hydro-
gen atom in spherical coordinates. Namely, we choose the
wave function corresponding to the principal quantum number
n = 4, angular number � = 2, and magnetic quantum number
m = 1. In this case, the wave function (up to the normalization
constant) equals

ψ421(x, y, z) =
(

r

a0

)2( r

a0
− 12

)
e−r/4a0 cos θ sin θeiϕ

=
(

r

a0
− 12

)
z(x + iy)

a2
0

e−r/4a0 , (A1)

where r =
√

x2 + y2 + z2. The bound state (A1) has two
nodal surfaces: a plane located at z = 0 and a spherical sur-
face of radius r = 12a0 centered at the coordinates origin.
Additionally, there is a vortex line with topological charge
m = 1 located at x = y = 0. This is shown in Fig. 6, where
we present the magnitude (left column) and phase (right col-
umn) of ψ421(x, y, z) for the Poincaré planes y = 0 (upper
row), z = 3a0 (middle row), and z = 13a0 (lower row). In the
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upper left panel, we observe the spherical nodal surface as an
annular region of zero probability; the nodal plane appears
as a horizontal line located at z = 0 while the vortex line,
which lies in this section, can be identified as the vertical
line (x = 0). From the upper right panel we see that, by
traversing the nodal surfaces or the vortex line (topological
charge m = 1), the phase of the wave function changes by π .
It is clear that this choice of a Poincaré section does not allow
us to distinguish between nodes and vortices. For this reason,
we use now the Poincaré plane z = 3a0 (middle row of the
same figure). As expected, the nodal sphere is now seen as
a ring of radius

√
135a0 ≈ 11.6a0 and the phase of the wave

function changes by π while crossing it. This time, the vortex
line intersects our section at x = y = 0 and appears as a point
of zero probability at the origin of coordinates; the phase of
the wave function changes continuously from 0 to 2π around
it. Moreover, as z = 3a0 > 0, the nodal plane is not visible.

Finally, for the Poincaré section z = 13a0 (lower row) we only
observe the presence of the vortex line as z > 12a0, i.e., the
plane is located at a distance from the origin of coordinates
larger than the radius of the nodal sphere. Note that a very
similar pattern is observed in the momentum space, as the
wave function is proportional to

ψ̃421(p) = (4p/p0)2 − 1

[(4p/p0)2 + 1]5

pz(px + ipy)

p2
0

, (A2)

where p =
√

p2
x + p2

y + p2
z .

In conclusion, we have shown here that nodal surfaces and
lines are mapped into lines or points of zero probability in a
given Poincaré section. We also highlighted the importance
of a properly chosen Poincaré plane in order to distinguish
between nodes and vortices.
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