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The total two-photon decay rate of hydrogenlike ions is studied using relativistic quantum electrodynamics.
In particular, we analyze how finite nuclear size and QED vacuum polarization corrections affect the decay
rate. To calculate these corrections, a finite basis set method based on B splines is used for the generation of
quasicomplete atomic spectra and, hence, of the relativistic Green’s function. By making use of this B-spline
approach, high precision calculations have been performed for the 2s1/2 → 1s1/2 + 2γ and 2p1/2 → 1s1/2 +
2γ decay of hydrogenlike ions along the entire isoelectronic sequence. The results of these calculations show
that both QED and finite nuclear size effects are comparatively weak for the 2s1/2 → 1s1/2 + 2γ transition. In
contrast, they are much more pronounced for the 2p1/2 → 1s1/2 + 2γ decay, where, for hydrogenlike uranium,
the decay rate is reduced by 0.484% due to the finite nuclear size and enhanced by 0.239% if the vacuum
polarization is taken into account.
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I. INTRODUCTION

Theoretical investigations of two-photon transitions in hy-
drogenlike ions have a long history going back to the seminal
work by Göppert-Mayer [1]. In that work, solutions of the
nonrelativistic Schrödinger equation have been applied to
calculate the rate of the 2s → 1s two-photon transition in
neutral hydrogen. Four decades later, the first fully relativis-
tic calculations were done to describe the two-photon decay
of the metastable 2s1/2 state [2,3]. Being performed within
the framework of second-order perturbation theory for the
electron-photon coupling, these calculations are rather de-
manding. They require a representation of the entire atomic
spectrum including the positive and negative continuum.
Theoretical investigations of two-photon transitions in hy-
drogenlike ions therefore have become a testbed for the
development of second-order computational approaches. Sev-
eral such methods have been developed during the past
decades leading to more precise predictions of the decay rates
[4–6]. The increased accuracy of the calculations has allowed
one to investigate how the total and differential rates are
influenced by nuclear and even QED effects. In particular,
finite nuclear size and mass corrections to the two-photon
decay of n = 2 hydrogenic states have been studied [7–10].
Furthermore, QED effects have been discussed to all orders in
αZ for one-photon transitions [11–13] but only to the leading
order for the two-photon decay of hydrogenlike ions [14,15].

Despite the recent interest in high-precision calculations
of two-photon transitions in hydrogenlike ions, no systematic
fully relativistic analysis of the finite nuclear size and QED
corrections to the decay rates has been performed. To the
best of our knowledge, the first steps towards this analysis

were done by Parpia and Johnson [9] who have discussed
the finite nuclear size corrections for the 2s1/2 → 1s1/2 + 2γ

transition in dipole approximation. Moreover, in the work
by Labzowsky et al. [10], calculations with a finite nucleus
have been performed but with low relative precision. More
accurate calculations of two-photon transitions in hydrogenic
systems are required, however, to get a more complete picture
of bound electronic states and as benchmark data for future
second-order atomic calculations.

In this contribution, therefore, we present a theoretical
study of the finite nuclear size and QED vacuum polariza-
tion corrections to the two-photon decay rate of hydrogenlike
ions. To analyze these effects, we employ the relativistic
quantum electrodynamics approach whose basic equations
are recalled in Sec. II A. In Sec. II B, we discuss the finite
basis set method used to construct the second-order transition
matrix element. The implementation of this method requires
knowledge about the electron-nucleus interaction potential. In
Sec. II C, we show how this potential can be modified from the
pure Coulombic case to include finite nuclear size and vacuum
polarization effects. Since we aim for a discussion of small
effects, the accuracy of the two-photon calculations should be
sufficiently high. In Sec. III, we discuss how such accuracy
can be achieved by using quadruple precision arithmetic. The
results of our calculations are presented in Sec. IV for the
2s1/2 → 1s1/2 + 2γ and 2p1/2 → 1s1/2 + 2γ decay of hydro-
genlike ions in the range from Z = 1 to Z = 92. The results
of these calculations are in good agreement with previous
predictions and indicate that the finite nuclear size and QED
corrections to the decay rate are of opposite sign. We found
that the finite nuclear size reduces the decay rates while the
vacuum polarization enhances them. Both effects are more
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FIG. 1. Leading order Feynman graphs corresponding to the
two-photon transition |i〉 → | f 〉 + γ (k1, ε1) + γ (k2, ε2 ).

pronounced for the 2p1/2 → 1s1/2 + 2γ transition compared
to the 2s1/2 → 1s1/2 + 2γ case. The summary of these results
and outlook are finally given in Sec. V. Relativistic units
h̄ = me = c = 1 are used throughout this paper if not stated
otherwise.

II. THEORY

A. QED description of two-photon decay

Within the framework of quantum electrodynamics, two-
photon decay of hydrogenlike ions can be described, to the
leading order, by the two Feynman diagrams presented in
Fig. 1. As usual, in these diagrams the wavy lines display pho-
tons emitted with wave vectors k1, k2 and polarization vectors
ε1, ε2. Moreover, the double straight lines display the bound
electron which proceeds from the initial |i〉 = |niκiμi〉 to the
final | f 〉 = |n f κ f μ f 〉 hydrogenic state. Here, n is the principal
quantum number, κ is the Dirac quantum number, and μ is the
projection of the total angular momentum j = |κ| − 1

2 .
By using the Feynman correspondence rules, we can write

the S matrix element for each diagram from Fig. 1. For exam-
ple, the matrix element for the first diagram is given by

S1 = (−ie)2
∫

d4x1

∫
d4x2 φ̄ f (x1)γ μ1 A∗

μ1
(x1)

× SF (x1, x2)γ μ2φi(x2)A∗
μ2

(x2), (1)

where SF is the Feynman propagator

SF (x1, x2) = 1

2π i

∫ ∞

−∞
dw

∑∫
ν

φν (x1)φ̄ν (x2)

Eν + w(1 + iδ)
eiw(t1−t2 ), (2)

and the φi and φ f are solutions of the relativistic Dirac equa-
tion with corresponding eigenenergies Ei and E f [16]. Here,
the summation over the intermediate states |ν〉 = |nνκνμν〉 is

understood as a sum over all bound states and an integral over
the positive and negative continuum.

By constructing the S matrix element for the second Feyn-
man diagram in a similar way, inserting the electron and
photon wave functions and carrying out the integration over
time and frequency explicitly we obtain

S1 + S2 = − 4π2ie2

√
ω1ω2

M f i(k1, ε1, k2, ε2), (3)

where the matrix element M f i is given by

M f i(k1, ε1, k2, ε2)

=
∑

ν

〈 f | R̂†(k1, ε1) |ν〉 〈ν| R̂†(k2, ε2) |i〉
Eν − Ei + ω2

+ 〈 f | R̂†(k2, ε2) |ν〉 〈ν| R̂†(k1, ε1) |i〉
Eν − Ei + ω1

. (4)

Here, the wave and polarization vectors are now given as
3-vectors since we have integrated over time. This matrix
element is the starting point from which we investigate all
properties of two-photon decay. We can further evaluate it by
writing the electron-photon interaction operator as

R̂(k, ε) = α · (ε + Gk̂)eikr − Geikr, (5)

where we introduced an arbitrary gauge parameter G. This
parameter is later set to either G = 0 for the velocity gauge
or G = √

(L + 1)/L for the length gauge. It is convenient to
decompose the interaction operator R̂ into spherical tensors.
For emission of a photon in the direction k̂ = (θ, φ), this
expansion reads

R̂(k, ε) = 4π
∑
pLM

iL−|p|[ε · Y (p)∗
LM (k̂)

]
a(p)

LM, (6)

where Y (p)∗
LM are vector spherical harmonics and the index p

describes electric (p = 1), magnetic (p = 0), and longitudinal
(p = −1) multipole fields [3,17]. By inserting this decompo-
sition into Eq. (4) and using the Wigner-Eckart theorem we
obtain

M f i(k1, ε1, k2, ε2) =
∑

p1L1M1

∑
p2L2M2

i|p1|+|p2|−L1−L2

× [
ε1

∗ · Y (p1 )
L1M1

][
ε2

∗ · Y (p2 )
L2M2

]
× M̃ f i(p1L1M1, p2L2M2), (7)

where the matrix element for a particular multipole transition
(p1L1, p2L2) is given by

M̃ f i(p1L1M1, p2L2M2) =
∑

nνκνμν

(4π )2

√
(2 ji + 1)(2 jν + 1)

×
[
〈 j f μ f L1M1| jνμν〉〈 jνμνL2M2| jiμi〉

〈n f κ f ‖a(p1 )†
L1

‖nνκν〉〈nνκν‖a(p2 )†
L2

‖niκi〉
Eν − Ei + ω2

+ 〈 j f μ f L2M2| jνμν〉〈 jνμνL1M1| jiμi〉
〈n f κ f ‖a(p2 )†

L2
‖nνκν〉〈nνκν‖a(p1 )†

L1
‖niκi〉

Eν − Ei + ω1

]
(8)
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and with 〈n f κ f ‖a(p)†
L ‖niκi〉 being the reduced one-photon ma-

trix element [18,19].
With the help of matrix element (7)-(8), we can now calcu-

late observable quantities. For example, the triple differential
(in energy and angles) decay rate is given by

dW (ω1,�1,�2, ε1, ε2)

= e4 ω1(Ei − E f − ω1)

(2π )3

1

2 ji + 1

×
∑
μiμ f

|M f i(k1, ε1, k2, ε2)|2d�1d�2dω1. (9)

Here, we assume that the magnetic sublevels of both the initial
and final states, remain unresolved and hence sum over μ f and
average over μi. If, moreover, the direction and polarization of
the emitted photons are not detected in a particular study, we
can obtain the energy-differential rate:

dW

dω1
=

∑
ε1ε2

∫
dW

d�1d�2dω1
d�1d�2. (10)

The integration over the photon angles and the summation
over their polarization can be easily performed using Eq. (7).
Namely, by inserting the matrix element M f i(k1, ε1, k2, ε2)
into Eqs. (9) and (10) and using the orthonormality relations∑

ε

∫
d�

[
ε∗ · Y (p)

LM

][
ε · Y (p′ )∗

L′M ′
] = δpp′δLL′δMM ′ , (11)

we obtain

dW (ω1) =
∑

p1L1M1

∑
p2L2M2

dWp1L1 p2L2 (ω1). (12)

As seen from this expression, the single differential de-
cay rate can be obtained as the sum of individual multipole
contributions

dWp1L1 p2L2 (ω1) = e4 ω1(Ei − E f − ω1)

(2π )3

1

2 ji + 1
dω1

×
∑
μiμ f

|M̃ f i(p1, L1, M1, p2, L2, M2)|2

(13)

with no interference terms. Finally, by integrating Eq. (12)
over the frequency ω1, we obtain the total decay rate

W = 1

2

∫ Ei−E f

0

dW (ω1)

dω1
dω1, (14)

where the factor 1/2 is introduced to avoid double photon
counting (see [10] for more details).

B. Finite basis expansion

As seen from Eq. (8), the evaluation of the two-photon
decay rate requires one to perform a summation over all inter-
mediate states |nνκνμν〉 explicitly. Being infinite and running
over both bound and continuum states, this summation is not
a simple task. In the past, a large number of methods has
been proposed to perform this summation. For example, the
Coulomb Green’s function approach [16,20,21] and various
finite basis set methods [4–6] were both successfully applied

to perform second-order calculations. In this work, we will
also use finite basis sets constructed from B-spline functions.
Since B-spline sets in atomic physics have been discussed
in the literature [22,23], we restrict ourselves to some basic
formulas.

We start our analysis from the usual Dirac equation for the
electron in the field of the nucleus. Assuming the potential for
the interaction is spherically symmetric, the radial part of this
equation can be given by

Hκφnκ (r) = Enκφnκ (r), (15)

where

Hκ =
(

V (r) + 1 − d
dr + κ

r
d
dr + κ

r V (r) − 1

)
(16)

is the radial Dirac Hamiltonian and

φnκ (r) = 1

r

(
Gnκ (r)

Fnκ (r)

)
(17)

are the radial wave functions. To solve this equation, we
approximate these wave functions by

φnκ (r) =
2N∑
i=1

ci
nκui

κ (r), (18)

where the ui
κ (r) are square-integrable, linearly independent

two-component functions that satisfy proper boundary con-
ditions. In order to find the expansion coefficients ci

nκ , one
usually applies the principle of least action δS = 0 with

S = 〈φnκ | Hκ |φnκ〉 − E〈φnκ |φnκ〉. (19)

Inserting in this expression the wave functions (18), the
variational condition reduces to the generalized eigenvalue
problem

Kik
κ ck

nκ = EnκBik
κ ck

nκ , (20)

where

Kik
κ = ( 〈

ui
κ

∣∣ Hκ

∣∣uk
κ

〉 + 〈
uk

κ

∣∣ Hκ

∣∣ui
κ

〉 )/
2, (21a)

Bik
κ = 〈

ui
κ

∣∣uk
κ

〉
. (21b)

In order to calculate the Kik
κ and Bik

κ matrix elements, to
solve the generalized eigenvalue problem (20) and find the ci

nκ

coefficients, we have to specify the functions ui
κ . Following

the method by Shabaev et al. [22], we choose

ui
κ (r) =

(
π i(r)

1
2

(
d
dr + κ

r

)
π i(r)

)
, i � N (22a)

ui
κ (r) =

( 1
2

(
d
dr − κ

r

)
π i−N (r)

π i−N (r)

)
, i > N, (22b)

where {π i(r)}N
i=1 is the set of B splines on the finite interval

(0, Rcav). The radius Rcav of the finite cavity, in which the
ion is enclosed, is chosen large enough to ensure that the
wave functions (18) are a good approximation for the real
hydrogenic wave functions of the initial and final state. Here,
the first and last B splines on the interval are omitted to fulfill
the proper boundary conditions [22]: Fnκ (0) = 0 for κ < 0,
Gnκ (0) = 0 for κ > 0, and Fnκ (Rcav) = Gnκ (Rcav) = 0. This
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particular choice of the functions ui
κ , by construction (22),

avoids the unphysical so-called spurious states which often
show up in finite basis methods and slow down the conver-
gence of any calculation.

C. Electron-nucleus interaction potential

In the previous section, we have shown how the hydrogenic
Dirac wave functions can be constructed in the framework of a
finite basis method. As seen from Eqs. (16), (20), and (21), the
practical implementation of this method requires knowledge
about the electron nucleus interaction potential. Generally,
this potential can be obtained by

V (r) = e
∫

d3r′ ρ(r′)
|r − r′| , (23)

where ρ(r′) is the nuclear charge density. In the present study,
we will consider a few models of ρ(r′) to better understand the
nuclear effects on the two-photon decay rate. The most naive
approach is the pointlike nucleus represented by the charge
distribution

ρpnt(r) = ρ0δ(r), (24)

which leads to the usual Coulomb potential V = αZ/r.
In order to account for the effects of the finite nuclear size,

we will either model the nucleus as a homogeneously charged
sphere

ρsph(r) = ρ0�(Rsph − r), (25)

where Rsph is related to the root-mean-square charge radius by
Rsph = √

5/3R, or as a Fermi distribution

ρFermi(r) = ρ0

1 + exp[(r − c)/a]
. (26)

For the latter a = 2.3/(4 ln 3) fm and the parameter c is given
by the approximate formula

c ≈ 5
3 R2 − 7

3 a2π2, (27)

see [24,25]. For both nuclear models, (25) and (26), the nu-
clear radius is taken from Ref. [26].

Apart from the finite nuclear size effects, other phenomena
can also influence the two-photon decay rate of hydrogenlike
ions. For example, the interaction of the electron with the
quantum vacuum may affect the wave functions [27,28],
the energy levels [25], and the transition operators [11–13]
and, hence, the decay rate. In the one-loop approximation,
two QED contributions are usually considered: vacuum
polarization and self-energy. While the complete treatment
of these two corrections to the second-order amplitude is
a very complicated task, the vacuum polarization to the
leading order α(αZ )2 can be described by an effective
Uehling potential. The corresponding diagrams can be
obtained by vacuum-polarization insertions in the initial
and final wave functions and the propagator between
the two photon emissions (cf. Fig. 1). The diagrams,
which cannot be accounted for by an effective potential,
such as photon-vacuum-polarization-loop or two-photon-
vacuum-polarization-loop diagrams, vanish in the free-loop
approximation, and, therefore, contribute beyond the leading
order. Thus, the leading-order contributions of diagrams with

the ordinary vacuum-polarization insertions can be treated by
solving the Dirac equation with the Uehling potential

VUehl(r) = − αZ
2α

3π

∫ ∞

0
dr′4πr′ρ(r′)

×
∫ ∞

1
dt

(
1 + 1

2t2

)√
t2 − 1

t2

× exp(−2|r − r′|t ) − exp(−2|r + r′|t )

4rt
, (28)

where the nuclear charge distribution ρ(r′) is assumed to
be spherically symmetric. To account for both the vacuum
polarization and the finite nuclear size effects, we sum VUehl

and the potential resulting from Eq. (25) or (26), respectively.
The technical details of these calculations will be discussed
in the next section.

III. COMPUTATIONAL DETAILS

The present work aims to investigate the finite nuclear size
and QED effects on the two-photon decay rates of hydro-
genlike ions. These effects are rather small requiring a high
accuracy of our calculations. Namely, their numerical uncer-
tainty should be remarkably lower compared to the size of the
discussed effects. As usual in atomic structure calculations,
we verify the accuracy of the computations by testing the
gauge invariance of the decay rates. Following our discussion
above, calculations within the so-called velocity and length
gauge are compared. For all results presented in the next
section, the relative difference of the energy differential decay
rates obtained in these two gauges is smaller than 10−13. It
is not a simple task to reach such high accuracy, especially
in the low-Z regime. The main reason for that is the stan-
dard LAPACK [29] routines which are commonly utilized to
solve generalized eigenvalue problems and are designed to
use double-precision arithmetic. They suffer, hence, a loss of
numerical significance for large diagonally dominant matrices
[5]. In order to overcome this problem, we developed a B-
spline code using the C++ template library Eigen [30] which
makes it possible to solve the generalized eigenvalue problem
with arbitrary precision.

When calculating the total decay rates, we face another
difficulty that lowers the gauge invariance and, hence, ac-
curacy of our calculations: The well-known problem of
intermediate-state resonances. This problem does not arise
for 2s1/2 → 1s1/2 and 2p1/2 → 1s1/2 transitions for pointlike
nuclei, because of the degeneracy of the 2s1/2 and 2p1/2 states.
However, the degeneracy is lifted when dealing with finite
nuclear size, which leads to the fact that the 2s1/2 → 1s1/2

decay may proceed via the real intermediate 2p1/2 state. The
existence of this intermediate state might be observed as a
resonance in the energy differential decay rate, as seen from
Fig. 2. The appearance of such a resonance makes the inte-
gration over the photon energy and, hence, the calculation of
the total rates cumbersome as was discussed in the literature
[31,32]. In this work, we follow the approach proposed by
Labzowsky et al. [32] and introduce the finite linewidth of the
resonance state to the electron propagator in a small interval
around the divergent resonance. For example in Fig. 2, this
procedure is illustrated by the orange dashed line for the
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FIG. 2. Energy differential decay rate in relativistic units (r.u.)
for the 2s1/2 → 1s1/2 + E1E1 transition in hydrogenlike uranium as
a function of the energy sharing y = ω1/(ω1 + ω2). The resonances
close to the edges are either untreated (blue solid line) or rendered
finite with the method by Labzowsky et al. [32] (orange dashed line).

2s1/2 → 1s1/2 + E1E1 transition in hydrogenlike uranium.
Of course, this method leads to the loss of gauge invariance in
the small interval. However, since the resonances are located
near the edges of the spectral distribution, for example at
y = ω1/(ω1 + ω2) = 0.000 34 and y = 0.999 66 for U91+, the
violation of the gauge invariance does not affect the total
rate significantly. The results of our calculations show that
introducing an artificial linewidth to fix the resonance problem
does not result in a violation of the gauge invariance above the
level of 10−7 for the total rate. Therefore, all digits presented
in the next section are still significant.

Yet another source of uncertainty of the two-photon
calculations is imprecise knowledge about the nuclear size
R. With the compilation of Angeli and Marinova [26], this
leads to relative uncertainties in the calculation of the decay
rates that do not exceed 10−8. We confirm this level of
accuracy also when comparing calculations performed in the
framework of the two nuclear models, namely, the Fermi and
solid sphere models.

Finally, to verify the correct implementation of the B-
spline method and the electron-nucleus interaction potentials,
we present in Table I the binding energies for the pointlike
nucleus and the energy shift due to finite nuclear size and
vacuum polarization effects. These energies are obtained as
the eigenvalues of the generalized eigenvalue problem (20)
and, as seen from the table, show a good agreement with the
results from Yerokhin and Shabaev [33].

In summary, we can assure one that all digits presented in
the next section are meaningful in our approach in which finite
nuclear size and vacuum polarization effects are taken into
account. However, other corrections that are beyond the scope
of this study may affect the decay rates at the same order of
magnitude as the considered effects. For example, it is known
that in the nonrelativistic limit, the self-energy contribution is
even larger than that of the vacuum polarization. In particular,
this self-energy correction reduces the 2s → 1s + 2γ decay
rate by 0.000 25% for hydrogen and 0.038% for hydrogenlike
calcium [15]. However, the behavior for heavy ions remains
unknown.

TABLE I. Binding energies for a pointlike nucleus and energy
shifts due to finite nuclear size and vacuum polarization effects in
units of eV. Results are presented for the 1s1/2, 2s1/2, and 2p1/2 states
of hydrogenlike ions with nuclear charge Z . Brackets denote powers
of 10.

Z Epnt �Efnt �EUehl

1s1/2

1 −13.6059 4.99(−9) −8.90(−7)
−13.6059b 4.99(−9)a −8.90(−7)a

40 −22253.68 0.516 −2.084
−22253.68b 0.516a −2.083a

92 −132279.93 198.7 −93.8
−132279.93b 199.0a −93.6a

2s1/2

1 −3.4015 6.24(−10) −1.11(−7)
−3.4015b 6.25(−10)a −1.11(−7)a

40 −5594.04 0.0696 −0.277
−5594.04b 0.0696a −0.277a

92 −34215.48 37.81 −16.50
−34215.48b 37.71a −16.46a

2p1/2

1 −3.4015 0.0 −1.3(−12)
−3.4015b 0.0a −1.3(−12)a

40 −5594.04 0.0012 −0.0068
−5594.04b 0.0012a −0.0068a

92 −34215.48 4.41 −2.91
−34215.48b 4.42a −2.91a

aYerokhin and Shabaev [33].
bAnalytical formula from relativistic Dirac theory.

IV. RESULTS AND DISCUSSION

A. 2s1/2 → 1s1/2 two-photon transition

By using Eqs. (7)–(14) and the finite basis set method,
discussed in Sec. II B, we calculate the total rates for the
two-photon decay of hydrogenlike ions. We start our dis-
cussion with the well-known 2s1/2 → 1s1/2 + 2γ transition.
In leading order, this decay proceeds with the emission of
two electric dipole photons. The total rates WE1,E1 for this
2E1 transition are displayed in Table II for nuclear charges
ranging from Z = 1 to Z = 92 and for different electron-
nucleus interaction potentials. In particular, calculations have
been performed for the pointlike and finite-size nucleus and
by accounting for the vacuum polarization as described by
the Uehling potential (28). Moreover, by following the well-
known nonrelativistic Z behavior [34], we present our results
divided by Z6. For the naive pointlike nuclear model, a good
agreement with the previous calculations by Goldman [4]
and Filippin et al. [6] is obtained. Here, we agree up to the
level of approximately 10−7 and 10−9, respectively. We note
moreover, a misprint in the first digit of the value for Z = 20
of Goldman [4].

In order to investigate the effects of the finite nuclear size
for the 2s1/2 → 1s1/2 + 2E1 decay rates, we performed cal-
culations also for the hard-sphere and Fermi distribution. As
mentioned already above, both models agree on the level of
10−8 and are presented in the third column of Table II. As seen
from the table, the finite nuclear size reduces the decay rates
by 2.79 × 10−8% for neutral hydrogen and up to 0.0092%
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TABLE II. Total two-photon 2s1/2 → 1s1/2 decay rates for hy-
drogenlike ions with nuclear charge Z in units Z6 s−1. Calculations
have been performed for the E1E1 multipole channel and for a point-
like nucleus (Vpnt), a finite-sized nucleus (Vfnt), and a finite nucleus
with additional Uehling potential (Vfnt + VUehl).

Z Vpnt Vfnt Vfnt + VUehl

1 8.2290615 8.2290615 8.2290619
8.2290615a 8.22906c

8.2290626b

20 8.1174024 8.1173852 8.1175410
9.1174035b 8.1095c

40 7.8092601 7.8091196 7.8097303
7.8092601a 7.8013c

7.8092612b

60 7.3446473 7.344077 7.3453658
7.3446482b 7.3365c

80 6.7428868 6.74157 6.74347
6.7428876b 6.7348c

92 6.3096615 6.30908 6.31098
6.3096618a 6.3026c

6.3096623b

aFilippin et al. [6].
bGoldman [4]; there seems to be a misprint in the value for Z = 20.
cLabzowsky et al. [10].

for hydrogenlike uranium ions which is in good agreement
with the findings from Parpia and Johnson [9] and Labzwosky
et al. [10] within their estimated error. The reduction can
be understood qualitatively by analyzing the nonrelativistic
hydrogenic Z6 scaling of the transition rate. This scaling law
implies that a stronger electron-nucleus interaction potential
results in an increase of the decay rate. Since replacing the
pointlike with a finite-size nucleus weakens the interaction
potential, the decay rate gets reduced.

Yet another correction that may affect the 2s1/2 → 1s1/2 +
2γ decay rate is the vacuum polarization which is approx-
imated by the Uehling potential. As seen from the fourth
column of Table II, this correction increases the decay rate
by 4.96 × 10−6% for hydrogen and 0.03% for U91+. Quali-
tatively, the enhancement can be again understood from the
nonrelativistic limit in which a stronger coupling potential
increases the decay rate. As seen from Eq. (28), the vacuum
polarization leads to a stronger binding of the electron in the
potential of the nucleus and, hence, results in the larger decay
rate.

By comparing the third and fourth columns of Table II, we
see that the vacuum polarization correction to the total decay
rate is always larger than the one obtained from the finite
nuclear size. This is especially surprising since the transition
energies are known to be stronger influenced by the finite
nuclear size in the high-Z regime as also seen from Table I.
To explain this unexpected behavior, we have to look again
at Eq. (13). As already explained above, for the 2s1/2 →
1s1/2 + 2E1 transition, the finite nuclear size reduces the tran-
sition energies and enhances the matrix elements. In contrast,
the vacuum polarization acts just in the opposite direction
and, similar to the finite nuclear size correction, the QED

TABLE III. Total two-photon 2s1/2 → 1s1/2 decay rates for hy-
drogenlike ions with nuclear charge Z in units Z6 s−1. Results have
been obtained for a pointlike nucleus (Vpoint), a finitely sized nu-
cleus (Vfinite), and a finite nucleus with additional Uehling potential
(Vfnt + VUehl). Moreover, we have performed the summation over all
allowed multipole channels p1L1, p2L2 for L1, L2 = 1 . . . 4.

Z Vpoint Vfinite Vfnt + VUehl

1 8.2290615 8.2290615 8.2290619
8.2290615a

8.2290626b

20 8.1174454 8.1174282 8.1175840
8.1174464a

8.1174466b

40 7.8099289 7.8097883 7.8103993
7.8099289a

7.8099299b

60 7.3479098 7.347339 7.3486296
7.3479098a

7.3479109b

80 6.7528665 6.75154 6.75345
6.7528660a

6.7528675b

92 6.3269332 6.32633 6.32821
6.326931b

6.3269340a

aFilippin et al. [6].
b Goldman [4].

contributions to the matrix element M̃ f i and energy prefactor
partially cancel each other. However, this cancellation is less
pronounced for the vacuum polarization case, thus resulting in
the stronger sensitivity of the results to the Uehling correction.

So far, we discussed the leading 2E1 channel of the
2s1/2 → 1s1/2 + 2γ transition. Owing to the selection rules,
the other—much weaker—channels can also contribute to this
decay. In order to investigate the role of the higher-order
multipole contributions, we calculated the total decay rate
W = ∑

p1L1 p2L2
W (p1L1, p2L2) where the summation over L1

and L2 runs up to Lmax = 4. The results of these calculations
are shown in Table III again for a point nucleus and including
the finite nuclear size and vacuum polarization corrections. As
seen from the table, the contributions of both corrections are
qualitatively similar to what was observed for the leading 2E1
channel. In particular, the total two-photon decay rates are
reduced by the finite nuclear size and enhanced if the vacuum
polarization is taken into account.

B. 2p1/2 → 1s1/2 two-photon transition

Besides the well-known 2s1/2 → 1s1/2 + 2γ decay, we
also apply our theory to discuss the 2p1/2 → 1s1/2 + 2γ tran-
sition. In the leading order, this decay may proceed via E1M1
or E1E2 channels. The results for the E1M1 channel are pre-
sented in Table IV, again for a pointlike and finite-size nucleus
as well as accounting for the Uehling correction. The decay
rates are obtained in the range from Z = 1 to Z = 92 and are
rescaled as Z8 as suggested by the nonrelativistic limit [10].
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TABLE IV. Total two-photon 2p1/2 → 1s1/2 decay rates for hy-
drogenlike ions with nuclear charge Z in units Z8 × 10−6 s−1.
Calculations have been performed for the E1M1 multipole channel
and for a pointlike nucleus (Vpnt), a finite-sized nucleus (Vfnt), and a
finite nucleus with additional Uehling potential (Vfnt + VUehl).

Z Vpnt Vfnt Vfnt + VUehl

1 9.6766569 9.6766569 9.6766592
9.6766569a 9.667b

20 9.5561970 9.5561068 9.5569117
9.543b

40 9.1973052 9.1966168 9.1994459
9.1973052a 9.186b

60 8.6260732 8.6231951 8.6288466

80 7.9316051 7.9211520 7.9307704
7.910b

92 7.5541404 7.5275515 7.5416695
7.5541404a 7.519b

aFilippin et al. [6].
bLabzowsky et al. [10].

Similar to before, we start the discussion of our results from
the finite nuclear size correction. As seen from the table, this
correction reduces the decay rate as was also observed for the
2s1/2 → 1s1/2 + 2γ transition. In contrast to that transition,
however, the reduction of the 2p1/2 → 1s1/2 + E1M1 decay
rate is significantly stronger ranging from 1.34 × 10−7% for
hydrogen to 0.352% for hydrogenlike uranium. Once more,
this can be explained by the analysis of the nonrelativistic
scaling behavior of the decay rate. In comparison to the
2s1/2 → 1s1/2 + E1E1 transition, one of the E1 photons is
replaced by an M1 photon for the 2p1/2 → 1s1/2 + E1M1
decay and, therefore, the rate scales with Z8 instead of Z6.
Hence, the decay rate is much more sensitive to changes in the
electron-nucleus interaction potential resulting in the larger
effect.

As seen from the fourth column of Table IV, the Uehling
contribution increases the decay rates between 2.39 × 10−5%
and 0.187%. The overall larger effect, compared to the
2s1/2 → 1s1/2 + 2γ transition, can be again explained by the
scaling behavior.

The other leading channel that contributes to the 2p1/2 →
1s1/2 + 2γ decay is the E1E2 transition for which the total
rates are shown in Table V. This multipole transition exhibits
the same Z-scaling law and also generally the same behavior
with respect to the corrections due to the finite-size nucleus
and vacuum polarization as was observed for the E1M1 chan-
nel. For the E1E2 channel, however, the decay is even more
strongly affected by the finite nuclear size and QED effects
which may reach, for the decay of hydrogenlike uranium, a
reduction by 0.692% and enhancement by 0.322%, respec-
tively.

Similar to before, we also investigate the total 2p1/2 →
1s1/2 + 2γ decay rate by including higher-order multipole
terms up to Lmax = 4. The total rates for the pointlike and
finite nucleus as well as for the additional Uehling correction
are shown in Table VI. As seen from the table, these cor-
rections generally show the same behavior as for the E1M1

TABLE V. Total two-photon 2p1/2 → 1s1/2 decay rates for hy-
drogenlike ions with nuclear charge Z in units Z8 × 10−6 s−1.
Calculations have been performed for the E1E2 multipole channel
and for a pointlike nucleus (Vpnt), a finite-sized nucleus (Vfnt), and a
finite nucleus with additional Uehling potential (Vfnt + VUehl).

Z Vpnt Vfnt Vfnt + VUehl

1 6.6117981 6.6117981 6.6118003
6.6117981a 6.605b

20 6.5202286 6.5201386 6.5209400
6.516b

40 6.2446748 6.2439316 6.2469332
6.2446748a 6.238b

60 5.7832261 5.7797060 5.7862409

80 5.1262923 5.1123097 5.1237402
5.107b

92 4.6272865 4.5952682 4.6101315
4.6272865a 4.591b

aFilippin et al. [6].
bLabzowsky et al. [10].

and E1E2 channel. For U91+ ions, they lead to a reduction
of the total rate by 0.484% due to the finite nuclear size and
enhancement by 0.239% due to the vacuum polarization.

V. SUMMARY AND OUTLOOK

In conclusion, we presented a theoretical study of the two-
photon decay of hydrogenlike ions. Special attention was paid
to the total rates obtained upon integration over the energies
and directions of the emitted photons. In order to calculate
these total decay rates, we have used the framework of quan-
tum electrodynamics. The use of QED theory has allowed
us to naturally account for the finite nuclear size and vac-
uum polarization corrections. In order to study the size of
these corrections, high precision calculations have been per-
formed for the 2s1/2 → 1s1/2 + 2γ and 2p1/2 → 1s1/2 + 2γ

TABLE VI. Total two-photon 2p1/2 → 1s1/2 decay rates for hy-
drogenlike ions with nuclear charge Z in units Z8 × 10−6 s−1. Results
have been obtained for a pointlike nucleus (Vpnt), a finitely sized
nucleus (Vfnt), and a finite nucleus with additional Uehling potential
(Vfnt + VUehl). Moreover, we have performed the summation over all
allowed multipole channels p1L1, p2L2 for L1, L2 = 1 . . . 4.

Z Vpnt Vfnt Vfnt + VUehl

1 16.288455 16.288455 16.288460
16.288455a

20 16.076447 16.076267 16.077873

40 15.442308 15.440876 15.446707
15.442308a

60 14.410849 14.404450 14.416639

80 13.062372 13.037919 13.058982

92 12.188751 12.130067 12.159084
12.188750a

aFilippin et al. [6].
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two-photon decay of hydrogenlike ions in the range from
Z = 1 to Z = 92. Our results have shown that these two well-
established transitions are affected differently by the QED and
finite nuclear size effects. Particularly, both effects are more
pronounced for the 2p1/2 → 1s1/2 + 2γ case. For example,
the transition rate in U91+ is reduced by 0.484% by the fi-
nite nuclear size and enhanced by 0.239% by the Uehling
correction. For the 2s1/2 → 1s1/2 + 2γ decay of hydrogenlike
uranium, in contrast, these two corrections are just 0.0092%
and 0.03%, respectively.

The finite nuclear size and QED corrections discussed in
this paper are too small in order to be observed in present-
day two-photon experiments. They might be significantly

increased, however, when replacing the usual electronic ions
by muonic systems. The high-precision B-spline approach
developed in the present work can be easily extended to the
transition in such muonic ions. The study of two-photon decay
of muonic ions is currently under development and its results
will be published in a future work.
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