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Based on the multiconfiguration Dirac-Hartree-Fock method, the accurate line strengths, transition rates,
branching ratio, branching fraction, and lifetime of the 2p33s 5S◦

2 metastable state of neutral oxygen atom (O
I), together with the uncertainties evaluated from the residual electron correlation effects, are determined by
taking into account the effects of core-core, core-valence, and valence correlations, the Breit interaction, and
QED effect. It is shown that the core correlation effect has a certain influence if the separation between 3S◦ and
5S◦ in the p3s configuration is accurately calculated. It is found that the calculations of branching ratio of 5S◦

2

remain stable in different electron correlation models. We infer that it is a peculiar intrinsic property leading to
results useful for plasma diagnostics and other applications. The transition rates from 5S◦

2 change considerably as
a result of the Breit interaction, because the line strengths of 3P2–5S◦

2 (λ135.560 nm) and 3P1–5S◦
2 (λ135.851 nm)

are different in sensitivity to this effect. This affects the calculations of the branching ratio and lifetime. There
exist large discrepancies among several calculations of lifetimes, such as the MCHF calculation by [C. Froese
Fischer and G. Tachiev, At. Data Nucl. Data Tables 87, 1 (2004)]. The main reasons are ascribed to the neglected
electron correlation and relativistic effects. In addition, by checking different calculations with various sets of
multireference configurations, we find that the calculations of the electric dipole matrix elements for 5S◦

2 in the
length gauge are much more sensitive to electron correlation effects than in the velocity gauge. This may also
lead to some errors in the calculations of the lifetime of 5S◦

2 in the length gauge.

DOI: 10.1103/PhysRevA.102.042824

I. INTRODUCTION

The electronically excited states of atoms and molecules
for which the electric dipole matrix element for transitions to
all lower states is zero or very small are known as metastable
states [1]. An example is the 5S◦

2 level in the p3s configura-
tion. The atomic data for 5S◦

2 in the carbonlike isoelectronic
sequence are often used to diagnose the astrophysical plasma
[2,3]. The radiative decay rates from 5S◦

2 in C I were eval-
uated by Haris and Kramida through comparison of some
experimental data with theoretical and semiempirical results
[3]. Rubin et al. also adopted the rates from 5S◦

2 in N II to
estimate the electron density and temperature of the Orion
nebula using the Goddard high-resolution spectrograph and
the faint object spectrograph on the Hubble space telescope
[2]. These motivate us to evaluate whether the 5S◦

2 level of O I

has the properties that are similar to those of C I or N II.
Many celestial bodies in the universe are rich in oxygen.

From 2015 to 2020, the atomic data of 5S◦
2 in O I were

widely applied in the determination of the ionospheric prop-
erties of atmosphere and astrophysical diagnosis [4–9]. For
example, the atomic data for remote sensing at 135.6 nm
with the radiative channel 2p4 3P2–2p33s 5S◦

2 in the night time
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ionosphere were used to estimate the ionospheric electron
density by Qin et al. [5]. They adopted Meier’s calculated
data based on the gf values of Zeippen et al. [10,11]. The
line mentioned above is strongly correlated with the line at
130.4 nm arising from the transition 2p4 3P1–2p33s 3S◦

1 [12],
and their intensity ratio λ135.6/130.4 nm varies due to some
differences in the atmospheric composition, for example, be-
tween Ganymede’s leading and trailing hemispheres [13]. The
ratio λ135.6/130.4 nm was also used to determine the oxygen
content in gases; e.g., Feldman et al. suggested that the main
source of gas outbursts on the comet 67P is oxygen [14],
and Roth et al. confirmed that the atmosphere of Europa is
dominated by O2 [15]. There exist some works about the
application of the 135.6-nm line, just reported in 2020, such
as the first synoptic observations of geomagnetic storm effects
[8] and the derivation of global O/N2 ratios [9].

For a complex n1 p3n2s (n1 � n2) configuration, the p-
p electron interaction produces three terms—(2P◦), (2D◦),
and (4S◦)—of a p3 configuration under good LS coupling
condition [16]. Six Rydberg series of levels with different
multiplicities and L values of the final LS terms are pro-
duced: n1 p3(2P◦)n2s 1P◦ and 3P◦, n1 p3(2D◦)n2s 1D◦ and 3D◦,
n1 p3(4S◦)n2s 3S◦ and 5S◦. Once n2 increases and is greater
than n1, the s-electron moves far from the core, so that the p-s
interaction decreases [16]. In this case, the Coulomb separa-
tion between (4S◦) 3S◦ and (4S◦) 5S◦ becomes much narrower.
For example, the separation is 108 342 cm−1 in the 2p32s
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(a.k.a. 2s2p3) configuration of N II, whereas it decreases to
3027 cm−1 in 2p33s of O I, with a change of approximately
36 times [17]. Thus, it is interesting to compare the splitting
between terms based on p3(4S◦) in different situations, which
can help researchers understand the physical laws of complex
atomic systems. For instance, it is necessary to know what
different schemes should be used in the calculations, when
the core correlation effect or relativistic effect is considered
or not. This information can be used to guide the actual high-
precision calculations.

The effect of electron correlations, including that of the in-
nermost 1s2 electrons, on the energies of the p3s configuration
is larger than for other configurations. Shen et al. presented
the example of the energies of 2p32s (or 2s2p3) in the N
II ions [18]. It was shown that the CC and CV correlation
effects change the excitation energy of the 2p3(4S◦)2s 3S◦

level of N II by approximately 1187 cm−1, which is almost
three times larger than the changes in the energies of other
configurations [18]. Whether the core correlation effect influ-
ences the energy of the p3s configuration in O I needs to be
determined.

The transition rates from the 5S◦
2 level in O I are very sen-

sitive to electron correlation effects and other corrections due
to their very small values of approximately 103 s−1 (similar
to that of 5S◦

2 in N II). Accurate calculation of the very small
transition matrix elements is quite challenging. Few studies
on the core correlation effect have been performed in the
past [11,19–23]. Shen et al. mentioned that the effects of CC
and CV correlation influence the rates from 5S◦

2 in N II with
different convergence speeds [24]. The influence of electron
correlations arising from the electrons in the deep subshells,
even on the energy levels of livermorium (nuclear charge Z =
116), is also obvious [25]. In addition, some important valence
correlations must be involved adequately. For example, Hib-
bert pointed out that the intercombination transitions from 5S◦

2
in N II are critically dependent on the accuracy of the mixing
between the upper 2s2p3 5S◦

2 level and the 2s2p3 3P◦
2 , 3D◦

2
levels, as well as 2s22p3s 3P◦

2 and 2s22p3d 3P◦
2 , all of which

allow a contribution to the dipole operator for transitions
to the ground-state levels [26]. Furthermore, the relativistic
correction in the low-frequency limit of the transverse photon
interaction, namely, the Breit interaction, also has a large
influence on the rates from 5S◦

2 in N II. This causes a large
effect in the corresponding calculations of the branching ratio
[24]. This influence is the second-most important for the rates
from 5S◦

2 in N II, following the electron correlation effect [24].
These findings require us to perform detailed studies on the
transition rates from 5S◦

2 in O I.
When diagnosing astrophysical media, researchers are very

interested in the radiative lifetime of 5S◦
2 in O I, because its

value is considerably large, 180 ± 5 μs [27,28]. A common
method of observation is the time-of-flight (TOF) technique,
which considers an atomic beam to be a diffuse gas source
with a known velocity distribution. Using this method, John-
son [29], Wells and Zipf [30], Nowak et al. [31], and Mason
[1] successively measured the lifetime of 5S◦

2. Wiese et al.
averaged their four lifetimes to obtain 180 ± 5 μs [27,28]
that can be recommended in the applications. For example,
using the values of branching ratio of 5S◦

2 [11], the transition

rates A(3P2–5S◦
2) and A(3P1–5S◦

2) could be derived from the
accurately known recommended lifetime [27].

It must be stressed that large discrepancies were met in
several theoretical calculations of lifetimes. In contrast to
two calculations with the reported lifetimes of about 200 μs
[20,21], Froese Fischer’s MCHF calculations in the length
gauge gave a value of approximately 560 μs, although her cal-
culations were repeated twice [22,23]. Garstang’s calculation
also yielded a value of nearly 600 μs [19]. However, a very
small value of 129 μs was reported by Zeippen et al. [11].
These large discrepancies, within the range of 129–591 μs,
may be ascribed to deficiencies in calculations, e.g., the core
correlation effect is rarely considered [11,19–23], the calcu-
lations of transition matrix elements present some differences
in the length and velocity gauges for extremely weak decays
[11,20], some neglected relativistic effects may affect the ac-
curacy of calculations (e.g., Breit interaction), etc. One of the
purposes of the present work is to investigate possible ways to
overcome these difficulties.

II. THEORETICAL METHOD AND
COMPUTATIONAL MODELS

A. Theoretical method

The atomic state wave functions (ASFs) can be gener-
ated using the MCDHF method [32,33]. The ASFs are linear
combinations of configuration state functions (CSFs) with the
same parity P and angular momentum J ,

�(�PJ ) =
nc∑

j=1

c j�(γ jPJ ), (1)

where nc is the number of CSFs. c j and γ j are, respectively,
the mixing coefficient and other appropriate labeling of the
CSFs built from products of one-electron Dirac orbitals. The
self-consistent field (SCF) method was employed to optimize
the radial parts of the Dirac orbitals and the expansion co-
efficients, and an extended optimal level (EOL) scheme was
further applied to obtain balanced energies for the studied
states. The Hamiltonian operator of the Breit interaction [34]
is given as

ĤBreit (i j) = − 1

2ri j

[
�αi · �α j + (�αi · �ri j )(�α j · �ri j )

r2
i j

]
, (2)

where αi is the Dirac matrix of the ith electron, and �ri j = �ri −
�r j denotes the distance between a pair of electrons i and j.
The quantum electrodynamics (QED) effects, including self-
energy and vacuum polarization, were included in subsequent
relativistic configuration interaction (RCI) calculations [32].

The electric dipole transition rate from an upper state u to
a lower one l can be written [35] as

A = 4

3
α

(Eu − El )3

h̄3c2

S

2Ju + 1
, (3)

where α and Eu − El (or ω) are, respectively, the fine struc-
ture constant and transition energy. h̄, c, and Ju represent the
Planck constant, speed of light, and the total angular momen-
tum of the upper level. S is the line strength, which can be
defined by the square of reduced nondiagonal matrix element
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TABLE I. The computational models including those of CASE-I, II, III, and the higher-order correlation. DHF, nSDV (n = 4, ..., 8), CV,
CC&CV, Breit, and QED, respectively, stand for the single configuration calculation, valence (V), core-valence (CV), combined CC and CV
(CC&CV), Breit interaction, and QED effect. The CASE-I is the main calculation for studying the physical properties. CASE-II and III are
used for estimations of the set of multireference configurations (SMC). TQ denotes triple and quadruple (TQ) substitutions. 4–44 173 show
the variation range of the number of CSFs from the DHF model to the 7SDV model.

Reference configurations Number of CSFs

Odd Even Models Active spaces J = 2(odd) J = 1(even) J = 2(even)

CASE-I (Main part for studying physical property)
{2s2 2p33s} {2s22p4} DHF n = 2 − 3, l = s − p 4 1 2

4SDV n = 2 − 4, l = s − f 3542 1267 1658
5SDV n = 2 − 5, l = s − g 10 931 3581 4901
6SDV n = 2 − 6, l = s − h 24 619 7631 10 817
7SDV n = 2 − 7, l = s − h 44 173 13 355 19 207
8SDV n = 2 − 8, l = s − h 69 593 20 753 30 071

{1s22s2 2p33s} {1s22s22p4} CV n = 1 − 8, l = s − h 173 916 49 814 71 814
{1s22s2 2p33s} {1s22s22p4} CC&CV, Breit n = 1 − 8, l = s − h 190 454 54 334 78 434
{1s22s2 2p33s} {1s22s22p4} QED n = 1 − 8, l = s − h 190 454 54 334 78 434

CASE-II (Estimation of SMC)
{2s2 2p33s} {2s22p4} DHF–nSDV n = 2 − 7, l = s − h 4 − 44 173 1 − 13 355 2 − 19 207
{1s22s2 2p33s, 1s22s22p33d} {1s22s22p4, 1s22s22p33p} CC&CV, Breit n = 1–7, l = s − h 488 154 214 617 309 315

CASE-III (Estimation of SMC)
{2s22p33s, 2s22p33d} {2s22p4, 2s22p33p} DHF–nSDV n = 2−7, l = s − i 14 − 166 866 10 − 71 914 11 − 104 655
{1s22s2 2p33s, 1s22s22p33d} {1s22s22p4, 1s22s22p33p} CC&CV, Breit n = 1 − 7, l = s − i 519 966 224 306 326 933

Higher-order correlation (Estimation of TQ)
{2s2 2p33s} {2s22p4} 4SDV n = 2 − 4, l = s − f 3542 1267 1658
{2s2 2p33s} {2s22p4} 4SDTQV n = 2 − 4, l = s − f 121 052 61 834 86 051

of the electromagnetic operator [36],

S = |〈�(�PJ )‖T ‖�(�′P′J ′)〉|2, (4)

where T is the transition operator [36]. Two forms of the
transition operator for electric dipole (E1) transitions are the
Babushkin and Coulomb gauges [37], which correspond to the
length (len) and velocity (vel) gauges in the nonrelativistic
limit [35]. Under these two gauges the line strength takes a
form [32,36,38],

Slen ≈
∣∣∣∣∣
〈
�(�PJ )

∥∥∥∥∥
N∑
i

ri

∥∥∥∥∥�(�′P′J ′)

〉∣∣∣∣∣
2

, (5)

in the length gauge and

Svel ≈ c4

ω2

∣∣∣∣∣
〈
�(�PJ )

∥∥∥∥∥
N∑
i

αi

∥∥∥∥∥�(�′P′J ′)

〉∣∣∣∣∣
2

, (6)

in the velocity gauge. N is the total number of electrons.
More accurate transition rates, which we refer to as ad-

justed transition rates Aadj, can be obtained by scaling the
calculated transition rates Acalc with the ratio of the observed
ωobs and calculated ωcalc transition energies to compensate for
some of the neglected correlation effects. The energy ratio is
denoted by r = ωobs

ωcalc
(or = λcalc

λobs
) where ωobs is cited from the

Atomic Spectra Database (ASD) of the National Institute of
Standards and Technology (NIST) [17]. Using it for the length
gauge, we have

Slen
(adj) = Slen

(calc) and Alen
(adj) = rmAlen

(calc), (7)

where m = 3 for E1 or M1 transitions and m=5 for E2 or M2
transitions [23]. For the velocity gauge [36], the case changes
to be

Svel
(adj) = 1

r2
Svel

(calc) and Avel
(adj) = rAvel

(calc). (8)

The impact for A, affected by this scaling correction, obvi-
ously is larger in the case of extremely small ω (or very large
λ) [39]. A biorthogonal transformation technique is needed
so that standard Racah algebra can be used for evaluating
transition matrix elements between states with different or-
thonormal orbital sets [40]. The GRASP2K package was used
for all the calculations [41].

B. Computational model

The computational procedures are summarized in Table I.
The reference configurations for the odd and even parity states
are taken as {2s2 2p33s} and {2s22p4}, respectively. The or-
bitals of these configurations are treated as occupied orbitals.
The CSFs were formed from all configurations that could be
obtained by single (S) and double (D) substitutions of the
occupied orbitals. The active sets for the odd and even parity
states were extended layer by layer so as to be able to mon-
itor the convergence, and systematically enlarged to include
orbitals with principal quantum numbers n = 2–8, and orbital
quantum numbers l = 0–5 (i.e., angular symmetries s, p, d, f,
g, h). Here, except for the occupied orbitals, others are treated
as correlation orbitals. For the SCF calculations, the 1s2 core
is kept closed, and the generated CSF expansions account for
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FIG. 1. The energy difference 	E (cm−1) of 2p4 and 2p33s in different correlation models. (a) The 	E (1D2–3P2) and 	E (3P1–3P2) in 2p4.
(b) 	E (3S◦

1–5S◦
2) in 2p33s. (c) Schematic illustration of the development of the separation between 3S◦ and 5S◦ in the p3s configuration, where

the p-p electron interaction produces three terms (2P◦), (2D◦), and (4S◦) of a p3 subconfiguration. Here, for the latter p3(4S◦), the p-s interaction
produces further separation between the final terms 3S◦ and 5S◦. The designation (2S1+1L◦)2S+1T◦ means that (2S1+1L◦) is the parent of the final
term 2S+1T◦ [16]. s-o denotes the small spin-orbit effect. δCV

δCC&CV
is the influence ratio of CV and CC&CV.

valence (V) correlation. We denote the computational model
above by nSDV. In the successive layer calculations, the wave
functions optimized in the previous layers were kept frozen,
and only the newly added ones were optimized.

The core-valence (CV) and core-core (CC) correlation ef-
fects were accounted for in RCI calculations [41] by allowing,
respectively, S and D substitutions also from the 1s2 core.
The corresponding computational model applied to the largest
orbital set is denoted CV or CC&CV. It is known that the
Breit interaction is important for intercombination transitions,
and this interaction along with QED effects was also included
in RCI for the largest orbital sets. Once the ASFs have been
obtained, the atomic parameters such as S and A can be calcu-
lated.

Because of large discrepancies of approximately 400% in
the lifetime calculations [11,19,22,23], we also performed
other systematic calculations to evaluate accuracy. CASE-II
and III are used to change the set of multireference configu-
rations (SMC). Additional calculations were made to estimate
the effect of the higher-order correlation with the aid of triple
and quadruple (TQ) substitutions. Since the QED effect is
minor, we mainly consider the differences in the computed
properties in terms of electron correlation and Breit interac-
tion, which are discussed in the following sections.

III. RESULTS AND DISCUSSION

A. Energy levels

The valence correlation effect plays a major role in the
optimization of energy levels [42]. Figures 1(a) and 1(b)
present the level differences (	E ) within the 2p4 and 2p33s
configurations in different correlation models. 	E (1D2–3P2)
and 	E (3S◦

1–5S◦
2) are changed by approximately 1400 and

100 cm−1, respectively, in the 4SDV models compared to

DHF. 	E (3P1–3P2) is an exception with small changes. A rare
case should be paid much attention, for the level differences
with regard to 5S◦

2, the electron correlation of 8SDV model
has certain influence, although its effect rarely appears in the
calculations of the normal triplet or singlet states, e.g., that of
3P1,2 and 1D2.

The core-core (CC) and core-valence (CV) correlations
have certain influences on the energy difference, which can
be expressed as

δX = 100 × |	EX − 	E8SDV|
max(	EX ,	E8SDV)

%, X = CV, CC&CV. (9)

Figure 1 shows that the largest δX corresponds to the
	E (3S◦

1–5S◦
2) of 2p33s configuration. Figure 1(c) illustrates the

separation between 3S◦ and 5S◦, which is produced by the p-s
electron interaction. Here, δCC&CV is approximately 2%. In ad-
dition, to understand how much the core correlation affects the
separation between 3S◦ and 5S◦ in other p3s configurations,
we selected the 2p32s configuration of N II, and the MCDHF
and MCHF calculations are listed in Table II. It indicates that
the effects of the CC&CV correlation change the separation
by 531 cm−1. These influences, emerging both in O I and in
N II, indicate that the precise calculation of the separation
between 3S◦ and 5S◦ in the p3s configuration is inseparable
from the consideration of core correlation. Tayal’s MCHF
calculation of O I has a large discrepancy of approximately
623 cm−1 with the reference value from the NIST atomic
spectra database [17] due to the neglected influences of core
correlation [Fig. 1(b) or Table II] [43].

To determine the contribution of the CC and CV effects,
we use the influence ratio of CV and CC&CV, i.e., δCV

δCC&CV
. Fig-

ure 1 shows that the δCV
δCC&CV

of 	E (3S◦
1–5S◦

2) equals 0.7, which
is the smallest compared with 	E (1D2–3P2) and 	E (3P1–3P2).
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TABLE II. The influences of the core correlation and relativistic
effect on the separation between 3S◦ and 5S◦ in the 2p3n2s configura-
tions, where n2 is equal to 3 and 2 for O I and N II, respectively. The
integer form is adopted for all the data.

	E (3S◦-5S◦) of 2p3n2s (n2=3 or 2) (cm−1)

O I (2p33s) N II (2p32s or 2s2p3)

Models 	E |	E–	ENIST| 	E |	E–	ENIST|
MCDHF calculations in this team

8SDVa 2974 53
7SDVb 109 919 1577
nSDV + CC&CV a,b 2922 105 109 388 1046

MCHF calculations by Tayal
Neglected 1s2c 2404 623
CVd 109 571 1229

Nonrelativistic calculation
OPe 3042 15 112 706 4364

Other calculation
Zeippenf 1740 1287

Experiment
NISTg 3027 0 108 342 0

aThis work.
bShen et al. 2016 [24].
cTayal 2009 [43].
dTayal 2011 [44].
eOpacity Project [45].
fZeippen et al. 1977 [11].
gNIST 2019 [17].

This indicates that both CC and CV correlations have certain
influences on the separation between 3S◦ and 5S◦.

Furthermore, it should be stressed that the relativistic effect
contributes differently to the separation between 3S◦ and 5S◦
in the different n1 p3n2s configurations, e.g., those of 2p33s
in O I and 2p32s in N II. Table II also lists a nonrelativistic
calculation reported by the Opacity Project (OP). The table
reveals that the difference between the OP and NIST values is
15 cm−1 in O I but increases to 4364 cm−1 in N II. However,
our relativistic calculations agree with NIST to 53 cm−1 in
O I and 1577 cm−1 in N II. These results imply that when
the s electron moves from a peripheral orbital closer to the
core, the relativistic effect manifests itself in increased level
separation.

B. Transition rates

The line strengths S and radiative rates A of transitions
from the 2p33s 5S◦

2 to the levels of the ground term 2p4 3P and
to 1D in the different models and the length gauge are listed
in Table III. 4SDV almost doubles the results of DHF. The
effects of the CV and CC&CV correlations are small except
for the case of 1D2-5S◦

2 with the wavelength by λ172.711 nm.
Introduction of the Breit interaction changes the data of 3P2–
5S◦

2 (or λ135.560 nm) and 3P1–5S◦
2 (or λ135.851 nm) by about

18% and 24%, respectively. However, this effect dramatically
changes the rate of λ172.711 nm by approximately 6 orders of
magnitude. To avoid the rate errors produced by the calculated

FIG. 2. (a) The discrepancies (σA) of intercombination 2p4–
2p33s transition rates between the length and velocity gauges.
(b) The rate ratio of other calculations and the present work in the
length gauge. gf is the weighted oscillator strength. The three lines
from 2p33s 5S◦

2 are marked by λ172.711 nm, λ135.851 nm, and
λ135.560 nm. Zeippen et al. reported the gf values [11] based on
which Meier calculated the corresponding transition rates [10].

transition energy, the adjusted rate is cited [23]. The final
results together with the uncertainties estimated in Sec. III F
are listed in Table III.

The accuracy of A, defined by σA, can be evaluated through
the agreement between values in the velocity and length
gauges [46],

σA = 100 × |Avel − Alen|
max(Avel, Alen )

%. (10)

The values of σA for spin-forbidden 2p4–2p33s transitions are
presented in Fig. 2(a). As one can see, most of them decrease
with increasing line strength and are lower than 40%. The σA

values of λ172.711 nm, λ135.851 nm, and λ135.560 nm are
37%, 16%, and 15%, respectively.

MCHF calculations of Froese Fischer and Tachiev [23]
quoted in Table III, including both S and A of λ135.560
and 135.851 nm in the length gauge, are all smaller than
our results. For 172.711 nm, they are smaller by about 32%,
while for the other two transitions they are smaller by about
a factor of 3. In Fig. 2(b), we also use the rate ratio AFischer

AThis
to

illustrate the discrepancies. Froese Fischer also performed an
earlier calculation of weighted oscillator strength (gf ) from
5S◦

2 [22]. Her calculations of gf of 3P2–5S◦
2, 3P1–5S◦

2, and
1D2–5S◦

2 yielded, respectively, 1.93 × 10−6, 5.36 × 10−7, and
3.87 × 10−9. Correspondingly, our QED calculations of gf
yield 5.28 × 10−6, 1.58 × 10−6, and 4.55 × 10−9. The two
MCHF calculations of Froese Fischer differ very little despite
the fact that nearly 20 years have been passed between the
two efforts [22,23]. Froese Fischer and Tachiev [23] treated
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TABLE III. Line strengths (S), transition rates (A), and branching ratio (BR) of E1 transitions from 2p33s 5S◦
2 in O I with different

computational models in CASE-I. Adjusted is the result rescaled to experimental transition energy. Uncertainty is estimated in Sec. III F.
a[b] denotes a × 10b. The unit of S here and in Tables IV and VII is atomic unit [16]. The S and A data here and in Tables IV and VII are kept
to two digits after the decimal point, and BR to three digits.

S and A of 2p4–2p33s 5S◦
2

3P2–5S◦
2 (λ135.560 nm) 3P1–5S◦

2 (λ135.851 nm) 1D2–5S◦
2 (λ172.711 nm) BR

Models S A (s−1) S A (s−1) S A (s−1) Aλ135.560 nm
Aλ135.851 nm

Valence (in length gauge)
DHF 1.76[−5] 1.68[3] 5.76[−6] 5.46[2] 3.99[−12] 1.39[−4] 3.079
4SDV 2.63[−5] 3.97[3] 8.58[−6] 1.29[3] 7.13[−13] 5.00[−5] 3.081
5SDV 2.73[−5] 4.19[3] 8.91[−6] 1.36[3] 1.58[−12] 1.14[−4] 3.081
6SDV 2.78[−5] 4.30[3] 9.08[−6] 1.39[3] 1.55[−13] 1.14[−5] 3.082
7SDV 2.81[−5] 4.36[3] 9.19[−6] 1.41[3] 1.64[−15] 1.20[−7] 3.082
8SDV 2.87[−5] 4.44[3] 9.37[−6] 1.44[3] 5.74[−13] 4.23[−5] 3.082

Core-core (CC), core-valence (CV), and valence (in length gauge)
CV 2.86[−5] 4.50[3] 9.34[−6] 1.46[3] 6.81[−15] 5.12[−7] 3.082
CC&CV 2.82[−5] 4.69[3] 9.21[−6] 1.52[3] 1.65[−14] 1.33[−6] 3.083

Breit, QED (in length gauge)
Breit 2.32[−5] 3.86[3] 6.98[−6] 1.15[3] 2.56[−8] 2.06[0] 3.353
QED 2.34[−5] 3.89[3] 7.02[−6] 1.16[3] 2.57[−8] 2.07[0] 3.352
Adjusted 3.80[3] 1.13[3] 2.02[0] 3.352

Final results with uncertainties (in length gauge)
Final 2.34 ± 0.33[−5] 3.80 ± 0.53[3] 7.02 ± 1.05[−6] 1.13 ± 0.17[3] 2.57 ± 1.80[−8] 2.02 ± 1.41 3.352 ± 0.067

Final results with uncertainties in velocity gauge
QED 1.99[−5] 3.31[3] 5.87[−6] 9.69[2] 4.06[−8] 3.27[0] 3.414
Adjusted 2.02[−5] 3.29[3] 5.95[−6] 9.62[2] 4.13[−8] 3.25[0] 3.414
Final 2.02 ± 0.28[−5] 3.29 ± 0.46[3] 5.95 ± 0.89[−6] 9.62 ± 1.44[2] 4.13 ± 2.89[−8] 3.25 ± 2.28[0] 3.414 ± 0.068

Other theories
MCHFa 8.839[−6] 1.438[3] 2.533[−6] 4.094[2] 1.737[−8] 1.367[0] 3.512
Zeippen et al.b 4.575[3] 1.207[3] 3.790
Garstangc 1.30[3] 3.90[2] 2.00[0] 3.333

aFroese Fischer and Tachiev in length gauge [23].
bMeier [10] calculated the transition rates based on gf values of Zeippen et al. [11].
cGarstang [19].

1s2 as a common core and only considered correlation among
the remaining electrons, and some relativistic corrections in
their work have also been neglected. Another possible reason
for discrepancies between our calculations and MCHF can be
poorer accuracy of the MCHF wave functions. One can see
the detailed analysis in Sec. III G.

Furthermore, the S and A values from 5S◦
2 in velocity gauge

including QED, adjusted, and final results with uncertainties
are presented in Table III. We also list the S and A values for
the forbidden magnetic quadrupole (M2) transitions from 5S◦

2
in Table IV.

C. Branching ratio

The branching ratio (BR) is necessary for determining
the electron densities of many astrophysical plasma environ-
ments, e.g., that of the Orion nebula [2], and is defined by

BR = A(3P2 − 5S◦
2 )

A(3P1 − 5S◦
2 )

,

(
or = Aλ135.560 nm

Aλ135.851 nm

)
. (11)

Because the wavelength difference between the transitions
3P2–5S◦

2 and 3P1–5S◦
2 is rather small, e.g., 135.851–135.560 nm

= 0.291 nm, the errors produced by the wavelengths are
reduced in calculations. In this case, the BR value is almost
equal to the ratio of the line strengths of 3P2–5S◦

2 and 3P1–5S◦
2,

i.e., A(3P2 − 5S◦
2 )

A(3P1 − 5S◦
2 )

≈ S(3P2 − 5S◦
2 )

S(3P1 − 5S◦
2 )

.

In order to see BR’s properties, the trends of ratios of the
S value of each successive calculational layer to the result of
the largest one, S8SDV, namely S

S8SDV
, are depicted in Fig. 3

in the length and velocity gauges for each transition. It illus-
trates two observations “Coincidence” and “Separation.” The
“Coincidence” shows that the calculation trends of S

S8SDV
from

DHF to the CC&CV model are the same for both transitions
in length (or velocity) gauge. This reflects a fact that the
BR calculations remain stable in different electron correlation
models. We infer that it is a peculiar intrinsic property of these
calculations that leads to a truly useful result for plasma diag-
nostics and other applications, e.g., using the “Coincidence”
BR value [11], the transition rates A(3P2–5S◦

2) and A(3P1–5S◦
2)

could be derived from the accurately known recommended
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TABLE IV. Line strengths and transition rates for magnetic quadrupole (M2) transitions from the 2p33s 5S◦
2 level of O I.

A (s−1)

Lower States Upper State Type S MCDHF(QED) Adjusted

2p4 3P0 2p33s 5S◦
2 M2 3.45[0] 2.29[−3] 2.21[−3]

1S0
5S◦

2 M2 9.41[−10] 2.93[−14] 2.86[−14]
3P1

5S◦
2 M2 7.78[0] 5.20[−3] 5.01[−3]

3P2
5S◦

2 M2 6.08[0] 4.11[−3] 3.96[−3]
1D2

5S◦
2 M2 8.80[−5] 1.78[−8] 1.71[−8]

lifetime [27]. The BR values in different models in length
gauge are also listed in Table III.

On the other hand, adding the Breit interaction makes some
differences for the two transitions because of the different
sensitivity of the line strengths to this effect, i.e., “Separation”
in Fig. 3. This affects the calculations of BR. Setting length
calculation as an example, the Breit interaction changes the
line strengths (or rates) of λ135.560 and 135.851 nm by 18%
and 24%, respectively. These different influences, nearly 6%
between two decays, cause a large change of BR from 3.083 to
3.353. It signifies that the decays of two channels 3P2–5S◦

2 and
3P1–5S◦

2 have different sensitivity to the effects of the magnetic
interaction and the lowest-order retardation correction to the
electrostatic interaction [34], e.g., the result 3.790 of Zeippen
et al. [11] is larger than our length result by about 12% in
Table III because the calculation of Ref. [11] neglected some
relativistic effects. In the present work, as shown in Table III,
the final BR results in length and velocity gauges includ-
ing their accuracies evaluated in Sec. III F, respectively, are
3.352 ± 0.067 and 3.414 ± 0.068. The average of the length
and velocity results, 3.383 ± 0.068, can be as the final recom-
mended value because the uncertainties given in Table III for
both forms of BR are nearly the same, and the values agree
well with each other.

FIG. 3. The calculation trends of S
S8SDV

of 2p4 3P1,2–2p33s 5S◦
2 in

the length and velocity gauges in the different computational models.
“Coincidence” is observed among the DHF through CC&CV mod-
els, and “Separation” is produced by the Breit interaction. The data
in the length gauge are also listed in Table III.

D. Branching fraction

The branching fractions k and k1 for 3P2 − 5S◦
2 and

3P1 − 5S◦
2 can be given by⎧⎨

⎩
k = A(3P2 − 5S◦

2 )
A(3P2 − 5S◦

2 )+A(3P1 − 5S◦
2 )+A(1D2 − 5S◦

2 )

k1 = A(3P1 − 5S◦
2 )

A(3P2 − 5S◦
2 )+A(3P1 − 5S◦

2 )+A(1D2 − 5S◦
2 ) .

(12)

If combined with another branching ratio of 5S◦
2, defined

by BR1 = A(1D2 − 5S◦
2 )

A(3P2 − 5S◦
2 )

, the relationship between the branching

fractions and two branching ratios BR and BR1 can be arrived
at {

k = 1
1+ 1

BR +BR1

k1 = 1
1+BR×(1+BR1 ) .

(13)

Although the uncertainties in the A values given in Table III
are relatively large, changes in A(3P2 − 5S◦

2 ) and A(3P1 − 5S◦
2 )

among different calculations are found to be strongly corre-
lated, so that the changes in BR are relatively small. Thus,
Eq. (13) can be used to estimate the uncertainty of the branch-
ing fraction, which is dominated by the uncertainty of BR
owing to the very small size of BR1 (5 × 10−4 in the length
form and 1 × 10−3 in the velocity one).

Here, the k and k1 values in the length and velocity gauges
are listed in Table V where although both BR values agree
with each other, the velocity form may be preferred because of
the slightly smaller uncertainty, as shown in Table VII. In the
present work, the straight arithmetic mean value, k = 0.7714
(or k1 = 0.2280), with an uncertainty of 0.0035 for both
are recommended, because the uncertainties are nearly the
same, and the uncertainty is not reduced by averaging as the
length and velocity form values are strongly intercorrelated.
Hence, the obtained value of k closely agrees with a range of
Zeippen et al. [11], 0.77–0.78, and with the result of Ref. [23],
k = 0.7778, while an earlier data of Garstang [19] yield k =
0.7683. And k1 = 0.2280 is also in accordance with 0.2215
deduced from the data of Ref. [23].

The direct application of the branching fraction is to
extrapolate the rate below when combined with the recom-
mended lifetime [27],{

A
(

3P2 − 5S◦
2

) = k × 1/τ
(

5S◦
2

)
A
(

3P1 − 5S◦
2

) = k1 × 1/τ
(

5S◦
2

)
.

(14)

Table V also lists the extrapolated rates of 3P2 − 5S◦
2 and

3P1 − 5S◦
2, for which the recommended lifetime 180 ± 5 μs

[a.k.a. 180(5) μs] [27] is cited, seeing Sec. III E. It shows that
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TABLE V. The branching fractions (k & k1) of 3P2 − 5S◦
2 and 3P1 − 5S◦

2 , and their extrapolated transition rates using the recommended
lifetime 180 ± 5 μs [a.k.a. 180(5) μs] [27]. 4279 is inferred using 106k

3 ( 1
τ1

+ 1
τ2

+ 1
τ3

) and (120) is the maximum discrepancy between 4279

and other 106k
τi

where τi adopts 180, 175, 185 for i = 1, 2, 3. Mean value denotes the straight arithmetic mean value in the length (len) and

velocity (vel) gauges. aE-b denotes a × 10−b.

Branching fractions and the extrapolated rates

Branching ratios 3P2 − 5S◦
2

3P1 − 5S◦
2

Type BR BR1 k A(k) k1 A(k1)

This work
len 3.352(67) 5.32 × 10−4 0.7699(35) 4279(120) 0.2297(35) 1277(36)
vel 3.414(68) 9.88 × 10−4 0.7729(35) 4296(120) 0.2264(35) 1258(35)
Mean value 0.7714(35) 4288(120) 0.2280(35) 1267(36)

Some extrapolations
MCHFa 3.512 9.51 × 10−4 0.7778 4323(121) 0.2215 1231(35)
Garstangb 3.333 1.54 × 10−3 0.7683 4271(120) 0.2305 1281(36)

Others
Zeippen et al.c 0.775(5) 4308(121)
Wiese et al.d 4200(420) 1360(136)

aReference [23].
bReference [19].
cReference [11].
dRefs. [17,27].

the mean result for k yields A(3P2 − 5S◦
2 ) = 4288(120) s−1,

which coincides with 4308(121) s−1, derived from an av-
erage value of 0.77 and 0.78 of Zeippen et al. [11], i.e.,
0.775(5). The uncertainty is slightly reduced and is entirely
dominated by the uncertainty of the lifetime. The relative un-
certainty of A(3P2 − 5S◦

2 ) is 2.8%, which is more than a factor
of three smaller than the uncertainty of the value presently
recommended by NIST [17], 4200(420) s−1 [27]. In addition,
the mean value of k1 yields A(3P1 − 5S◦

2 ) = 1267(36) s−1,
which has a similar relative uncertainty, also a factor of three
more accurate than the presently recommended NIST value of
1360(136) s−1 [17,27].

E. Lifetime

The lifetimes τ of 5S◦
2 in different computational models are

illustrated in Fig. 4, where the data in the length and velocity
gauges are presented. 4SDV reduces the DHF value by a
factor of nearly two, and the Breit interaction leads to another
large change. Here, we also list the lifetimes of CASE-II and
III in the length and velocity gauges, which consider the effect
of the Breit interaction rather than QED due to the minor size
of the latter. The error bars in Fig. 4 show the uncertainties,
which are calculated using the data of CASE-II and III, along
with the recommended data. The calculated lifetimes of the
velocity and length gauges are 235 ± 35 μs and 202 ± 30 μs,
respectively. For the convenience of reference, we also list the
data of Fig. 4 in Table VI, where the results of other theoret-
ical and experimental studies are also listed with associated
uncertainties.

Upon comparing other theoretical lifetimes with the
present work, a good agreement is found with the calculations
of Nicolaides [20] and Biémont and Zeippen [21]. However,
some large discrepancies are still identified with the results of

Garstang [19], Froese Fischer [22,23], and Zeippen et al. [11].
For example, inspection of Fig. 4 shows that the discrepancies
of calculated lifetimes are larger than 325 μs. The largest
discrepancy exceeding 400% is between Garstang [19] and
Zeippen et al. [11]. Garstang has performed a nonrelativistic

FIG. 4. Radiative lifetimes (τ ) of 2p33s 5S◦
2 (μs) in the length

(len) and velocity (vel) gauges of CASE-I versus increasing level
of electron correlation and other corrections. Final denotes the final
result together with the estimated uncertainty marked using an error
bar. T1–T6 denote six theoretical calculations, where large discrep-
ancy between Tp (p = 1,2,3) and Tq (q=4,5,6) is about 325 μs.
Wiese et al. [27] gave an average of four different experiments made
by other researchers [1,29–31]. The length of the error bar indicates
the size of the uncertainty. Some data are also listed in Table VI.
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TABLE VI. Radiative lifetimes (τ ) of 2p33s 5S◦
2 (μs) in the velocity (vel) and length (len) gauges. Wiese et al. [27] gave an average of four

different experiments made by other researchers [1,29–31]. All data on lifetimes including that of Table VII adopt an integer form.

τ (μs)

Models Methods vel len

CASE-I
Breit 236 199
QED 234 198
Adjusted 235 202

CASE II and III
CASE-II (Breit) 239 211
CASE-III (Breit) 250 252

Final results with uncertainties
Final 235 ± 35 202 ± 30

Other theories
Garstang (1961)a 591
Nicolaides (1972)b 192
Zeippen et al. (1977)c SM + ID 129
Froese Fischer (1987)d MCHF 559
Biémont and Zeippen (1992)e SUPERSTRUCTURE 200
Froese Fischer (2004)f MCHF 541

Other
Wiese et al. (1996)g TOF 180 ± 5

aReference [19].
bReference [20].
cReference [11].
dDeduced Froese Fischer’s gf values [22] using experimental wavelengths.
eReference [21].
fReference [23].
gReference [27].

Hartree-Fock calculation [19]. This led to lower rates and a
longer lifetime, e.g., A135.6 nm = 1300 s−1 and τ = 591 μs.
On the other hand, a somewhat more complicated calculation
carried out by Zeippen et al., attained a very small lifetime,
i.e., 129 μs [11]. Since the energy difference between 3S◦

1 and
5S◦

2 calculated by Zeippen et al. [11] is 1740 cm−1, which
differs from the NIST experimental data by about 42%, as
indicated in Table II, we conclude that their wave function
of the upper state was inaccurate. We ascribe the errors in
these two calculations [11,19] to some neglected electron
correlation and relativistic effects.

The measurements of lifetimes of the 5S◦
2 level, using the

time-of-flight (TOF) technique, lead to values in the range of
170–190 μs [1,29–31]. To obtain the currently recommended
value, Wiese et al. [27] selected the arithmetic average of
these four measurements of lifetimes [1,29–31], in which
these results fall within a narrow band of only 5%. Thus, they
recommended the average experimental value of 180 ± 5 μs
[27], which agrees with our calculation in the length gauge,
but is more accurate by a factor of eight. Morton [28] also
adopted the transition rates derived by Wiese et al. [27] from
the above experimental lifetime and theoretical branching
fractions of Biémont and Zeippen [21].

F. Evaluation of the accuracy

Because of the large errors of up to 400% in some life-
time calculations of 5S◦

2 in O I [11,19,22,23], it is desirable
to examine the reasons of errors, determine the appropriate

solutions, and report accurate atomic data. By changing the
set of multireference configurations (SMC), two systematic
calculations CASE-II and III were also performed. Their Breit
results for S, BR, and τ in the length and velocity gauges
are listed in Table VII together with the Breit calculations
in CASE-I. The results are adjusted and show that all the
lifetimes are smaller or equal to 244 μs under the models of
CASE-I, II, and III.

The rate uncertainty arises from the residual correlation
effects, some of which are produced by changing the SMC.
Here, in the velocity (vel) and length (len) gauges, the
agreements between the respective Breit calculations of the
physical quantities (Q) are cited, and the maximum disagree-
ment in the CASE-I, II, and III is defined as the error of SMC
(ξSMC), namely,⎧⎨
⎩

ξX = 100 × |Qvel − Qlen|
max(Qvel, Qlen )

%, X = I, II, III; Q = S, BR, τ ;

ξSMC = max(ξI , ξII , ξIII ).
(15)

Table VII shows that the ξSMC values for S(3P2 − 5S◦
2 ),

S(3P1 − 5S◦
2 ), S(1D2 − 5S◦

2 ), BR, and τ values of 5S◦
2 in O I

are 14%, 15%, 38%, 2%, and 14%, respectively.
Meanwhile, the omitted higher-order correlation effects are

estimated by

ξTQ = 100 × |Q4SDTQV − Q4SDV|
max(Q4SDTQV, Q4SDV)

%, Q = S, BR, τ. (16)
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TABLE VII. The Breit calculations of S, BR, and τ of 5S◦
2 in CASE-I, II, and III, as well as the estimated uncertainties and the differences

between velocity and length gauges [Diff.(v,l)]. ξ stands for uncertainty that combines ξSMC and ξTQ. SMC denotes the sets of multireference
configurations, which were varied to estimate the effect of different correlation models. TQ represents the triple and quadruple substitutions
that are used for considering some higher-order electron correlation effects. ζ vel (or ζ len) is the discrepancy among the calculations of S, BR, τ

in the velocity (or length) gauge in CASE-I, II, and III. The branching ratios and the lifetimes are calculated using the adjusted transition rates.
All the computational models are shown in Table I.

Adjusted Breit calculations in three cases Evaluated accuracy Diff.(v,l)

CASE-I CASE-II CASE-III ξSMC ξTQ

√
ξ 2

SMC + ξ 2
TQ

Models Types vel len vel len vel len max(ξI , ξII , ξIII ) Higher-order Final accuracy ζ vel ζ len

Line strengths
3P2-5S◦

2 S 2.00[−5] 2.32[−5] 1.98[−5] 2.22[−5] 1.95[−5] 2.04[−5] 14% 0% 14% 3% 12%
3P1-5S◦

2 S 5.90[−6] 6.98[−6] 5.83[−6] 6.65[−6] 5.75[−6] 6.03[−6] 15% 0% 15% 3% 14%
1D2-5S◦

2 S 4.12[−8] 2.56[−8] 4.11[−8] 2.84[−8] 3.61[−8] 4.64[−8] 38% 59% 70% 12% 45%

Branching ratios
A

(3P2−5S◦
2 )

A
(3P1−5S◦

2 )
BR 3.417 3.353 3.418 3.363 3.411 3.412 2% 0% 2% 0% 2%

Lifetimes
5S◦

2 τ (μs) 237 204 240 213 244 232 14% 4% 15% 3% 12%

Here, Q4SDV are the quantities of the 4SDV model, and
Q4SDVTQ are those of a model where triple and quadruple (TQ)
substitutions are also allowed in the {2s–4s, 2p–4p, 3d–4d, 4f}
active set. Table VII lists the ξTQ values as 0%, 0%, 59%, 0%,
and 4%, where the largest error corresponds to S(1D2 − 5S◦

2 ).
In the present work, the final adopted uncertainty is the

sum in quadrature of ξSMC and ξTQ, i.e.,
√

ξ 2
SMC + ξ 2

TQ. These
uncertainties are given as 14%, 15%, 70%, 2%, and 15% in
Table VII, where again, the largest uncertainty corresponds
to the weakest transition (1D2–5S◦

2). All values of ξSMC are
greater than ξTQ, except for S of 1D2–5S◦

2. The latter implies
that the higher-order correlation effect becomes important in
this weak decay.

G. Calculation of the differences in
the length and velocity gauges

Nicolaides [20] mentioned that the transition rates in length
and velocity gauges are in excellent agreement in C I because
its active electron does not change shells. However, in the O I

case where the active electron changes the principal quantum
number, the two gauges are in poor agreement. He presented
a viewpoint that the velocity operator is to be preferred when
the wave function of the upper state is not accurate enough,
and only reported a velocity-form lifetime of 192 μs [20].
Zeippen et al. [11] criticized Nicolaides’ velocity result and
only gave a length-form value of 129 μs. However, this value,
nearly the smallest one among the available data, is unreliable
because the wave function of Ref. [11] for 5S◦

2 was inaccurate,
as shown in Sec. III E. Hence, it is informative to compare the
calculations of the length and velocity gauges.

Since the sets of multireference configurations (SMC) were
gradually expanded from CASE-I to III, the discrepancies (ζ )
of the velocity physical quantities (Q) among the three cases,
or that of the length Q among these cases, are selected. Here,
the maximum one in every gauge can be used to analyze the
difference of calculations, respectively, in the velocity and

length gauges:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ζY
(i, j) = 100×|Qi−Qj |

max(Qi,Qj )
%, i or j = I, II, III;

Q = S, BR, τ ;

ζY = max
(
ζY

(I,II ), ζ
Y
(I,III ), ζ

Y
(II,III )

)
,

Y = vel or len.

(17)

As seen in Table VII, the uncertainties in the length gauge
(ζ len) are much larger than those in the velocity one (ζ vel).
This implies that, for the spin-forbidden channels of 5S◦

2 with
small decay rates, calculation of the transition operator in
the length gauge becomes much more sensitive to electron
correlation effects than in the velocity gauge, if the transition
operator applies to the wave function that is not accurate
enough. In other words, when accurately calculating the elec-
tric dipole matrix element in the length gauge, the requirement
for the accuracy of the wave function is very high.

However, due to neglecting the influences of 1s2 electrons,
it is very difficult to obtain a high precision wave function by a
theoretical calculation [22,23,43]. That is probably one of the
reasons why Froese Fischer’s calculated lifetime, given in the
length gauge, is so large, even though the calculations were
performed twice [22,23].

IV. CONCLUSIONS

Using the MCDHF method, the line strengths, transition
rates, branching ratio, branching fraction, and lifetime of the
5S◦

2 metastable state in O I were accurately calculated by
considering the CC, CV, and valence correlation effects, as
well as the Breit interaction and the QED effect. The core
correlation effect has a significant influence on the calcu-
lated quantities, especially on the separation between 3S◦ and
5S◦—produced by the p-s electron interaction—in the p3s
configuration. It is found that the calculations of the branching
ratio of 5S◦

2 remain stable in different electron correlation
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models. We infer that it is a peculiar intrinsic property leading
to results useful for plasma diagnostics and other applica-
tions, e.g., those using the BR value [11]. Improved values
of the transition rates A(3P2–5S◦

2) and A(3P1–5S◦
2) have been

derived from the accurately known recommended lifetime
[27] and the presently calculated BR. The Breit interaction
has a large influence on the radiative decay rates from 5S◦

2,
because the line strengths of 3P2–5S◦

2 (λ135.560 nm) and 3P1–
5S◦

2 (λ135.851 nm) are different in sensitivity to this effect.
This affects the calculations of the branching ratio and life-
time. The large discrepancies in lifetimes, up to 400% in
several theoretical calculations [11,19,22,23], are attributed
mainly to some neglected electron correlations and relativistic
effects. In addition, by making calculations with various sets
of multireference configurations, we find the calculations of
electric dipole matrix elements for 5S◦

2 in the length gauge to
be much more sensitive to electron correlation effects than

in the velocity gauge. This may also cause significant errors
in the calculations of the lifetime of 5S◦

2 in the length gauge.
The present calculations including the estimation of residual
electron correlation effects are in fairly good agreement with
the recommended data [27] and have potential applications
in astrophysics and other related fields, e.g., the diagnosis of
ionospheric electron density [5] would lead to better results if
substituting their BR result 3.790 [5,10,11] with our recom-
mended 3.383 ± 0.068, an average of the length and velocity
results because the uncertainties for both forms of BR are
nearly the same.
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