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Rayleigh scattering of linearly polarized light: Scenario of the complete experiment
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The process of the elastic scattering of photons on atoms, known as the Rayleigh scattering, is inves-
tigated. Expressing the scattering observables in terms of the electric and magnetic complex scattering
amplitudes, we work over the scenarios for their independent benchmarking by experiments. In particular,

the combination of the cross section and polarization transfer of initially linearly polarized light pro-
vides an opportunity for a complete experiment for any but fixed scattering angle. It allows us to deduce
the modulus of the electric and magnetic amplitudes together with the phase difference individually. The
findings are illustrated by the theoretical calculations of the scattering of 150-250 keV photons on lead

atoms.
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I. INTRODUCTION

A new generation of experiments has currently become
possible due to the recent advent of new solid-state photon
detectors. Exploiting the polarization sensitivity of the Comp-
ton scattering process, these detectors become highly efficient
Compton polarimeters [1-4], which opens a new field to study
polarization of x rays. These novel-type position-sensitive
x-ray detectors as Compton polarimeters have been exception-
ally successfully applied in measuring the linear polarization
of photons of the radiative electron capture [5] as well as of
the subsequent Ly-o; emission in the case of capturing in
the L-shell [6]. Moreover, they have also been employed in
measuring the polarization of the radiation with continuous
spectra. In particular, in Ref. [7], the linear polarization of
bremsstrahlung photons has been measured and, recently, the
polarization of the Rayleigh scattered photons has been deter-
mined [8].

The Rayleigh scattering, which is a dominant elastic-
scattering process for photon energies less than 2 MeV,
has been extensively investigated theoretically; see, e.g., for
reviews [9-11]. Relativistic calculations based on the second-
order S-matrix amplitude are accepted now as a benchmark
for treating the Rayleigh scattering [12-20]. The angle-
differential cross section and the polarization transfer are
the typical observables studied theoretically and experimen-
tally. Concerning the polarization studies, for example, in
Ref. [16], the polarization of the scattered light for an initially
unpolarized photon beam was thoroughly compared with ex-
periments. The general properties of the photon-polarization
transfer as well as the phenomenon of the circular dichroism
in the Rayleigh scattering were addressed in Refs. [17,21].
Recently, numerical studies of the polarization of the scattered
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photons in the case of initially linear polarized light have been
made for hydrogen and hydrogenlike ions [18,19], as well as
for ions with more electrons [20,22].

Although there are papers devoted to the polarization
transfer in the Rayleigh scattering [16-22] and, in partic-
ular, in Refs. [16,17] significant steps towards complete
experiment description were undertaken, we think that the
polarization analysis requires more detailed considerations.
Further investigations are especially important because of
the forthcoming Rayleigh experiment at the PETRA III syn-
chrotron at DESY, where it is planned to go beyond the
coplanar geometry that was previously employed [8]. In
our present work, we investigate how the polarization prop-
erties, together with the cross-section data, could provide
an opportunity for the complete description of the scatter-
ing process. In particular, we demonstrate how to extract
different independent amplitudes, phases from the polar-
ization, and cross-section measurements. For this purpose,
in Sec. Il A, we analyze what kind of parameters can be
chosen to describe the scattering process completely. The
method of numerical calculation of the scattering amplitudes
is presented in Sec. II B. In Sec. III, we investigate the angle-
differential cross section and polarization of the scattered
photons. Special attention is paid to the case of the linearly
polarized initial radiation. We find that the polarization anal-
ysis and the cross-section data provide a possibility to extract
the electric and magnetic amplitudes and the phase differ-
ence individually. Numerical calculations are presented for
the photons with 150-250 keV energies scattered on lead
atoms.

Relativistic units (A = 1, ¢ = 1, m = 1) and the Heaviside
charge unit [o = &2 /(4m), e < 0] are used throughout the
paper.

©2020 American Physical Society
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FIG. 1. Geometry of the Rayleigh scattering of a photon. The
wave and polarization vectors k; and ¢;, respectively, of the incoming
photons define the reaction plane. The emission direction of the
outgoing photons k; is characterized by the two angles, i.e., the
scattering 6 and azimuthal ¢. The direction of linear polarization of
scattered light €, is defined with respect to the scattering plane, as
spanned by vectors k; and k, and is characterized by the polarization
angle x.

II. THEORY

A. General analysis

The general process of the Rayleigh scattering can be illus-
trated by the following schematic expression:

A+ yiei, ki) = A+ yr(es, kp). (1

Here, an atom A absorbs the incident photon y;, which is
characterized by its momentum K; and polarization vector ¢;.
Due to the photon absorption, an atom undergoes a transition
to a virtual state, from which it decays back to its ground
state A with the emission of the scattered photon y, with
momentum K and polarization vector €. At the same time,
the energies of the incident and scattered photons are equal,
|ki| = |ky| = w. The geometry of the described process is
shown in Fig. 1. Two planes can be defined for the process
under consideration. These are the scattering plane, i.e., the
plane spanned by vectors k; and ky, and the reaction plane
spanned by vectors k; and ¢;. The scattering (or polar) angle
6 describes the mutual orientation of the vectors k; and ks in
the scattering plane, while the azimuthal angle ¢ is the angle
between the reaction and scattering planes. In the case of pure
circular initial polarization, the reaction plane is not defined
and the dependence on the azimuthal angle ¢ disappears.
The amplitude of the process (1) is the second-order scat-
tering amplitude, which should be linear in both ¢; and €%
and include only an even number of vectors k; and k; [9,21].
For atoms with zero total angular momentum, the scattering
amplitude M(e;, K;; €7, k) can be generally written as

M(ei kiser, kp) = (€ - €)M ©0) + [€; x ki]
€} x kpIM™(0), 2)

where k defines the direction of the photon wave vector K.
The amplitudes M© (@) and M™ () refer to the electric
and magnetic scattering amplitudes, respectively. These are
two gauge-invariant complex functions, which besides the
photon energy w and atomic structure depend only on the

scattering angle 6 or momentum transfer to an atom ¢, g =
2w sin (0/2). The reason for the amplitude names is that in
the dipole approximation, the electric amplitude reproduces
the electric-dipole polarizability, and the magnetic amplitude
reduces to the magnetic-dipole susceptibility [23]. It can be
easily discerned from Eq. (2).

The electric and magnetic amplitudes can be easily con-
nected with the amplitudes F () and G(6) introduced in
previous works [9,14,15] by the following expressions:

F(®) = M© )+ cos ()M ™ (),
GO) = —M™@®). (3)

In addition to the pair of gauge-invariant amplitudes intro-
duced above, two other choices are often also employed:
linear polarization amplitudes M!(6), ML(9) and circular
polarization amplitudes M™1(0), M*~(8). For the linear
amplitudes, polarization vectors € are resolved into compo-
nents that are parallel €/ and perpendicular e* to the scattering
plane, and the scattering amplitude can be written as

M(ei, ki €7, kp) = (€] - € IMO) + (6 - €M),
4)
where the linear amplitudes are given by
M @) = cos (OIMS () + M™ ),
ME©O) = M@ (©B) + cos (O)M™(9). 6))

Another choice is the circular polarization amplitudes, ob-
tained when the polarization vectors € are defined as complex
circular vector components € and €,

M€ kiser kp) = (6 - € + & - €)M (0)
+ (e - € te - G;*)M’L‘(Q), ©)

where the circular amplitudes can be expressed in terms of the
electric and magnetic amplitudes as follows:

MFT(0) = cos? (g) [M(e)(é’) + ./\/l(m>(0)],

MF=(0) = sin? (%)[M@(e) —~M™@)].

Thus, independently of the particular choice of the com-
plex amplitudes, there are four real functions which describe
the complete process: R[M©(0)], Z[M©(©)], RIM™(6)],
and Z[M™(0)]. However, only three of them are indepen-
dent since the overall phase cannot be observed: these are
the two functions |[M©(8)|, IM™(#)| and the phase differ-
ence 8(6), §(8) = Arg[M®©®(0)] — Arg[M™(6)]. Here, we
stop our choice on the electric and magnetic amplitudes due
to their physical meaning. The electric amplitude describes,
in the dipole approximation, the linear response on the ap-
plied electric field and represents the main scattering channel.
For its calculation, the form-factor approximation is widely
used [24]. In contrast to the electric amplitude, the magnetic
amplitude is usually much smaller and it cannot be caught
by the form-factor approximation. As a consequence, for its
benchmarking by an experiment, a particular scenario should
be considered. In what follows, we investigate possibilities for
the individual extraction of all scattering functions (the elec-
tric and magnetic amplitudes as well as its phase difference)
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from the scattering observables. However, before we proceed,
let us first describe the way we perform the theoretical calcu-
lations.

B. S-matrix calculation

The scattering amplitude of a whole atom can be found
in the independent particle approximation as a sum of the

scattering amplitude from each of the bound electrons. This
approximation, as was demonstrated in Refs. [25,26], remains
rather accurate for a large region of the photon energies. The
discussions about the correlation effects can be also found in
Refs. [27,28]. Thus, using the S-matrix formalism, the scatter-
ing amplitude for atoms with closed shells can be written as
follows [29]:

J

, o (alot - €*e T n) (n)a - € e™iT|a)
M€ ks € ky) = — +
( /) a)zz £a+ @ — ,(1 — i0)

(aot - €™ T |n) (n|a - €% e *T|a) ®
g4 — w — &,(1 —i0) ’

where « is the fine-structure constant, o is the vector of Dirac matrices, w stays for the incident and scattered photons
energies, and &, and &, define the one-electron energies of an active and intermediate state, respectively. The sum over
a runs over all occupied (active) one-electron states, and the sum over n runs over the complete set of bound and con-
tinuum states of the Dirac equation. The notations a (and n) stay for the full set of the relativistic quantum numbers:
Ng, K, and m,. The Dirac equation includes not only the Coulomb potential of a nucleus, but also a mean-field potential
of all atomic electrons. Equation (8) is rather general and, except for the single-electron approximation, does not rely on
any other estimate. However, in the numerical implementation, the complete sum over the one-electron Dirac spectrum is
required. This sum implies the summation over principal quantum numbers as well as over the total angular momentum of
the intermediate states. For high-lying atomic shells and high photon energies, the total angular momentum series converge
rather poorly. For this reason, in the case of high-lying atomic shells, we employ the following approximation for the

amplitude:

M€ ki€ k) = (€7 - *f*)ZMMFFme—ZZam e e jl) (el - €¢™ 7 |a), ©)
a jl
[
where ratio
A0y = [ S " R(O) = [M™(©0)|/|M©®)], (11)
a _/(; T pall qr &4 — Vere(r) (10) and the phase difference

is the modified form-factor amplitude [9,24] and ¢ is the
momentum transfer to an atom defined above. The potential
Vege(r) is the binding Coulomb potential together with the
mean-field electron potential, and p,(r) is the electron charge
density of the a electron with the normalization condition
fooo drr?p,(r) = 1. The second term in the equation repre-
sents the imaginary part of the scattering amplitude, which
corresponds to the photoionization of the a electron to a
continuum state €jI. The latter characterizes, by its energy
€ = ¢, + w, the total angular momentum j and parity /. In
contrast to the previously used approximation for high atomic
shells [9,14,30,31], we treat the imaginary part of the ampli-
tude exactly.

Numerically most demanding in the computations is the
infinite summation over the complete Dirac spectrum », which
not only contains the bound states but also the positive- and
negative-energy Dirac continuum. In order to perform such
a summation, several approaches were previously employed
in consideration of the Rayleigh scattering: the solution of an
inhomogeneous Dirac equation [12], finite basis-set method
[26,32], and exact solution of the Dirac-Coulomb Green’s
function [19,20,30]. In the present work, we use the finite
basis-set method with the basis constructed from B splines
[33] by employing the dual-kinetic-balance approach [34].

In Fig. 2, we display the absolute value of elec-
tric amplitude |M®(0)|, magnetic to electric amplitude

8(0) = Arg[M@(9)] — Arg[M™(©®)] (12)

as functions of the scattering angle 6. The results obtained
are for the scattering of 150-250 keV photons on lead atoms.
The calculations for the K, L, M, and N shells are performed
within Eq. (8), while the scattering on the O and P shells
is accounted approximately in terms of Eq. (9). These shell
restrictions correspond to the corresponding limits in the sum-
mation over a in Egs. (8) and (9). As the mean-field potential,
the self-consistent Kohn-Sham potential [35] is employed. For
example, we choose lead atoms since this target is frequently
used for the comparison between theory and experiment; see,
e.g., Ref. [9]. Moreover, the lead atom has zero total angular
momentum in its ground state, making Eq. (2) exact. Here,
however, note that our approach is well justified for other
atoms as well since most of the atomic electrons are in closed
subshells, and the scattering from inner shells is dominant
except for small angles where all electrons contribute to scat-
tering [9]. But under small scattering angles, only the electric
amplitude describes the process, and extraction of other scat-
tering parameters becomes cumbersome anyway. As one can
see from the figure, with an increase of the photon energy,
the electric amplitude rapidly decreases with 6, while the am-
plitude ratio is increasing. The latter agrees with other cases
where the magnetic interaction becomes more significant with
an increase of the scattering angle for larger energies [36]. We
also compared our results with previous calculations [13,14]
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FIG. 2. The electric amplitude (left graph), the amplitude ratio (middle graph), and the phase difference (right graph) as functions of
the scattering angle 6. The results of the scattering of photons of 150 keV (black solid line), 200 keV (blue dashed line), and 250 keV
(red dotted line) energies on a lead atom are given. The values of the electric amplitude are presented in units of the classical electron

radius ry.

for the case of 145 keV incident photons scattered on lead
atoms and found an agreement within 1-2%.

III. SCATTERING OBSERVABLES

A. Density matrix of scattered photons

In order to get access to the scattering observables, one
has to first obtain the density matrix of the scattered photon
(keArlprlk f)»}). With the help of the amplitude derived in the
previous section, we can define it as follows [37,38]:

(kpedplprlkph) =Y M€ ki €7, Kp) (Al pil i)
Aik

x M*(", ki €7, Ky), (13)

where (A;|p;|A}) is the density matrix of the initial light. It is
convenient to present the density matrix in terms of the Stokes
parameters P;, P, and P5, which yields

P —iP

where the prefactor do/d2 is the angle-differential cross
section after the summation over the polarization of the scat-
tered light. Here, two Stokes parameters P; and P, completely
describe the linear polarization of the scattered light. The first
parameter is determined by the intensities of light, linearly
polarized at a polarization angle x = 0° or x = 90°, Pllin =
(Ipe — Iyoo )/ (lp> + Ioge ), while a similar ratio, but for y = 45°
or x = 135°, gives the second parameter P,. Here, the polar-
ization angle x is defined with respect to the scattering plane,
as spanned by the directions of incident and outgoing photons
(cf. Fig. 1). The third Stokes parameter P; characterizes the
degree of circular polarization.

We recall here that our aim is to find scenarios where the
individual determination of the scattering parameters, such as

1dU(1+P3

KA p|pslkr)) = = — .
(kprrlprlkerp) = 5=\ p 4 ip,

electric and magnetic amplitudes as well as the phase differ-
ence, becomes possible. Keeping this in mind, we have to fix
the polarization of the initial beam.

B. Unpolarized incident light

Let us start from the case of unpolarized incident radiation.
In this case, the angle-differential cross section takes the form

unpol
W = (1 +cos> O)[IMO @) + IM™6)*]

+ 4 MO O)||IM™ ()| cosb coss, (15)

and only one nonzero Stokes parameter P;, which character-
izes the degree of linear polarization of the scattered photons,

—sin?6(1 — R?)
(1 +cos20)(1 +R2)+4Rcosfcoss’
(16)

PO, ¢) =

The polarization P["™'(0, ¢) given by Eq. (16) is exactly
the polarization transfer P derived previously in Ref. [16].
Here, the amplitude ratio R and phase difference § are de-
fined by Eqgs. (11) and (12), respectively. Both of them are
functions of polar angle 6, which is omitted for the brevity.
In the case of zero magnetic amplitude (or in the form-factor
approximation), the polarization reduces to the simple expres-
sion Plunp‘)l(e, ¢) ~ —sin?0/(1 4+ cos?> ). Here, we notice
that neither the cross section do""' /dQ2 nor the polarization
P"™! have dependence on the azimuthal angle ¢ since, for
the initial unpolarized radiation, the axial symmetry takes
place and the reaction plane is no longer defined. Thus, for
each 6 angle, we have only two scattering observables: cross
section and one nonzero Stokes parameter. This is definitely
not enough to extract all the scattering functions individually.
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However, if we are interested in the property with the strongest
dependence on the magnetic amplitude, we have to consider
the following combination H (6):

H(e)_dounml(e,q&) P, ¢) 1
- d$ sin2@ 1+ cos26
0 cosé
= 2| M) + 4| MO ()| M™ ()| =22
MO + MO0 M)
17)

This function allows one to effectively extract information
beyond the form-factor approximation from the scattering of
the unpolarized incident light. The numerical values of this
function are presented in Fig. 3.

C. Linearly polarized incident light

Another scenario we would like to consider is when the
incident light is completely linearly polarized. This initial
polarization is typical for such light sources as a synchrotron
or free-electron laser. Therefore, this scenario requires special
attention. The angle-differential cross section in this case is
given by

r T T T T T T T T 7]
1 —]
B E ]
< - .
S L i
@ i “.\ T T T T ——— :
0000l b—— L 1 w111
0 30 60 90 120 150 180

Scattering angle 0 (deg)

FIG. 3. The modulus of H(0) as a function of the scattering angle
0, in barn. The scattering of the unpolarized photons of 150 keV
(black solid line), 200 keV (blue dashed line), and 250 keV (red
dotted line) energies on a lead atom is considered.

d lin 97
% = (1 + cos [ MO@) + [M™@)"] = cos 2¢ sin? 8[| M©O(@)]* — |M™(®)[]
+4IM©0)[]M™(6)] cos 6 cos 8, (18)
while the Stokes parameters take the form
Pingg. ¢) = €08 2¢(1 + cos?0)(1 + R?) — sin? O(1 — R?) + 4R cos 2¢ cos O cos & (19)
E T (14 cos20)(1 + R2) — cos 2¢ sin2 0(1 — R2) + 4R cos 6 cos
PinG, ) = sin 2¢(1 + cos? @)[cos O(1 + R?) + (1 + cos? @)R cos §] 20)

We do not present the expression for the circular polariza-
tion relevant Stokes parameter Pi" since, first, the degree of
circular polarization is more difficult to measure and, sec-
ond, it can be deduced from the condition (P}i")? + (Pin)? +
(P3““)2 = 1. Here we note that the latter is precisely cor-
rect only for completely linearly polarized incident light and
closed-shell atoms. The dependence of the Stokes on ¢ makes
them much more rich instruments for the extraction of the
scattering parameters. In Figs. 4 and 5, we plot the Stokes

J

(1 + cos20)(1 + R?) — cos2¢ sin> 6(1 — R?) + 4R cosH cos s

(

parameters as functions of the azimuthal angle ¢ for scat-
tering angles 65° and 120°, respectively. In these figures,
we compare the results obtained with and without (setting
R to zero) the magnetic amplitude included. As one can
see from the figures, there are ¢ angles where the Stokes
parameters are especially sensitive to the magnetic ampli-
tude. In particular, for the angle ¢, = arctan (£ cos6), the
Stokes parameter Pi" is nonzero only due to the magnetic
amplitude,

f16, $.)R?* + g1(6, ¢,)R cos §

P, ¢.) =

(1 +cos20)(1 + R?) — cos 2¢. sin? (1 — R2) + 4R cosh coss

21

Another interesting azimuthal angle is ¢, = arctan [(—1 £ ﬁ) cos @]. In this case, the difference between the second and first
Stokes parameters directly depends on the magnetic amplitude,
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FIG. 4. The Stokes parameters P; (blue solid and dashed lines) and P, (red dash-dotted and dotted lines) for the case of initial linear

polarization as functions of the azimuthal angle ¢ for the fixed scattering angle & = 65°. The scattering of 150 keV (left graph), 200 keV
(middle graph), and 250 keV (right graph) photons on the lead atom is evaluated. The approximation when the magnetic amplitude is set to
zero (blue dashed and red dotted lines) is compared with the calculation where both amplitudes are included (blue solid and red dash-dotted
lines). The dashed vertical lines display azimuthal angles ¢, and ¢, suited for the direct determination of the magnetic amplitude (see text for
details).

AP0, ¢c) = P (0. ¢c) — PI"(0, ¢c)
_ f20, 9 IR + g2(0, ¢-)R cos § ‘ 22)
(1 + cos20)(1 + R?) — cos 2¢, sin> (1 — R?) + 4R cos 6 cos 8
Here, functions fi, f>, g1, and g, are given by
£1(6, @) = cos 2¢(1 + cos®>0) + sin’ 0, (23)
81(0,¢) =4cos2¢cosh, 24)
£2(0, @) = (sin2¢ cos @ — cos 2¢)(1 + cos? ) — sin® 6, (25)
820, ¢) = 4[sin2¢(1 + cos’ 6) — cos2¢ cosf]. (26)

We represent these angles ¢, and ¢, with dashed vertical lines in Figs. 4 and 5. Combining now Eqgs. (21) and (22) with the
corresponding result for the cross section (18), one can extract the magnetic amplitude,
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FIG. 5. Same as in Fig. 4, but for = 120°.
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Knowing now the magnetic amplitude, we can extract the electric one as follows:

do'™(6, ¢) cos 2¢ — Pin(e, 9 ,

M©@ 28
| ( )| dQ2 (1 — cos 2¢) sin® 9 (28)
where ¢ is not restricted to any particular angle. Finally, we can also determine the phase,

I F(0, )8 LPIN G, 6.) — £1(0, $) 4 SLI AP D, 6.) 29)

cosd =

M@ @) M™(©)]

Here, one should say that we determine only the cosine
of the phase difference. Thus, one cannot extract its sign.
The complementary dependence on the sind can only be
identified by considering the incident (partial) circularly po-
larized photons or measuring the circular polarization of the
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FIG. 6. Sensitivity of the Stokes parameters (top: P/™; bottom:
Pin) to the magnetic amplitude as functions of azimuthal ¢ and scat-
tering 6 angles. The sensitivity, which is the normalized difference
between the Stokes parameters calculated with and without magnetic
amplitude, varies from O (small sensitivity) to 1 (large sensitivity).
The color bars are depicted right from the charts. The data for the
scattering of 200 keV photons on a lead atom are used.
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scattered light, i.e., P; parameter. However, for hundreds
of keV photon energies, there are not many sources of
circularly polarized photons available and a measurement of
the circular degree of polarization is somewhat tricky. One
of the solutions could be to repeat the scattering, but use
the scattered photons as the incident. In this case, the P,
parameter of the second time scattered photons depends on
the sin § and can be used to determine the sign of the phase
difference.

Thus, we demonstrate that the scattering parameters such
as the electric and magnetic amplitudes and the phase dif-
ference can be extracted from the ¢-dependence analysis of
the scattered lights’ polarization properties. In principle, one
can also employ, for the determination of the scattering pa-
rameters, other ¢ angles. However, one has to keep in mind
that the magnetic amplitude is much smaller than its electric
counterpart, so special care should be taken. In other words,
we have to find ¢ angles with maximum sensitivity to the
magnetic amplitude. As one can see from Figs. 4 and 5, the
¢ angles with maximum sensitivity depend on the scattering
angle 6. Therefore, in Fig. 6, we investigate the sensitivity of
the Stokes parameters Pj" and Pj" on the ratio R for different
scattering and azimuthal angles. The sensitivity is defined as
the normalized difference between Stokes parameters evalu-
ated with and without (setting R to zero) magnetic amplitude
included. As one can see from Fig. 6, for the first Stokes
parameter, the most sensitive angles ¢ = 45° and 135° for
forward and backward scattering change to ¢ = 0° and 180°
for & = 90°. For the second Stokes parameter, there are four
angles for forward and backward scattering, i.e., ¢ = 22.5°,
67.5°, 112.5°, and 157.5°, which reduce to ¢ = 0° and 180°
for 6 = 90°.

We do not consider the case of initial circular polarization
since there are no instruments that could provide such a light
beam with hundreds of keV photon energy.

IV. SUMMARY

Summarizing, we have theoretically investigated the
Rayleigh scattering for the closed-shell atoms. The different
sets of the independent amplitudes which could completely
describe the Rayleigh scattering process have been discussed.
Absolute values of the electric and magnetic amplitudes, as
well as the phase difference between them, have been chosen
as the scattering parameter set for a complete description of
the process. We have studied the polarization properties of the
scattered light aiming for the extraction of these parameters
independently. We have shown that the polarization transfer
of the initially linear polarized light and the corresponding
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cross-section data provide a comprehensive tool for determin-
ing the scattering parameters. The azimuthal angles, where the
dependence on the magnetic amplitude is maximized, have
been proposed and the sensitivity of other azimuthal angles
has been investigated numerically. The findings obtained will
be beneficial for the Rayleigh scattering experiments, which
can be performed with the synchrotron radiation sources,
where the radiation is almost entirely linearly polarized
[8].

Moreover, the detailed knowledge of the scattering param-
eters is needed in other respects as well. In particular, in
Refs. [30,39], it was shown that the Rayleigh scattering could
be used as a susceptible tool for the x-ray polarimetry. In order

to extract the polarization of the initial beam, the scattering
process has to be understood in many details. Another issue is
the possibility for the observation of the Delbriick scattering
for 1 MeV photons proposed in Ref. [40]. Here, as in the case
of polarimetry, an important ingredient of the successful ex-
periment is the detailed knowledge of the Rayleigh scattering
parameters.
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