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Second virial coefficients for 4He and 3He from an accurate relativistic interaction potential
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The second virial coefficient and the second acoustic virial coefficient for helium-4 and helium-3 are computed
for a wide range of temperatures (0.5–1000 K) using a highly accurate nonrelativistic interaction potential
[M. Przybytek et al., Phys. Rev. Lett. 119, 123401 (2017)] and recalculated relativistic and quantum-
electrodynamic components. The effects of the long-range retardation and of the nonadiabatic coupling of the
nuclear and electronic motion are also taken into account. The results of our calculations represent at least
fivefold improvement in accuracy compared to the previous ab initio work. The computed virial coefficients
agree well with the most accurate recent measurements but have significantly smaller uncertainty.
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I. INTRODUCTION

The existence of physical systems which can be both
measured and theoretically described with a good accuracy
is invaluable to science. Not only can they help to test the
consistency of our understanding of nature, but they may also
allow for development of new experimental techniques. For
fundamental metrology, helium can be considered such a sys-
tem. In contrast to hydrogen, seemingly simpler to describe,
helium atoms interact particularly weakly. For example, the
helium dimer is either weakly bound in its single vibra-
tional state (helium-4) or bound states do not exist at all
(helium-3). This allows for accurate calculation of properties
of gaseous helium solely in terms of pair interaction poten-
tial, as the three- and more-body effects become important
only at larger pressures. Due to the simplicity of the sys-
tem, theoretical description of the helium pair potential can
include contributions beyond the Born-Oppenheimer nonrel-
ativistic approximation. Adiabatic, nonadiabatic, relativistic,
and quantum-electrodynamic (QED) effects can be added in
a systematic manner, if the need arises. The potential can
be then used to predict properties of helium such as the en-
ergy of the bound state or—crucial in metrology—the second
density virial coefficient B(T ) and the acoustic virial coef-
ficient βa(T ). Accurate knowledge of these coefficients has
been exploited by dielectric-constant gas thermometry [1,2],
acoustic gas thermometry [3,4], single-pressure refractive-
index gas thermometry (SPRIGT) [5,6], and refractive-index
gas thermometry [7], as well as utilized in development of
new pressure standards [8–10]. At present, the uncertainty
of B(T ) dominates the uncertainty budget for the electrical
measurements of gas pressure at 7 MPa [10] and for the
SPRIGT measurements of temperature below 20 K [6]. Thus,
one can expect that reducing the error of the pair potential
for helium and of the resulting virial coefficients will be
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of importance to experimental work in the field of thermal
metrology.

The significance of the B(T ) coefficient is best seen from
the form of the virial equation of state,

p = kBT [ρ + B(T )ρ2 + · · · ], (1)

used in accurate determination of the thermodynamic temper-
ature T , pressure p, or, until 2019, the Boltzmann constant
(fixed exactly at kB = 1.380 649 × 10−23 J/K by the 2018 re-
vision of the International System of Units [11]). The density
ρ can be determined from electrical measurements using the
Clausius-Mossotti equation [12]

εr − 1

εr + 2
= 4π

3
αd[ρ + bε(T )ρ2 + · · · ], (2)

where εr is the relative electric permittivity, αd is the atomic
dipole polarizability, and bε(T ) is the second dielectric virial
coefficient.

Eliminating ρ from Eqs. (1) and (2), one can express the
pressure through εr :

p = kBT

4παd
(εr − 1) + kBT

16π2α2
d

×
[

B(T ) − bε(T ) − 4π

3
αd

]
(εr − 1)2 + · · · , (3)

with the relative error of the order of (εr − 1)2. This error can
be further reduced to (εr − 1)3 if the third virial coefficient
C(T ) and the third dielectric virial coefficient cε(T ) are in-
cluded in Eqs. (1) and (2), respectively. An equation similar
to Eq. (3) holds if ρ is measured optically and p is expressed
via the index of refraction n = (εrμr )1/2, μr being the mag-
netic permeability. The major difference would be that the
denominator in the first term of Eq. (3) would be replaced by
2π (αd + χm ), where χm is the magnetic susceptibility related
to μr via μr = 1 + 4πχmρ. Since χm is much smaller than αd

and bε(T ) is significantly smaller than B(T ), the major factors
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determining the accuracy of Eq. (3) and its optical variant are
the accuracy of the polarizability αd and of the second virial
coefficient B(T ).

In this paper we report accurate theoretical determination
of B(T ) and of the second acoustic virial coefficient βa(T ) for
gaseous helium-4 and helium-3 within the wide temperature
range 0.5–1000 K. We also present an improved helium pair
interaction potential which can be used in calculations of other
thermophysical properties of gaseous helium or properties of
the helium dimer itself.

II. THEORY

A. Second virial coefficient

The second virial coefficient B(T ) can be conveniently
expressed in terms of one- and two-atomic partition functions
Z1 and Z2 [13]:

B(T ) = −V
(
Z2 − 1

2 Z2
1

)/
Z2

1 , (4)

where V is the volume of the system. After inserting explicit
forms of Z1 and Z2 [14] into Eq. (4), B(T ) can be partitioned
into three distinct parts [15]:

B(T ) = Bideal(T ) + Bbound(T ) + Bth(T ), (5)

where Bideal(T ) is the ideal gas contribution, Bbound(T ) is the
effect contributed by bound rovibrational states of the dimer,
and Bth(T ) is the “thermal contribution,” dependent on the
scattering dimer states. For a monatomic, bosonic gas, these
contributions are defined as [15]

Bideal(T ) = − 1

16

1

2s + 1
�3(T ), (6)

Bbound(T ) = −�3(T )

×
{

l even∑
v, l

(2l + 1)
s + 1

2s + 1

(
e−Ev,l /(kBT ) − 1

)

+
l odd∑
v, l

(2l + 1)
s

2s + 1

(
e−Ev,l /(kBT ) − 1

)}
, (7)

Bth(T ) = −�3(T )

πkBT

∫ ∞

0
dE e−E/(kBT )S (E ), (8)

where v and l in the summations in Eq. (7) run over quan-
tum numbers (vibrational and rotational, respectively) of the
bound states of the system, Ev,l are energies of these bound
states, and s is the spin of the nucleus. Furthermore,

�(T ) =
√

2λB = h√
2πμakBT

, (9)

S (E ) =
∞∑

l even

(2l + 1)
s + 1

2s + 1
δl (E )

+
∞∑

l odd

(2l + 1)
s

2s + 1
δl (E ), (10)

where λB is the thermal de Broglie wavelength, h is the Planck
constant, μa = ma/2 is the reduced mass of two atoms, and
δl (E ) are phase shifts for the energy E and the angular mo-
mentum quantum number l . For helium-4, s = 0 and there

is one bound state, E0,0, which has to be taken into account
in Eq. (7). For fermionic gases, such as 3He (s = 1/2), Bideal

changes sign, and the s-dependent prefactors (spin weights) in
the expressions for Bbound(T ) and for S (E ) are interchanged
[14]. There are no bound rovibrational states of the helium-3
dimer, so for that isotope one has Bbound(T ) = 0.

With the values of B(T ) calculated for a suitable range
of temperatures T , one can easily obtain the second acoustic
virial coefficient βa(T ) [15]:

βa(T ) = 2B(T ) + 2(γ0 − 1)T
dB(T )

dT

+ (γ0 − 1)2

γ0
T 2 d2B(T )

dT 2
, (11)

where γ0 is the heat capacity ratio (γ0 = 5/3 for a monatomic
gas with three degrees of freedom). The differentiation of
B(T ) is straightforward and can be done analytically using
Eqs. (5)–(10).

B. Schrödinger equation

To calculate Bbound(T ) and Bth(T ), the Schrödinger equa-
tion for the dimer has to be solved to determine the energy
of the bound state of 4He2 and the phase shifts. In the center-
of-mass frame, with the origin in the geometric center of the
nuclei, the equation for a binuclear molecule takes the form

(Hel + Hn − E )�(r, R) = 0, (12)

where

Hel = −1

2

∑
i

∇2
ri

−
∑

i

ZA

riA
−

∑
i

ZB

riB
+

∑
i< j

1

ri j
+ ZAZB

R
,

(13)

Hn = − 1

2μn

(∇2
R + ∇2

el

) +
( 1

MA
− 1

MB

)
∇el∇R, (14)

where the indices i, j denote the electrons, ∇el = 1
2

∑
i ∇ri ,

r denote all electronic coordinates ri collectively, A and B
denote the nuclei, MA and MB are the nuclear masses, μn =
MAMB/(MA + MB) is the reduced nuclear mass, ZA and ZB

are the nuclear charges, and R = RA − RB is a vector connect-
ing the nuclei. We are interested in homonuclear molecules
only, so the rightmost term in Eq. (14) vanishes. Note that
in this section, as well as further on, we use atomic units
(reduced Planck constant h̄, elementary charge e, Bohr ra-
dius a0, and electron mass me are used as units of action,
electric charge, length, and mass, respectively), unless stated
otherwise.

To describe the finite-nuclear-mass effects, we employed
the nonadiabatic perturbation theory (NAPT) of Pachucki and
Komasa [16,17]. It assumes the wave function in the form

�(r, R)=ψ (r; R)Y m
l (θ, φ)χl (R)/R + δ�na(r, R), (15)

where Y m
l (θ, φ) is a spherical harmonic. It is assumed that

〈δ�na|ψ〉el = 0, where the symbol 〈·|·〉el denotes integration
over the electronic coordinates only. The function ψ (r; R)
depends parametrically on R and is a solution of the electronic
Schrödinger equation (with fixed nuclear positions)

Hel(R)ψ (r; R) = E (R)ψ (r; R). (16)
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In the leading NAPT order, the equation for the nuclear wave
function χl (R) is[

− 1

2μn

d2

dR2
+ l (l + 1)

2μnR2
+ V (R) − E

]
χl (R) = 0. (17)

The potential V (R) depends on the level of theory. In the
simplest case, in the nonrelativistic Born-Oppenheimer (BO)
approximation, V (R) = VBO(R) ≡ E (R). A detailed descrip-
tion of the potential used in our calculation is given in the
next section.

While the adiabatic, relativistic, and QED corrections can
be taken into account just by including a proper term in
V (R), the nonadiabatic effects require further modifications
of Eq. (17) itself. When the finite-nuclear-mass effects up to
(me/μn)2 order are included in the Hamiltonian, the nuclear
wave function χl (R) can be evaluated from [17][

− 1

2μ‖(R)

d2

dR2
− dW‖(R)

dR

d

dR
+ dW‖(R)

dR

1

R

+ l (l + 1)

2μ⊥(R)R2
+ V (R) + Vna(R) − E

]
χl (R) = 0, (18)

with
1

2μ⊥/‖(R)
= 1

2μn
+ W⊥/‖(R), (19)

where the potential V (R) contains at least the BO and adia-
batic contributions. The most significant change from Eq. (17)
is the appearance of the “distance-dependent masses” in place
of the reduced nuclear mass. The functions W‖(R), W⊥(R),
and Vna(R) take nonadiabatic effects into account and are
defined in Ref. [17], the last one denoted there as δEna(R).
In fact, it is more convenient to use them with their value for
the separated atoms limit subtracted [17,18]. Then

1

2μ⊥/‖(R)
= 1

2μa
+ W int

⊥/‖(R) + O

(
1

μ3
n

)
, (20)

W int
⊥/‖(R) = W⊥/‖(R) − W⊥/‖(∞), (21)

V int
na (R) = Vna(R) − Vna(∞), (22)

where μa = μn + 1. For the specific case of He2, these func-
tions were calculated in Ref. [18].

C. Phase shifts

As the internuclear distance R increases, the wave function
of the interacting atoms approaches that of free particles and
can be written as [19]

χl (R) ∼ R[ jl (kR) − nl (kR) tan δl (E )], (23)

where k = √
2μaE and the symbols jl (x) and nl (x) denote

the spherical Bessel and Neumann functions, respectively. By
employing this expression, the phase shifts can be calculated
as [19]

δl (E ) = lim
R→∞

δl (E , R), (24)

tan δl (E , R) = k j′l (kR) − γl (R) jl (kR)

kn′
l (kR) − γl (R)nl (kR)

, (25)

γl (R) = χ ′
l (R)

χl (R)
− 1

R
. (26)

From a numerical standpoint, the above procedure can be
repeated for increasing R and stopped when the apparent shift
function δl (E , R) converges to an acceptable level.

Note that Eq. (25) allows to calculate the phase shift only
up to a multiple of π . There are different methods to give
it an absolute value, for example, by defining the shift for
zero or infinite energy and exploiting its continuity to obtain
it for other energies, leaning on semiclassical expressions,
or even employing an alternative formula which provides
an intrinsically absolute shift (compare, e.g., Ref. [20]).
In our calculations, we require that δl (E ) = 0 for a free
particle [V (R) ≡ 0]. As a result, for a repulsive potential
one has δl (E ) < 0, whereas for an attractive interaction
δl (E ) > 0 [19]. Moreover, when E → 0 for a fixed poten-
tial V (R), the value of the phase shift tends to nlπ , where
nl is the number of bound states supported by the poten-
tial for given angular momentum quantum number l—the
behavior known from the Levinson theorem [19,21]. Addi-
tionally, we require that the apparent shift δl (E , 0) = 0 and
then ensure that it is a continuous function of R during
calculation [20].

III. PAIR POTENTIAL FOR THE HELIUM DIMER

Following the approach used previously in Refs. [22] and
[18], we represent the interaction energy of a pair of he-
lium atoms as a sum of the BO potential, VBO(R), and a set
of corrections that account for major post-BO effects: the
leading-order coupling of the nuclear and electronic motion,
known as the adiabatic correction, Vad(R), the relativistic,
Vrel(R), and QED effects, VQED(R):

V (R) = VBO(R) + Vad(R) + Vrel(R) + VQED(R). (27)

All components of V (R) for a given internuclear distance R
were obtained using the supermolecular approach by comput-
ing the difference between the respective dimer and atomic
contributions

VY(R) = �EY = EY − 2EA
Y, (28)

where Y = BO, ad, rel, QED. EBO is the nonrelativistic
BO energy of the helium dimer. Ead is formally defined as
the expectation value of the nuclear kinetic energy operator
[23]. Therefore, calculation of Ead requires differentiation of
the clamped-nuclei wave function of the dimer with respect
to nuclear coordinates, on which the wave function depends
parametrically. Ead can be calculated using various meth-
ods [16,24–28]. In Refs. [22,29], the Born-Handy approach
[24–26] was used, while the results of Ref. [18] were obtained
with the method proposed by Pachucki and Komasa [16]. EY,
Y = rel, QED, are formally defined as expectation values of
the operators ĤY, shown below, corresponding to a particular
physical effect and computed with the nonrelativistic elec-
tronic BO function. The atomic contributions, EA

Y, Y = BO,
ad, rel, QED, are defined similarly, but correspond to a single
helium atom.

The operator Ĥrel is the Breit-Pauli Hamiltonian [30],
which for closed-shell systems in a singlet state consists of the
mass-velocity operator Ĥmv, the one- and two-electron Darwin
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operators ĤD1 and ĤD2, and the Breit operator ĤBr:

Ĥrel = Ĥmv + ĤD1 + ĤD2 + ĤBr, (29)

where

Ĥmv = −1

8
α2

∑
i

p4
i , (30)

ĤD1 = π

2
α2

∑
I

∑
i

ZIδ(ri − rI ), (31)

ĤD2 = πα2
∑
i< j

δ(ri j ), (32)

ĤBr = −1

2
α2

∑
i< j

[
pi · p j

ri j
+ ri j · (ri j · p j )pi

r3
i j

]
. (33)

In these equations, ri j = ri − r j , pi = −i∇ri , the index I
runs over all the nuclei, with charge ZI and located at
the position rI , δ(r) is the Dirac delta function, and α =
1/137.035 999 084 is the fine structure constant [11]. The
sum of one-electron operators is usually referred to as the
Cowan-Griffin (CG) operator [31], ĤCG = Ĥmv + ĤD1.

The operator ĤQED, defining the QED correction, can be
expressed as the linear combination

ĤQED = 8α

3π

(
19

30
− 2 ln α − ln k0

)
ĤD1

+ α

π

(
164

15
+ 14

3
ln α

)
ĤD2 + ĤAS, (34)

of ĤD1, ĤD2 and the Araki-Sucher (AS) operator ĤAS [32–34]
defined as

ĤAS = − 7

6π
α3

∑
i< j

P̂
(
r−3

i j

)
, (35)

where P̂(r−3
i j ) is the operator distribution〈

P̂
(
r−3

i j

)〉 = lim
a→0

〈
r−3

i j θ (ri j − a) + 4π (γ + ln a)δ(ri j )
〉
, (36)

with θ (r) and γ standing here for the Heaviside step function
and the Euler-Mascheroni constant, respectively. The quan-
tity ln k0 in Eq. (34) is the so-called Bethe logarithm [30].
The interatomic distance dependence of ln k0 is weak [35],
especially for a weakly interacting system such as the helium
dimer [22], and can be neglected at the accuracy level consid-
ered in this work. Therefore, we fixed ln k0 at its helium atom
value equal to 4.370 160 222 0(1) [36].

In the present work, the values of all four components
of V (R) in Eq. (27) were obtained for a set of 55 distances
ranging from 1 to 30 bohrs. The recommended BO interaction
energies for 46 distances, 1 � R � 9 bohrs, and the adiabatic
corrections for a full set of distances were taken from Ref. [18]
together with their estimated theoretical uncertainties. The re-
maining data points—the BO energies at nine distances, 10 �
R � 30 bohrs, and the relativistic and QED corrections—were
recalculated using a Gaussian orbital approach with larger
one-electron basis sets than the ones employed in Ref. [18].
The new calculations revealed that theoretical uncertainties of
some components of Vrel(R) estimated in Ref. [18] were too
optimistic so they were carefully reexamined in the present
work. The AS interaction energies were calculated initially in

Ref. [22] (for 17 interatomic distances only) using explicitly
correlated Gaussian (ECG) expansion of the wave function for
the dimer and near exact atomic AS energy [37]. Due to the
basis set superposition error (BSSE), they had absolute uncer-
tainties of virtually the same magnitude for all R � 5 bohrs.
As a result, the AS correction was the dominant source of
theoretical error of the pair potential V (R) for large distances.

The BO energies (at 10 � R � 30 bohrs) and the ex-
pectation values of the operators constituting the relativistic
correction, Eqs. (30)–(33), were evaluated at two levels of
theory: the coupled-cluster method with single, double, and
noniterative triple excitations [CCSD(T)], and the full config-
uration interaction (FCI) method. Note that the calculations
at the CCSD(T) level were performed utilizing the Hellman-
Feynman theorem, according to the linear response theory
[38]. The individual interaction energies were then obtained
using a two-step procedure as the following sum:

�EY = �ECCSD(T)
Y + δEFCI

Y , (37)

where Y = BO, mv, D1, D2, Br. The first, dominating term
�ECCSD(T)

Y is defined by Eq. (28) and the much smaller FCI
correction δEFCI

Y is defined as

δEFCI
Y = �EFCI

Y − �ECCSD(T)
Y (38)

with the quantities on the right-hand side of Eq. (38) computed
using the same basis set.

The AS correction, defined by the operator in Eq. (35), was
determined only at the FCI level:

�EAS = �EFCI
AS . (39)

When computing �ECCSD(T)
Y and �EFCI

Y via Eq. (28), the
atomic properties EA

Y were obtained with the corresponding
dimer-centered basis set, which is equivalent to using the
so-called counterpoise scheme, which corrects for BSSE [39].
All calculations were performed using modified dXZ basis
sets of Ref. [22] (containing 21 uncontracted s functions) with
the cardinal numbers X up to X = 8 for CCSD(T) and up to
X = 7 for FCI. The largest FCI calculations employed a wave
function with approximately 2 × 109 determinants (at D2h

symmetry). The CCSD(T) calculations were performed using
the DALTON 2013 package [40,41], whereas at the FCI level we
used a program [42] written specifically for the purpose of the
present project. In the latter case, the Hartree-Fock orbitals,
the standard one- and two-electron integrals, and integrals
involving the relativistic operators were generated using the
local version of the DALTON 2.0 package [38,40,43], while
integrals involving the AS operator were computed using the
computer code developed in Ref. [44].

To reduce the basis set incompleteness errors in the quan-
tities obtained from the Gaussian orbital calculations, we
employed the Riemann extrapolation scheme introduced in
Ref. [45]. This method assumes that the differences δX =
EX − EX−1, where EX are the quantities of interest calculated
within a basis set of cardinal number X , behave asymp-
totically as δX ∼ const × X −n for X → ∞. As shown in
Ref. [45], this leads to the following two-point formula for
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the complete basis set (CBS) limit:

E∞ = EX + X n(EX − EX−1)

[
ζ (n) −

X∑
i=1

i−n

]
, (40)

where ζ (s) = ∑∞
i=1 i−s is the Riemann zeta function. In the

case of the Born-Oppenheimer potential, we used n = 4 in the
above formula. The same scheme was found to be adequate
for the mass-velocity and one-electron Darwin corrections.
However, the remaining contributions to the total potential
have a different convergence rate. In the case of the two-
electron Darwin correction we employed n = 2, in agreement
with the analytic results of Kutzelnigg [46] for the helium
atom. The Breit correction was extrapolated with n = 5/2 as
suggested by the previous numerical results for He2 [22] [us-
ing ζ (5/2) ≈ 1.34149]. To apply the Riemann extrapolation
to the AS correction, the method presented in Ref. [45] has
to be extended because the quantities δX behave asymptoti-
cally as δX ∼ aX −2 ln X + bX −2, where a and b are numerical
constants (see Ref. [44]). Combining results from three con-
secutive basis sets, we find the following expression for the
CBS limit in this case:

E∞ = EX + a

[
−ζ ′(2) −

X∑
i=1

i−2 ln i

]
+ b

[
ζ (2) −

X∑
i=1

i−2

]
,

(41)

where ζ ′(s) is the derivative of the Riemann zeta function
[ζ ′(2) ≈ −0.937548]. The constants a and b are found from
the expressions

a = [X 2(EX − EX−1) − (X − 1)2(EX−1 − EX−2)]

× [ln(X ) − ln(X − 1)]−1, (42)

b = a ln X − X 2(EX − EX−1). (43)

To demonstrate the efficacy of the Riemann extrapolation
of the AS correction, one can make a comparison with the
ECG results of Cencek et al. [22]. At the distance R = 2.0
a.u. the ECG result −0.032 25(25) mK is accurate enough
to be treated as a reference. The values obtained using three
largest Gaussian orbital basis sets (X = 5, 6, 7) are equal to
−0.028 50, −0.028 88, and −0.029 18 mK, respectively, and
converge rather slowly. The Riemann extrapolation yields
−0.032 23 mK, in good agreement with the ECG value. In
the attractive part of the potential, the ECG results became
inaccurate due to the lack of a BSSE correction, so the
Riemann-extrapolated results are much more accurate in this
region.

For each quantity considered in this work, the CCSD(T)
results, �ECCSD(T)

Y , and the FCI correction, δEFCI
Y , were ex-

trapolated separately. The sole exception is the AS correction,
where only the FCI results are available and thus were ex-
trapolated directly. The errors of the extrapolated quantities
were assigned as follows. In the case of the mass-velocity
and one-electron Darwin corrections the extrapolation error is
conservatively estimated as a difference between the extrap-
olated result and the value obtained in the largest basis set
available. For the remaining three corrections, this straight-
forward approach is not adequate since it leads to a gross

overestimation of error. To circumvent this problem, we intro-
duce a modified procedure where the difference between the
extrapolated result and the value obtained in the largest basis
set is scaled by a constant (independent of the internuclear
distance) to get the error estimate. We found that the scaling
by a factor of 0.1 is adequate for the two-electron Darwin and
AS corrections, while 0.5 is used for the Breit correction. This
approach is validated by comparing with the ECG results [22]
at short interatomic distances—where the ECG approach is
reliable and gives small uncertainties. For example, at R = 2.0
a.u. we obtained 1.121(11), 1.944(5), and −0.0322(3) for the
two-electron Darwin, Breit, and AS corrections, respectively,
after scaling the errors, while the corresponding ECG results
read 1.132(5), 1.9411(1), and −0.0322(3). Clearly, the two
sets of results are in full agreement and a similar picture
is obtained for other interatomic distances where the ECG
results are still reliable. For all corrections other than the AS,
the errors of the CCSD(T) and FCI contributions were added
quadratically to obtain the final error estimates.

To ensure high accuracy of the pair potential for large
interatomic distances R, we recalculated the constants Cn(Y),
n < 8, Y = ad, rel, QED, determining the leading-order terms
in the asymptotic expansion in powers of 1/R of the post-BO
terms in Eq. (27), VY(R) ∼ −∑

n Cn(Y)/Rn. The coefficients
Cn(rel) and Cn(QED) are defined as appropriate combinations
of the coefficients calculated separately for the components
of Ĥrel and ĤQED according to Eqs. (29) and (34). Following
Ref. [22], we distinguish between contributions to Cn(Y),
Y = mv, D1, D2, Br, AS, coming from either the intra- or
intermonomer part of a given operator ĤY. The asymptotic
expansion of the intramonomer part always starts with the
term proportional to 1/R6 and the corresponding coefficient
expressed in the sum-over-states form is [22]

C6(Y, intra) = −12
∑
abc

Z0aZ0bZ2
0cYab

(ωa + ωc)(ωb + ωc)

− 24
∑
abc

Z0aZabZ2
0cY0b

(ωa + ωc)ωb
. (44)

The matrix elements Zab and Yab are

Zab = 〈φa|
2∑

i=1

zi|φb〉, (45)

Yab = 〈φa|ĤA
Y |φb〉 − δab〈φ0|ĤA

Y |φ0〉, (46)

where ĤA
Y are the operators from Eqs. (30)–(33) and (35)

defined for a single helium atom, φ0 is the ground-state wave
function of helium, φa are the wave functions of the excited
states, and ωa are the corresponding excitation energies. As it
was shown in Ref. [47], the leading-order coefficient for the
adiabatic correction, C6(ad), can be calculated using the same
formula, Eq. (44), and in this case the ĤA

ad operator has the
form

ĤA
ad = 1

2M

(
2∑

i=1

pi

)2

, (47)

where M = 7294.299 541 42(24) [11] is the mass of the
helium-4 atom nucleus. Only the two-electron operators,
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Eqs. (32), (33), and (35), have an intermonomer part and,
among them, only the Breit and AS operators give contribu-
tions to the interaction energy that vanish for large distances
as powers of 1/R [22]. For the Breit interaction, the leading-
order coefficients are [22,48]

C4(Br, inter) = 2
∑

ab

Z0aP0a Z0bP0b

ωa + ωb
, (48)

C6(Br, inter) = 18
∑

ab

Z0aP0a Q0bS0b

ωa + ωb

− 12

5

∑
ab

Z0aP0a Z0bT0b

ωa + ωb
, (49)

where

Q0a = 〈φ0|
2∑

i=1

1

2

(
3z2

i − r2
i

)|φa〉, (50)

P0a = 〈φ0|
2∑

i=1

pzi|φa〉, (51)

S0a = 〈φ0|
2∑

i=1

zi pzi|φa〉, (52)

T0a = 〈φ0|
2∑

i=1

[
2r2

i pzi − zi(ri · pi )
]|φa〉. (53)

For the AS interaction, the odd-n coefficients up to n = 7
are determined exclusively by the expectation value of the
intermonomer part of ĤAS calculated with the product of
ground-state wave functions of both interacting atoms. Uti-
lizing multipole expansion of the r−3

i j operator [49], it is easy
to show that

C3(AS, inter) = 7

6π
α3R2

0, (54)

C5(AS, inter) = 7

3π
α3R0 R1, (55)

C7(AS, inter) = 7

9π
α3

(
3R0 R2 + 5R2

1

)
, (56)

where

Rn = 〈φ0|
2∑

i=1

r2n
i |φ0〉. (57)

The Cn and Rn coefficients, Eqs. (44), (48), (49), and (57),
were calculated using ECG expansions of the wave func-
tions of a helium atom with Nb = 128, 256, and 512 terms
for φ0 and 2Nb terms for the excited states φa in inter-
mediate summations. The values presented in Table I were
obtained by taking the results calculated with Nb = 512 as
the recommended values with their uncertainties estimated
as the absolute difference between the Nb = 256 and Nb =
512 results. The reliability of this procedure was checked
by computing the leading-order coefficient in the asymptotic
expansion of the VBO potential. The obtained value C6(BO) =
1.460 977 837 723 6(2) agrees to all significant digits with the
value C6(BO) = 1.460 977 837 725(2) taken from the litera-
ture [50] but is somewhat more accurate. The final results for
Cn(Y), n < 8, Y = ad, rel, QED, calculated using data from

TABLE I. Components of the leading asymptotic constants of
Vad(R), Vrel (R), and VQED(R). The labels “intra” and “inter” were
omitted, when a given Cn has only one contribution of either type.

2MN C6(ad) 16.699 662 17(5)
α−2 C6(mv) −31.628 828(6)
α−2 C6(D1) 26.786 047(3)
α−2 C6(D2) 1.934 254 7(6)
α−2 C4(Br) −0.663 309 369 557 98(6)
α−2 C6(Br, intra) −0.954 535 671(6)
α−2 C6(Br, inter) −2.603 188 510 963(6)
α−3 C6(AS) −1.409 909(1)
R1 2.386 965 990 037 8(1)
R2 7.947 129 863 325(1)

Table I agree with the ones used in Ref. [22] but have two to
three times more significant digits.

The extrapolated values of VBO(R), Vad(R), Vrel(R), and
VQED(R) were fitted separately to the analytic functions of
the form

M∑
k=1

e−akR
I1∑

i=I0

PikRi −
N1∑

n=N0

fn(ηR)
Cn

Rn
, (58)

where fn(x) = 1 − e−x(
∑n

i=0 xi/i!) is the Tang-Toennies
damping function [51], ak , Pik , and η are adjustable
parameters, and the summation limits [M, I0, I1, N0, N1]
are [3,−1, 2, 6, 16] for VBO(R), [3, 0, 2, 6, 10] for Vad(R),
[2, 0, 2, 4, 10] for Vrel(R), and [3, 0, 2, 3, 10] for VQED(R). The
asymptotic constants C8 and C10 for Vrel(R) and VQED(R) are
not known and were adjusted. In both cases C9 was neglected.
The remaining constants Cn were fixed and set equal to the
values known from the literature [47,50,52,53] or to the values
calculated in this work as described above. In the analytical
fitting of VBO(R), the linear parameters Pik were constrained
by imposing the condition

VBO(R) = 4

R
+ (EBe − 2EHe) + O(R2) (59)

that ensures the correct short-range asymptotics of the po-
tential. The known accurate ground-state energies of the
beryllium and helium atoms, EBe = −14.667356498 [54] and
EHe = −2.903724377 [55], were used. Similarly, the ana-
lytical fits of the post-BO corrections were constrained to
ensure correct values of the potentials at R = 0. The cor-
responding conditions, Vad(0) = 0.0001971680204, Vrel(0) =
−0.00215235927, and VQED(0) = 0.00039644284, were ob-
tained using data from Ref. [54] for the berylliumlike united
atom, and from Refs. [37,55] for the helium atom. In all
cases, the inverse squares of the uncertainties σ were used
as the weighting factors to ensure that the fit accuracy is
higher in regions of more accurate data points. The average
absolute errors of the fits are 0.18σ for VBO(R), 0.13σ for
Vad(R), 0.15σ for Vrel(R), and 0.13σ for VQED(R). In some
cases, the fitted data points are reproduced with errors that
are greater than the estimated data point uncertainties. This
behavior was observed only for R = 26 and 30 bohrs. For
such large distances the values of the potentials are small and
their accurate prediction using the supermolecular approach is
difficult due to large cancellation of significant digits between
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the dimer and atomic contributions in Eq. (28). On the other
hand, in this region the potentials are entirely determined by
their asymptotic expansion. Therefore, the analytic functions
that include an accurate asymptotic constant Cn are expected
to provide more reliable results than the ones calculated from
Eq. (28).

In order to estimate the uncertainties of physical prop-
erties of helium calculated with the present potential, we
constructed functions σY(R), Y = BO, ad, rel, QED, repre-
senting estimated uncertainties of the components VY(R) of
the interaction potential, such that the exact values of a given
component can be assumed to be contained between functions
VY(R) ± σY(R). The functions σY(R) are not intended to ac-
curately reproduce the estimated uncertainties but to follow
general trends in their R dependence and to bound most values
from above. Analytic functions σY(R) used to represent the
uncertainties have the general form

s0e−a0R +
n∑

i=1

sie
−aiR2

, (60)

where ai and si are adjustable parameters, and the summation
limit n is 4 for σBO(R), and 3 for σad(R), σrel(R), and σQED(R).
The fit of uncertainties was performed using the standard
least-squares method applied to a reduced set of data points
obtained by discarding points where the values of uncertain-
ties are significantly smaller than the neighboring ones. The
value of a0 was adjusted only once, while constructing the
function σBO(R), and then set fixed during generation of the
remaining functions. The average ratio of the value of σY(R)
to the value of estimated uncertainty calculated for a whole
set of 55 distances is 1.33 for σBO(R), 1.81 for σad(R), 1.00
for σrel(R), and 1.04 for σQED(R).

The values of all parameters of the functions VY(R) and
σY(R) (Y = BO, ad, rel, QED), and a numerical implemen-
tation of the fits in the form of a FORTRAN 2003 code can be
found in the Supplemental Material [56].

The effects of retardation (see Ref. [57] for their precise
definition) were included in the potential V (R) using the
procedure employed in Ref. [22]. In the retardation damp-
ing function g(x) = (1 + ∑5

n=1 Anxn)/(1 + ∑6
n=1 Bnxn), the

coefficients Bn were taken from Ref. [22], while An were
recalculated using Eqs. (48)–(52) from the same reference, to
conform to more accurate values of the asymptotic constants
calculated in the present work.

To conclude this section, let us summarize the improve-
ments that have been made in the description of the helium
pair potential since 2012 [22]. The most important achieve-
ment is a consistent reduction of errors of the dominant BO
component for all distances by about one order of magnitude
(4–23 times) done in Ref. [18]. In the case of post-BO cor-
rections, the estimated uncertainties of the present potentials
are similar to the ones from Ref. [22] in the highly repulsive
region of V (R) for R � 3 and smaller for larger distances.
This reduction is by one to two orders of magnitude (7–222
times) for the adiabatic correction and by a factor of about
5 for the relativistic correction. The most significant changes
are observed for the QED components where, due to a proper
removal of BSSE in the AS term, the ratio of errors estimated
in Ref. [22] to the present ones grows steeply from 1.4 at

R = 3.5 to 5 × 103 at R = 12. Besides reducing the theoret-
ical errors, we were also able to calculate the potential on a
much finer grid of points (55 compared to 17 in Ref. [22])
and to improve the description of the long-range decay of
post-BO corrections where both the number of terms included
in their asymptotic expansion in powers of 1/R and the pre-
cision of the asymptotic constants were increased. All these
factors combined allowed us to produce a more robust and
reliable analytical representation of V (R) and its uncertainties
σ (R) that are needed in the determination of thermophysical
properties of helium.

IV. NUMERICAL CALCULATIONS OF SECOND
VIRIAL COEFFICIENT

The nonadiabatic nuclear Schrödinger Eq. (18) has the
form [

d2

dR2
+ p(R)

d

dR
+ q(R)

]
f (R) = 0, (61)

with

f (R) ≡ χl (R), (62)

p(R) ≡ 2μ‖(R)
dW int

‖ (R)

dR
, (63)

q(R) ≡ 2μ‖(R)

[
E − V (R) − V int

na (R)

− 1

R

dW int
‖ (R)

dR
− l (l + 1)

2μ⊥(R)R2

]
. (64)

A standard approach to finding a solution of such an equation
is the Numerov method [58,59]. However, in the standard
formulation of this method there is no first derivative present
in the equation. To cast Eq. (61) into the required form, a
substitution can be used [60] to remove the problematic first-
derivative term

f (R) = φ(R)e− ∫
dR p(R)/2. (65)

This leads to the equation[
d2

dR2
+ Q(R)

]
φ(R) = 0, (66)

where

Q(R) ≡ q(R) − 1

4
p2(R) − 1

2

d p(R)

dR
, (67)

which can now be solved by the Numerov method, using the
three-term recurrence

(1 − Tn+1)φn+1 − (2 + 10Tn)φn + (1 − Tn−1)φn−1 = 0, (68)

where Tn = −Qn(�R)2/12, �R is the integration step length,
and the subscript n denotes the quantity at the nth integration
point. In fact, we employed a slightly modified variant of the
method—the so-called renormalized Numerov [61]. If we
define

Fn = (1 − Tn)φn, (69)

Un = 2 + 10Tn

1 − Tn
, (70)
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and insert it to Eq. (68), one multiplication less per step
is needed. The most important point in the renormalized
Numerov method, however, is another substitution

Rn = Fn+1/Fn, (71)

which leads to a two-term recurrence formula

Rn = Un − R−1
n−1. (72)

A benefit of Eq. (72) is that Rn—in contrast to Fn—does
not grow exponentially in the classically forbidden regions
[61]. The initial value equivalent to φ0 = 0 and φ1 �= 0 is
R0 = ∞ which leads to R1 = U1. The two-term formula is
obtained from a three-term one for the price of forfeiting the
information about the normalization of the wave function.
However, in this case it is not needed anyway; only a
logarithmic derivative of the function is needed in Eq. (26). It
can be expressed as [59,61]

[φ(R)−1dφ(R)/dR]R=Rn

=
(

1/2 − Tn+1

1 − Tn+1
Rn − 1/2 − Tn−1

1 − Tn−1
R−1

n−1

)
1 − Tn

�R
, (73)

and

χ (Rn)−1 dχ (R)

dR

∣∣∣∣
R=Rn

= φ(Rn)−1 dφ(R)

dR

∣∣∣∣
R=Rn

− 1

2
p(Rn).

(74)

As described in Ref. [61], this method can be also adapted
easily to calculate energies of the bound states of the system,
needed to obtain Bbound(T ) in Eq. (7) for helium-4.

In practical application, we chose 250 values of the energy
E , distributed logarithmically in the range from 1 × 10−11 to
1 hartree. Although the domain of integration in Eq. (8) is un-
bounded, the selected range of energies was entirely sufficient,
due to the rapidly decaying exponent present in the integrand.
For each value of the energy, we determined l for which the
infinite sum in Eq. (10) could be considered converged. To
assess the magnitude of the neglected terms, we used the Born
approximation [19]

tan δl (E ) ≈ −2μak
∫ ∞

0
dR j2

l (kR)V (R)R2. (75)

In our case, we assume the −C6/R6 asymptotic behavior of
V (R), which leads to

tan δl (E ) ≈ 24πμ3
aC6E2

(2l − 3)(2l − 1)(2l + 1)(2l + 3)(2l + 5)
, (76)

where C6 ≈ 1.462 is the total asymptotic coefficient (after
summing BO, adiabatic, relativistic, and QED contributions).
The numerical value of μa = μn + 1 was taken from the re-
cent CODATA 18 database [11] (3648.149770710(120)me for
helium-4 and 2748.942640035(120)me for helium-3). It must
be noted that our interaction potential includes the retardation
correction [22,57], which could suggest choosing the −C7/R7

long-range form. However, implementation of the retarding
function in Eq. (75) would be cumbersome, so a simultane-
ously simpler and safer −C6/R6 assumption was made.

Note that the Born approximation is reliable when l �
llim ≡ Rngl

√
2μaE , where Rngl is the internuclear distance for

FIG. 1. Behavior of the function S(E ) for helium-4 in the inves-
tigated energy range.

which the interaction potential can be considered negligible
[19]. Because of that, the l summation was never stopped
below llim. After testing different values, we chose Rngl = 150
bohrs as a safe value for this purpose.

Equation (72) was propagated separately for each of
the (E , l ) pairs, with the potential function V (R) described
in Sec. III and W int

⊥ (R), W int
‖ (R), and V int

na (R) taken from
Ref. [18]. We followed Ref. [15] in the choice of the
integration step �R = 2 × 10−5E−1/3. Alternative choices
were also tested, but we have observed no significant ef-
fect of choosing one over the other on the final results.
Equations (24)–(26) were used to calculate the phase shifts.
As the approximate phase shifts of Eqs. (25) and (26) do
not have to be computed at every propagation step, they
were tested at every �2π/(�R

√
2μaE )�th step (i.e., approx-

imately once per wavelength). The propagation continued
until a convergence criterion on the approximate phase shifts
was met.

The shifts were combined with the help of Eq. (10) to
obtain the S (E ) function. Additionally, the S (0) = π point
was added for helium-4 and S (0) = 0 for helium-3, utilizing
the Levinson theorem [19]. Quite interestingly, there are cases
in the literature such as Ref. [14], which use interaction po-
tentials “almost” supporting the bound state of helium-4 and
manifest peculiar behavior of the S (E ) function, which for
E → 0 appears to tend to π for helium-4, but then rapidly
turns to zero. Our helium-4 S (E ) curve is presented in Fig. 1.
It is calculated with a potential which undoubtedly supports
one bound state of 4He2, so it correctly tends to π . The
calculated S (E ) values for both isotopes can be found in the
Supplemental Material [56].

To calculate the second virial coefficient B(T ) from
Eqs. (5)–(10), the obtained S (E ) values were interpolated
with third-order spline functions and numerically integrated,
using the MATHEMATICA package [62]. The calculation was re-
peated with the uncertainty σ (R) of the potential V (R) added
or subtracted from it, V (R) ± σ (R), to help estimate the final
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TABLE II. Second virial coefficient B(T ) and second acoustic virial coefficient βa (T ) for 4He (in cm3 mol−1) calculated with our potential
(B2020, β2020), compared to the data from Ref. [22] (B2012, β2012), for selected temperatures T (in K).

T B2012 σ2012 B2020 σ2020
σ2012
σ2020

B2020−B2012
σ2012

β2012 σ2012 β2020 σ2020
σ2012
σ2020

β2020−β2012
σ2012

1.00 −475.74 0.37 −475.697 0.060 6.2 12% −536.05 0.40 −536.004 0.067 6.0 11%
2.00 −194.38 0.13 −194.369 0.022 5.9 8% −222.35 0.15 −222.339 0.025 6.0 8%
5.00 −64.302 0.042 −64.2979 0.0073 5.8 10% −62.979 0.049 −62.9744 0.0085 5.8 9%
10.00 −23.125 0.020 −23.1230 0.0034 5.9 10% −13.548 0.024 −13.5456 0.0040 6.0 10%
20.00 −2.7464 0.0097 −2.7453 0.0016 5.9 11% 10.224 0.012 10.2253 0.0020 6.1 11%
30.00 3.8382 0.0066 3.8390 0.0011 6.1 12% 17.4638 0.0083 17.4649 0.0013 6.3 13%
40.00 6.9768 0.0051 6.97747 0.00082 6.3 13% 20.6749 0.0064 20.67582 0.0010 6.4 14%
50.00 8.7506 0.0041 8.75111 0.00066 6.3 13% 22.3362 0.0053 22.33699 0.00080 6.6 15%
100.00 11.6747 0.0023 11.67507 0.00034 6.8 16% 24.2708 0.0030 24.27138 0.00042 7.1 19%
200.00 12.1644 0.0013 12.16462 0.00018 7.3 17% 23.2252 0.0017 23.22563 0.00023 7.6 25%
273.15 11.9279 0.0010 11.92814 0.00013 7.4 21% 22.2203 0.0013 22.22063 0.00017 7.6 25%
300.00 11.81919 0.00092 11.81940 0.00012 7.4 23% 21.8763 0.0012 21.87663 0.00016 7.6 27%
400.00 11.40110 0.00074 11.401282 0.000096 7.7 25% 20.73201 0.00099 20.73227 0.00012 8.0 26%
500.00 11.00715 0.00062 11.007306 0.000079 7.8 25% 19.77570 0.00084 19.77594 0.00010 8.1 28%
1000.00 9.55038 0.00037 9.550487 0.000045 8.3 29% 16.62467 0.00050 16.624815 0.000060 8.4 29%

uncertainty of B(T ). The total B(T ) error bar includes three
sources of uncertainty, treated as uncorrelated:

(a) The first source is the error due to the numerical un-
certainty σ (R) of the potential V (R), estimated as (B+(T ) −
B−(T ))/2, where B±(T ) denote the B(T ) values obtained with
V (R) ± σ (R).

(b) The second source is the error due to interpolation,
which was tested in two ways for each T : first, by increasing
the order of the interpolating polynomial to 4, and second, by
following the method proposed in Ref. [15], where the authors
interpolated S (k) (with k = √

2μaE ) rather than S (E ), claim-
ing that this method is more stable for small E . The larger of
the two was taken as an estimate of the interpolation error.
These effects were found to be small, less than 3% of the total
uncertainty.

(c) The third source is the error due to finite accuracy of
S (E )—less than 1% of the total σ for T = 1 K, but slowly
rising to about 22% of the total error for the highest temper-
ature considered. The uncertainty of S (E ) includes both the
omitted summation terms from Eq. (10) and the error due to a
finite propagation distance during the calculation of the phase
shifts.

The potential-related uncertainty (a) dominates in the
whole range of temperatures, the other two error sources being
perceptible only for higher temperatures—and only because
the potential-related one decays with T faster. An analogous
error estimation procedure was applied to the acoustic coeffi-
cient βa(T ), Eq. (11).

V. RESULTS AND SUMMARY

In Table II, selected values of the B(T ) and βa(T ) co-
efficients computed by us for helium-4 are compared to
those from Ref. [22]. Table III contains analogous data for
helium-3. Data for more temperature values (including the
0.5–1.0 K range) are presented in the Supplemental Material
[56]. The results are in agreement with those of Ref. [22].
However, due to the potential of a much better quality being
used here, the uncertainty of both B(T ) and βa(T ) has been

reduced by a significant factor for the whole investigated
temperature range. The differences between new coefficients
and those of Ref. [22] do not exceed 31% of the estimated
σ2012 uncertainties from Ref. [22], showing that these errors
were substantially overestimated. The possibility of this was
pointed out to us by Gao and Pitre, based on their experimen-
tal work [63]. For low temperatures, the changes are below
even the more stringent σ2020.

As a by-product, the bound-state energy had to be cal-
culated for helium-4. It was found to be −138.88(47) neV,
confirming the value from the previous calculation [18].

For helium-4, calculations with particular V (R) contri-
butions turned on or off were performed to assess the
significance of the adiabatic, retardation, and relativistic
potential contributions to B(T ). The results are presented
graphically in Fig. 2. In this context �Bad = B(VBO +
Vad ) − B(VBO), �Brel = B(VBO + Vad + Vrel ) − B(VBO + Vad ),
�Bret = B(Vret ) − B(VBO) (where Vret is VBO with the ∼1/R6

term retarded [57]), and “total σ” is the uncertainty of B(T ).
All these values were calculated with Eq. (17) with the re-
duced nuclear mass μn replaced with the reduced mass of two
atoms, μa. The plot is consistent with Ref. [22], with the ex-
ception that the total uncertainty is now considerably reduced.
Additionally, we tested the validity of using Eq. (17) with the
atomic reduced mass instead of the nonadiabatic Eq. (18) in
our proper calculations of B(T ) with the full potential V (R).
The difference �Bnonad = B(V ) − B(V )at, where B(V )at is the
result obtained with Eq. (17) with the atomic mass, is also
shown in Fig. 2. It is considerably smaller than σ in the whole
temperature range investigated. This can be explained by the
fact that for helium, when R increases [18], the functions
μ‖(R) and μ⊥(R) quickly reach values close to the reduced
mass of two atoms, μa. It can also explain why �Bnonad rises
slightly for higher temperatures: atoms with higher kinetic en-
ergy are able to penetrate the repulsive part of the interatomic
potential deeper, where μ‖(R) and μ⊥(R) do have a nontrivial
behavior. However, even for T = 1000 K this effect is almost
six times smaller than the total uncertainty. Thus, it would be
justified to use Eq. (17) with the atomic masses instead of the
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TABLE III. Second virial coefficient B(T ) and second acoustic virial coefficient βa (T ) for 3He (in cm3 mol−1) calculated with our potential
(B2020, β2020), compared to the data from Ref. [22] (B2012, β2012), for selected temperatures T (in K).

T B2012 σ2012 B2020 σ2020
σ2012
σ2020

B2020−B2012
σ2012

β2012 σ2012 β2020 σ2020
σ2012
σ2020

β2020−β2012
σ2012

1.00 −236.39 0.19 −236.370 0.038 5.0 10% −299.13 0.23 −299.107 0.044 5.2 10%
2.00 −130.882 0.094 −130.871 0.018 5.1 12% −148.87 0.11 −148.858 0.021 5.2 11%
5.00 −47.368 0.036 −47.3636 0.0068 5.3 12% −44.550 0.044 −44.5453 0.0080 5.5 11%
10.00 −16.200 0.018 −16.1975 0.0033 5.5 14% −6.112 0.022 −6.1098 0.0039 5.6 10%
20.00 0.1061 0.0093 0.1071 0.0016 5.8 11% 13.281 0.012 13.2825 0.0019 6.2 13%
30.00 5.5362 0.0064 5.5370 0.0011 6.0 12% 19.2829 0.0081 19.2840 0.0013 6.2 13%
40.00 8.1519 0.0050 8.15248 0.00081 6.2 12% 21.9338 0.0063 21.93471 0.00099 6.4 14%
50.00 9.6336 0.0041 9.63419 0.00065 6.3 14% 23.2825 0.0052 23.28332 0.00080 6.5 16%
100.00 12.0385 0.0022 12.03883 0.00034 6.5 15% 24.6611 0.0029 24.66162 0.00042 6.9 18%
200.00 12.3144 0.0013 12.31464 0.00018 7.3 19% 23.3863 0.0017 23.38665 0.00023 7.6 21%
273.15 12.02871 0.00099 12.02892 0.00013 7.4 21% 22.3284 0.0013 22.32877 0.00017 7.6 28%
300.00 11.90860 0.00092 11.90880 0.00012 7.4 22% 21.9723 0.0012 21.97256 0.00016 7.6 22%
400.00 11.46304 0.00074 11.463209 0.000096 7.7 23% 20.79843 0.00099 20.79870 0.00012 8.0 27%
500.00 11.05373 0.00062 11.053881 0.000079 7.8 24% 19.82565 0.00084 19.82588 0.00010 8.1 27%
1000.00 9.56959 0.00037 9.569700 0.000045 8.3 30% 16.64527 0.00050 16.645422 0.000060 8.4 30%

more complicated Eq. (18) not only in this particular case,
but probably even more so for heavier atoms, a practice done
intuitively before.

Shortly after submission of this paper, a work [66] was
published whose authors also perform calculations of the
second virial and the second acoustic virial coefficient for
helium-4 and helium-3. They employ the interatomic inter-
action potential from Ref. [18] (which our potential expands
upon, as described in Sec. III). Their results for helium-4 agree
with ours with respect to the assumed uncertainty, with com-
parable error bars. For helium-3 though, there is a substantial
disagreement in the whole investigated temperature range.
The authors of Ref. [66] themselves note the discrepancy with
Ref. [22], which, in turn, is in perfect agreement with our
results, as shown in Table III. It is difficult to pinpoint the
cause of this disagreement with certainty. We note, however,
that the potential from Ref. [18] was prepared specifically for
helium-4 calculations, and its application to helium-3 requires

FIG. 2. Significance of potential contributions to the second
virial coefficient B(T ) for helium-4 (in cm3 mol−1) compared to its
uncertainty σ .

making certain manual changes in it, namely, rescaling the
adiabatic contribution with the correct 4He / 3He nuclear mass
ratio. There is no information in Ref. [66] whether it was
corrected in such a way, and if not, it could—partially at
least—lead to the observed difference in results. This would
also explain why the results for helium-4 do agree. In fact,
when neglecting this rescaling, we were able to obtain results
for helium-3 consistent with Ref. [66] for temperatures greater
than 7.5 K. The discrepancy for smaller temperatures remains,
though, and its source remains unknown.

Although now the second virial coefficient is usually pro-
vided by the theory and used to interpret experimental data
[5,6,10], not the other way around, there are some recent
B(T ) measurements available [2,65]. Comparison of our B(T )
values with those experimental ones is presented in Table IV.
One should note that the “experimental” values in this case
are obtained by adding the theoretical second dielectric virial
coefficient bε(T ) found in Ref. [64] to B(T ) − bε(T ), which

TABLE IV. Second virial coefficient B(T ) for 4He (in
cm3 mol−1), compared to the experimental data. Temperature T
given in K. The subscript “th” denotes our theoretical results, “expt”
the experimental ones, and � = Bth − Bexpt. All the experimental
data are calculated by adding the dielectric virial coefficient bε (T )
found in Ref. [64] to the measured B(T ) − bε (T ) from Ref. [65],
except T = 273.15 K, where B(T ) − bε (T ) is taken from Ref. [2].

T Bth σ th Bexpt σ expt �

5.00 −64.2979 0.0073 −64.147 0.068 −0.151
10.00 −23.1230 0.0034 −23.119 0.024 −0.004
20.00 −2.7453 0.0016 −2.734 0.038 −0.011
30.00 3.8390 0.0011 3.832 0.023 0.007
40.00 6.97747 0.00082 6.959 0.019 0.018
50.00 8.75111 0.00066 8.732 0.017 0.019
100.00 11.67507 0.00034 11.700 0.047 −0.025
200.00 12.16462 0.00018 12.22 0.21 −0.06
273.15 11.92814 0.00013 11.9258 0.0015 0.0023
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TABLE V. Second acoustic virial coefficient βa (T ) for 4He (in
cm3 mol−1), compared to the experimental data from Ref. [4]. Tem-
perature T given in K. The subscript “th” denotes our theoretical
results, “expt” the experimental ones [4], and � = β th

a − βexpt
a . For

temperatures 273.1600 and 334.1700 K, there are several experimen-
tal results available.

T β th
a σ th βexpt

a σ expt �

235.1400 22.73307 0.00020 22.724 0.002 0.009
236.6190 22.71264 0.00019 22.710 0.003 0.003
247.0000 22.57027 0.00019 22.566 0.003 0.004
260.1200 22.39314 0.00018 22.386 0.002 0.007
273.1600 22.22050 0.00017 22.215 0.005 0.005
273.1600 22.22050 0.00017 22.216 0.001 0.004
273.1600 22.22050 0.00017 22.214 0.002 0.006
302.9146 21.84024 0.00016 21.841 0.004 −0.001
334.1700 21.46180 0.00014 21.459 0.002 0.003
334.1700 21.46180 0.00014 21.460 0.004 0.002
362.6000 21.13590 0.00013 21.138 0.004 −0.002
395.9000 20.77519 0.00013 20.773 0.004 0.002
396.2000 20.77204 0.00013 20.760 0.005 0.012
430.2400 20.42530 0.00012 20.416 0.012 0.009

is the actual quantity obtained from the experiment. Al-
though the dielectric coefficients bε(T ) from Ref. [64] have
been calculated in a semiclassical approximation only, sub-
stituting them with the quantum-statistical results from Refs.
[67,68] yields no significant change. They are several orders
of magnitude smaller than B(T ) and their uncertainty does
not contribute to the error bar of these values. Our results
agree with the experiment well, with only two outliers: a
discrepancy of 2.2σ for 5 K and 1.6σ for 273.15 K.

Experimental values of the second acoustic virial coeffi-
cient βa(T ) for helium-4 can be found in the Supplemental
Material of Ref. [4]. In Table V, we compare them to our
calculations. The degree of the agreement varies between
different temperatures, as well as between different mea-
surements for certain T . An explanation of this can be
found in Ref. [4] itself: these values of βa(T ) were ob-
tained via a fit to an acoustic model, using all nine cavity

modes the measurement was performed for. On the other
hand, the authors noted that the results for some of these
acoustic modes are prone to errors—either due to an in-
terference with the elastic resonances of the cavity shell
or due to an overlap with neighboring modes—and dis-
carded them from further analysis. However, as βa(T ) is
only an intermediate result in Ref. [4], it was not recalcu-
lated with such a refined data set. In their previous works,
though, the authors of Ref. [4] used such constrained sets
of acoustic modes when providing βa(T ), albeit for one
temperature only: βa(273.16 K) = 22.2201(24) cm3 mol−1

[69] and 22.2195(17) cm3 mol−1 [70]. These results agree
perfectly with each other, as well as with our value,
22.22050(17) cm3 mol−1.

Analysis of the results leads to the conclusion that al-
though our potential does not introduce any new physical
effects if compared to its predecessor [18], it represents an
improvement in the accuracy and reliability. The recalculated
relativistic and QED components, as well as the augmented
set of BO points used, not only ensure better justification of
the uncertainty estimation but also give us a chance to present
a bolder, more stringent one. Hopefully, it should meet the
demands of constantly developing experimental metrology
in the foreseeable future, as well as constitute the next step
forward on the path to a new pressure standard.
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