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We propose a scheme that generalizes the loss scaling properties of twin-field or phase-matching quantum key
distribution (QKD) related to a channel of transmission ηtotal from

√
ηtotal to 2n

√
ηtotal by employing n − 1 memory

stations with spin qubits and n beam-splitter stations including optical detectors. Our scheme’s resource states are
similar to the coherent-state-based light-matter entangled states of a previous hybrid quantum repeater, but unlike
the latter our scheme avoids the necessity of employing 2n − 1 memory stations and writing the transmitted
optical states into the matter memory qubits. The full scaling advantage of this memory-assisted phase-matching
QKD (MA-PM QKD) is obtainable with threshold detectors in a scenario with only channel loss. We mainly
focus on the obtainable secret-key rates per channel use for up to n = 4 including memory dephasing and for
n = 2 (i.e., 4

√
ηtotal-MA-PM QKD assisted by a single memory station) for error models including dark counts,

memory dephasing and depolarization, and phase mismatch. By combining the twin-field concept of interfering
phase-sensitive optical states with that of storing quantum states up to a cutoff memory time, distances well
beyond 700 km with rates well above ηtotal can be reached for realistic, high-quality quantum memories (up
to 1-s coherence time) and modest detector efficiencies. Similarly, the standard single-node quantum repeater,
scaling as

√
ηtotal, can be beaten when approaching perfect detectors and exceeding spin coherence times of 5 s;

beating ideal twin-field QKD requires 1 s. As for further experimental simplifications, our treatment includes the
notion of weak nonlinearities for the light-matter states, a discussion on the possibility of replacing the threshold
by homodyne detectors, and a comparison between sequential and parallel entanglement distributions.
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I. INTRODUCTION

In 1984, Bennett and Brassard presented a protocol (BB84)
[1] that allows two parties (typically referred to as Alice
and Bob) to distribute an information-theoretically secure key
exploiting the fundamental laws of quantum mechanics. This
was the beginning of the new field of quantum key distribution
(QKD), leading now to the first commercial applications of
quantum technology (see Ref. [2] for a recent overview of
QKD). Based on this concept, a key distribution scheme over
421 km of glass fiber was demonstrated recently [3]. Nonethe-
less, a complication of realistic QKD schemes is the linear
scaling of the secret-key rate with the channel transmittance
ηtotal [4], where ηtotal decreases exponentially with the dis-
tance, ηtotal = exp(−L/Latt ), where Latt = 22 km is the typical
attenuation distance of an optical fiber. In fact, it was shown
that this linear scaling for large distances is a fundamental
property of point-to-point QKD, expressed by the so-called
repeaterless (or PLOB) bound [5], − log2 (1 − ηtotal ), in terms
of secret bits per channel use, where − log2 (1 − ηtotal ) ≈
1.44ηtotal for ηtotal � 1.

As a consequence, one needs to split the total channel into
multiple segments of smaller lengths in order to overcome
the linear scaling. Splitting the total distance into multiple
segments of smaller length is the underlying idea of all types
of quantum repeaters making use of either quantum mem-
ories [6,7], quantum error-correcting codes [8–11], or both
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in order to improve the transmission rate. Because of the
quantum mechanical no-cloning theorem, it is impossible that
a quantum repeater simply reamplifies an incoming optical
quantum state at every intermediate station along the channel
like for a classical repeater with classical light pulses. The
only experimental demonstration of a quantum repeater so far
overcoming the PLOB bound in terms of a secret key rate
per channel use was reported recently in Ref. [12] based on
a solid-state light-matter interface and memory system using
SiV color centers in diamond.

Besides its scalability, an essential element of a QKD
scheme is its security in a realistic setting. More than a decade
ago, it was shown that QKD systems are vulnerable to hacking
attacks (see Refs. [13,14] for a review) and it was realized that
the typical assumptions of the security proofs are not met in a
practical implementation. Device-independent QKD [15,16]
was proposed as a possible solution. Its security proof no
longer depends on the actual implementation, since it relies on
the violation of a Bell inequality. However, this type of proto-
col yields only very small secret-key rates. A more promising
approach in this respect is measurement-device-independent
(MDI) QKD [17,18], where Alice and Bob send states to a
middle station, Charlie, who performs a measurement that can
be treated as a black box. As such, the middle station may be
completely untrusted, with Charlie potentially embodied by
an eavesdropper, Eve. This approach becomes secure against
the most problematic class of detector attacks and yields rea-
sonable secret-key rates.

Quite recently it was shown that MDI QKD, exploiting
interference of phase-sensitive phase-encoded optical states
sent from Alice and Bob to Charlie, gives a scaling of the
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asymptotic secret-key rate of O(
√

ηtotal ) [19], originally
named as twin-field QKD. Many works have now appeared
improving or simplifying the security proof and suggesting
variations of this protocol [20–26]. For the present work, es-
pecially relevant is the version referred to as phase-matching
QKD [20,22]. Therefore, it is possible, in principle, to over-
come the PLOB bound [5] without making use of quantum
memories or quantum error-correcting codes. There are al-
ready first experimental demonstrations of twin-field QKD
that claim to have overcome the PLOB bound [27–31].

In this work, we introduce a scheme that is an exten-
sion of the twin-field/phase-matching protocol to more than
two physical segments (i.e., beyond a single middle station),
exploiting quantum memories similar to Ref. [32] and fur-
ther extending a four-segment variant of Ref. [32], but with
single-photon-based single-rail (single-mode) qubits replaced
by coherent states. Our scheme makes use of quantum memo-
ries, a kind of memory-assisted extension of phase-matching
QKD [20,22], and thus is ideally, with sufficiently good mem-
ories and operations, in principle scalable to long distances.
The scheme shares similarities with a hybrid quantum repeater
(HQR) [33] where an optical coherent state subsequently in-
teracts with two spin-based matter quantum memories and
entangles these two spin qubits after a suitable measurement
of the optical mode. However, in the original HQR, the optical
mode travels all the way from one memory station to another
before its detection at that station. In our scheme, crucially,
there will be a middle station, halfway between the memories,
equipped with a beam splitter and detectors. This way we
will be able to generalize the loss scaling behavior of twin-
field/phase-matching QKD from an effective channel length
of L

2 to L
2n for 2n physical segments and a total physical chan-

nel of length L with only n − 1 memory stations. We find that
compared with the original HQR based on unambiguous state
discrimination [34], the new MA-PM QKD scheme leads to a
scaling advantage where in all relevant quantities η (transmit-
tance per repeater segment) becomes

√
η. While our scheme

could be supplemented by additional quantum error correction
or detection mechanisms such as entanglement purification
[6,33,35], here we shall consider the theoretically and es-
pecially experimentally simplest intermediate-scale versions
without error correction.

The outline of our paper is as follows. In Sec. II, we will
briefly introduce the main ideas of twin-field/phase-matching
QKD, the HQR, and possibilities for generating the entangled
states needed for our scheme. In Sec. III, we will then describe
our version of a type of HQR and discuss its obtainable secret-
key rate by employing a BB84 protocol and focusing on the
channel-loss-only case. For the more general and realistic situ-
ation, we will briefly mention different error models including
channel loss, memory dephasing, detector dark counts, phase
mismatch, and depolarization, referring to the Appendixes for
details. We will also briefly describe a variant of our scheme
based on optical homodyne measurements, similar to the orig-
inal HQR [33]. Then we will explicitly calculate the attainable
secret-key rates in Sec. IV for the first-order generalization
(i.e., four physical segments, n = 2) considering a fairly large
and representative set of realistic parameters. Although our
main focus is on secret-key rates per channel use, we will also
include a discussion on the usefulness of our scheme in terms

of the ultimate figure of merit, the secret-key rate per second.
We conclude in Sec. V and give more details about the basic
concepts, assumptions, and calculations in the Appendixes.

II. BACKGROUND

A. Twin-field/phase-matching QKD

There are many different variations of twin-field QKD
[19–26] and we will stick to the version in Ref. [20], since that
protocol is conceptually easy to understand and very similar
to the generalized scheme that we will introduce:

(1) Alice and Bob choose randomly and independent from
each other with a probability pmode if the current round is used
for key generation or for estimating information leakage (test
mode).

(2) If the key-generation mode is chosen, Alice (Bob)
generate uniformly distributed random bits kA (kB) and send
coherent states with amplitude αeiπkA/B to an untrusted middle
station called Charlie (Alice and Bob pre-agreed upon an α).
If the test mode is chosen, they generate coherent states of
an amplitude according to some fixed probability distribution
and send the optical states to the middle station.

(3) If Charlie is honest, he applies a balanced beam splitter
(BS) to Alice’s and Bob’s optical modes and employs thresh-
old (on-off) detectors for the BS output modes, announcing
the measurement results. These steps are repeated until a long
data set is obtained. If Alice and Bob use the key-generation
mode and exactly one of the two detectors clicks, ka and
kb are perfectly (assuming no dark counts) (anti)correlated
depending on which of the two detectors clicked. In our
scheme, the level of security of these (anti)correlations that
manifests itself in the quality of the randomly phase-flipped
entangled (effective) density operator shared by Alice and
Bob will depend on the channel transmission, the overlap of
the coherent states, and the type of detectors (we shall also
consider photon-number resolving detectors, PNRDs).

(4) The usual QKD steps of sifting, estimating the error
rate and leaked information, error correction, and privacy
amplification need to be performed.

Note that a pre-agreed complex amplitude α implies that
Alice’s and Bob’s lasers should not differ in their phase.
However, it is also unreasonable to assume that the optical
path length between Alice and Charlie perfectly coincides
with that of Bob and Charlie. Therefore, it is necessary to
stabilize Alice’s and Bob’s laser frequencies and also apply
phase-stabilization techniques because of the phase drift in the
fiber of the communication channel. This extra experimental
complication in a twin-field/phase-matching QKD scheme is
the price to pay for the scaling gain, ηtotal → √

ηtotal.
Since the untrusted Charlie (who could always be Eve)

performs the measurements, the protocol is a MDI protocol
[17,18], meaning that we are immune to attacks upon the
detectors, which seems to be the most vulnerable part in a
QKD system.

B. Hybrid quantum repeater

Each segment of a so-called HQR consists of two quantum
memories placed at its ends [33] and connected by an optical
channel. Each quantum memory is represented by a two-level
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spin system which is initially in the state 1√
2
(|↑〉 + |↓〉). We

will consider a light-matter interaction between each memory
and a single-mode coherent state of light such that

Ûint (θ )(|↑〉 + |↓〉)|α〉 = |↑〉|αe−iθ 〉 + |↓〉|αeiθ 〉 . (1)

Thus, the coherent-state light amplitude is phase-rotated con-
ditioned upon the state of the spin. We call the result of this
interaction a hybrid entangled state and there exist different
physical phenomena for obtaining this transformation. An
attractive feature here is that we may even consider a fairly
weak interaction, θ � 1. A few more details about these in-
teractions will be given in the next subsection.

First, we let one memory interact with the optical mode,
which is then sent to the other memory at the next repeater
station where we again apply the light-matter interaction. This
results, in the absence of channel loss, in the (normalized)
state

(|↑,↓〉 + |↓,↑〉)|α〉 + |↑,↑〉|αe−2iθ 〉 + |↓,↓〉|αe2iθ 〉
2

. (2)

By discriminating the ±2θ phase shifts from the zero phase
shift, we can project the two memories onto an entangled Bell
state |↑,↓〉 + |↓,↑〉. Such a discrimination can be performed,
for example, by using quadrature homodyne measurements.
In the following, let us assume that α ∈ R+. Then we could
discriminate the phase shifts by performing a measurement of
the momentum quadrature p̂ := 1

2i (â − â†), where â and â†

are bosonic annihilation and creation operators. We can then
choose a sufficiently small �p and if the measurement out-
come p ∈ [−�p,�p], we say that we successfully identified
a zero phase shift. However, this is not an exact projection
onto a Bell state and the fidelity of the state is a function of
the measured value p and α sin(2θ ), i.e., 2αθ for small θ . We
could improve the fidelity at the expense of the success prob-
ability by choosing a smaller �p, which means that we are
discarding many low-quality states. Alternatively, we could
also set �p to a fixed value and increase α sin(2θ ); however,
we cannot increase this value arbitrarily much as soon as the
photon loss of the fiber channel is included, since a larger
value leads to more decoherence due to the loss. Therefore,
one has to find a compromise between average fidelity and raw
rate. For small θ , the probability of success and the fidelity are
only dependent on the transmittance η in the repeater segment
and on αθ . One may also consider different measurements on
the optical mode such as unambiguous state discrimination
based on PNRDs or on-off detectors [34]. While in our work
we discuss both types of measurements, discrete photon and
continuous homodyne (Appendixes F and H) detections, the
former allow us to entirely suppress discrimination errors even
for small αθ , and thus longer repeater segments are possible.
Later, we will compare our scheme with a HQR based on
unambiguous state discrimination using on-off detectors.

C. Generation of hybrid entangled states

States of the form |↑〉|αe−iθ 〉 + |↓〉|αeiθ 〉 are also known as
Schrödinger cat states, because for large amplitudes of the co-
herent state they serve as an example of entanglement between
a microscopic object like an atom and a macroscopic object
like a strong optical field, exactly like in Schrödinger’s famous

thought experiment [36]. In order to realize this in the labo-
ratory, large efforts have been made to generate these states.
Mostly the entanglement was generated between the internal
state of an atom or ion and its motional degree of freedom, or
with microwave radiation [37–39]. A few other experiments
with atom-induced phase shifts were realized for electromag-
netic radiation in the optical frequency domain [40,41].

We will briefly discuss two different approaches for gener-
ating these states. A general advantage of the corresponding
physical platform, namely cavity QED with atoms and light,
is that it allows for room-temperature operations at optical
frequencies, as opposed to solid-state-based approaches such
as that of Ref. [12] where sufficient cooling is a necessity.
One possible approach considers the interaction of light (for
a coherent state with amplitude α) with a two-level atom
(Jaynes-Cummings model [42] of cavity QED) where the
light frequency is largely detuned from the atomic resonance
frequency. The effective interaction Hamiltonian is then given
by

Ĥeff = h̄
g2

δ
(σ̂+σ̂− + â†âσ̂z ) , (3)

in the regime of large detuning δ (see, for example, Ref. [42]).
Here, g denotes the coupling constant, σ̂± are atomic
transition operators, and σ̂z is the Pauli-Z operator. This
interaction Hamiltonian results (up to some phase, which
can be compensated easily) in the desired state, equivalent
to applying the operator Ûint (θ ) with θ = h̄ g2

δ
α2tint, where

tint denotes the interaction time. However, it is demanding to
achieve a sufficiently strong nonlinear interaction correspond-
ing to a θ of the order of π

2 . Therefore, here we shall also
consider the case where θ is small (corresponding to a weak
nonlinear interaction), similar to the analysis in Ref. [33].

A different approach was considered in the recent experi-
ment of Ref. [43], where a resonant light-atom interaction was
employed in a cavity. More precisely, in this case the internal
state of an atom determines whether a light mode initially in
a coherent state couples with the cavity. In one atomic state
(uncoupled with the cavity), the cavity mode and the incoming
light pulse are on resonance such that the light will enter the
cavity and experience a π -phase shift after leaving it again. In
the other atomic state coupled with the cavity, the effective
cavity mode is no longer on resonance with the incoming
pulse. In this case, the light will not enter the cavity and
immediately be reflected back directly by the cavity mirror
with no resulting phase shift. As a consequence, an atomic
superposition state leads to a state for the reflected pulse that
is entangled with the atom, similar to Eq. (1), with a phase
difference of π for the two coherent states. Therefore, in this
case it is also possible to obtain θ = π

2 .

III. MEMORY-ASSISTED PHASE-MATCHING
QKD PROTOCOL

A. Description of the protocol

Let us start by describing the smallest example of our ver-
sion of a HQR, which is very similar to an entanglement-based
description of phase-matching QKD [see Figs. 1(a) and 1(b)].

(1) Alice and Bob each have an atom as a quantum memory
and generate a hybrid entangled state between their memory
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FIG. 1. Illustration of the protocol. (a) Phase-matching QKD.
Alice and Bob send optical coherent states (black filled points)
to Charlie who performs an optical measurement (OM). (b)
Entanglement-based variation of phase-matching QKD (n = 1).
Alice and Bob each have an optical mode (black filled point) entan-
gled with a short-lived memory (white filled circle). The optical fields
are sent to Charlie’s OM. The memories can be short-lived since it
does not matter when Alice and Bob perform the measurements on
their memories (as long as they wait with communicating their choice
of measurement basis). (c) Two-segment HQR variant (n = 2). Two
copies of (b) are used where the memories in the central node need
to be long-lived (red filled circles), since either of them has to wait
until the other segment succeeds. When both segments succeeded, a
Bell measurement is performed on the two long-lived memories for
entanglement swapping. (d) Three-segment HQR variant (n = 3). In
order to obtain the n-segment repeater, one simply needs to use n − 2
inner segments (marked by the dashed box). Such an n-segment
quantum repeater scheme consists of 2n physical segments. (e) Setup
of the OM. Usually the detectors are on-off detectors, but we could
also use PNRDs. For θ � 1, we only need one detector. BS stands
for beam splitter.

and an optical mode starting in a coherent state, resulting in
1√
2
(|↑, α exp(−iθ )〉 + |↓, α exp(iθ )〉). Notice that Alice and

Bob can also prepare BB84 states (thus distributing effective
entanglement) instead of real entanglement. This is equivalent
to the case where they generate real entanglement and perform
measurements on the memories before sending the optical
modes, because the measurements commute with Eve’s op-
erations provided that Alice and Bob only send information
about the chosen measurement basis after establishing the raw
key. Whenever Alice or Bob should apply Pauli operations to
their memories but they have already measured them, this can
be done via classical postprocessing of the measurement data.

The generation of these entangled states was described in the
previous section. We will show that for our repeater protocol
we can use, in principle, any θ > 0 at the expense of a larger
amplitude α of the coherent state. Choosing a small θ is also
accompanied by the need of a better phase stabilization.

(2) Alice and Bob send the optical part of their hybrid
entangled states through a lossy channel of transmittance

√
η

to a middle station operated by Charlie (ηtotal = η).
(3) If Charlie is honest, he applies a 50:50 BS to the

two incoming optical modes with annihilation operators â
and b̂ described by the transformation, â′ = (â + b̂)/

√
2, b̂′ =

(â − b̂)/
√

2 . Then he measures mode b′ with an on-off detec-
tor or, alternatively, with a PNRD, while he does not need to
measure anything for mode a′ [see Fig. 1(e)]. If he measures
at least one photon, his measurement correlates Alice’s and
Bob’s quantum memories.

In order to distribute entanglement over very large dis-
tances, we divide the overall channel that connects Alice and
Bob into n smaller segments where in each we run the above
protocol. The smallest example above then was for n = 1
[Fig. 1(b)] and the n = 2 case with two repeater segments,
each with a detection station in the middle (so, effectively
four physical segments), can be seen in Fig. 1(c). As the next
step, we perform entanglement swapping between neighbor-
ing quantum memories as soon as they are ready, as usual in
quantum repeaters. In the end, we have an (effective) two-
qubit state shared by Alice and Bob that can be used for
generating a secret key by employing, e.g., the (entanglement-
based) BB84 protocol.

Let us now get some insight into why we may use any
θ > 0, especially θ �= π

2 , and only need to measure one mode.
For this, we will still omit channel losses. We again consider
the smallest n = 1 case, corresponding to one repeater seg-
ment in the notation of general n. The state before the BS is
given by 1

2 [|↑, α exp(−iθ )〉 + |↓, α exp(iθ )〉]⊗2. After the BS
(and changing order), the state is given by

1
2 (|↑,↑,

√
2αe−iθ , 0〉 + |↓,↓,

√
2αeiθ , 0〉

+ |↑,↓,
√

2α cos θ,−i
√

2α sin θ〉
+ |↓,↑,

√
2α cos θ, i

√
2α sin θ〉) , (4)

where the last two entries in each ket vector refer to the two
modes a′ and b′, respectively. In this simplified scenario, also
assuming that Charlie uses a PNRD, by detecting mode b′
he projects the memories onto |	±〉 = 1√

2
(|↑,↓〉 ± |↓,↑〉),

where the sign depends on whether he measured an even or
odd nonzero number of photons. If we set θ = π

2 , we could
in addition also use a PNRD for mode a′ and depending
on the nonzero measurement outcome (even or odd number)
Charlie’s measurement would project the quantum memo-
ries onto |
±〉 = 1√

2
(|↑,↑〉 ± |↓,↓〉). As a consequence, our

wish to need only small θ comes at the price that the success
probability is only half of the ideal probability of success
for θ = π

2 . The protocol succeeds when there is at least one
photon measured in mode b′ and therefore the success proba-
bility is given by 1

2 (1 − e−2α2 sin2 θ ). When considering on-off
detectors instead of PNRDs, one projects onto a mixture of
two Bell states. Note that the postmeasurement memory state
and the success probability only depend on the product α sin θ

042614-4



MEMORY-ASSISTED LONG-DISTANCE PHASE-MATCHING … PHYSICAL REVIEW A 102, 042614 (2020)

and therefore we can use an arbitrarily small θ by employing
correspondingly large amplitudes α in this simplified model.

B. Channel loss only

As the next step, we will include the lossy channel with
transmittance

√
η (between Alice/Bob and the middle station,

again considering the n = 1 case) and obtain the density op-
erator of Alice and Bob’s qubits after Charlie’s successful
measurement. In order to keep this straightforward calculation
clear, we will introduce auxiliary modes such that the lossy
channel acts as a unitary operation on a larger Hilbert space.
After Charlie’s measurement, we trace out all subsystems
except Alice’s and Bob’s memory qubits. More details on this
calculation can be found in Appendix E. When Charlie uses a
PNRD, the resulting density operator is given by

1
2 (1 + e−2(1−√

η)α2 sin2 θ )|	±〉〈	±|
+ 1

2 (1 − e−2(1−√
η)α2 sin2 θ )|	∓〉〈	∓| , (5)

where the upper sign holds in the even and the lower sign
holds in the odd photon number case. Because of the success-
ful measurement, the qubits can only be in the {|↑,↓〉, |↓,↑〉}
subspace. If Charlie uses an on-off detector, the density oper-
ator is given by

1
2 (1 + e−2(2−√

η)α2 sin2 θ )|	−〉〈	−|
+ 1

2 (1 − e−2(2−√
η)α2 sin2 θ )|	+〉〈	+| . (6)

Here, the state |	−〉 has a larger probability because of the
larger fraction of an odd nonzero photon number than that for
an even nonzero photon number. Therefore, Alice and Bob
could exploit this to distill 1 − h( 1

2 [1 + e−2(1−√
η)α2 sin2 θ ]) or

1 − h( 1
2 [1 + e−2(2−√

η)α2 sin2 θ ]) ebits in the cases of PNRDs or
on-off detectors, respectively, using one-way classical com-
munication in the asymptotic limit, where h(·) denotes the
binary entropy function. When using on-off detectors, one
obtains an ebit rate of

1
2 (1 − e−2

√
ηα2 sin2 θ )

{
1 − h

[
1
2 (1 + e−2(2−√

η)α2 sin2 θ )
]}

√
η�1
≈ √

ηα2 sin2 θ
{
1 − h

[
1
2 (1 + e−4α2 sin2 θ )

]}
. (7)

Note that this is the same as the secret-key rate of BB84 in the
asymptotic limit. The tradeoff of the original HQR (assuming
small θ ) between high fidelities for small αθ and high success
probabilities for large αθ in the version with unambiguous
state discrimination [34] now becomes manifest in a high
secret-key fraction (second factor) for small αθ and a high raw
rate (first factor) for large αθ . However, the crucial difference
is that the entanglement distribution probability in a single
repeater segment (n = 1) now scales with

√
η instead of η due

to the middle station between Alice and Bob. Since a similar
expression appears in the PNRD case, it is useful to opti-
mize the function f (x) = x(1 − h( 1

2 (1 + e−2x ))) and choose
α2 sin2 θ accordingly. The maximum of f is approximately
7.141 × 10−2 with x ≈ 0.229. With this function, it can be
seen easily that the use of PNRDs instead of on-off detectors
only gives improvement of a factor of 2 for the rate in the
high-loss regime. Therefore, we will only consider on-off
detectors since these are readily available in comparison to

PNRDs. The resulting overall ebit rate (allowing for small θ )
is given by 0.5 × 7.141 × 10−2√ηtotal (similar to Ref. [20]1).

Next, we consider the case of n segments [see Fig. 1(d)]. It
is then straightforward to calculate Alice’s and Bob’s density
operator after the quantum teleportation steps, because the
input states are Bell diagonal (see Appendix D for details). For
the case of on-off detections, up to suitable Pauli operations
(which can also be applied via classical postprocessing if
Alice and Bob already measured their qubits in the beginning)
after the Bell measurements on the memory qubits for entan-
glement swapping [see Fig. 1(c) for the n = 2 case], Alice and
Bob share the (effective) state

1
2 (1 + e−2n(2−√

η)α2 sin2 θ )|
+〉〈
+|
+ 1

2 (1 − e−2n(2−√
η)α2 sin2 θ ) )|
−〉〈
−| . (8)

When using PNRDs, one obtains a similar state with a dif-
ferent coefficient of |
±〉 (1 − √

η instead of 2 − √
η). Let us

consider a scheme where we try to distribute the entanglement
in all segments in parallel and only at the end do we perform
the entanglement swapping everywhere. Using the results for
the exact raw rate with deterministic entanglement swapping
[44], one can calculate the obtainable ebit and secret-key
rate for this simple case exactly. However, to obtain a rough
overview it is useful to apply an approximation for the raw rate
(assuming

√
η � 1; see details in Appendix B) and use the

optimal value for nα2 sin2 θ , resulting in an overall secret-key
rate of

2n
√

ηtotalH (n)−1 0.07

2n
∼ 3.57 × 10−2

2n
√

ηtotal

n(γ + ln(n))
, (9)

where H (n) are the harmonic numbers and γ = 0.57721 . . .

is the Euler-Mascheroni constant. Notice that we always have
to reduce the mean photon number α2 of each optical pulse

with increasing n (αoptimum ≈ 1
sin(θ )

√
0.229

2n ). All these consid-
erations are for secret-key rates per channel use (and per
mode, but in our schemes, the optical states are single-mode).
We define one channel use as a single attempt to generate
entanglement in all repeater segments.

One benefit of this scheme is that in order to obtain a
secret-key rate scaling of 2n

√
ηtotal one only needs n − 1 sta-

tions equipped with quantum memories. In comparison, a

1The difference in the protocol between Ref. [20] and our work
with n = 1 is that the authors of Ref. [20] use θ = π

2 and two on-off
detectors, such that their raw rate is larger by a factor of 2. However,
there are also differences in the approach of calculating the secret-
key rate. We employ a BB84-like protocol since it easily allows us
to go to a larger number of repeater segments, whereas the authors
of Ref. [20] consider the Devetak-Winter formula for obtaining the
secret-key fraction by calculating the mutual information between
Alice’s and Bob’s bits and estimating the mutual information be-
tween Eve and the key via the Holevo information. This approach
allows the authors of Ref. [20] to employ only coherent states for
estimating Eve’s information, while in our approach we need to
generate hybrid entangled or cat states, even for the simplest n = 1
case, without memory assistance.
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standard quantum repeater [6]2 would need 2n − 1 stations
with memories when directly employed for QKD with Alice
and Bob immediately measuring their qubits (otherwise the
standard repeater uses 2n + 1 memories, while our scheme
would use n + 1 memories). Note that the scaling of 2n

√
ηtotal

is consistent with the ultimate end-to-end capacity in repeater-
assisted quantum communication where the channel is divided
into 2n physical channel segments (assuming large segment
lengths) [46]. When considering first experimental realiza-
tions of small-scale memory-based quantum repeaters, using
a scheme like ours (or related schemes like those of Ref. [32])
could be beneficial, because in order to obtain a secret-key
rate scaling of 4

√
ηtotal only a single memory station is needed

instead of three.
For the case of this section where channel loss is the only

error considered, the distillable entanglement (when allowing
one-way, forward classical communication) coincides with
the asymptotic secret-key rate obtainable with BB84. In order
to obtain a reasonably realistic description of such a repeater,
we also have to include dark counts and the efficiency of the
on-off detectors, memory dephasing, phase mismatch, and
errors in the deterministic entanglement swapping which will
be described by a depolarizing channel. Before turning to
such a model including all of these errors, however, one may
first only include the most important errors which still enables
one to see their influence onto the secret-key rate in simple,
analytical expressions. For our treatment here, all conceptual
and technical details regarding the more realistic cases beyond
just channel loss are presented in the Appendixes. There, we
first consider detector inefficiencies and memory dephasing
where we can still describe the resulting states as mixtures
of two Bell states. Including detector efficiencies (ηdet) is
trivial, because we only have to substitute

√
η → √

η × ηdet.
However, things become trickier when considering the
dephasing in the memories. Nonetheless, since the dephasing
channel is a Pauli channel, it commutes with the entanglement
swapping and therefore we can assume that we first distribute
perfect entanglement via multiple quantum teleportations
and then apply the errors to the qubits (according to the
loss channel and the memory dephasing; see Appendixes A
and D). Later, we also consider imperfections of the Bell

2Note that there are well-known proposals for quantum repeaters
that are based on single-photon interference and thus intrinsically
contain the twin-field-type scaling advantage. One such protocol
makes use of a single atom or spin entangled with a light mode
that either contains a photon or not [45]; see also Ref. [32]. An-
other protocol, proposed by Duan, Lukin, Cirac, and Zoller (DLCZ)
[7], initially employs entanglement between a light mode and the
collective spin mode of an atomic ensemble. The finally resulting
two-mode single-excitation spin entanglement in DLCZ, however,
cannot be straightforwardly used for applications like QKD and
therefore DLCZ suggests a postselection strategy by considering two
copies of a repeater chain and accepting only those cases where
each end point of the double-chain state carries exactly one spin
excitation. As a consequence, the DLCZ scheme loses its additional
scaling advantage. The schemes of Refs. [32,45] do not share this
complication, because their resulting spin-spin entanglement is of
immediate use.

measurements which still result in Bell-diagonal states.
Finally, we will also take into account dark counts, eventually
leading to Bell-nondiagonal states. A detailed discussion of
the influence of these error sources to the secret-key rate is
given in Appendix F. We also present a detailed discussion on
the use of homodyne detectors for our scheme in Appendixes
F and H. The secret-key rates as obtainable with our model
(based on on-off detectors) will be presented and compared
among different scenarios in the following section. The extra
experimental parameters as required for the discussion there
are all introduced in Appendixes A and F.

IV. COMPARISON OF SECRET-KEY RATES

A. Secret-key rate per channel use

Let us now consider the performance in terms of BB84
secret-key rates per channel use of our proposed scheme for
some physically reasonable parameters. We start with the
example of a two-segment repeater [i.e., n = 2, corresponding
to two segments connected at a memory station and each seg-
ment equipped with an optical middle station; see Fig. 1(c)].
We assume the following parameters (similar to Ref. [20]):

(1)
√

η = 0.15 exp(− L
2nLatt

),
(2) Latt = 22km,
(3) α = 23.9,
(4) θ = 0.01,
(5) dark count probability pdark = 8 × 10−8,
(6) pdepol = 10−2,
(7) τ = L

nc ,
(8) c = 2 × 108 m

s , and
(9) error correction inefficiency fEC = 1.15.

The transmission parameter
√

η, when we set n = 2, corre-
sponds to a quarter of the total distance L between Alice and
Bob, because every mode travels only for this distance to the
corresponding detector station. This parameter also includes
a finite detector efficiency (factor pdet = 0.15). We shall also
consider perfect detectors, pdet = 1. Since we do not know the
optimal value of α (for given θ ) when considering all possible
errors in our model, we simply use the optimal α from the
loss-only case assuming n = 2. This already gives a good
starting point for α, which we use everywhere unless stated
otherwise. Further parameters are explained in Appendixes A
and F.

The BB84 secret-key fraction [2] is given by

1 − h(eX ) − fECh(eZ ) , (10)

where eX/Z are the error probabilities in the X and Z bases
which can also be expressed in terms of the four Bell-state
coefficients of the density matrix. Note that we consider the
biased BB84 scheme where one of the two bases is employed
more often, allowing us to increase the sifting factor to unity
in the asymptotic limit of infinite repetitions [47]. The overall
secret-key rate is then given by the product of the raw rate and
the secret-key fraction.

The memory coherence time T and the phase mismatch
will be varied in order to assess their influence on the secret-
key rate (see Appendix F). Let us first study the effect of
the memory dephasing, since insufficient coherence times are
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an important issue for quantum repeaters. As can be seen in
Figs. 7 and 8 (in Appendix F), one really needs demanding
memory coherence times such as 1000 s or more in order
to be able to expect nearly the total benefit of the memory-
based repeater capabilities. When considering more realistic,
currently available memories with a coherence time of around
1 s,3 it can be seen that it is not even possible to overcome the
PLOB bound (Fig. 7 with inefficient detectors). This means
in this case the additional memory element even worsens
the secret-key rate in comparison to simple twin-field QKD.
However, we also found that the detection efficiency pdet is
a highly influential parameter determining whether PLOB
can be exceeded or even the ultimate 4

√
ηtotal scaling can be

approached, with realistic (∼1 s) or potential future (�10 s)
coherence times, respectively (see Fig. 8).4

Based on the above observations, one may infer that the
MA-PM QKD scheme cannot help increasing long-distance
secret-key rates using currently available memories and finite,
modest detector efficiencies. However, up to now we assumed
that the participants will always wait until the entanglement is
distributed in both segments no matter how long this distribu-
tion lasts for. It is possible, though, to introduce a maximal
memory waiting time [32,50–54] until which the entangle-
ment must be distributed in both segments; otherwise, the
entanglement already distributed in one segment is discarded
in order to prevent large error rates at the expense of a lower
raw rate. References [52,53] derive the raw qubit rate for
a two-segment repeater with such a memory cutoff, while
Ref. [54] presents a rate formula for the more general case of
arbitrarily many segments under the constraint of determinis-
tic entanglement swappings. References [32,50] analyze the
dephased qubit states for schemes with at most two segments.

3Currently available memory coherence times are ranging from
several μs (quantum dots) to tens of ms (color centers, atoms, and
ions) [48]. Although there are very recent reports on approaching
coherence times of up to a few or even above 60 min [49], we
assume that future coherence times that are also compatible with the
requirement of telecom-frequency conversion are within the range
of almost 1 ms (quantum dots) and 0.1–1 s (atoms and ions) up
to 10 s (color centers). In our quantitative rate analysis including
memory dephasing, we will thus have a particular focus on coher-
ence time values of 0.1, 1, and 10 s (see especially Figs. 2–6). For
a more detailed discussion on the interplay between experimental
clock times (with or without the need of additional spin sequences
on the memory qubits), memory coherence times, and the need for
frequency conversion, for various experimental hardware platforms,
see Ref. [48]. In that reference as well as in the present work,
the focus is on single-spin quantum memories subject to dephasing
rather than spin ensembles (as employed in atomic-ensemble-based
quantum repeaters [7]), which instead must be modeled including
memory loss acting on collective, bosonic spin modes.

4Throughout all plots, as benchmarks, we show the PLOB bound
− log2(1 − ηtotal ) for point-to-point communication between Alice
and Bob [5] and, instead of the ultimate repeater bounds for a quan-
tum repeater with 2n physical segments − log2(1 − 2n

√
ηtotal ) [46],

several benchmarks of the form 2n
√

ηtotal (which up to a factor of
1.44 coincide with the former for small 2n

√
ηtotal), since our particular

qubit-based scheme can never exceed 2n
√

ηtotal similar to the ideal
standard twin-field scheme that never goes above

√
ηtotal.
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FIG. 2. Secret-key rates for a two-segment repeater (n = 2, par-
allel scheme) without phase mismatch assuming the parameters as
listed in the main text (including pdet = 0.15) and a memory coher-
ence time T of 1 s. The straight lines (from bottom to top) denote the
PLOB bound,

√
ηtotal, and 4

√
ηtotal. The rates are for different values of

the memory cutoff (10, 100, 1000, 10 000) (from right to left). The
areas between PLOB and

√
ηtotal and between

√
ηtotal and 4

√
ηtotal are

highlighted in color.

As can be seen in Fig. 2, it is possible to overcome the PLOB
bound by introducing a cutoff, and furthermore, it is even
possible to distribute secret keys over a distance of 700 km
and more with modestly performing memories and detectors
(compare this with Fig. 7, even with T = ∞). In this work,
we only consider rates including cutoff for n = 2.

We expect that a cutoff will also enhance the final rates for
more than two segments. Thus, our rate analysis leads us to
the following conclusion. Even though the PLOB bound can
in principle be exceeded for our n = 2 scheme by introducing
a memory cutoff, a higher experimental cost would be needed,
i.e., sufficiently efficient memories and detectors, in order
to benefit from the improved scaling of our n = 2 scheme
compared with twin-field QKD. However, in Sec. IV B, we
will see that when rates per second are considered, it is gen-
erally hard for a small-scale repeater like our n = 2 scheme
to compete against twin-field QKD at high clock rates. There-
fore, we will also consider more than two repeater segments
(as for an alternative, we also explore the possibility of an
asymmetric two-segment repeater operating at a higher clock
rate in Appendix G).

In Fig. 3, one can see the scaling behavior of repeaters
based on our protocol with n = 2, 3, or even 4 repeater seg-
ments considering a finite memory coherence time of 10 s
and no additional errors in comparison to the PLOB bound
and ideal quantum repeaters. For all n, we choose α = 23.9
even though it is generally not the optimal value in the loss-
only case, but it yields better rates when considering other
errors. However, note that we did not try to find an opti-
mal α in the general case. When we optimize α this will
be explicitly stated. We found that for these three different
segment numbers PLOB is overcome at an overall distance
of approximately 140 km. However, since the PLOB bound
can be overcome by twin-field QKD without memory stations,
the more relevant benchmark for our protocol may be

√
ηtotal

which can be exceeded at approximately 350 km. Due to the
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FIG. 3. Secret-key rates for a repeater with n = 2 (red), 3
(green), and 4 (blue) (dashed, from left to right) segments using a
sequential protocol (parallel for n = 2) without cutoff (dashed lines,
α = 23.9 in all cases). For all curves, we consider a finite memory
coherence time of 10 s (no other errors are assumed). The red dotted
line denotes a n = 2 scheme where we do use a cutoff. The bench-
marks (from bottom to top) PLOB,

√
ηtotal, 4

√
ηtotal, 6

√
ηtotal, and 8

√
ηtotal

can also be seen. The regions between two of those benchmarks are
highlighted in color accordingly.

coherence time of only 10 s we can barely surpass
√

ηtotal, but
with an appropriately chosen cutoff parameter (in the n = 2
case) we can overcome this benchmark even for distances
between 450 and 1500 km (see Fig. 3). Furthermore, we find
that by making use of a memory cutoff and perfect-efficiency
detectors, but also including dark counts and an imperfect Bell
measurement, it suffices to require a coherence time of 5 s for
overcoming

√
ηtotal (not shown in plots). In order to obtain

better rates than in the ideal twin-field scheme, a coherence
time of 1 s suffices, even without making use of a memory
cutoff (see Fig. 8).

B. Secret-key rate per second

For practical applications, the secret-key rate per second
is the more important figure of merit for comparing quantum
repeaters with other types of QKD schemes. A large disad-
vantage of scalable memory-based quantum repeaters is that
they rely on classical communication for confirming success,
setting an upper bound on the repetition rate due to classical
communication times. For example, when assuming a spacing
of 100 km between two repeater stations, this limits the repeti-
tion rate to the order of kHz. However, theoretically, this also
makes it easy to convert the secret-key rate per channel use to
a secret-key rate per second, because the (classical and quan-
tum) communication times are typically much larger than the
local operation times and thus the latter can be neglected in the
regimes that we mainly consider here.5 Therefore, in order to
perform better than twin-field QKD in terms of secret-key rate

5The problem of these low repetition rates can be circumvented
when using so-called third-generation quantum repeaters which
make use of quantum error correction [55]. However, an optical im-
plementation of suitable quantum error correcting codes is currently
still hard to achieve.

per second by using a memory-assisted repeater, one needs to
employ sufficiently many repeater stations for a given total
distance (with ηtotal � 1), such that the communication times
become smaller (and also the scaling advantage increases).
However, even for repeater spacings as small as 100 m, the
repetition rate only grows to the order of MHz. Hence, one
can see that a scalable memory-based quantum repeater with a
reasonable repeater spacing has to outperform twin-field QKD
by many orders of magnitude in terms of secret-key rate per
channel use, only to obtain rates similar to twin-field QKD per
second. Nonetheless, there are at least three reasons for why
it is still beneficial to employ our memory-assisted schemes.

First, like general memory-based quantum repeaters, in
principle, long-distance regimes become accessible for rates
per second that are otherwise (including for twin-field QKD)
unreachable at the same rates. This happens because of the
scaling advantage which eventually dominates over the clock-
rate disadvantage for sufficiently long distances. At such
distances, the final rates per second are generally low, but this
applies to both twin-field QKD and MA-PM QKD while rates
end up strongly biased toward MA-PM QKD with growing
distance. In this case, the small final rates of MA-PM QKD
may be enhanced up to practical values by employing many
repeater chains in parallel (multiplexing). Second, also for dis-
tances where dark counts greatly reduce the secret-key rate, a
repeater can overcome the twin-field QKD secret-key rate per
second. However, it is also possible to obtain the same effect
by using entangled light sources with a high repetition rate as
a relay in order to keep the dark count effect small. With our
system, such a relay could be realized when all spins of the
hybrid spin-light entangled states are measured immediately.
In this case, we only lose a factor of 1

2 when employing small
θ ; however, with a simple relay (n = 2), as we no longer
make use of memories, the effect is squared. Third, unlike
direct-transmission or twin-field QKD at high repetition rates,
our memory-based schemes can also be used in applications
different from QKD such as distributed quantum computing.

As can be seen in Fig. 4, our proposed schemes (for
n � 8) can outperform (in terms of secret-key rate per sec-
ond) idealized twin-field QKD even when we consider dark
counts, memory dephasing (T = 10 s), and depolarizing er-
rors pdepol = 10−3 in our repeater scheme for distances above
1000 km.6 However, even a maximally idealized four-segment
quantum repeater (in a standard approach employing as many
memories as our n = 4 scheme) that attains the corresponding
repeater capacity [46] outperforms idealized twin-field QKD
just at distances of 1000 km. Thus, it is a rather fundamental
problem to overcome idealized twin-field QKD with further
scalable memory-based quantum repeaters for a small number
of memories in a regime where the single-chain secret-key
rate per second is not too low for practical purposes. Also,
notice that here we did not consider a memory cutoff (for
n > 2 there are many different strategies to implement such
a cutoff protocol) and therefore we expect that it is possible

6In Fig. 4, we need to optimize α for the different schemes. Other-
wise, if we use α = 23.9 in all schemes the rates for n = 16 become
the worst in the plots. We used the following values for α: 30, 23.9,
23.9, 18, 17, 9 (ordered by increasing n).
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FIG. 4. Comparison of the secret-key rate in bits/s between twin-
field QKD (ideal, blue dashed; with dark counts, black dashed)
assuming a repetition rate of 1 GHz and our proposed scheme for
n = 2, 3, 4, 6, 8, 16 (left to right in terms of vanishing rates, parallel
scheme for n = 2), where we assumed detectors with unit efficiency
(pdet = 1), a dark count rate of 7 × 10−8, a memory coherence time
of 10 s and pdepol = 10−3. The dashed purple line (for L ≈ 0 begin-
ning at a rate of ≈105 bits/s) represents an ideal standard repeater
with four physical segments attaining the repeater-assisted capacity
[46], whose repetition rate is limited by the communication time. No-
tice that for n = 8 and distances as large as 1000 km we outperform
ideal twin-field QKD with a noisy repeater in terms of secret-key
rate per second while still attaining rates as high as 10−2 Hz without
making use of memory cutoffs.

to improve the secret-key rates of our schemes significantly
(recall the improvement in the comparison between Figs. 2
and 7). When comparing our schemes with a noisy twin-field
QKD protocol, it is easy to see that our schemes allow for a
longer communication range until the secret-key rates drop to
zero.

In Fig. 5, it can be seen that our scheme with n = 2 in-
cluding memory cutoff is able to outperform twin-field QKD
in a scenario where dark counts are taken into account. Even
a scheme with memories of rather low coherence time such
as 0.1 s is able to outperform realistic twin-field QKD at a
distance of approximately 440 km, though resulting in a rather
low secret-key rate of 10 bits/h. Memories with such coher-
ence times are already available [48]. However, it can also
be seen that a similar enhancement is achieved with a relay
(which actually scales better than the memory-based scheme
for a coherence time of 0.1 s). In order to see an improved
scaling for the repeater, one needs a coherence time as large
as 10 s. Since the huge gap between twin-field QKD and our
proposal in terms of secret-key rate per second in some
regimes originates from the different repetition rates of both
schemes, it is reasonable to consider the possibility for n = 2
not to place the beam splitter in the middle for one segment,
but in an asymmetric way [thus modifying Fig. 1(c)]. Im-
provement is possible then, because Alice and Bob can send
light states at an in principle arbitrarily high repetition rate,
since they only need the information regarding success from
the beam splitter in order to decide whether they should count
or discard that round in the final classical postprocessing.
However, the memory station requires this information im-
mediately in order to decide if the state in the memory should

200 400 600 800
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FIG. 5. Comparison of the secret-key rate in bits/s between twin-
field QKD (blue, top) assuming a repetition rate of 1 GHz and our
proposed scheme for n = 2 including a memory cutoff and assuming
different memory coherence times of (0.1, 1, 10) s (solid lines,
bottom to top) (pdet = 1, parallel scheme, other parameters are as
described in the main text). The dashed lines (yellow, small θ hence
smaller rate) refer to a relay configuration assuming a repetition rate
of 1 MHz taking into account the finite spin-light interaction times
for the optical entangled-state generations in our relay.

be held or discarded. When placing the beam splitter nearer
to the memory, one decreases the secret-key rate per channel
use, but at the same time enhances the possible repetition rate.
We discuss this scheme in Appendix G. We find that for a not
fully asymmetric scheme one can increase the secret-key rate
per second by up to a few percent.

C. Comparison with USD hybrid repeater

Let us now compare our new HQR with a HQR that uses
on-off detectors for unambiguous state discrimination (USD)
[34]. In our scheme, in each segment we have two qubit
memories each interacting nonlinearly with a coherent state
and these optical states are then send to a middle station with
a 50:50 beam splitter followed by an on-off detector. In the
USD scheme, we have two memories but only one optical
state. First, this state interacts with the first memory, is then
sent to the other, and interacts with this second memory. In
the end, a USD measurement using linear optics, phase-space
displacements, and three on-off detectors is performed. Thus,
one can see that both schemes employ very similar resources.
We can evaluate and compare the two schemes in a simple
error model where we consider channel loss, depolarization,
and memory dephasing.

In our scheme, the probability to generate entanglement in
one segment in a single try is given by 1

2 (1 − e−2
√

ηα2 sin2 θ ),
while for the USD hybrid repeater it is given by
1
2 (1 − e−2ηα2 sin2 θ ). Here we can already see the improvement
of our scheme in the raw rate since η is simply replaced
by

√
η. The loss channel and the measurement also induce

a dephasing channel with parameter e−2(2−√
η)α2 sin2 θ in our

scheme. In the USD scheme, this is given by e−2(1−η)α2 sin2 θ .
The memory dephasing works similar in both cases, but in
our scheme the duration of a single entanglement generation
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FIG. 6. Comparison of the secret-key rate per channel use per
employed memory (station) for our scheme (solid lines) and the USD
hybrid scheme (dashed lines) for n = 2, 3, 4 (from left to right in the
regime of rates dropping toward zero), assuming a coherence time of
T = 10 s, a depolarizing channel with pdepol = 10−3, and a sequential
scheme (parallel for n = 2). The black solid line corresponds to the
PLOB bound.

attempt is given by L
nc whereas in the USD scheme it is 2 L

nc .7

As can be seen in Fig. 6, already our n = 2 scheme gives better
secret-key rates per employed memory than the USD hybrid
repeater for n = 2, 3, 4 for relevant distances. In the regime of
small distances, the USD scheme achieves rates slightly better
than our scheme, because for η = 1 there is no dephasing due
to loss and the measurement in the USD scheme. However,
our scheme always has dephasing originating from the usage
of the on-off detectors. Nonetheless, our scheme has a better
distance scaling and therefore our schemes achieve better rates
than the USD scheme for the relevant large-distance regime.
For these distances, our schemes often achieve rates which
are orders of magnitude better then those of the USD scheme.
Thus, we obtain a better secret-key rate while employing a
smaller supply of quantum memories.

V. CONCLUSION

We introduced a measurement-device-independent QKD
scheme based on the twin-field QKD concept but making
use of memories in order to extend the overall distance for
which a secret key can be distributed. The secret-key rates per
channel use of our scheme scale as [nH (n)]−1 2n

√
ηtotal [har-

monic number H (n) = γ + ln(n) + O(n−1)] in the loss-only
case (assuming 2n

√
ηtotal � 1 and using a parallel entangle-

ment distribution scheme), where γ = 0.57721 . . . is the
Euler-Mascheroni constant and n is the number of repeater

7For the USD scheme, it is also possible to shorten the duration
of one time step to L

nc by switching the roles of sender and receiver.
If the entanglement generation fails, Bob usually communicates this
failure to Alice, who then tries again. However, briefly after sending
the classical communication he can also start to send an optical pulse
to Alice, who needs this short break for switching from sender to
receiver mode, which might be experimentally complicated.

segments, each equipped with memory stations at their ends
and a beam splitter and optical-detector station in their
middles. The transmission parameter ηtotal = exp(− L

Latt
) rep-

resents the total channel connecting Alice and Bob separated
by a distance L.

Our scheme shares some similarities with the so-called
hybrid quantum repeater such as the usage of hybrid entan-
gled states and the dependencies and tradeoff related to the
entanglement generation rate and state quality with regard to
α sin θ , where α is the optical coherent-state amplitude and θ

is the angle of a spin-controlled phase rotation of the optical
mode due to a dispersive light-matter interaction. However,
due to the photonic middle stations in each repeater segment,
our version inherits the twin-field-like scaling advantage. In
some distance regimes, this difference results in rates for
our scheme that are larger by orders of magnitude com-
pared with the original HQR version based on unambiguous
state discrimination. For this version, we explicitly showed
that the relevant quantities do not exhibit the twin-field-type
square-root enhancement of the transmission parameter per
repeater segment like in our scheme. We further showed that
it is possible, in principle, to employ small dispersive phase
rotations θ corresponding to weak optical nonlinearities at
the expense of using larger coherent state amplitudes α and
more demanding phase stabilization. Another advantage of
our scheme compared to the original hybrid quantum repeater
is that it is no longer necessary to couple nonclassical light
states with a spin system (like an atom in a cavity) “inline”. It
is now sufficient to prepare hybrid light-spin entangled states
“offline” and couple the optical parts with beam splitters when
executing the repeater protocol.

For the n = 2 case with only one memory station based
on a parallel distribution scheme, we considered the most
important imperfections like photon loss, detector inefficien-
cies, memory dephasing, dark counts, phase mismatch, and
faulty Bell measurements on the memories modeled by de-
polarization. This error analysis can also be extended to n
repeater segments when using a sequential distribution and
swapping strategy. This approach enabled us to calculate
exact BB84 secret-key rates (in the asymptotic limit) for the
general case of n repeater segments. For n = 2, the parallel
scheme outperforms the sequential one and for n > 2 we have
evidence that the sequential scheme is better. As we did not
include quantum error correction, we focused on repeaters
up to n = 16. We calculated secret-key rates per channel use
for realistic parameter regimes and showed that introducing a
cutoff (maximal duration) for the memory waiting time can
increase the secret-key rate enormously.

Our main quantitative results in terms of secret-key rates
per channel use are that by introducing quantum memories
into a twin-field-based relay, for distances beyond 700 km, the
PLOB bound can be beaten with memory coherence times of
1 s and modest detector efficiencies. The ideal single-repeater
scaling of

√
ηtotal can be exceeded when coherence times of

5 s and perfect detector efficiencies are approached. In order to
overcome the ideal twin-field rate, only a coherence time of 1 s
is needed. Since our scheme is mainly for threshold detectors
but also involves light-matter interactions, the light wave-
lengths must be suitably chosen (possibly including additional
frequency conversions which have not been considered here)
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and the basic processing times, as usually in memory-based
quantum repeaters determined by classical communication
times and the speed of the light-matter operations, are longer
than those in twin-field QKD without memory assistance.
Nonetheless, for sufficiently many and short elementary seg-
ments, the scaling advantage of the memory-assisted scheme
can potentially overcome the disadvantage of the slower clock
rates (for phase-matching QKD without memories, the source
clock rate is just given by that of a laser generating coherent
states; creating cat states like in our BB84-type scheme is
unnecessary and so are light-matter couplings and classical
waiting times). We explicitly showed this by also considering
secret-key rates per second.

We also investigated a variant of our scheme based on
homodyne detectors. According to our analysis, the regimes
where a homodyne-based scheme works is incompatible with
the regimes where the scaling advantage of a MA-PM QKD
scheme becomes relevant. Thus, secret-key rates for segments
of 10 km and more are obtained to be zero for the homodyne-
based scheme. This is conceptually similar to the original
hybrid quantum repeater based on homodyne measurements
where the segment lengths also needed to remain sufficiently
short (at around 10 km). A difference there, however, was
that additional quantum error detection (entanglement purifi-
cation) was included such that high-fidelity entangled states
were still obtainable. In our scheme, active methods for quan-
tum error correction or detection were not considered.

Like in all twin-field-type QKD approaches based on
single-photon interference or, more generally, interference
of phase-sensitive single-mode states, as opposed to those
schemes relying on two-photon interference, a means for ro-
bust phase stabilization must be included. In our scheme, this
could be achieved by sending a coherent-state reference pulse
along the fiber channels together with the signal pulses.
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APPENDIX A: ERROR MODELS

Here we briefly describe all error models employed for
our analysis. A lossy channel with transmittance η can be
described as a beam splitter acting on the optical mode of
interest a and an environmental mode b corresponding to the
mode operator transformation

(
â′

b̂′

)
=
( √

η
√

1 − η√
1 − η −√

η

)(
â
b̂

)
, (A1)

where â′ is the relevant output mode operator of interest and
we trace out the environmental mode expressed by mode
operator b̂′. For fiber transmission, η is given by exp(− L

Latt
),

where L is the fiber’s length and Latt is the attenuation length
of 22 km in a typical optical fiber.

The dephasing of the memories is described by the follow-
ing dephasing channel,

Edephasing(t, T, ρ)

= 1

2

[
1 + exp

(
− t

T

)]
ρ + 1

2

[
1 − exp

(
− t

T

)]
ZρZ ,

(A2)

where ρ is a single-qubit density matrix, Z is the Pauli
qubit phase-flip operator, t is the time for which the memory
dephases, and T is the memory coherence time. The imper-
fections of the Bell measurement on the quantum memories
are modeled by the following depolarizing channel,

Edepol(pdepol, ρ) = (1 − pdepol )ρ + pdepol
1

2
. (A3)

The POVM element corresponding to a click of the on-off
detector is given by

Ê = 1 − D(0)|0〉〈0| , (A4)

where D(0) denotes the probability that the detector does not
click on a vacuum state. This means the dark count probability
is given by 1 − D(0). Fortunately, we will not require an
explicit expression for the conditional density operator that
incorporates dark counts, because we trace out the measured
mode (see Appendix E).

APPENDIX B: APPROXIMATION OF E[max(X1, . . . , Xn)]

In order to distribute entanglement over the whole dis-
tance of the repeater, entanglement needs to be generated
in all n segments. When generating entanglement in the n
segments independently, the total waiting time is given by
max(X1, . . . , Xn), where the geometrically distributed random
variables Xj describe the number of entanglement generation
attempts until success in segment j and where p is the proba-
bility of success in a single attempt. Therefore, the raw rate
scales inversely with E[max(X1, . . . , Xn)]. This expectation
value will also appear when we will discuss the dephasing in a
parallel scheme using Jensen’s inequality. For the case p � 1
and deterministic entanglement swapping, it is possible to
obtain a simple approximation of E[max(X1, . . . , Xn)] where
X is geometrically distributed:

E[max(X1, . . . , Xn)] =
n∑

j=1

(
n

j

)
(−1) j+1

1 − (1 − p) j
(B1)

≈
n∑

j=1

(
n

j

)
(−1) j+1

j p
. (B2)

This approximation is based on the exact expression of
Ref. [44] for arbitrary p. We then expanded (1 − p) j with the
binomial theorem and neglected quadratic and higher orders
of p. We can furthermore prove by induction

n∑
j=1

(
n

j

)
(−1) j+1

j
=

n∑
j=1

1

j
=: H (n) , (B3)

where H (n) are also known as harmonic numbers. We approx-
imate the harmonic numbers by using only the first terms of
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their asymptotic expansion,

H (n) ≈ γ + ln(n) + 1

2n
, (B4)

where γ = 0.57721 . . . is the Euler-Mascheroni constant. In
the end, we obtain the simple approximation

E[max(X1, . . . , Xn)] ≈ 1

p

(
γ + ln(n) + 1

2n

)
. (B5)

Note that this approximation scales with ln(n), while the
widely used approximation ( 3

2 )
log2(n) 1

p scales with nlog2(1.5).
However, note that the latter depends on the assumption of
both small p and small swapping probabilities, so it is inap-
plicable here for deterministic swapping [53].

APPENDIX C: EFFECT OF MEMORY
DEPHASING FOR n = 2

For the case of two quantum repeater segments, the defi-
nition of Mpar ≡ M in Eq. (F3) simplifies to |X1 − X2|, where
X1 and X2 are independent geometrically distributed random
variables. Therefore, we have for the corresponding distribu-
tion

P(M = 0) =
∞∑

k=1

P(X1 = X2 = k) =
∞∑

k=1

p2q2(k−1) = p

2 − p
,

and for j > 0,

P(M = j) =
∞∑

k=1

2p2q2(k−1)+ j = 2
pq j

2 − p
,

where the factor 2 comes from the fact that the two cases X1 >

X2 and X2 > X1 are possible.
This allows us to calculate for M := |X1 − X2|

E

[
exp

(
− M

τ

T

)]
= p

2 − p

[
2

1 − q exp
(− τ

T

) − 1

]
,

(C1)

and by summing only up to a constant instead of infinity
and considering a renormalization, one can easily obtain the
expectation value for protocols which abort after the memory
has dephased for a given time (cutoff). The additional com-
plexity of this protocol lies solely in the raw rate, which is
already known in the literature [52–54]. Note that we also
have to consider an additional nonrandom dephasing time, be-
cause each memory already dephased during the time between
sending the optical mode and obtaining the information on
whether the optical measurement was successful. Therefore,
each memory dephases for a time unit of L

nc . If we perform
the measurements on the two outer memories immediately, we
only accumulate a constant dephasing time of 2(n − 1) L

nc =
2L
c (1 − 1

n ). If we perform the measurements of the outer
memories at the end of the entanglement distribution [like in
Eq. (F2)], we accumulate a constant dephasing time of 2L

c .

APPENDIX D: PAULI CHANNELS AND
ENTANGLEMENT SWAPPING

We call a single-qubit channel N (·) a Pauli channel if and
only if N (ρ) = ∑

i piPiρP†
i , where pi are probabilities and

Pi are Pauli operators (1, X,Y, Z). Since all of these Pauli
operators either commute or anticommute, Pauli channels
commute. The composition of two Pauli channels is again a
Pauli channel, because the product of two Pauli operators is
again a Pauli operator up to a phase which becomes irrelevant
for the case of a Pauli channel since Pi and P†

i are both
applied such that these phases cancel. Since one can switch
between all four two-qubit Bell states by applying one of the
four single-qubit Pauli operators, it can be seen that every
Bell-diagonal state is equivalent to a Pauli channel acting on
a perfect Bell state. Let us now show that Pauli channels com-
mute with the entanglement swapping operation on perfect
Bell states.

Without loss of generality, we assume that the Bell mea-
surement on two memory qubits for entanglement swapping
yields |
+〉 as the measurement outcome, while the other
three cases work analogously. It is also sufficient to con-
sider only two two-qubit pairs initially prepared in the Bell
states |
+〉12 and |
+〉34 and each being partially subject to
an arbitrary Bell-diagonal channel, N2 and N ′

3 for qubits 2
and 3:

〈
+|23N2(|
+〉12〈
+|) ⊗ N ′
3(|
+〉34〈
+|)|
+〉23

= 〈
+|23

4∑
i, j=1

pi p
′
jPi,2|
+〉12〈
+|P†

i,2

⊗ Pj,3|
+〉34〈
+|P†
j,3|
+〉23

=
4∑

i, j=1

pi p
′
jPi,1Pj,4〈
+|23|
+〉12〈
+|

⊗ |
+〉34〈
+|
+〉23P†
i,1P†

j,4

= 1

4

4∑
i, j=1

pi p
′
jPi,1Pj,4|
+〉14〈
+|P†

j,4P†
i,1

= 1

4

4∑
i, j=1

pi p
′
jPi,1Pj,1|
+〉14〈
+|P†

j,1P†
i,1

= 1

4
N1(N ′

1(|
+〉14〈
+|)) . (D1)

Here we used the fact that Pi,1Pi,2|
+〉12 = |
+〉12 holds for
all Pauli operators Pi and we also employed that (qubit) Pauli
operators are Hermitian and unitary and therefore self-inverse.

We can then apply this result for all entanglement swap-
ping operations successively. Note that this argument relies
on the assumption of Pauli channels and Bell-diagonal states,
but initially when including detector dark counts the memory
states are no longer Bell diagonal and already dephasing be-
fore we apply a operation which erases the Bell nondiagonal
elements [56, Sec. 3.2.1]. However, this erasing is done by
applying random correlated two-qubit Pauli operations and
hence commutes with the decoherence channel. As a conse-
quence, we can first apply the erasing channel and therefore
we have Bell-diagonal states (which are equivalent to a Pauli
channel on a perfect Bell state), allowing us to use the result
above. There is no additional temporal overhead due to the
communication time needed for generating the correlations.

042614-12



MEMORY-ASSISTED LONG-DISTANCE PHASE-MATCHING … PHYSICAL REVIEW A 102, 042614 (2020)

For example, a memory could generate two correlated random
variables and send one of them to the other memory belonging
to this segment. The necessary communication time is given
by L

nc , which is the same time as between sending the opti-
cal mode and obtaining the information whether the optical
measurement succeeded or failed. Alternatively, the middle
station could also generate the correlated random variables
and send them to the memories if the optical measurement was
successful. Therefore, only the amount of sent information by
the middle station increases and thus there are no temporal
issues. In the end, we have to consider a concatenation of n
dephasing channels, each with a random decoherence time
which is equivalent to a single dephasing channel where the
dephasing time is given by the sum of all the individual
dephasing times, e.g., t + t ′ (assuming the same coherence
time for both memories) for N1 and N ′

1 in Eq. (D1) for t
as defined in Eq. (A2). Similarly, we can simplify the con-
catenation of the n − 1 depolarizing channels with parameter
pdepol, describing the probability of no depolarization, into a
depolarizing channel with 1 − p′

depol = (1 − pdepol )n−1. The
concatenation of the Pauli channel corresponding to dark
counts and measurements cannot be simplified as much as for
the depolarizing or dephasing channel. For the concatenation
of a general single-qubit Pauli channel,

N (ρ) = p1ρ + p2ZρZ + p3XρX + p4Y ρY , (D2)

we obtain the following recursive set of equations,⎛
⎜⎜⎜⎜⎝

p(n+1)
1

p(n+1)
2

p(n+1)
3

p(n+1)
4

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎝

p1 p2 p3 p4

p2 p1 p4 p3

p3 p4 p1 p2

p4 p3 p2 p1

⎞
⎟⎠
⎛
⎜⎜⎜⎜⎝

p(n)
1

p(n)
2

p(n)
3

p(n)
4

⎞
⎟⎟⎟⎟⎠ , (D3)

where p(0)
1 = 1 and p(0)

2 = p(0)
3 = p(0)

4 = 0. Therefore, we
have ⎛

⎜⎜⎜⎜⎝
p(n)

1

p(n)
2

p(n)
3

p(n)
4

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎝

p1 p2 p3 p4

p2 p1 p4 p3

p3 p4 p1 p2

p4 p3 p2 p1

⎞
⎟⎠

n⎛
⎜⎝

1
0
0
0

⎞
⎟⎠ . (D4)

The transition matrix is real and symmetric and can thus be
diagonalized, such that it is easy to calculate the power of the
matrix.

APPENDIX E: CALCULATION OF THE QUANTUM
REPEATER STATES WITH ON-OFF DETECTORS

Our simplest protocol (n = 1) starts by creating hybrid
entanglement at the two cavities [see Fig. 1(b)]; i.e., we first
have the state

1
2 (|↑,↑, αe−iθ , αe−iθ 〉 + |↓,↓, αeiθ , αeiθ 〉

+ |↓,↑, αeiθ , αe−iθ 〉 + |↑,↓, αe−iθ , αeiθ 〉) . (E1)

After applying the lossy channels of transmittance
√

η (cor-
responding to the distance between Alice/Bob and the middle
station) and the 50:50 beam splitter at the middle station, we

obtain the following state:

1
2 (|↑,↑,

√
2
√

ηαe−iθ , 0,

√
1 − √

ηαe−iθ ,

√
1 − √

ηαe−iθ 〉

+ |↓,↓,

√
2
√

ηαeiθ , 0,

√
1 − √

ηαeiθ ,

√
1 − √

ηαeiθ 〉

+ |↑,↓,

√
2
√

ηα cos θ,−i
√

2
√

ηα sin θ,√
1 − √

ηαe−iθ ,

√
1 − √

ηαeiθ 〉

+ |↓,↑,

√
2
√

ηα cos θ, i
√

2
√

ηα sin θ,√
1 − √

ηαeiθ ,

√
1 − √

ηαe−iθ 〉) . (E2)

Here, the last two entries in each ket vector represent the
loss modes that initially start in a vacuum state. In order to
calculate the partial trace we will use the following calculation
trick. Suppose we are given a state of the form

∑
k ck|k〉1 ⊗

|	k〉2 (|k〉1 form an orthonormal basis, while |	k〉2 may be
arbitrary pure states) and we want to calculate the reduced
density matrix of system 1:

Tr2

(∑
k, j

ckc∗
j |k〉1〈 j| ⊗ |	k〉2〈	 j |

)

=
∑
k, j

ckc∗
j Tr2(|k〉1〈 j| ⊗ |	k〉2〈	 j |)

=
∑
k, j

ckc∗
j |k〉1〈 j|

∑
l

〈l|2|	k〉2〈	 j |l〉2

=
∑
k, j

ckc∗
j |k〉1〈 j|

∑
l

〈	 j |l〉2〈l|2|	k〉2

=
∑
k, j

ckc∗
j |k〉1〈 j|〈	 j |	k〉2 . (E3)

Similarly, one can show for the conditional state of subsystem
1 with measurement operators A acting on subsystem 2:

Tr2

(∑
k, j

ckc∗
j |k〉1〈 j| ⊗ A2|	k〉2〈	 j |A†

2

)

=
∑
k, j

ckc∗
j |k〉1〈 j|〈	 j |A†

2A2|	k〉2 . (E4)

Note that A†A is a POVM element and the POVM of an
on-off detector including dark counts [see Ê of Eq. (A4)] is
known in the literature [57] and therefore we do not need to
explicitly calculate a corresponding measurement operator A.
Moreover, there is no need to explicitly compute the effect of
dark counts on the conditional states. This allows us to express
all coefficients of the two memories’ final density operator in
terms of scalar products between coherent states.

If we measure the photon number (without dark counts)
on the second optical mode after the beam splitter at
the middle station and trace out all other modes, we ob-
tain the following density operator for Alice’s and Bob’s
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qubits:

1
2 (|↑,↓〉〈↑,↓| + |↓,↑〉〈↓,↑| ± ∣∣〈√1 − √

ηαeiθ |

×
√

1 − √
ηαe−iθ 〉∣∣2(|↑,↓〉〈↓,↑| + |↓,↑〉〈↑,↓|)) , (E5)

where |〈√1 − √
ηαeiθ |√1 − √

ηαe−iθ 〉|2 evaluates to
exp [−4(1 − √

η)α2 sin2 θ ]. When considering only
on-off detectors, the off-diagonal terms change and
one additionally needs to take into account a factor

of
〈−i

√
2
√

ηα sin θ |(1−|0〉〈0|)|i
√

2
√

ηα sin θ〉
e2

√
ηα2 sin2 θ−1

, which simplifies to

−e−2
√

ηα2 sin2 θ . Therefore, we obtain in total e−2(2−√
η)α2 sin2 θ

as the factor of the off-diagonal terms. This state is a mixture
of two Bell states and, for the cases n > 1, if we perform
(ideal) Bell measurements on all n segments, it is easy to see
(due to the Pauli channel argument) that the exponent of the
off-diagonal terms in the remaining state (after applying Pauli
operations depending on the Bell measurement outcomes) is
simply multiplied by n. For Bell-diagonal states with only two
nonzero coefficients, it is trivial to check that the distillable
entanglement with only one-way classical communication
coincides with the asymptotic secret-key fraction of BB84.

When considering also dark counts for the on-off detectors,
we obtain the following (unnormalized) state:

〈↑,↑| 〈↓,↓| 〈↑, ↓| 〈↓, ↑|
|↑,↑〉 a c∗ d∗

1 d∗
2

|↓, ↓〉 c a d2 d1

|↑, ↓〉 d1 d∗
2 b f ∗

|↓, ↑〉 d2 d∗
1 f b

with a = 〈0|Ê |0〉 = 1 − D(0), where Ê is the click operator
considering dark counts [57] and D(0) is the probability that
the detector does not click when a vacuum state is used as the
input. Further, we have

b = 〈±i
√

2
√

ηα sin θ |Ê | ± i
√

2
√

ηα sin θ〉
= 1 − e−2

√
ηα2 sin2 θD(0) , (E6)

c = 〈
√

1 − √
ηαe−iθ |

√
1 − √

ηαeiθ 〉2

× 〈
√

2
√

ηαe−iθ |
√

2
√

ηαeiθ 〉a
= e2α2[exp(2iθ )−1]a = ae−4α2 sin2 θ+i2α2 sin 2θ , (E7)

d = d1 = d2 = 〈
√

1 − √
ηαe−iθ |

√
1 − √

ηαeiθ 〉

× 〈
√

2
√

ηα cos θ |
√

2
√

ηαeiθ 〉〈0|Ê |i
√

2
√

ηα sin θ〉
= ae−2α2 sin2 θ+iα2 sin 2θ , (E8)

f = |〈
√

1 − √
ηαe−iθ |

√
1 − √

ηαe−iθ 〉|2

× 〈i
√

2
√

ηα sin θ |Ê | − i
√

2
√

ηα sin θ〉
= e−2α2 sin2 θ (2−√

η)[e−2
√

ηα2 sin2 θ − D(0)] . (E9)

Note that without dark counts, a = c = d = 0, and D(0) = 1,
we recover the effective 2×2 matrix of the loss-only case. A
distinction between d1 and d2 has to be made when we con-
sider entanglement swapping strategies which do not double
the distance.

Note that the phases of these parameters now also have a
α2 sin 2θ dependency, while there was no such dependency in
the ideal case without dark counts. If we transform the state
into a Bell-diagonal state, we have the parameter c which
gives use information about the relative distribution of |φ±〉
and this parameter varies periodically with θ . Therefore, it
can be useful to apply local transformations for permuting
the four Bell-state coefficients [58] in order to obtain a higher
secret-key fraction using BB84. When considering a swapping
scheme where entanglement swapping is performed between
two segments of equal size, one obtains the following set of re-
cursive equations describing the unnormalized two-qubit state
(assuming 2 j elementary segments and |
+〉 as measurement
outcome, while above we considered the case of j = 0 and
omitted the subscript):

a j+1 = a2
j + b2

j + 2Re
(
d2

j

)
,

b j+1 = 2
[
a jb j + Re

(
d2

j

)]
,

c j+1 = 2d2
j + f 2

j + c∗2
j ,

d j+1 = d j (a j + b j + c∗
j ) + d∗

j f j ,

f j+1 = 2[|d j |2 + f jRe(c j )] . (E10)

Note that for n = 1 the BB84 secret-key fraction is not re-
duced due to discarding the off-diagonal terms in the Bell
basis. For n = 2, the effect of discarding them is negligibly
small. Also note that the approach here that leads to these
recursive equations does not yield the same rates as using
the protocol version based on the results of Ref. [59] without
correlated Pauli operations (see Appendix F 2), because we do
not average over all possible Bell measurement outcomes. The
calculation of the reduced state considering phase mismatch is
completely analogous.

APPENDIX F: ERRORS BEYOND LOSS,
HOMODYNE DETECTION

1. Memory dephasing

Let us consider n repeater segments (n > 1; otherwise,
no memory is needed). We can then assign independent ran-
dom variables Xj ( j ∈ {1, . . . , n}) to every segment counting
for each the number of attempts until the entanglement is
distributed due to a successful measurement outcome of the
detector(s) for that segment. These random variables follow
a geometric distribution P(X = k) = pqk−1 with q = 1 − p,
where p is the probability for a successful measurement out-
come. We can then introduce a new random variable M, which
is a function of the random variables Xj , describing the to-
tally accumulated memory time for which the quantum states
dephase. Note that the specific form of the random variable
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M differs for different entanglement generation and swapping
protocols. In Sec. III B, we only considered a scheme where
entanglement distributions in the n segments are done in par-
allel. In terms of the raw rate, it is clear that such a scheme
achieves better rates than any sequential approach. However,
when we also consider finite memory times it is no longer
obvious whether the parallel scheme still performs better in
terms of secret-key rate, because it is possible during the
parallel distributions that multiple segments dephase simulta-
neously, resulting in a longer accumulated memory dephasing
time. In contrast, in an appropriate sequential scheme where
always only one pair is distributed and swapping is imme-
diately performed as soon as two pairs are present next to
each other, at most a single memory pair is subject to a longer
dephasing at any time.

In the special case of n = 2, it is impossible that multiple
memory pairs dephase simultaneously and therefore in terms
of secret-key rate the parallel scheme (M = 2|X1 − X2|) out-
performs the sequential one (M = 2X2). The factor two here
takes into account the situation when there are two memo-
ries dephasing in each segment. It is intuitive that for n = 2
the parallel scheme outperforms the sequential one for two
reasons. First, in the parallel scheme we only need to wait
max(X1, X2) time steps instead of X1 + X2 in order to dis-
tribute entanglement in both segments. Second, the memories
also dephase to a lesser extent in the parallel scheme, because
in both schemes at most one memory pair has to wait, but
in the parallel scheme it is also possible that both segments
succeed simultaneously. In general, for n segments, the raw
rate in a sequential scheme is given by p

n , while in a parallel
scheme it is given by p

H (n) , where H (n) is the nth harmonic
number (assuming p � 1; see Appendix B). Let us emphasize
that this raw rate approximation holds for any memory-based
quantum repeater that distributes entanglement in parallel and
operates without nested quantum error detection or correc-
tion. However, for n > 2, it is easy to calculate the average
dephasing for the sequential scheme exactly while it is more
complicated for the parallel one. In order to calculate it for
a parallel scheme, we assume that entanglement swapping
is performed when entanglement was distributed in all seg-
ments in order to simplify the analysis (see Appendix I).
We found that the sequential scheme always gives better
secret-key rates than our simple parallel scheme (except for
n = 2). This comparison is based on both exact and lower
bounded dephasing factors for the sequential scheme together
with lower bounds on the secret-key fraction for the parallel
scheme. Supported by this, whenever memory dephasing is
included, we shall consider the parallel scheme for the n = 2
case and the sequential scheme otherwise (n > 2). Thus, our
focus on the sequential scheme for n > 2 has two benefits:
The secret-key rates can be calculated exactly and they turn
out to be better thanks to the reduced total average dephas-
ing. The inferior raw rates, p

n versus p
H (n) for the parallel

scheme, appear to have a smaller impact on the secret-key
rates (for up to n = 16, the difference is a factor smaller
than 5).

The resulting random state of a single protocol run
with on-off detectors is then given by the density

matrix:

1

2

[
1 + e−2n(2−√

η)α2 sin2 θ exp

(
− M

τ

T

)]
|
+〉〈
+|

+ 1

2

[
1 − e−2n(2−√

η)α2 sin2 θ exp

(
− M

τ

T

)]
|
−〉〈
−| ,

(F1)

where τ is the duration of a single entanglement generation
attempt in one segment and T is the coherence time of the
memory. Note that this state corresponds to the final state
shared between Alice and Bob over the total channel distance
(while for the case of Alice and Bob immediately measuring
their qubits it is an effective rather than a physically occurring
state).

The density operator in Eq. (F1) describes the state af-
ter a single run, but we are interested in the averaged
state. This means we have to calculate the expectation value
E[exp(−M τ

T )]. We calculate this expectation value for the
case n = 2 for the parallel scheme in Appendix C. In a se-
quential scheme, the expectation value E[exp (−M τ

T )] can be
calculated easily for arbitrary n, because M is simply a sum
of (independent and identically distributed) geometric random
variables, whereas for a parallel scheme it is generally not
known how to calculate the expectation value for arbitrary n.
In Appendix I, we will discuss a lower bound on the secret-key
rate based on Jensen’s inequality when using a parallel scheme
with arbitrary n.

Since we are here only interested in the secret-key rate,
we do not need to consider distributing physical entanglement
over the whole distance. This means we can perform the
measurement on Alice’s and Bob’s memories in the beginning
with no need to wait until the entanglement is distributed over
the whole repeater. For the parallel scheme, this has only a
little effect by improving

Mpar = 2
n∑

j=1

[max(X1, . . . , Xn) − Xj] (F2)

to

Mpar = 2
n−1∑
j=2

[max(X1, . . . , Xn) − Xj]

+ 2 max(X1, . . . , Xn) − X1 − Xn . (F3)

For Eq. (F3), in the segments next to Alice and Bob there is
only one memory dephasing instead of two like for Eq. (F2).

In the case of the sequential scheme, we can improve

Mseq = 2
n∑

j=2

Xj (F4)

to

Mseq =
n∑

j=2

Xj , (F5)

since in the sequential scheme there is always a single segment
dephasing where for Eq. (F5) we removed the dephasing in
one of the two memories. Therefore, we effectively double the
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FIG. 7. Secret-key rates for a two-segment repeater (n = 2, par-
allel scheme) without phase mismatch and assuming the parameters
as listed in the main text. The straight lines (from bottom to top)
denote the PLOB bound,

√
ηtotal, and 4

√
ηtotal. The rates are for differ-

ent coherence times T of (1, 10, 100, 1000, ∞) seconds (from left
to right). The areas between PLOB and

√
ηtotal and between

√
ηtotal

and 4
√

ηtotal are highlighted in color. The purple dashed line denotes
the loss-only case of standard twin-field QKD with perfect detector
efficiencies and assuming a coherent-state amplitude optimized for
the regime of large loss [20].

memory coherence time for arbitrary n, whereas in the parallel
scheme the improvement reduces with increasing segment
number n.

Due to the finite memory time, it is useful to consider a
cutoff parameter which defines a maximal decoherence time
before a state is discarded. For the case of only two segments,
we have calculated the expectation value of the dephasing
fractions with cutoff. In this paper, the main focus is on
repeaters with n = 2, 3, 4 repeater segments whose ultimate
secret-key rates per channel use scale as 4

√
ηtotal, 6

√
ηtotal, and

8
√

ηtotal, respectively.

2. Dark counts and phase mismatch

With the inclusion of detector dark counts, we need to
use the full 4×4 density matrix (in the computational basis)
instead of an (effective) 2×2 matrix (in the case without
dark counts all matrix elements except a 2×2 submatrix were
zero) in order to describe the two-qubit state. Calculating
the state before the entanglement swapping is straightforward
but lengthy (see Appendix E) and the state after multiple
entanglement swappings can be described by a set of recur-
sive relations (see also Appendix E). In order to simplify the
analysis, we apply classically correlated Pauli operations to
both parts of the imperfect Bell states, such that we erase the
off-diagonal terms in the Bell basis [56, Sec. 3.2.1]. We do not
need to let the memories dephase additionally for obtaining
the classical correlations as required for the correlated Pauli
operations, because an entanglement generation attempt takes
τ = 2 L0

2c in order to send the optical mode to the detector in
the middle of the segment (length L0) and to learn the mea-
surement outcome. If one party sends the bits for establishing
classical correlations at the same time as it sends the mode
to the detector, then we do not get an additional temporal
overhead. As a consequence, this allows us to describe all

0 200 400 600 800
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10−8

10−5

0.01
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FIG. 8. Secret-key rates assuming the same parameters as in
Fig. 7 except for pdet = 1 instead of pdet = 0.15.

errors as Pauli channels which act onto perfect Bell states.
Therefore, we can conduct our analysis as if we perform
the entanglement swapping on perfect Bell states and apply
all the errors afterward (see Appendix D). Also notice that
it is possible to obtain the advantage of a simplified anal-
ysis without the need for correlated Pauli operations [59].
In this case, one performs entanglement swapping as usual;
i.e., one applies Pauli corrections depending on the measured
Bell state, but after the Pauli correction one discards the in-
formation about the measurement outcome. Because of this
averaging, the teleportation reduces to a Pauli channel. There-
fore, we can also interpret our protocol as applying n − 1
teleportation steps (each represented by a Pauli channel) onto
a non-Bell-diagonal state. Since a channel is linear, we can
split the non-Bell-diagonal state into a Bell-diagonal part and
a part containing the off-diagonal elements. When applying
the Pauli channel to these two parts, we see that the first part
is exactly the state we considered in the previous protocol.
In the second part, the Bell states are simply permuted by
Pauli operations, such that the state after applying the Pauli
channels again only contains off-diagonal elements. However,
these off-diagonal elements do not matter for the BB84 secret-
key rate. Note that these simplifications (applying correlated
Pauli operations or discarding the measurement outcome) are
at the expense of a worse secret-key rate in comparison to the
case without correlated Pauli operations, where we still keep
track of the measurement outcome and do not average.

We compared the secret-key fraction of the simplification
and the exact case (for n = 2) using the parameters as mostly
chosen in Sec. IV. For this comparison, we considered loss
and dark counts with parameters as in Sec. IV. We found that
the relative error increases exponentially with the distance of
the total repeater. However, only for distances that are just
a bit shorter than the distance where the secret-key fraction
drops to zero the relative error becomes relevant, up to the
point when the relative error diverges near the point where the
secret-key fraction drops to zero. Therefore, we conclude that
it is safe to use this simplification when not considering the
neighborhood of the point where the secret-key fraction drops
to zero.

In order to allow for phase-mismatch errors, which occur,
e.g., due to small differences in the laser frequencies and
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length fluctuations of the optical path, we model this error
by assuming that one party employs a coherent state with
amplitude α for generating the hybrid entangled states while
the other party uses a coherent state with amplitude αeiφ ,
where φ is a random variable with, for simplicity, a uniform
distribution on the interval (−�

2 , �
2 ). We also have to bear

in mind that this random-phase difference has an influence
on the raw rate [depending on α sin θ ] and especially for a
small dispersive phase rotation θ the rate can vary up to a few
percent. However, the relevant distribution for the secret-key
fraction is the probability distribution of φ after conditioning
onto a detector click. Therefore, the relevant distribution is
not uniform anymore but larger values of |φ| have a larger
probability (up to the point where the probability drops to
zero). Nevertheless, the difference between the actual and uni-
form distributions is small. We calculated the Bell-diagonal
coefficients and their expectation values with respect to φ.
However, even for the uniform distribution, it is only possible
to calculate the expectation value by numerical integration and
therefore one could easily consider a more realistic model for
the distribution of the phase difference φ.

According to Fig. 9, the phase mismatch can be almost ne-
glected when � < 0.1θ (this even holds for θ = π

2 ). However,
for larger �, the secret-key rate drops to zero very fast. For
� = θ = 0.01, it is even impossible to obtain a secret key
using the above parameters. Therefore, we cannot choose θ

arbitrarily small since this increases too much the required
precision of the phase matching.

3. Homodyne measurement

In the main part of the paper, we only consider a scenario
where Charlie (besides the less practical case of PNRDs) em-
ploys an on-off detector. This is similar to previous twin-field
QKD schemes. However, it is straightforward to treat homo-
dyne measurements for the two modes instead. Homodyne
measurements have the benefit of near-unit efficiencies. When
reconsidering Eq. (4), one can see that the state shares some
similarities to that of the HQR in Eq. (2). If we can discrimi-
nate the peak at 0 from those at ±√

2α sin θ in the first mode
with a p measurement (imaginary part of

√
2α cos θ versus

that of
√

2α exp(±iθ ) for, recall, α ∈ R+), then we learn only
that Alice and Bob have different bits but not their values.
However, in order to not learn their values by measuring the
second mode (to disentangle it from the remaining system),
we need to measure the x quadrature in the second mode
(real part of ±i

√
2α sin θ ). It is also possible to exchange

the two modes by which one obtains the same secret-key
fraction after a suitable postselection of states. The actual
calculation is similar to that with on-off detectors and can be
found in Appendix H. Using homodyne measurements, it is
not obvious how to define a successful detector event. We will
consider an event to be successful if the measurement result of
the quadrature p1 lies within the interval (−�p,�p), and the
measurement result of x2 must also occur within the interval
(−�x,�x ). Choosing �x and �p is a compromise between a
high raw rate and a high state quality. For a given α and θ , we
can reduce the Z-error rate by decreasing �p. One might think
that the parameter �x is not relevant and can therefore be set
to ∞. However, this is not true since it also has an influence on
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FIG. 9. Secret-key fraction for the two-segment quantum re-
peater (n = 2, parallel scheme) using the parameters discussed in
Sec. IV. We choose different memory coherence times for the three
different plots and in each plot we consider a phase mismatch � of
(0, 10−4, 10−3, 5 × 10−3, 7.5 × 10−3) (from top to bottom). (a) Ideal
memories, (b) T = 10E(M )τ , and (c) T = E(M )τ .

the X -error rate, making it even impossible to share a secret
key in the no-loss case of

√
η = 1 for too large �x. This

problem can be solved by simply choosing a sufficiently small
�x, but even then a nonzero secret-key rate cannot be obtained
for even moderate losses like

√
η = 0.7 (about 8 km for the

physical segment length assuming perfect detectors).
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FIG. 10. Asymmetric variation of our proposed scheme for
n = 2. The beam splitter is placed nearer to the memory station
(β > 1

2 ) such that the overall repetition rate can be increased. Note
that for n > 2 there is no gain with this variation. Because of this
asymmetry, Alice (as well as Bob) and the central memory station
have to choose different amplitudes of the coherent states, and we
denote the amplitude arriving at the beam splitter by αBS .

APPENDIX G: CALCULATION OF THE QUANTUM
REPEATER STATES WITH ASYMMETRIC

LINK LENGTHS

In this Appendix, we discuss the obtainable secret-key
rates per second in an asymmetric setting (for n = 2) where
the beam splitters are placed closer to the central memory
station and farther away from Alice and Bob. This way, com-
pared with the fully symmetric scheme, repetition rates can be
increased (thanks to shorter classical communication times) at
the expense of a worse scaling with distance. Similar to the
case with symmetric link lengths as discussed in Appendix E,
we can calculate the resulting two-qubit state in the asym-
metric setting as illustrated in Fig. 10. When we consider the
loss-only case, we obtain

a = c = d = 0 ,

b = 1 − exp(−2α2
BS sin2 θ ) ,

f = [exp(−2α2
BS sin2 θ ) − 1] exp(−2α2

BS sin2 θ )

× exp

(
− α2

BS exp

(
L0

Latt

){
exp

(
− L0β

Latt

)
(1 − e−2iθ )

+ exp

[
− L0(1 − β )

Latt

]
(1 − e2iθ ) − 2[1 − cos(2θ )]

})
.

(G1)

Here, β describes the asymmetry of the scheme as follows.
The distance from Alice and Bob to the beam splitter is given
by βL0 and the distance between the memory and the beam
splitter is therefore given by (1 − β )L0. Since Alice and Bob
have different distances to the beam splitter compared with
the memory, both parties need to use different amplitudes in
the light-spin entangled states. We choose their amplitudes in
such a way that the amplitude at the beam splitter is given in
both cases by αBS .

Notice that in this general case f is no longer a real number
and it is even possible that Re( f ) = 0. Therefore, the secret-
key fraction may become zero in this simple error model. As
can be seen in Fig. 11, for a fixed total distance, the secret-key
rate oscillates with respect to β including an envelope. The
oscillations originate from the fact that Im( f ) �= 0 is possi-
ble. The envelope takes the following form: For β < βmax

it increases with βmax > 1
2 , while it drops when β > βmax.

This comes from the gain in repetition rate while not losing
too much from the worse scaling per channel use. By further
increasing β, the envelope now decreases due to the worse
scaling. In the region of β ≈ 1, the secret-key rate per sec-
ond rapidly increases again, because the repetition rate grows

FIG. 11. Secret-key rate per second in the loss-only case of our
asymmetric parallel scheme (n = 2) for a total distance of 400 km
in dependence of the asymmetry parameter β. The constant line is
given by the secret-key rate of the symmetric scheme (β = 1

2 ). We
assume that the repetition rate is limited to 10 MHz because of local
operation times. In this case, we can comfortably beat the symmetric
scheme for strong asymmetry (β → 1); however, this almost resem-
bles the twin-field QKD configuration where GHz repetition rates
can be used in principle. Also note that for a maximal repetition rate
of 1 MHz the completely asymmetric scheme no longer outperforms
the symmetric one.

quickly up to the point where it is limited by the possible
repetition rate of the light source. Because of the oscillations,
it is necessary to optimize β for any given total distance.
When considering increasing distances, βmax moves nearer to
1
2 and the advantage compared to the symmetric case of β = 1

2
becomes less pronounced. For total distances of 200 km, we
can increase the secret-key rate by 4.6%, while for a total
distance of 400 km we only gain 1.1%.

APPENDIX H: CALCULATION OF THE QUANTUM
REPEATER STATES WITH HOMODYNE MEASUREMENTS

Let us first start with the no-loss case and again consider
the state

1
2 (|↑,↑, αe−iθ , αe−iθ 〉 + |↓,↓, αeiθ , αeiθ 〉

+ |↓,↑, αeiθ , αe−iθ 〉 + |↑,↓, αe−iθ , αeiθ 〉) . (H1)

After applying the beam splitter and the measurements of
p̂1 = p and x̂2 = x, we have the conditional two-qubit state
(after tracing out the optical modes)

1
2 (|↑,↑〉〈p̂ = p|

√
2αe−iθ 〉〈x̂ = x|0〉

+ |↓,↓〉〈p̂ = p|
√

2αeiθ 〉〈x̂ = x|0〉
+ |↓,↑〉〈p̂ = p|

√
2α cos θ〉〈x̂ = x|i

√
2α sin θ〉

+ |↑,↓〉〈p̂ = p|
√

2α cos θ〉〈x̂ = x| − i
√

2α sin θ〉) . (H2)

As the next step, we calculate position- and momentum-space
wave functions of a coherent state with amplitude x0 + ip0. In
order to express these wave functions in terms of vacuum-state
wave functions of the harmonic oscillator, we will make use
of the displacement operator (h̄ = 1

2 in our notation) and the
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Baker-Campbell-Hausdorff formula:

〈x̂ = x|x0 + ip0〉
= 〈x̂ = x| exp[(x0 + ip0)(x̂ − i p̂) − (x0 − ip0)(x̂ + i p̂)]|0〉
= 〈x̂ = x| exp[2i(p0x̂ − x0 p̂)]|0〉
= 〈x̂ = x| exp(2ip0x̂) exp(−2ix0 p̂) exp(−ip0x0)|0〉
= 〈x̂ = x − x0|0〉 exp

[
2ip0

(
x − x0

2

)]

= 4

√
2

π
exp

[−(x − x0)2
]

exp
[
2ip0

(
x − x0

2

)]
. (H3)

Similarly, one can show

〈p̂ = p|x0 + ip0〉 = 4

√
2

π
exp[−(p − p0)2]

× exp
[
−2ix0

(
p − p0

2

)]
. (H4)

We postselect onto states where p ∈ (−�p,�p) and x ∈
(−�x,�x ). Further, we label the density matrix elements
in the same way as in the case with on-off detectors (see
Appendix E) and we obtain the following results (all elements
must be divided by the matrix trace, 2(a + b), for normal-
ization; for brevity we also omitted some extra factors which
cancel anyway then through normalization),

a = 1

2
[erf(

√
2�p − 2α sin θ ) + erf(

√
2�p + 2α sin θ )] ,

(H5)

b = erf(
√

2�p) , (H6)

c = exp(2α2[−1 + exp(2iθ )])erf(
√

2�p) , (H7)

f =exp(−4α2 sin2 θ ) erf(
√

2�p)
Re[erf(

√
2�x +2iα sin θ )]

erf(
√

2�x )
.

(H8)

When including loss, we can make use of Eq. (E3), and after
simplifications one can see that the expressions for a, b, c, f
almost stay the same. We only have to replace α → α

√√
η

within the erf functions and otherwise nothing changes where√
η is the transmission parameter corresponding to one physi-

cal segment (half a repeater segment). For example, for n = 1,
we have α → 4

√
ηtotalα. Using the expressions a, b, c, f we

can then calculate the BB84 secret-key fraction as before (we
did not explicitly calculate d1 and d2, because we only need
their values when considering n > 1 and also not discarding
the off-diagonal terms in the Bell basis).

APPENDIX I: DIFFERENT DISTRIBUTION
AND SWAPPING STRATEGIES

Let us discuss the effects of memory dephasing for the
sequential and a parallel entanglement distribution schemes.
First of all, we have to point out that the choice of Mpar is not
optimal for more than two segments, because it assumes that
the entanglement swapping operations are performed at the
end, only after the entanglement distributions in all segments
have succeeded. To illustrate this point, let us consider the
example that first two adjacent segments succeeded and we

have to wait one more time step until all the other segments
succeeded so that we can perform all swapping operations.
This means the value of M would be 4, because two segments
(with two memories each) waited for one time step. Instead,
we could also consider the case that we first perform the
swapping operation on the two segments immediately after
their successful creations and after the extra single time step
we perform the remaining swapping operations. As a conse-
quence, the value of M is only 2, because only two memories
waited for one time step. This means it is beneficial to swap
as soon as possible in order to keep the number of dephasing
memories low.8

Unfortunately, it is currently not even known how to calcu-
late the probability distribution of M = Mpar for n > 2 in the
simple case where we wait for the success of all segments
before performing the swapping operations. If we want to
consider more than two segments in a parallel distribution
scheme, however, we can use the bound E[exp(−M τ

T )] �
exp[−E(M ) τ

T ] which can be obtained by applying Jensen’s
inequality. As the expectation value operation is linear, we can
easily calculate E(M ) since the exact E[max(X1, . . . , Xn)] is
already known in the literature [44], and we obtain [for the
case when Alice and Bob do not store their halves, so for M
from Eq. (F3)]:

E(Mpar ) = 2(n − 1)

[
n∑

j=1

(
n

j

)
(−1) j+1

1 − q j
− 1

p

]
, (I1)

also using the well-known result for a geometrically dis-
tributed variable, E(Xj ) = 1

p ,∀ j = 1 . . . n. We can use the
inequality in order to obtain a lower bound on the secret-key
fraction. However, one needs to bear in mind that this is
only a lower bound that becomes very loose in the regime
of bad memories. For the simple case of n = 2, we calcu-
lated exp[−E(M ) τ

T ] and E[exp(−M τ
T )] (see Appendix C)

and compared their corresponding secret-key fractions (as-
suming p = 10−4,

√
η � 1). For the case of T = 10E(M )τ ,

we found that the exact calculation yields a 1% higher secret-
key rate. When considering T = E(M )τ , the error increased
to 86% and when looking at memories with T = 0.1E(M )τ
the approximation underestimated the secret-key fraction by
six orders of magnitude, although the exact secret-key fraction
of 2 × 10−3 was not ridiculously low. Numerical simulations
show that the bound becomes tighter for an increasing number
of repeater segments. Unfortunately, realistic coherence times
are often too small for obtaining a good bound by applying
Jensen’s inequality.

Let us now discuss the difference between a sequential and
a parallel scheme with respect to the secret-key fraction. In
order to be sure that improvements in the state quality arise
from the changed strategy and not only from using the exact

8However, note that if we assumed probabilistic entanglement
swapping instead of a deterministic one, swapping as soon as possi-
ble would yield a nonoptimal raw rate, because one does not want to
perform many entanglement swapping operations between entangled
pairs of long and short distances since if the operation fails all
involved segments have to start from scratch.
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FIG. 12. Secret-key rate for a repeater with n = 2 (red), 3
(green), and 4 (blue) (from left to right in terms of dropping secret-
key rate) segments using a sequential protocol (α = 23.9 in all
cases). The solid lines show the ideal loss-only case (pdet = 1),
while the dashed lines correspond to the case where we additionally
consider a finite memory coherence time of 10 s. The dotted lines
use the exact expression for the expectation value of the dephasing.
The benchmarks (from bottom to top) PLOB,

√
ηtot, 4

√
ηtot, 6

√
ηtot, and

8
√

ηtot can also be seen. The regions between two of those benchmarks
are highlighted in color.

expression instead of a lower bound, we will now also com-
pare the two strategies using for both the lower bound based
on Jensen’s inequality (for the sequential scheme, in addition,
we use the exact rates). For simplicity, let us consider the
case where Alice and Bob perform the measurements on their
qubits at the end after the entanglement was distributed over
the whole distance and define the random variable Mseq :=
2
∑n

j=2 Xj (in the other case, the sequential scheme also has a
larger improvement than the parallel one). We then have

E[Mseq] = 2
n − 1

p
, (I2)

E[Mpar] ≈ 2n
H (n) − 1

p
, (I3)

where Mpar is taken from Eq. (F2) and we used the approxima-
tion for the parallel scheme derived in Appendix B, assuming
p � 1. For n = 2, the protocols are the same and it can easily
be checked that the sequential protocol is better for n � 3.
Better here means that less memory time is needed leading to
a better secret-key fraction. Which protocol is the best in terms
of the secret-key rate also depends on the memory coherence
time T . If we have perfect memories (T = ∞), we do not gain
any advantage due to the sequential protocol, but we have the
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FIG. 13. Secret-key rate for a repeater with n = 2 (red), 3
(green), and 4 (blue) (from left to right in terms of dropping secret-
key rate) segments using a parallel protocol (α = 23.9 in all cases).
The solid lines show the ideal loss-only case (pdet = 1), while the
dashed lines correspond to the case where we additionally consider
a finite memory coherence time of 10 s using Jensen’s inequality.
The benchmarks (from bottom to top) PLOB,

√
ηtot, 4

√
ηtot, 6

√
ηtot, and

8
√

ηtot can also be seen. The regions between two of those benchmarks
are highlighted in color.

disadvantage of a lower raw rate ( p
n versus p

H (n) ), resulting in
a lower overall secret-key rate. Note that for n = 2 when we
use the exact dephasing expressions for both the parallel and
the sequential schemes, the parallel one even has a smaller
dephasing than the sequential one, as already pointed out in
Appendix F.

The obtainable secret-key rate using Jensen’s inequality for
the sequential and parallel protocols with a memory coherence
time of 10 s can be seen in Figs. 12 and 13. It can be seen
that for n = 2 the parallel scheme is superior, because both
schemes have the same amount of dephasing but the parallel
scheme has a better raw rate. However, for n = 3 the rates of
both schemes are quite similar and for n = 4 the sequential
scheme outperforms the parallel one as one might anticipate
due to the better dephasing. Clearly, when using the exact
expression for the dephasing in the sequential scheme, we ob-
tain significantly better rates than for the parallel scheme with
rates calculated from the lower bound. However, for n > 2,
the rates of the sequential scheme based on the lower bound
are still at least as good or even better (n > 3) than those for
the parallel scheme. This is our motivation for employing the
sequential scheme throughout whenever we consider n > 2
(besides the benefit that this allows us to compute the exact
rates also for larger schemes, n > 2).
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