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QED calculation of the 2p fine structure in Li-like ions
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Large-scale ab initio QED calculations are performed for the 2p3,,—2p;/, fine-structure interval of Li-like
ions with nuclear charges Z = 5-92. Improved theoretical predictions are obtained by combining together two
complementary theoretical methods, namely, the approach that accounts for all orders in the binding nuclear
strength and the nonrelativistic QED approach that accounts for all orders in the nonrelativistic electron-electron
interaction. The resulting unified approach provides theoretical predictions which are more accurate than the
available experimental results across the interval of the nuclear charges considered.
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Three-electron atoms, namely, Li and Li-like ions, are
among the simplest many-electron systems. They can be
calculated ab initio within quantum electrodynamics (QED)
and measured with very high precision. Investigations of
such atoms enable precision tests of bound-state QED of
many-body systems and allow studies of nuclear properties
probed by atomic electrons [1]. The spectacular experimental
progress achieved during the past decades in spectroscopy of
Li-like atoms [2—-11] has motivated large efforts devoted to
QED calculations of energy levels in these systems.

There are presently two main ab initio methods that sys-
tematically describe various atomic properties within QED.
The first method, described in Ref. [12], accounts for all
orders in the nuclear binding strength (i.e., the parameter
Za, where Z is the nuclear charge number and « is the
fine-structure constant) but expands in the number of virtual
photons exchanged between the electrons (i.e., in the parame-
ter 1/Z). Such calculations were performed by a number of
authors, most notably, by the Notre Dame [13—15] and St.
Petersburg [16-22] groups. This method yields very accurate
results for high-Z ions, providing one of the best tests of QED
in the strong-field regime [23]. In the low-Z region, however,
the applicability of this method diminishes, since the relative
contribution of the electron correlation increases as Z goes
down and the convergence of the 1/Z expansion deteriorates.

For light atoms, the best results are obtained with the
second method, based on the nonrelativistic quantum electro-
dynamics (NRQED) [24]. This method expands the energy
levels of a bound system in powers of « and Z«, but
accounts for all orders in 1/Z. High-precision NRQED cal-
culations were performed for energy levels of Li and Be*
in Refs. [25-30]. For heavier systems, however, the accuracy
of the NRQED results deteriorates as Z increases, since the
omitted higher order effects become enhanced by high powers
of Z.

The fine structure (fs) of energy levels is particularly fa-
vorable for theoretical calculations by the NRQED method,
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offering numerous simplifications. For example, only a few
operators explicitly depending on the electron spin contribute
to the fs splitting at the leading order of the NRQED expan-
sion, ma* (where m is the electron mass). Furthermore, at
the next-to-leading order ma?>, the leading QED contribution
comes only from the anomalous magnetic moment of the
electron. Owing to these and other theoretical simplifications,
the 2p fs interval in Li and Be™ is presently calculated up
to order ma® [30,31], while for other energy intervals of
three-electron systems the ma® effects remain uncalculated
so far.

In the present investigation, we will combine the 1/Z-
expansion method and the NRQED approach and obtain the
most accurate theoretical predictions for the 2p3,,—2p1 > fs in-
terval through the lithium isoelectronic atomic sequence with
Z > 5. To this end, we will match the Za expansion of nu-
merical results obtained by the 1/Z-expansion method and the
1/Z expansion of the NRQED results. The main improvement
will be achieved in the region of medium nuclear charges,
Z ~ 8-20, in which the both above-mentioned methods do
not work well.

The relativistic units (A =c=m = 1) will be used
throughout this paper, unless explicitly specified otherwise.

I. 1/Z-EXPANSION QED

In the present work, theoretical contributions to the energy
of a Li-like atom are separated into three parts, namely, the
electron-structure part Egq, the radiative QED correction
E..q, and the nuclear recoil correction E .,

E = Estruc + Erad + Erec . (1)

We note that we distinguish between the QED effects of
the self-energy and vacuum-polarization type (termed as the
radiative QED effects, E,,q) and the QED effects originat-
ing from the frequency dependence of the electron-electron
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interaction (termed as the electron-structure QED effects and
included into Egyyc).

The 2p fs splitting of Li-like atoms is obtained as a dif-
ference of energies of the 2p states with different values of
the total angular momentum, (1s)?2p3/, and (15)*2p; ). In
the following, we will denote by E;(v) corrections to the
ionization energy of the valence electron state v and by E;(fs)
corrections to the fs splitting, E;(fs) = E;(2p3,2) — Ei(2p12).
We note that the energy contributions involving interactions
only between the core electrons contribute neither to the ion-
ization energy nor the fs interval, so they are not considered
in this work.

A. Electronic structure

The electron-structure part of the energy is represented
by an expansion in the number of virtual photons exchanged
between the electrons,

Egrue(v) = Ep + Elphot + E2ph0t + E3phot + E>4phot ’ 2

where Ep is the Dirac one-electron energy; Ejphot, Eaphot, and
E3phot are corrections due to the exchange of one, two, and
three virtual photons, respectively; and E>4pnoc corresponds to
the exchange by four and more photons.

The Dirac ionization energy of the valence state v, for the
point nuclear model, is given by the well-known formula

—1/2
-1,

3)

where n, and k, are the principal and the relativistic an-
gular quantum numbers of the state v, respectively. The
point-nucleus Dirac energy receives a correction from the
finite nuclear size (fns), which is very small for low-Z
ions but becomes increasingly important as Z increases.
The fns correction is easily calculated numerically, by solv-
ing the Dirac equation with a suitable binding nuclear
potential.

The electron-structure corrections to the Dirac energy arise
through the electron-electron interaction. The relativistic op-
erator of the electron-electron interaction depends on the
energy of the exchanged virtual photon w and is given, in the
Feynman gauge, by

Zo 2
E =11
p(v) [ * (n - |xv|+\/x3—(2a)2> ]

ellelx

Tpeyn(w) = a (I — ot - 02) P “)

where o and «; are vectors of Dirac matrices acting on the
coordinate x; and x»,, respectively, and xi» = |x12]| = |x; —

J

x;|. The electron-electron interaction operator in the Coulomb
gauge is

ellebn
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Despite the dependence of the electron-electron interaction
operator I on the choice of the gauge, all terms of the ex-
pansion (2) are gauge invariant, when calculated rigorously
within QED. In the present work, we perform the QED calcu-
lations of the corrections due to an exchange of one and two
virtual photons, Epho and Eaphor. The corrections induced by
an exchange of three or more photons are calculated within
the Breit approximation, which is equivalent to choosing the
Coulomb gauge in the photon propagator and setting & — 0.

In the following, we will extensively use the following
short-hand notations for the matrix elements of the electron-
electron interaction operator,

labea(A) = (ablI(A)lcd) (6)

Iahcd = (ab|IC0u1(0)|Cd) . (7)

The leading electron-structure correction comes from the
exchange of one virtual photon between the electrons. The
correction due to one-photon exchange between a valence
electron v and a closed shell of electron states c is given by

Eippor(0) = > > (=1 Ipypeve(Apee)

He P

= Z[Ivcvc(o) - Icvuc(Avc)]v (8)
Me

where P is the permutation operator interchanging the one-
electron states, (PvPc) = (vc) or (cv), (—1)F is the sign
of the permutation, A,, = &, — &, is the difference of one-
electron energies, and the summation over p. runs over the
angular momentum projections of the core electrons. The
one-photon exchange correction is relatively simple and can
be calculated to very high numerical accuracy.

The effects caused by the exchange of two photons are
much more complicated than the one-photon contributions.
First rigorous QED calculations of the two-photon exchange
correction started in 1990s and were performed for He-like
ions [32-35]. For Li-like ions, analogous calculations were
accomplished in Refs. [15,18-20,22]. In the present work, we
extend the previous calculations described in Refs. [18-20] to
a greater numerical accuracy and a larger interval of nuclear
charges.

The correction induced by the two-photon exchange between a valence electron v and a closed shell of electron states c is

given by [19]

;7 0 1 cPvniny I,,],,zw — A e
)= ST T 5 [ | it
P —00

Epe — @ — ugy, ) (epy + @ — uey,)

He niny

IPcnznlv(w) II‘l]PUL‘I‘l2 (w - APcc)
(epc — & — ugn,) (8 — 0 — uey,)

11 A I A
T Z(_l)P+Q Z P2p3n03(Ap3g3) Iping102(Agip1)
PO n o1t &2 — Ep1 — &n

+ Ered(v) P (9)
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where P and Q are the permutation operators, u = 1 — i0, and the prime on the sum symbol means that some terms are excluded
from the summation (the excluded terms are ascribed to the reducible part E..4 and evaluated separately; see Refs. [19,20]
for details). In Eq. (9), the first part on the right-hand side is the irreducible two-electron contribution, the second part is the
irreducible three-electron contribution (with 1, 2, and 3 enumerating the three electrons, in arbitrary order), and the third part
AE.q is the reducible contribution. The explicit expression for AE4 can be found in Refs. [19,20].

The two-photon exchange correction greatly simplifies in the approximation of many-body perturbation theory (MBPT),
which assumes that (i) the electron-electron interaction is taken in the Breit approximation, I(®) — Icou(0), and (ii) the
summations are performed over the positive-energy part of the Dirac spectrum only. Within this approximation, the integration

over w is performed by the Cauchy theorem and the crossed-photon and reducible contributions vanish, yielding the result

MBPT P (+) IPL'Pvn n ]n nycv
Expnoc. (V) —ZZ<—1> > E—
Ec + Ey — Enl -

8}12

nyny

) Ipap3ngs Ip1n0102
£ 3y , 10
Z( ) Z 8Ql +8Q2 — Ep1 — &y ( )

where the prime on the summation symbol means that terms with vanishing denominator are omitted and “(+)” means that the
summation is extended over the positive-energy part of the Dirac spectrum.
The three-photon exchange correction cannot be presently calculated rigorously within QED. In the present work, we evaluate

it within the MBPT approximation, where it is represented as [21]
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where the operator E; acts on energy denominators Aj, Aj
as follows:

X

, ifA#0,A,#0,

AL A, if Ay # 2 F#

X X AL £0.A =0
TN A0 1 ) = )

of =1 2A? : ? (12)

B X if A 0,A 0
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The correction induced by the exchange of four and more
photons, E>4pnt, i too complicated to be calculated by pertur-
bation theory. In the present work, we extract this correction
from the NRQED results, which account for all orders in 1/Z
but only the leading order in Z«; the corresponding calcula-
tion is described in Sec. II.

B. Radiative QED

The radiative QED contribution to the fs splitting is rep-
resented as an expansion in the number of virtual photons
exchanged between the electrons (with the expansion param-
eter 1/2),

Erad = EQEDhydr + EQEDscrl + EQEDscr2 + EQEDscr3+ ’ (13)

where Eqepnydr 15 the hydrogenic QED correction, EQgpscri
is the screening QED correction with one electron-electron
interaction, Eqgpscr2 1S the screening QED correction with two
electron-electron interactions, and Eggpscr3+ contains three
and more electron-electron interactions.

The one-electron QED contribution Eqgphydr 18 presently
well established (see, e.g., a recent review [36]); it will be
taken from the literature in this work. The first-order 1/Z!

+
En —€ny)  (€p2+€p3 —én,

8n2 - 8n3)i| ' (11)

—&n) (€01 + 803 —

(

screening QED correction Eggpscr1 Was calculated for Li-like
ions in Refs. [14-17,22,37]; numerical results for this correc-
tion will also be taken from the literature.

We now concentrate on the second-order 1/Z? screening
QED contribution Eqgpscr2. At present, it is not possible to
calculate this correction rigorously to all orders in Z«. In
this work, we will calculate it by an approximate relativistic
method which is exact to the leading order in Z« and accounts
for the dominant part of the higher order Z« terms.

It is well known [38] that, to the leading order in Zw, the
radiative QED effects in the fs splitting are described by the
electron anomalous magnetic moment (amm). In the absence
of external fields, the electron amm induces the following two
additions to the Dirac Hamiltonian of a few-electron atom
[38,39],

Zo . o, Ty
a1 = & == (=) ) fa = (14)
a Ta

Hunm = ¢ 5 Zm( 2 ’“"—m-@),w

a<b Fap ab

where a and b numerate the electrons in the atom, x = g, —
2 = o/z + O(a?), g, is the g factor of the free electron, B, and
o, are the Dirac matrices acting on the ath electron, and

(5 0)

with o being a vector of Pauli matrices.

The effective amm Hamiltonian Hymm = Hamm,1 + Hamm 2
yields a good description of the radiative QED effects for
low-Z ions, but the accuracy deteriorates quickly when Z
increases. We will correct this with help of the model QED
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(MQED) operator hvgep introduced in Ref. [40]. In order
to avoid double counting, we subtract from Ayqep the part
already accounted for by the amm Hamiltonian. Specifically,
we make the replacement

LWi13Ge)) + Senlvn) —
L) + SEe)Vn) — WilHanma W) (17)

in the definition of the MQED operator (where X(¢) is the
self-energy operator); see Eq. (17) of Ref. [40]. We will de-
note the amm-subtracted MQED operator by hi\/lQED'

In this work, we will calculate the second-order QED
screening correction Eqgpscr2 by using the standard Rayleigh-
Schrodinger perturbation theory to the second order in the
electron-electron interaction and to first order in the effective
Hamiltonian Hymm+MQED,

Hamm+MQED = Hamm,l + Hamm,2 + h{\/IQED =U+W. (18)

The operators U and W introduced in the right-hand side
of the above equation incorporate the one-electron part
(Hamm,1 + hyopp) and the two-electron part (Hamm,2) of the
effective Hamiltonian, respectively.

Before calculating the second-order screening QED effect,
we need to check the accuracy of the approximate method
we devised. We do this by applying this approximation to
the first-order screening QED correction and comparing the
obtained results with those delivered by the rigorous QED
calculations.

The 1/Z' correction induced by the one-electron operator
U is obtained as a first-order (in U) perturbation of the one-
photon exchange correction (8), which is (after neglecting the
frequency dependence in /)

Eiphoty =2 Z Z(_I)P(IPUPC'5UC + Ipypevse) » (19)
He P
where
71n) Ung
da) = R 20
|8a) Z p— (20)

and U, = (a|U|b). The 1/Z ! correction induced by the two-
electron operator W is just

Erprorw = Y Y (=1 Weupere , 1)
pe P

where W,cq = (ab|W|cd).

Table I presents results of our test calculations of the
first-order 1/Z' QED screening correction performed by three
approximate methods and compares them with results ob-
tained by the full QED treatment. The column “amm” lists

J

TABLE 1. Comparison of different approximate methods with
the rigorous QED calculations [16,17,37] of the first-order 1/Z' QED
screening correction, in units a?(Za)3.

Z amm MQED amm+MQED Full QED
12 —0.0658 —0.0362 —0.0618 —0.0616 (14)
16 —0.0664 —0.0341 —0.0601 —0.0590 (9)
18 —0.0667 —0.0330 —0.0592 —0.0579 (4)
20 —0.0671 —0.0319 —0.0582 —0.0566 (3)
30 —0.0699 —0.0253 —0.0529 —0.0501 (3)
32 —0.0706 —0.0238 —0.0517 —0.0486 (4)
40 —0.0741 —-0.0173 —0.0465 —0.0422 (2)
50 —0.0803 —0.0075 —0.0387 —0.0325 (2)
54 —0.0835 —0.0029 —0.0350 —0.0281 (2)
60 —0.0893 0.0049 —0.0285 —0.0202 (2)
66 —0.0967 0.0142 —0.0209 —0.0113 (2)
70 —0.1028 0.0213 —0.0149 —0.0041 (1)
74 —0.1101 0.0294 —0.0080 0.0037 (2)
80 —0.1241 0.0439 0.0043 0.0182 (1)
83 —0.1329 0.0523 0.0115 0.0266 (1)
90 —0.1601 0.0761 0.0319 0.0501 (1)
92 —0.1702 0.0842 0.0389 0.0581 (1)
100 —0.2277 0.1240 0.0728 0.0974 (1)

results obtained with the amm operator H,ym, the column
“MQED?” displays results obtained with the standard MQED
operator Avgep, whereas the column “amm+MQED” shows
results obtained with the combined operator (18).

We observe that the approach based on the amm Hamil-
tonian works well only in the low-Z region but fails for high
values of Z, not reproducing even the overall sign of the effect.
The standard MQED operator yields the order of magnitude
and the sign of the exact QED screening correction, but the
quantitative agreement is not very good. In contrast, the com-
bined “amm+MQED” approach demonstrates a significantly
improved agreement with the rigorous QED treatment as com-
pared to the both other methods.

We now turn to the second-order 1/Z? screening QED ef-
fect. The 1/Z? correction induced by the one-electron operator
U can be derived as a first-order (in U) perturbation of the
two-photon exchange correction in the MBPT approximation,
given by Eq. (10). It consists of three parts that are induced by
perturbations of the wave functions (“wf”), binding energies
(“en”), and propagators (“ver”), respectively,

E2ph0[,U = E2phot$wf + E2ph0t,en + E2ph0t,ver . (22)

The corresponding parts are given by

1+ Ipype I +1
Ezphot,wf -2 Z Z(_l)p Z PvPcniny ( ninpdve nlnzuéc)
ne P

niny

gc+8v _8n1

— 8}12

, (23)

&o1 + €02 — €p1 — &

"(+) 1 1, + 1 +1
s Z(_l)P+Q Z P2p3n03 Usp1n0102 + IP1ns0102 + IP1n01502)
PO n
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IPvPcnl n Im nvce

E2phot,en = _(va + Ucc) Z Z(_I)P Z/(Jr)
He P

2
niny (86 + &y — 8n| - 8n2)
() Ipap3ngs Ip1n0102
= (D" Ugig1 + Ugrg> — Upip1) ; (24)
PZQ: o1 0 Z (eg1 + €02 — €p1 — &n)?
(+) IPUPC}'I]I‘I") Unmg In3n2vc Unzm Inlngvc
Exphot,ver = (—=D” O] - -
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+ Z( 1)P+e Z(H Ipop3n,03 Unin, IP1ny 0102 ’ 25)
o 8Q1 +&02 — €p1 — Snl)(é‘Ql +&02 — €p1 — Sng)
where the operator E, acts on energy denominators A, A, as follows:
if A 0,A 0,
A A 1 # 2 F
X -—— if Ay #£0,A,=0,
) = A% (26)
ASWAY)
—-—, ifA;=0,A 0,
A2 1 2 F#
0, 1fA]:O,A2:0
We note that similar formulas appeared in a slightly different context in Ref. [21] [cf. Egs. (32)— (35) of that work].
The 1/Z” correction induced by the two-electron operator W is given by
(+) IPuPcnlnz nynpve + WPUPcnlnz 11111171}6
E = —1
2phot, W = ZZ( )’ n]Zn: PP
n Z(_I)P+Q Z’(+)IP2P3nQ3 Weing102 + Wr2p3ng3 Ipingi02 . 7

C. Nuclear recoil

The nuclear recoil contribution is represented in this work
as a sum of two parts,

Erec — Eonee] + Efewel , (28)

rec rec

where the first part is the one-electron (hydrogenic) contri-
bution and the second part is the few-body contribution. The
one-electron contribution is presently well established (see,
e.g., arecent review [36]) and is taken from the literature. The
few-body recoil contribution will be evaluated to the leading
order in Za within the NRQED approach in next section.

II. NONRELATIVISTIC QED

In the nonrelativistic quantum electrodynamics (NRQED)
framework, the fs splitting of light atoms is represented by an
expansion in powers of the fine-structure constant « and the
electron-to-nucleus mass ratio m/M [29,30],

m
ENrqED =Ol4[5(4’0) + i EGD 4 g £60 4 .. ] .29

Here, the first superscript of the expansion terms £/ indi-
cates the order in o, whereas the second superscript shows the
order in m/M. Each term of the NRQED expansion is repre-
sented as an expectation value of some effective Hamiltonian
on the nonrelativistic atomic wave function and thus accounts
for the nonrelativistic electron-electron interaction (i.e., the
parameter 1/Z) to all orders.

€01+ €02 — Ep1 — &y

The leading term of the NRQED expansion of the fs in-
terval is given by the difference of the expectation values of
the spin-dependent Breit Hamiltonian, E*? = (H*9),_,, —
(H*),_,,. The spin-dependent part of the Breit Hamiltonian
is (in atomic units)

zZ . . .
H(4'0>=2:—2 2 Sa Ta X Pa
a Ta

L L
+ D5 ST x QP =) (30)
a#b b
where a and b numerate electrons in the atom, 7y, = 7, — Fp,
Pa is the electron momentum, and 5, is the electron-spin
operator.

The spin-dependent ma* recoil correction for a state with
the total angular momentum J is given by (in atomic units)

1
4.1 _ (4,0) (2 1) E
5] = <H ﬁ > < —Sa ra X p},>

3D

where H® is the recoil operator of order ma?,

(-xn). @

and P is the nuclear momentum.
The leading QED contribution to the fs interval is
induced by the Hamiltonian H&0, £6:0 = (HGO),_,, —

D — lﬁz _
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TABLE II. Numerical results for the a*, &>, and a*(m/M) corrections to the fine structure of the 2p state of Li-like ions. £@/ are defined

by Eq. (29).

7z @0 /74 60 /74 @D 74

3 0.000 353 014 9 (1) 0.000 169 064 948 (1) —0.001 07497 (2)
4 0.002 190 425 2 (5) 0.000 865 489 89 (10) —0.003 891 58 (4)
5 0.004 653 760 1 (3) 0.001 713 290 95 (7) —0.007 034 07 (2)
6 0.007 054 738 0 (2) 0.002 505 289 60 (3) —0.010 032 02 (2)
7 0.009 196 952 5 (7) 0.003 195 699 19 (15) —0.012 717 88 (4)
8 0.011 057 748 2 (1) 0.003 786 733 68 (2) —0.015 068 04 (1)
9 0.012 664 475 3 (1) 0.004 292 004 93 (4) —0.017 111 05 (1)
10 0.014 054 569 0 (1) 0.004 725 993 9 (2) —0.018 888 65 (2)
11 0.015 263 384 0 (1) 0.005 101 316 3 (3) —0.020 441 55 (1)
12 0.016 321 112 5 (1) 0.005 428 312 6 (2) —0.021 805 51 (1)
13 0.017 252 626 (3) 0.005 715 289 (8) —0.0230105 (5)

(H®D),_,,, where (in atomic units)

z
HOO =%~ SuFax P
3 a a a

- 2rr

a

|
+D 5o 5 S T X Br= P (Y

In the present work, we calculate the corrections
EGD 5.0 and 4D for the series of nuclear charges Z =
3-13. The computational scheme and numerical details are
described in Refs. [29,30]. Our numerical results are presented
in Table II.

In order to combine the NRQED results with those
obtained within the 1/Z-expansion method in Sec. I, we rep-
resent the numerical results listed in Table II in the form of the
1/Z expansion,

40 — 74 i Cia (34)
i=0 Zi ’
o0

D.

EGO — z4 Y 83 35
; : (35)
o0

ﬂ“’”:Z“Zlﬁ. (36)
i=0 Zi

Here and in what follows, we adopt the following notations
for the expansion coefficients C; j, D; j, R; j: The first index i
corresponds to the order in 1/Z, whereas the second index j
indicates the order in «.

The first coefficients of the expansions are known analyti-
cally,

1 1
Cos=—, Dyps=—, 37
04 =7 0.5 = 35— 37
R L YR S (38)
= —_—— —_— n PE—
047 T3 T 39 2 ’

where Cj 4 comes from the Zo expansion of the Dirac energy
(3), Do.s comes from the one-loop self-energy (see, e.g., Eq.
(38) of Ref. [41]), whereas the Ry 4 coefficient was derived in
Ref. [42]. The coefficients C; 4 and C; 4 will be numerically
evaluated in the next section, by calculating the one-photon

and two-photon exchange corrections and fitting their Z — 0
and o — 0 limit. The other coefficients in Eqs. (34)—(36) are
approximately obtained by fitting the numerical results from
Table II.

III. CALCULATIONAL DETAILS AND RESULTS

A. Electronic structure

Table III presents results of our numerical calculations of
individual electron-structure contributions. The column la-
beled “Dirac” shows the Dirac one-electron energies Ep. The
uncertainties of Ep, appearing for high-Z ions, are due to the
finite nuclear size effect. The Za expansion of the Dirac fs
splitting follows from Eq. (3),

Ep = (Za)*'[Cos + (Za)* Co6 + (Za) Cos +---1, (39)

where Cp 4 = 1/32, Cp 6 = /256, etc.

The next column labeled “l1-ph” contains results for the
one-photon exchange correction. Its calculation is relatively
straightforward and can be performed up to arbitrary numer-
ical accuracy. The Z« expansion of the one-photon exchange
correction for the fs splitting is of the form

Eiphot = 2(Za)*[Cra + (Za)* Cr 6 + (Za) Crg + -+ 1.
(40)

While our numerical calculation accounts for all orders in
Za, we also determine values of the first two expansion
coefficients by fitting our all-order results, obtaining C; 4 =
—0.21810912 and C; 6 = —0.194777.

The two-photon exchange correction is calculated in the
present work rigorously within QED, by the method described
in the previous investigations [19,20]. The Dirac spectrum is
represented by using the dual kinetic balance (DKB) method
[43] with N = 85 B-spline basis functions. The partial-wave
expansion was extended up to |kmax| = 20, with the remaining
tail of the expansion estimated by a least-square fitting in
1/|«|. The direct numerical calculations were performed for
Z > 13.

In order to obtain results for the two-photon exchange
correction in the low-Z region, we fit our numerical values
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TABLE III. The electron structure corrections to the 2p3,,—2p) , fine structure splitting, in eV.

V4 Dirac 1-ph. 2-ph. 3-ph. >4-ph. Sum Other
MBPT QED methods
5 0.028 325 —0.039553 0.018 070 0.000 002 (1) —0.002 681 (1) 0.000 050 0.004 214 (2) 0.004 215*
6 0.058 757 —0.068 384  0.026 043 0.000 004 (2) —0.003 224 (2)  0.000 057 0.013 253 (3) 0.013 249°
7 0.108 901 —0.108 658  0.035483 0.000 007 (3) —0.003771(3) 0.000 062 0.032 023 (5) 0.031 998*
8 0.185 873 —0.162311 0.046398 0.000012 (5) —0.004323(5) 0.000 065 (1) 0.065 714 (7) 0.065 63*
9 0.297 902 —0.231290 0.058 798 0.000 018 (7) —0.004 880 (6)  0.000 067 (1) 0.120 615 (9) 0.120 40°
10 0.454 338 —0.317558 0.072 695 0.000 027 (9) —0.005 444 (8)  0.000 069 (1) 0.204 128 (12) 0.203 66*
0.204 1 (6)°
15 2.309 735 —1.078 183 0.165 127 0.000 128 (3) —0.008 373 (26) 0.000 074 (3) 1.388 51 (3) 1.388 4 (3)°
20 7.343 045 —2.577266 0.297 502 0.000 347 (6) —0.011 556 (54) 0.000 076 (5) 5.052 15 (5) 5.0524 (3)°
26 21.169 98 —5.738 39 0.51350 0.00094 (1) —0.01584(12) 0.00008 (1) 15.930 26 (12) 15.9309 (3)°
28 28.580 10 —7.204 91 0.60050 0.00124(1) —0.01741(14) 0.000 08 (1) 21.959 59 (14) 21.960 5 (3)°
30 37.813 57 —891213 0.69552 0.00162(1) —0.01907(18) 0.000 08 (1) 29.579 58 (18) 29.579 6 (3)°
36 79.495 27 —15.703 91 1.03261 0.00319(2) —0.02461 (30) 0.000 08 (2) 64.802 6 (3) 64.803 3 (5)°
40  122.466 49 —21.87121 1.30526  0.00473 (3) —0.028 87 (42)  0.000 08 (2) 101.876 5 (4) 101.878 4 (11)°
47 23858848 (1) —36.59423 1.890 10  0.008 81 (4)  —0.037 70 (70)  0.000 08 (3) 203.855 5 (7) 203.856 6 (16)°
50 308.85399 (1) —44.72525 2.18888 0.01119(4) —0.04212(86) 0.000 08 (4) 266.286 8 (9) 266.288 1 (21)°
54  426.72224 (3) —57.58077 263924 0.01511(5) —0.0487 (11) 0.000 08 (4) 371.7472 (11) 371.748 7 (29)°
60  667.503 4 (1) —81.929 1 3.443 8 0.0229 (1) —0.060 5 (16) 0.000 1 (1) 588.980 6 (16) 588.983 4 (41)°
70 1302.1568 (4) —139.8819 5.2240 0.042 1 (1) —0.086 5 (28) 0.000 1 (1) 1167.455 (3) 1167.461 (11)°
80 2367.736 6 (16) —228.290 4 7.7833 0.0714 (2) —0.124 4 (46) 0.000 1 (1) 2147.177 (5) 2147.188 (14)°
83 2804.106 0 (23) —262.8597 8.761 3 0.082 3 (2) —0.1390 (52) 0.000 1 (1) 2549.951 (6) 2549.961 (16)°
90 4103.324 (12) —362.7558 11.560 8 0.1108 (2) —0.181 7 (70) 0.000 1 (2) 3752.058 (14) 3752.127 (41)°
92 4561.2374(47) —397.2450 12.5232 0.119 8 (3) —0.196 6 (75) 0.000 1 (2) 4176.439 (9) 4176.457 (51)°

ANRQED, this work.
bKozhedub et al. [22].

to the form of the Zo expansion,
Egphox =0 (Za)[Co4 + (Za) Cog +---1. (41

The leading expansion coefficient C; 4 is evaluated separately,
by two different methods. First, we obtain it by fitting the
1/Z expansion of the ma* NRQED results obtained in Sec. II.
Second, we get it by fitting the Z — 0 and o« — 0 limit of
the two-photon exchange correction in the MBPT approxi-
mation (10). Both methods yield consisting results, but the
second is more accurate. We therefore fix the coefficient as
G4 = 0.497 88. With the leading coefficient C, 4 fixed in
this way, the higher order coefficients are obtained by fitting
our numerical all-order results. In particular, we obtain the
next-order coefficient as C, ¢ = 0.75.

Our numerical results for the two-photon exchange correc-
tion are presented in Table III. For convenience, we separate
them into two parts. The first, dominant part is delivered by
the MBPT approximation; see Eq. (10). The second, much
smaller part is the deviation of the full QED result from the
MBPT value. For Z > 13, the listed QED values are obtained
by a direct calculation. For Z < 13, the listed values are ob-
tained by fitting.

The three-photon exchange correction is evaluated within
the MBPT approximation, according to Eq. (12). The scheme
of the calculation mainly follows that of Ref. [21]. However,
Ref. [21] included the Breit interaction up to first order only,
whereas here we include in addition the exchange by two
and three Breit photons. The reason is that the inclusion of
the second-order Breit exchange significantly improves the

agreement between MBPT and QED for the two-photon ex-
change correction to the fs splitting.

The summations over the Dirac spectrum in the three-
photon exchange correction was performed by using the DKB
method [43] with B-spline basis functions. The number of B
splines in the basis was N = 50 for the three-electron part
and N = 40 for the two-electron part. The extrapolation of the
double partial wave expansion was performed as described in
Ref. [21], with the number of partial waves /; = 8 for the first
summation and /, = 12 for the second summation.

Direct numerical calculations of the three-photon exchange
correction were performed for Z > 20. For lower values of
Z, the accuracy of the numerical evaluation gradually dete-
riorates, so we obtain results for this correction by fitting.
Specifically, we fit our numerical results to the form of the
Zo expansion

Esphot =& (Za)[Cs 4+ (Za) Cig+---1,  (42)

with the leading coefficient C3 4 = —0.3681 obtained by fit-
ting the 1/Z expansion of the NRQED results in Sec. II. We
obtain the next-order coefficient (in the MBPT approxima-
tion) as C3 6 = —1.4.

Numerical results for the three-photon exchange correction
are presented in Table III, in the column labeled “3-ph.” The
uncertainty of this correction comes mainly from unknown
QED effects beyond the MBPT approximation. We estimate
it by taking the relative value of the QED-MBPT difference
for the two-photon exchange correction and multiplying it by
the extension factor of 4.
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The correction induced by the exchange of four and more
photons E>4pne is obtained from the NRQED calculations
described in Sec. II. Direct NRQED calculations were per-
formed for Z < 13. For these nuclear charges, we obtain
E>4phot by subtracting the first terms of the 1/Z expansion
from the ma* NRQED contribution listed in Table II,

C C C
4 0(4,0 4 1,4 2,4 3.4
Esdphos = 0850 = Za) [C t et ?} :

(43)

We note that numerical uncertainties of the coefficients C; 4
and Cs4 do not contribute to the uncertainty of the total
electron-structure contribution for Z < 13, since the same
coefficients used in Egs. (41), (42), and (43) cancel each other
when the sum of these equations is evaluated. For Z > 13,
we obtain E>4pno by fitting the 1/Z expansion of numerical
results for £ @ listed in Table II.

Our results for E>4pno are presented in Table III, in the
column labeled “>4-ph.” The indicated numerical uncertainty
takes into account uncalculated QED effects of order ma®
and higher and the uncertainty of the fit for Z > 13. The
uncalculated effects are estimated by taking the relative value
of the deviation of the full QED results for the two-photon
exchange correction from the ma* contribution induced by the
coefficient C, 4, and multiplying it by a conservative factor of
2.

Table III summarizes our total numerical values of the
electron-structure contribution to the 2p3;»—2p;,, fs split-
ting in Li-like ions and compares them with results obtained
by other methods. We observe that for Z < 6, our results
essentially coincide with the ma* NRQED values. The rea-
son is that the 1/Z expansion, used in the present work
for calculating the higher order QED effects, breaks down
for low Z, with individual 1/Z-expansion terms canceling
each other to a great extent. For larger values of Z, the
convergence of the 1/Z expansion improves; the higher
order QED effects also become increasingly more impor-
tant, moving our results further away from the NRQED
values.

For Z > 10, we compare our results with the previous ab
initio QED calculation by Kozhedub et al. [22]. The agree-
ment between the calculations is excellent, but our results are
more accurate, most notably in the low-Z region, due to a
more complete inclusion of many-photon effects.

B. Radiative QED

We now turn to the radiative QED part, which is repre-
sented by a sum of several terms, as given by Eq. (13). The
first term on the right-hand side of Eq. (13), Eqephyar, is due
to one-electron QED effects. They were recently reviewed in
Ref. [36], so we obtain Eqgphydr from data tabulated in that
work, adding together the one-loop and two-loop QED effects.
The Za expansion of this contribution is

Eqepwyar = a(Za)* [Dos + (Za)* In(Za) D
Za) Dos -], @)

where Dy 5 = 1/32x, Dg?% = 1/16x [41]. The other terms on the

right-hand side of Eq. (13) are due to the electron-electron
interaction; they are referred to as the screening QED correc-
tions.

The first-order 1/Z screening QED correction Eggpscri
was calculated for Li-like ions in a series of investigations
[14-17,22,37]. The data reported in these studies are not
fully sufficient for our present needs, because of a limited
number of nuclear charges for which results are presented.
In the present work, we use a more complete tabulation from
Ref. [44], originally calculated for He-like ions. We convert
these results from He-like ions to Li-like ions, using the
fact that the following exact relation exists between the 1/Z
screening QED corrections for Li-like and He-like ions (see
Eq. (70) of Ref. [44]),

1 3
E(1s)22p|/2 =3 E(152P|/2)0 + 2 E(lé‘zpl/z)l s (45)

3 5
Eqs22ps, = 3 Es2pyon + 3 Ets2pyn), - (46)

Specifically, for nuclear charges Z > 20, we interpolate
the numerical data presented in Ref. [44]. Values for Z < 20
were obtained by fitting numerical data for Z > 20 to the
Zo-expansion form

Eqepsen = o (Za)’ [D1s + (Za)’ InZar) DY
+(Za)*Dy7+ -], @7

using the accurate value for the leading coefficient D, 5 =
—0.065 060, obtained in Sec. II from fitting the NRQED re-
sults for the £5:9 correction. Numerical results for EQEDscr1
are listed in the column “1/Z” of Table IV.

The column “1/Z2” of Table IV presents numerical re-
sults for the second-order 1/Z2 screening QED correction,
EqEpscr2, obtained by the amm + MQED approach described
in Sec. IB. The Dirac spectrum was represented by using
the DKB method [43] with N = 85 B-spline basis functions.
The angular integration in radial matrix elements of the amm
operators was carried out according to formulas presented in
Appendix. The Za expansion of Eqgpser 1S

Eqepsers = o (Za)* Dys + - - -, (48)

where D, s = 0.1377 is obtained in Sec. II from fitting the
variational NRQED results for the £59 correction. The un-
certainty ascribed to this correction in Table IV estimates the
error of the approximation. It was evaluated by taking the
difference of the amm + MQED and full-QED results for the
1/Z screening correction, scaling it by the ratio D, 5 /(Z D, 5),
and multiplying it by a conservative factor of 2.

The higher order screening QED correction Eggpscr3+ Was
obtained from the NRQED calculations described in Sec. II.
For Z < 13, we obtain it by subtracting the first terms of the
1/Z expansion from the ma> NRQED contribution listed in
Table II,

EQEDscr3+ = 0555(5'0) - C((ZO()4 [DO,S + — 4+ ==
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TABLE IV. The screened QED corrections to the 2p3,,—2p; > fine structure splitting, in eV.

z 1/Z! 1/22 1/23+ Sum NRQED Kozhedub et al. [22]
5 —0.000 084 6 (1) 0.000 035 6 (2) —0.000 004 8 (2) —0.0000538 (3)  —0.000 054

6 —0.000 145 4 (2) 0.000 050 9 (5) —0.000 005 8 (3) —0.000 1003 (6)  —0.000 102

7 —0.000 229 5 (4) 0.000 068 6 (8) —0.000 006 8 (4) —0.000 168 (1) —0.000 171

8 —0.000 340 3 (7) 0.000088 7 (13)  —0.000 007 8 (5) —0.000 259 (2) —0.000 267

9 —0.000 481 1 (12) 0.000 1112 (20)  —0.000 008 8 (7) —0.000 379 (2) —0.000 392

10 —0.000 655 1 (20) 0.000 136 0 (29)  —0.000 009 8 (9) —0.000 529 (4) —0.000 552 —0.0005 (2)
12 —0.001 1142 (43) 0.000 1916 (54)  —0.000011 8 (15)  —0.000 935 (7) —0.000 991 —0.000 9 (3)
15  —0.002120(11) 0.000 289 (12) —0.000 015 (3) —0.001 85 (2) —0.001 8 (4)
18  —0.003 558 (22) 0.000 399 (22) —0.000 018 (4) —0.003 18 (3) —0.003 2 (5)
20 —0.004 790 (27) 0.000 478 (29) —0.000 020 (5) —0.004 33 (4) —0.004 3 (5)
26 —0.009 83 (15) 0.000 731 (69) —0.000 026 (10) —0.009 1 (2) —0.009 2 (8)
30 —0.01430(8) 0.000 90 (11) —0.000 030 (14) —0.0134(2) —0.0136(11)
32 —0.01685(13) 0.000 98 (14) —0.000 032 (16) ~0.0159 (2) —0.016 0 (12)
40 —0.028 56 (14) 0.001 22 (31) —0.000 040 (28) —0.027 4 (4) —0.027 9 (18)
47 —0.03921 (26) 0.001 25 (55) —0.000 047 (42) —0.0380(7) —0.038 7 (24)
50  —0.043 02 (29) 0.001 18 (69) —0.000 050 (50) —0.041 9 (9) —0.042 8 (27)
54 —0.046 78 (38) 0.000 99 (89) —0.000 054 (61) —0.045 9 (10) —0.047 0 (32)
60  —0.04621 (45) 0.000 5 (13) —0.000 060 (82) —0.045 8 (14) —0.048 0 (42)
66  —0.034 39 (64) —0.000 4 (19) —0.000 07 (11) —0.035 (2) —0.037 (5)
70 —0.014 83 (47) —0.001 2 (24) —0.000 07 (13) —0.016 (2) —0.020 (7)

74 0.015 98 (86) —0.002 1 (29) —0.000 07 (16) 0.014 (3) 0.010 (8)
80 0.098 74 (58) —0.003 3 (40) —0.000 08 (20) 0.095 (4) 0.086 (11)
82 0.138 13 (63) —0.003 5 (44) —0.000 08 (22) 0.135 (4) 0.122 (12)
90 0.386 16 (82) —0.002 0 (66) —0.000 09 (32) 0.384 (7) 0.359 (17)
92 0.478 80 (91) —0.000 3 (73) —0.000 09 (35) 0.478 (7) 0.446 (19)

For Z > 13, we evaluate Eqgpscer3+ by fitting the 1/Z expan-
sion of numerical results for £ listed in Table II. Our
results for Eqppsers+ are listed in Table IV, in the column
labeled “1/Z3*.” The indicated numerical uncertainty takes
into account uncalculated QED effects. We estimate these
effects by taking the relative value of the deviation of the full
QED results for the 1/Z screening correction from the mo?
contribution induced by the coefficient D; s, and multiplying
it by a conservative factor of 2.

C. Nuclear recoil

The one-electron nuclear recoil correction E2! was
calculated rigorously within QED to all orders in Z« in
Refs. [45,46]. In this work, we take numerical results for
E2! from the recent tabulation presented in Ref. [36].

The few-body recoil correction E¥! is obtained from the

NRQED calculations described in Sec. II. Specifically, we

calculate Ef¥! from £*D as

m z*
Efevel — ot 7 <5<4~‘> + 3—2> , (50)
where the second term in braces subtracts the one-electron
contribution already taken into account by EX™¢!. For Z < 13,
we use the values of £+ listed in Table II, whereas for larger
Z, we get results by fitting the 1/Z expansion of £*. The
uncertainty of the few-body recoil contribution was estimated
by taking the relative value of the deviation of the one-electron
QED recoil correction from the leading-order ma* term and
multiplying it by a conservative factor of 2.

D. Total fine structure

Table VI summarizes results of our calculations of the
2p3j2—2p12 fine-structure interval in Li-like ions with nu-
clear chargers Z =5-92. The column labeled “(r?)!/2”
contains values for the root-mean-square nuclear charges radii
used in the calculation, taken from Ref. [47]. The next column
specifies the isotope for which the calculation is performed.
The nuclear masses were taken from Ref. [48].

The next three columns display the theoretical results for
the electron-structure contribution, the one-electron QED ef-
fects, and the recoil correction, respectively. The one-electron
QED part was taken from the tabulation [36]; the other contri-
butions are evaluated as described in previous sections.

Results collected in Table VI indicate that for light
ions, the dominant theoretical uncertainty comes from the
electron-structure effects, more specifically, from the numer-
ical uncertainty of the two-photon QED correction and the
residual three-photon QED effects. In the high-Z region,
comparable uncertainties arise from various contributions, in-
cluding the one-electron QED effects, QED screening, and
nuclear charge radii.

IV. DISCUSSION

Table V presents a comparison of our theoretical predic-
tions with previous theoretical and experimental results. For
Z < 10, we compare our results with theoretical values by
Wang et al. [49]. Their calculation accounted for the electron-
correlation effects within the Breit-Pauli approximation and
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TABLE V. Comparison of different theoretical predictions and experimental results for the 2p3/,,—2p;,, fine-structure interval in Li-like
ions, in cm™! (upper subtable) or eV (lower subtable), 1 eV = 8065.543937 cm™'.

Z This work Wang 1993 [49] Kozhedub 2010 [22] Sapirstein 2011 [15] Experiment Ref.
5 34.075 (13) 34.04 34.100 (14) [50]
6 107.166 (23) 107.06 107.3 (3) [51,52]
7 258.931 (37) 258.7 259 (1) [52]
8 531.323 (55) 530.9 531 (1) [52]
9 975.206 (77) 974.5 976 (2) [52]
10 1 650.39 (10) 1649.2 1653 (3) 1653 (8) 1649 (2) [52]
11 2 625.73 (10) 2631 (5) [52]
12 3979.15 (13) 3984 (8) 3975 (3) [52]
13 5797.76 (16) 5796 (5) [52]
14 8 177.95 (21) 8177 (4) [52]
15 11 225.38 (25) 11224 (4) 11219 (8) 11253 (15) [52]
16 15 055.24 (30) 15054 (1) [53]
17 19 792.36 (35) 19770 (15) [52]
18 25571.24 (42) 25572 (5) 25560 (8) 25572 (10) [52]
20 40 841.36 (55) 40843 (6) 40828 (8) 40850 (10) [52]
21 50 651.62 (70) 50627 (8)

22 62 141.83 (95) 62146 (10) [52]
24 90914.5 (15) 90912 (12) [54]
25 108 598.5 (16) 108634 (40) [52]
26 128 769.8 (17) 128774 (7) 128750 (8) 128774 (16) [55]
28 177 502.2 (17) 177508 (8) 177474 (8) 177524 (20) [56]
29 206 557.7 (17) 206549 (33) [57]
V4 This work Kozhedub 2010 [22] Sapirstein 2011 [15] Experiment Ref.
30 29.643 27 (23) 29.643 6 (12) 29.641 (1) 29.646 4 (47) [58]
32 39.142 30 (30) 39.14 39.141 7 (53) [57]
34 50.799 46 (38) 50.790 (23) [59]
36 64.936 53 (43) 64.9367 (17) 64.93 64.955 (37) [60,61]
39 91.565 77 (53) 91.595 (15) [62]
40 102.080 50 (58) 102.081 7 (23) 102.08

42 125.879 40 (70) 125.88 125.841 (73) [59]
47 204.238 9 (11) 204.238 8 (36) 204.26 204.229 (31) [63]
50 266.772 5 (14) 266.772 1 (46) 266.77

52 316.1351 (16) 316.134 (5) 316.11

54 372.3950(19) 372.39 372.354 (53) [4,64]
60 589.928 5 (30) 589.929 (6) 589.93 (1)

64 784.028 3 (41) 784.01 (1)

66 898.712 1 (48) 898.73 (1)

70 1169.031 3 (49) 1169.03 (2)

74 1 502.715 0 (65) 1 502.66 (3)

79 2027.756 9 (93) 2027.78 (3)

80 2 149.404 (10) 2149.41 (4)

82 2411.403 (11) 241141 4) 2411.61 (12) [5,9]
83 2552.326 (11) 2552.32 (5)

90 3754.525 (22) 3754.51 (7)

92 4178.830 (22) 4 178.81 (8) 4178.73 (21) [6,65]

added the relativistic and QED effects as delivered by the
hydrogenic approximation with an effective nuclear charge.
Their approach is reasonably adequate for very low Z. As Z
increases, we observe a steadily growing deviation between
their values and our results.

For Z > 10, we compare our results with the two most
complete ab initio QED calculations, by Kozhedub et al.
[22] and by Sapirstein and Cheng [15]. In these studies, re-

sults were reported for the 2p3,,—2s and 2p;,—2s transition
energies; we combine them together to get results for the
2p3/»—2p1,2 interval. Doing this, we assume the uncertainties
of the two transitions to be correlated. Specifically, we take
the largest of the uncertainties reported for the two intervals,
rather than adding them quadratically.

The calculations by Kozhedub et al. and by Sapirstein and
Cheng provided accurate theoretical predictions for medium-
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TABLE VI. Individual effects and total theoretical predictions for the 2p3,,—2p > fine-structure interval in Li-like ions. Units are eV, 1 eV
= 8065.543937 cm~'. In the case when an entry is given with two uncertainties, the first one is the estimation of the theoretical error and
the second is due to the nuclear charge radius. In the case when one uncertainty is given, it is the estimation of the theoretical error and the
uncertainty due to the nuclear radius is negligible.

V4 Isotope  (r?)/? [fm] Structure QED, 1-el QED, scr Recoil Total

5 g 2.406 (29) 0.004 2137 (16) 0.000 065 2 —0.000 053 8 (3) —0.000 0003 0.004 224 8 (17)
6 e 2.4702 (22) 0.013 2532 (28) 0.000 1350 —0.000 100 3 (6) —0.000 0009 0.013 286 9 (29)
7 N 2.5582 (70) 0.032 023 3 (45) 0.000 249 5 —0.000 167 7 (10) —0.000 0018 0.032 103 4 (46)
8 160 2.6991 (52) 0.065 713 6 (67) 0.000 424 6 (1) —0.000 259 4 (16) —0.000 0031 0.065 875 7 (68)
9 F 2.8976 (25) 0.120 615 2 (93) 0.000 678 4 (1) —0.000 378 7 (24) —0.000 0048 0.120910 1 (96)
10 Ne 3.0055 (21) 0.204 128 (12) 0.001 031 1 (1) —0.000 529 0 (36) —0.000 0076 0.204 622 (13)
11 Na 2.9936 (21) 0.324 768 (11) 0.001 505 —0.000 713 (5) —0.000 010 0.325 549 (12)
12 Mg 3.0570 (16) 0.492 176 (14) 0.002 126 —0.000 934 (7) —0.000 015 0.493 351 (16)
13 77Al 3.0610 (31) 0.717 127 (18) 0.002 919 —0.001 195 (9) —0.000 020 0.718 831 (20)
14 BSi 31224 (24) 1011548 (22)  0.003 913 (1) —0.001 498 (12) —0.000 027 1.013 936 (26)
15 3sp 3.1889 (19) 1.388 508 (26) 0.005 140 (1) —0.001 846 (16) —0.000 033 1.391 770 (31)
16 29 3.2611 (18) 1.862 263 (31) 0.006 632 (1) —0.002 240 (20) —0.000 043 1.866 612 (37)
17 Bl 3.365 (19) 2.448 253 (36) 0.008 422 (2) —0.002 683 (25) —0.000 052 2.453 940 (44)
18 “Ar 34274 (26) 3163116 (41)  0.010 548 (3) ~0.003 177 31) —0.000 058 3.170 429 (52)
19 ¥K 3.4349 (19) 4.024 704 (46) 0.013 047 (4) —0.003 723 (38) —0.000 076 4.033 952 (59)
20 Ca 3.4776 (19) 5.052 148 (54) 0.015 959 (5) —0.004 331 (40) —0.000 093 5.063 683 (68)
21 43¢ 3.5459 (25) 6.265 777 (63) 0.019 324 (6) —0.004 998 (59) —0.000 103 6.280 001 (87)
22 BT 3.5921 (17) 7.687 235 (72) 0.023 186 (9) —0.005 697 (92) —0.000 118 7.704 60 (12)
23 Sy 3.6002 (22) 9.339 469 (83) 0.027 587 (11) —0.006 48 (12) —0.000 135 9.360 44 (15)
24 2Cr 3.6452 (42) 11.246 84 (11) 0.032 574 (14) —0.007 30 (15) —0.000 160 11.271 96 (18)
25 Mn 3.7057 (22) 13.434 66 (10) 0.038 194 (18) —0.008 18 (16) —0.000 180 13.464 50 (19)
26 Fe  3.7377(16) 1593026 (12) 0.044492 (23)  —0.009 12 (17) ~0.000 210 15.965 42 (21)
27 ¥Co 3.7875 (21) 18.761 95 (13) 0.051 517 (29) —0.010 12 (16) —0.000 235 18.803 11 (21)
28 BNi 3.7757 (20) 21.959 59 (14) 0.059 320 (36) —0.011 17 (15) —0.000 280 22.007 46 (21)
29 SCu 3.8823 (15) 25.554 52 (16) 0.067 951 (44) —0.01229 (14) —0.000 300 (1) 25.609 89 (22)
30 %47n 3.9283 (15) 29.579 58 (18) 0.077 46 (5) —0.013 43 (14) —0.000 34 29.643 27 (23)
31 “Ga 3.9973 (17) 34.069 17 (20) 0.087 90 (7) —0.014 64 (16) —0.000 37 34.142 06 (26)
32 "Ge 4.0742 (12) 39.059 27 (21) 0.099 32 (8) —0.015 90 (19) —0.000 39 39.142 30 (30)
33 5 As 4.0968 (20) 44.587 54 (24) 0.111 78 (10) —0.017 24 (22) —0.000 44 44.681 63 (34)
34 80Se 4.1400 (18) 50.693 19 (26) 0.12532 (12) —0.018 57 (25) —0.000 47 50.799 46 (38)
35 Br 4.1629 (21) 57.417 02 (25) 0.140 00 (9) —0.019 98 (27) —0.000 54 57.536 49 (38)
36 84Kr 4.1884 (22) 64.802 64 (31) 0.15586 (11) —0.021 40 (29) —0.000 58 (1) 64.936 53 (43)
37 8Rb 4.2036 (24) 72.893 76 (33) 0.172 97 (13) —0.022 87 (30) —0.000 64 (1) 73.043 22 (46)
38 88Sr 4.2240 (18) 81.737 18 (36) 0.191 38 (15) —0.024 36 (31) —0.000 69 (1) 81.903 50 (49)
39 Oy 4.2430 (21) 91.381 29 (39) 0.211 12 (18) —0.025 87 (32) —0.000 77 (1) 91.565 77 (53)
40 N7r 4.2694 (10) 101.876 49 (42) 0.232 25 (21) —0.027 39 (34) —0.000 85 (1) 102.080 50 (58)
41 SNb 4.3240 (17) 113.275 21 (45) 0.254 82 (24) —0.028 97 (37) —0.00091 (2) 113.500 14 (63)
42 %Mo 4.4091 (18) 125.632 01 (49) 0.278 87 (28) —0.030 52 (41) —0.000 96 (2) 125.879 40 (70)
43 BTc 4.424 (44) 139.003 39 (50)(4) 0.304 45 (32) —0.032 07 (45) —0.001 07 (2) 139.274 71 (74)(4)
44 102Ru 4.4809 (18) 153.449 50 (58) 0.331 60 (36) —0.033 60 (49) —0.001 14 (3) 153.746 36 (84)
45 103Rh 4.4945 (23) 169.030 26 (61) 0.360 35 (42) —0.035 12 (53) —0.001 24 (3) 169.354 24 (91)
46 106pq 4.5318 (29) 185.810 18 (66)(1) 0.390 74 (48) —0.036 59 (57) —0.001 33 (4) 186.163 00 (99)(1)
47 7 Ag 4.5454 (31) 203.855 55 (70)(1) 0.422 80 (54) —0.038 01 (61) —0.001 45 (4) 204.238 9 (11)

48 "2¢cq 4.5944 (24) 223.235 19 (75)(1) 0.456 56 (62) —0.039 38 (65) —0.001 52 (5) 223.6509 (12)

49 SIn  46156(26)  244.02082 (81)(1)  0.492 05 (70) —0.040 67 (69) —0.001 62(6) 2444706 (13)

50 12081 4.6519 (21) 266.286 79 (86)(1) 0.529 28 (79) —0.041 89 (75) —0.001 70 (6) 266.772 5 (14)

51 12131 4.6802 (26) 290.110 47 (92)(1) 0.568 27 (89) —0.043 08 (80) —0.001 84 (7) 290.633 8 (15)

52 e 47423(25)  31557213(98)2)  0.609 0 (10) —0.044 14 (85) —0.00187(8)  316.1351(16)

53 1271 4.7500 (81) 342.755 5 (10) 0.6515(11) —0.045 08 (91) —0.002 08 (10) 343.359 9 (18)

54 2Xe 4.7859 (48) 371.747 2 (11) 0.695 8 (12) —0.045 85 (98) —0.002 18 (11) 372.3950(19)

55 1BCs 48041 (46)  402.637 5 (12) 0.741 8 (14) —0.046 4 (10) —0.00235(12)  403.3305 (21)

56 138Ba 4.8378 (46) 435.5200 (13) 0.789 6 (16) —0.046 8 (11) —0.002 45 (14) 436.260 3 (23)

57 La 4.8550 (49) 470.492 2 (13)(1) 0.8390 (17) —0.047 0 (12) —0.002 64 (15) 471.281 7 (25)(1)
58 M0Ce  48771(18)  507.6555 (14) 0.890 1 (19) —0.046 9 (13) —0.00284(18)  508.4959 (27)
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TABLE VI. (Continued.)

V4 Isotope (r'2 [fm] Structure QED, 1-el QED, scr Recoil Total

59 14lpr 4.8919 (50) 547.115 2 (15)(1) 0.942 8 (21) —0.046 5 (13) —0.003 05 (20) 548.008 4 (29)(1)
60 2Nd 4.9123 (25) 588.980 6 (16)(1) 0.997 0 (21) —0.045 8 (14) —0.003 30 (23) 589.928 5 (30)(1)
61 49pm 4.962 (50) 633.365 4 (17)(8) 1.052 7 (23) —0.045 1 (15) —0.003 46 (25) 634.369 5 (32)(8)
62 1528m 5.0819 (60) 680.387 2 (18)(1) 1.109 7 (25) —0.044 0 (16) —0.003 56 (28) 681.449 4 (35)(1)
63 153Ey 5.1115 (62) 730.171 6 (19)(2) 1.167 9 (28) —0.0424 (17) —0.003 81 (31) 731.293 3 (38)(2)
64 1¥Gd 5.1569 (43) 782.845 4 (20)(2) 1.227 3 (31) —0.040 4 (18) —0.003 98 (34) 784.028 3 (41)(2)
65 19T 5.06 (15) 838.545 6 (21)(43) 1.287 7 (34) —0.037 9 (19) —0.004 3 (4) 839.791 1 (44)(43)
66 12Dy 5.207 (17) 897.402 5 (23)(6) 1.348 9 (37) —0.034 9 (20) —0.004 5 (4) 898.712 1 (48)(6)
67 1%Ho 5.202 (31) 959.570 4 (24)(12) 1.410 8 (41) —0.0312 (21) —0.0047 (5) 960.945 2 (52)(12)
68 166 5.2516 (31) 1025.194 8 (25)(2) 1.473 1 (44) —0.026 9 (22) —0.005 0 (5) 1 026.635 9 (56)(2)
69 19Tm 5.2256 (35) 1094.437 3 27)(3) 1.535 6 (49) —0.021 9 (23) —0.005 3 (6) 1 095.945 7 (60)(3)
70 174YDb 5.3108 (60) 1167.454 8 (28)(4) 1.598 1 (31) —0.016 1 (24) —0.005 6 (6) 1 169.031 3 (49)(4)
71 Ly 5.370 (30) 1244.423 2 (29)(21) 1.660 3 (34) —0.010 0 (26) —0.0059 (7) 1246.067 7 (52)(21)
72 180 f 5.3470 (32) 1325.525 1 (31)(5) 1.7219 37) —0.003 0 (27) —0.006 1 (8) 1327.237 9 (56)(5)
73 181y 5.3507 (34) 1410.941 1 (33)(5) 1.782 5 (41) 0.004 9 (29) —0.006 5 (9) 1412.722 0 (60)(5)
74 184y 5.3658 (23) 1500.866 3 (34)(6) 1.841 7 (45) 0.013 8 (30) —0.006 9 (10) 1502.715 0 (65)(6)
75 187Re 5.370 (17) 1595.505 7 (36)(21) 1.899 2 (49) 0.024 2 (32) —0.007 2 (11) 1597.421 8 (69)(21)
76 19205 5.4126 (15) 1695.066 7 (38)(8) 1.954 4 (53) 0.0357 (33) —0.007 5 (12) 1 697.049 2 (74)(8)
77 1931y 5.40 (11) 1799.781 (4)(16) 2.006 8 (58) 0.048 5 (35) —0.008 0 (14) 1 801.828 (8)(16)
78 19pt 5.4307 (27) 1909.870 6 (42)(11) 2.056 0 (64) 0.062 6 (37) —0.008 7 (14) 1911.980 5 (86)(11)
79 197 Au 5.4371 (38) 2025.586 5 (44)(14) 2.101 2 (70) 0.078 2 (38) —0.009 0 (17) 2027.756 9 (92)(14)
80 02Hg 5.4648 (33) 2147.176 7 (46)(16) 2.141 8 (76) 0.095 4 (40) —0.009 7 (17) 2 149.404 1 (99)(16)
81 20511 5.4759 (26) 2274.914 3 (48)(17) 2.1771 (83) 0.114 0 (43) —0.009 8 (20) 2277.196 (11)(2)
82 208ppy 5.5012 (13) 2409.073 3 (50)(19) 2.206 3 (90) 0.134 5 (45) —0.010 9 (20) 2411.403 (11)(2)

83 209Bj 5.5211 (26) 2549.951 0 (52)(23) 2.228 6 (76) 0.157 2 (47) —0.0109 (25) 2552.326 (11)(2)
84 209pg 5.527 (18) 2697.858 7 (55)(71) 2.242 8 (84) 0.182 1 (51) —0.011 6 (28) 2700.272 (12)(7)

85 20 At 5.539 (55) 2853.114 (6)(24) 2.248 1 (92) 0.209 1 (55) —0.0123 (32) 2 855.559 (13)(24)
86 22Rn 5.691 (20) 3016.003 (6)(11) 2.243 (10) 0.238 (6) —0.012 (3) 3018.472 (14)(11)
87 23pr 5.695 (18) 3186.992 (6)(11) 2.227 (11) 0.270 (6) —0.013 (4) 3 189.476 (15)(11)
88 226Ra 5.721 (29) 3366.393 (6)(19) 2.199 (12) 0.305 (6) —0.014 (4) 3368.883 (16)(19)
89 27 Ac 5.670 (57) 3554.660 (7)(42) 2.156 (14) 0.343 (6) —0.014 (5) 3557.145 (17)(42)
90 22Th 5.785 (12) 3752.058 (7)(12) 2.098 (15) 0.384 (7) —0.016 (4) 3754.525 (19)(12)
91 Blpg 5.700 (57) 3959.276 (7)(56) 2.023 (17) 0.430 (7) —0.016 (6) 3961.712 (21)(56)
92 28y 5.8571 (33) 4176.439 (8)(5) 1.928 (18) 0.478 (7) —0.016 (6) 4 178.830 (21)(5)

and high-Z ions. For lower Z ions, however, the relative
accuracy of their results diminished, due to a large cancel-
lation of various effects between the 2p3, and the 2p; ),
states. We observe very good agreement with predictions
by Kozhedub et al. for all nuclear charges reported in that
work, well within their error bars. The agreement with the
calculation by Sapirstein and Cheng is good for high val-
ues of Z but moderate in the interval Z = 20-30, which
might be due to residual electron-correlation effects not ac-
counted for in their work. Our results are more accurate
than those of the both previous studies, partly due to a more
complete inclusion of many-photon electron-correlation ef-
fects and partly due to usage of the advantages offered by
the 2p3/»—2pis» interval as compared to the 2p;—2s inter-
vals.

The comparison of our theoretical predictions with the
available experimental results is summarized in Table V and
shows good agreement in most cases. In several occasions
(notably, for Z = 15, 39, 82), deviations of about two ex-
perimental uncertainties are observed. The reasons behind

them are probably on the experimental side, since different
calculations agree well with each other on the level of the
experimental uncertainties.

Generally, the theoretical predictions for the 2p3,,—2pi,2
interval are found to be more accurate than the existing
experimental results. The only exception in the range of nu-
clear charges covered in this work is boron (Z = 5), where
the uncertainty of the experimental result [50] matches the
theoretical accuracy. Even more accurate measurements are
available for Li and Be™ [10,11]. Unfortunately, our present
approach is not useful for these lightest atoms, since it is relies
on the 1/Z expansion for description of QED effects of order
ma® and higher, which fails at very low Z.

In summary, we performed ab initio QED calculations
of the 2p fine-structure interval in Li-like ions with nuclear
charges Z = 5-92. In order to improve the theoretical accu-
racy, we combined together two complementary theoretical
methods, namely, the 1/Z-expansion approach, which ac-
counts for all orders in the parameter Z« but expands in
1/Z, and the NRQED approach, which accounts for all orders
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in 1/Z but expands in Ze. In the result, we obtain the cur-
rently most accurate theoretical predictions for a wide range
of nuclear charges. For Z > 20, our theoretical predictions
have the fractional accuracy of better than 1073, providing an
opportunity for high-precision tests of the interplay of QED
and electron-correlation effects.
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APPENDIX: RADIAL INTEGRATIONS IN MATRIX
ELEMENTS OF AMM OPERATORS

In this Appendix, we present formulas for the matrix el-
ements of the amm operators [given by Egs. (14) and (15)]
with the Dirac wave functions, after angular integrations. The
matrix element of the one-electron amm operator is evaluated

J

as

Zak o0
(lHa10) = =5 b B [

1
) [8a(r) fo(r) + fa(r) gp(r)], (Al

where g,(r) and f,(r) are the upper and the lower radial com-
ponents of the wave function of the electron state n, defined as
in Ref. [66]; k,, and p,, are the relativistic angular-momentum
quantum number and the angular-momentum projection, cor-
respondingly.

The matrix element of the two-electron amm opera-
tor can be written in the form, analogous to that for
the electron-electron interaction operator (cf. Eq. (38) in
Ref. [66]),

(ab|Hamm.2lcd) = % > " Ji(abed) R™™ (abed),  (A2)
L

where Jp(abcd) is the standard function incorporating the
dependence of a two-body operator on the angular-momentum
projections (see Eq. (39) of Ref. [66]) and R;mm’z is the radial
integral evaluated as

o [L+1 1 "
R™™2(abed) = (—1)F (2L 4 1) f ridry [ 71 Crlks k) g Xaepra (1) f radry rk Wy (ry)
0 4‘1 r 0

+

2L +1

1 n
CL(Kvad)med(rl) / 13dry rE Xye 111 (r2)
1 0

L
1 1 1 1 n
+ Z \/6(1+1){L ] l—i-l}F Yac,u+1(’”1)/0 13dry 1y Zpa 11 (r2)

I=L—-1
L+1

where {. ..} denotes the 6 symbol and

Xacaw(r) = 8a(r) fo(r) Su(—ke, ko) + fa(r) 8c(r) S (ke —K4)

Yoer(r) = 8a(r) 8c(r) Siv(ke, ka) — fa(r) fo(r) Sir(—ke, —Ka)

Zacar(r) = 8a(r) fe(r) Sir(—xe, ko) = fa(r) c(r) Siv (e, —Ka)
Wac(r) = 84(r) 8c(r) + fa(r) fe(r).

U BN g -
+Z«/§{L ; 1—1}@2”“’(”)[) P2drs 5 Yoo io1(r2) + ... (ac) <> (bd) ...
I=L

] ; (A3)

(A4)
(A5)
(A6)
(AT)

Furthermore, the standard angular coefficients S;; and C; are defined by Egs. (A7)- (A10) of Ref. [66].
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