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Hessian-based optimization of constrained quantum control
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Efficient optimization of quantum systems is a necessity for reaching fault-tolerant thresholds. A standard tool
for optimizing simulated quantum dynamics is the gradient-based GRAPE algorithm, which has been successfully
applied in a wide range of different branches of quantum physics. In this work, we derive and implement exact
second-order analytical derivatives of the coherent dynamics and find improvements compared to the standard of
optimizing with the approximate second-order Broyden-Fletcher-Goldfarb-Shanno algorithm. We demonstrate
performance improvements for both the best and the average errors of constrained unitary gate synthesis on a
circuit-QED system over a broad range of different gate durations.
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I. INTRODUCTION

Nowadays, there exists a wide range of proposed technolo-
gies that utilize the potential of quantum mechanics in order to
achieve improvements over their classical counterparts. These
include quantum variational eigensolvers [1,2], annealers [3],
simulators [4,5], Boltzman machines [6], and, perhaps most
promising, the quantum computer [7]. We may reach a point in
time where the majority of these quantum-based technologies
outperform their classical counterparts.

Reaching this quantum advantage requires, among other
things, substantial improvements in our ability to control the
underlying quantum systems. On the theoretical side, quan-
tum optimal control theory addresses this issue [8–10]. Here
optimization methods with respect to a chopped random basis
(CRAB) [11,12] and individual pulse amplitudes (Krotov)
[13,14] have been successful especially with respect to un-
constrained quantum optimization, where trapping has been
shown to rarely occur [15,16].

One of the most used, and widely successful, algorithms
within quantum optimal control theory is the gradient ascent
pulse engineering (GRAPE) algorithm [17,18]. The original
GRAPE algorithm used first-order approximated gradients in
combination with the steepest descent [17]. Later, significant
improvements were obtained when the analytical gradients
were calculated and combined with Hessian approxima-
tion methods such as the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm [18–20]. GRAPE has been widely success-
ful providing its use in nuclear magnetic resonance [21–25],
superconducting qubit circuits [26–30], spin chains [31–34],
nitrogen-vacancy centers [35,36], and ultracold atoms [37,38].
It has also become a standard integrated tool in many numeri-
cal packages aimed at quantum physicists [19,39–41]. Further,
one could mention the many extensions of GRAPE, which treat
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filtering [42], robustness [17,43], chopped random basis [44],
experiment design [45], and open quantum systems [46].

In addition, there exists many hybrid algorithms that com-
bine GRAPE with, e.g., sequential updates [19] and global opti-
mization algorithms [47,48]. Machine-learning-based control
[49–55] could also improve the solution exploration of local
quantum optimal control methods such as GRAPE, where ini-
tial steps towards a hybrid algorithm have already been taken
in Ref. [55].

In this paper we show how GRAPE can further be enhanced
to significantly increase its ability to reach high-fidelity so-
lutions, by incorporating the exact Hessian in the numerical
optimization. We present here an efficient calculation of
the Hessian and apply both gradient- and Hessian-based
optimization to unitary gate synthesis for superconducting
circuits. A previous calculation of the Hessian made use of the
auxiliary matrix method [56,57]. This approach requires the
exponentiation of block matrices having three times the size of
the Hilbert space, which leads to an unfavorable scaling with
respect to both the Hilbert space size and the number of con-
trols. In this work, we present a derivation that only requires
exponentiation of matrices with the same size as the Hilbert
space. In doing so, we show that every component needed to
evaluate the gradient can be recycled to evaluate the Hessian
and thus that calculating an element of the Hessian is not much
more expensive than evaluating the gradient. These results
enable us to demonstrate improvements with Hessian-based
GRAPE in equal wall-time simulations without the explicit
need for any code parallelization. In addition to enhancing
optimization, the Hessian can also be used to characterize the
quantum optimal control landscape, which in Ref. [58] was
done in the presence of noise.

Besides calculating the Hessian, we further seek to
benchmark analytical gradient- and Hessian-based numerical
optimization within constrained physical settings. Physically
realizable pulses are always constrained in amplitude due
to limitations of experimental equipment, but constraints are
more often imposed to avoid undesirable processes such as
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leakage, ionization, heating, decoherence, and break down
of theoretical models. For many quantum control problems,
optimal solutions contain segments that lie on the boundary of
the admissible region (see, e.g., Refs. [59,60]). Under certain
assumptions, this has even been proven to more generally
occur [61]. Therefore, it is important how the optimization
algorithms handle constraints.

For the work presented here, we demonstrate our methods
by synthesizing the unitary dynamics of a superconduct-
ing transmon circuit [62]. The circuit consists of two fixed
frequency transmon qubits dispersively coupled through a
microwave resonator [45,63,64]. This setup could be used as a
subpart of many of the aforementioned quantum technologies.

II. OPTIMAL CONTROL OF UNITARY GATES

Our objective is to generate a target unitary V using a
set of piecewise constant pulses. However, it should be men-
tioned that the calculations given here are applicable to many
other control problems as well. These include state-to-state
transfer for pure quantum states [65] (see also Appendix A)
and density matrices in closed quantum systems, as well as
state-to-state transfer of density matrices in open quantum
systems [17,19].

The pulses consist of N constant-amplitude segments and
have a total duration, T . We assume access to a set of M con-
trol Hamiltonians {Hk}M

k=1 such that a bilinear Hamiltonian,
H (t j ) = H0 + ∑M

k=1 c j,kHk , governs the system dynamics at
time step j. Here H0 and c j,k denote the drift Hamiltonian
and controls, respectively. We have depicted an example of a
control pulse in Fig. 1(a). The system starts from an initial uni-
tary U0, which is typically chosen to be the identity, and then
evolves through the unitary evolution Uj = exp[−iH (t j )�t],
where �t = T/N and h̄ = 1.

Replicating the target unitary V , up to a global phase, is
achieved by maximizing the fidelity

F =
∣∣∣∣ 1

dim
Tr[PUPV †]

∣∣∣∣
2

, (1)

where U = UNUN−1 . . .U0 denotes the final unitary and P
is a projection into the subspace of interest, whose di-
mension is denoted as dim. This approach exploits that
quantum propagation can always be decomposed smoothly
into shorter, differential time segments. Equivalently, we
seek to minimize the infidelity J = 1 − F , which serves
as our cost function. We express a control vector as c =
(c1,1, c2,1, . . . , cN,1, c1,2, . . . , cN,M ), where the first index de-
notes the discretized time and the second denotes different
controls. Starting from an initial guess, c0, we seek to make in-
cremental updates such that J (cn+1) < J (cn), with n denoting
the iteration number. The incremental update is of the form

cn+1 = cn + αnpn. (2)

Here pn defines a search direction, while αn defines a step size
typically found through a line search. Figure 1(a) illustrates
an example of an incremental update depicted with arrows.
The initial seed could, e.g., stem from an analytical ansatz
or be based on a random guess to explore the optimization
landscape. The latter approach is termed multistarting [66].
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FIG. 1. (a) An example of a piecewise constant control pulse.
Here individual updates are depicted as arrows. (b) An example
of how Interior-Point with either BFGS or the Hessian searches
differently. In addition we also compare to a simple gradient-descent
algorithm. We elaborate on this figure in Appendix F.

The search direction taken by GRAPE was originally pro-
posed to be the steepest descent, pn = −∇J (cn), where the
gradient was approximated to first order in �t [17]. The steep-
est descent only uses information about the first derivative and
thus suffers from having no information about the curvature of
the optimization landscape. Hence, it is often superior to use
the second-order derivatives, i.e., the Hessian matrix

H =

⎡
⎢⎢⎢⎢⎢⎣

∂2J
∂c2

1,1

∂2J
∂c1,1∂c2,1

. . . ∂2J
∂c1,1∂cN,M

∂2J
∂c2,1∂c1,1

∂2J
∂c2

2,1
. . . ∂2J

∂c2,1∂cN,M

...
...

. . .
...

∂2J
∂cN,M∂c1,1

∂2J
∂cM,N ∂c2,1

. . . ∂2J
∂c2

N,M

⎤
⎥⎥⎥⎥⎥⎦. (3)

If one has access to the Hessian, a standard search direc-
tion is given by Newton”s method pn = −[H(cn)]−1∇J (cn).
If the second-order derivatives are not available, one can
approximate the Hessian B ≈ H via the BFGS Hessian-
approximation scheme [20] that gradually builds B using only
the gradient. The iterative BFGS update is of the form

Bk+1 = Bk + ykyT
k

yT
k sk

− BksksT
k BT

k

sT
k Bksk

, (4)

where yk = ∇ f (xk+1) − ∇ f (xk ) and sk = xk+1 − xk . The
derivation and use of an exact gradient enabled the precision
needed for BFGS to outclass its first-order counterpart [18].
It is now the standard within quantum optimal control theory
[19,40,41].

Since physically realizable pulses are always constrained
in amplitude, we optimize via a constrained optimiza-
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tion algorithm that uses either the actual Hessian or the
gradient-based BFGS (see Appendix D). In Fig. 1(b) we il-
lustrate the difference between these methods (Hessian-based
and gradient-only) for a simple two-dimensional optimiza-
tion problem (see Appendix F for a technical explanation).
The problem has a global minimum at (c1, c2) = (0, 0). In
addition, there is also a local one above. We start the opti-
mization near the two solutions and plot how each method
moves through the optimization landscape. The two gradient-
based approaches converge toward the local solution, while
the Hessian-based method manages to avoid this solution and
converge towards the global optimum. A possible explanation
for this behavior is that Hessian-based optimization generally
has more information about the landscape curvature. This can
allow it to avoid suboptimal nearby solutions like the one de-
picted in Fig. 1(b). As we demonstrate later, the two different
approaches (gradient-only and Hessian based optimization)
often find different solutions although starting from the same
initial pulse. However, we would like to stress that the Hessian
is not guaranteed to find the best solution of the two.

Moreover, Fig. 1(b) also illustrates how Hessian-based
optimization generally requires fewer iterations to converge
[67]. If the cost function is sufficiently simple near an optimal
solution, x∗, a nearby initial guess (seed), x0, will converge as
||xk+1 − x∗|| � C||xk − x∗||q, where C � 0 for the optimiza-
tion methods discussed here, with the Hessian being quadratic
(q = 2) and BFGS being superlinear (1 < q < 2) [67].

In the following we derive exact analytical expressions for
both the gradient and the Hessian of Eq. (1). The gradient
has previously been derived (see, e.g., Refs. [18,19]), but is
reproduced here for completeness.

A. Gradient

The first step is to express the derivative of the fidelity,
Eq. (1), in terms of the derivative of the unitary:

∂F
∂c j,k

= 2

dim2 Re

[
Tr

(
P

∂U

∂c j,k
PV †

)
Tr(VPU †P )

]
. (5)

It is only the unitary at the jth time step, Uj , that depends on
c j,k and hence the derivative is

∂U

∂c j,k
= UN . . .

∂Uj

∂c j,k
. . .U1U0 = U L

j+1
∂Uj

∂c j,k
U R

j−1, (6)

where we have defined the left and right unitaries as U L
j =

UNUN−1 . . .Uj and U R
j = UjUj−1 . . .U0, respectively. The left

and right unitaries must be calculated for each time step, but
this can be done efficiently since U L

j = U L
j−1Uj and U R

j =
UjU R

j−1. Thus, the gradient calculations scale as O(N ) in terms
of the number of matrix multiplications rather than as the
intuitive O(N2).

In order to evaluate the derivative ∂Uj

∂c j,k
we use the following

expression for a general η-dependent matrix χ (η) [68]:

d

dη
eχ (η) =

∫ 1

0
eαχ (η) dχ (η)

dη
e(1−α)χ (η)dα. (7)

There are many known ways to approximate this integral (see
Appendix C), especially relevant when state transfer or sparse
matrices are optimized (see Appendix A). Here, however, we

consider an exact method, which is to solve it explicitly in the
eigenbasis {|n〉} of the Hamiltonian H (t j ). A direct calculation
reveals

〈m| ∂Uj

∂c j,k
| n〉 = 〈m | Hk | n〉I (m, n). (8)

Here we have defined

I (m, n) =
{−i�te−iEm�t , ifEm = En,

e−iEm�t −e−iEn�t

Em−En
, ifEm �= En,

(9)

where En denotes the eigenenergy of |n〉. This method re-
quires diagonalization of the Hamiltonian at each instance
of time, i.e., H (t j ) = RDR†, with R being the transformation
matrix whose columns are the eigenvectors of H (t j ) and D
containing the eigenenergies D = Diag(E1, E2, . . .). One can
use the diagonalization efficiently to first evaluate the matrix
exponential e−iH (t j )�t = R Diag(−iE1�t,−iE2�t, . . .)R† and
subsequently use it to switch from one basis to another. If we
define the matrix I with Im,n = I (m, n), Eq. (8) can be written
in the original basis as

∂Uj

∂c j,k
= R[(R†HkR) � I]R†, (10)

where � denotes the Hadamard (elementwise) product. For
multiple controls {Hk}M

k=1, each derivative {∂Uj/∂c j,k}M
k=1 may

be evaluated efficiently since R, R†, and I need only be calcu-
lated once. Note one can also exploit the symmetry Im,n = In,m

when evaluating I .
In the case of larger Hilbert spaces, the exact matrix di-

agonalization becomes intractable. In this case, there exist
other methods in the literature that may be more applicable
while still permitting analytical differentiation [65,69,70] and
gradient- and Hessian-based optimization.

B. Hessian

We start by evaluating the derivative of Eq. (5), which
reveals

∂2F
∂ci,k′∂c j,k

= 2

dim2 Re

[
Tr

(
P

∂U 2

∂ci,k′∂c j,k
PV †

)
Tr(VPU †P )

+ Tr

(
P

∂U

∂c j,k
PV †

)
Tr

(
P

∂U

∂ci,k′
PV †

)∗]
. (11)

The first-order derivatives of the unitary have already been
calculated when evaluating the gradient. What remains is
hence to calculate the second derivatives of the unitary. Here
we distinguish between two cases: when the derivatives are
with respect to different time steps (i �= j) or the same time
step (i = j). For different time steps ( j > i), the second-order
derivatives become

∂2U

∂ci,k′∂c j,k
= U L

j+1
∂Uj

∂c j,k
U R

j−1

(
U R

i

)† ∂Ui

∂ci,k′
U R

i−1. (12)

Here we have expressed the middle products of unitaries
Uj−1 . . .Ui+1 in terms of the right unitaries we defined when
calculating the gradient. Evaluating the second-order deriva-
tives of the unitary with respect to the same time step is similar
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to Eq. (6):

∂2U

∂c j,k′∂c j,k
= U L

j+1
∂2Uj

∂c j,k′∂c j,k
U R

j−1. (13)

Equations (12) and (13) imply that the Hessian may be evalu-
ated efficiently by recycling already calculated quantities. All
that is left is to calculate the second-order derivatives of Uj .

This is done by differentiating Eq. (7):

∂2Uj

∂c j,k′c j,k
= −i�t

∫ 1

0

(
∂

∂c j,k′
eαX

)
Hke(1−α)X dα

− i�t
∫ 1

0
eαX Hk

(
∂

∂c j,k′
e(1−α)X

)
dα, (14)

where we have introduced the shorthand notation X =
−iH�t . In the last integral above, we make the substitution
1 − α → α and then insert Eq. (7) to obtain

∂2Uj

∂c j,k′c j,k
= (−i�t )2

( ∫ 1

0
dαα

∫ 1

0
dβeβαX Hk′e(1−β )αX Hke(1−α)X +

∫ 1

0
dαα

∫ 1

0
dβe(1−α)X HkeβαX Hk′e(1−β )αX

)
. (15)

Similar to before, there are different ways to approximate this integral depending on how the exponential is propagated (see
Appendices A and C). We derive here the exact solution by evaluating the elements of the eigenbasis of H . We insert the identity
1 = ∑

n′ |n′〉 〈n′| to evaluate the middle part, i.e., between the two Hamiltonians Hk and Hk′ in the above expression. This reveals

〈m| ∂2Uj

∂c j,k′c j,k
| n〉 = (−i�t )2

∑
n′

(
H (m,n′ )

k′ H (n′,n)
k

∫ 1

0
dαα

∫ 1

0
dβeβαλm e(1−β )αλn′ e(1−α)λn

+ H (m,n′ )
k H (n′,n)

k′

∫ 1

0
dαα

∫ 1

0
dβe(1−α)λm eβαλn′ e(1−β )αλn

)
, (16)

where we have defined H (m,n)
k = 〈m|Hk|n〉 and λn = −iEn�t .

The two double integrals in the above expression turn out to
be equivalent, which we calculate in Appendix B. This allows
us to write

〈m| ∂2Uj

∂c j,k′c j,k
| n〉

=
∑

n′

(
H (m,n′ )

k′ H (n′,n)
k + H (m,n′ )

k H (n′,n)
k′

)
I (n, n′, m). (17)

Here I (n, n′, m) is given by Eq. (B9). The intuitive scaling for
calculating the analytical Hessian would be O(N3), since one
would have to calculate the left, middle, and right sequence
of unitaries for each pair of time steps (i, j). However, having
the left and right unitaries in advance reduces this to O(N2) via
Eq. (12). Note that this is also true for other methods for evalu-
ating the time-ordered integral (Appendix C). One can use the
transformation matrix R to switch from one basis to another
similar to Eq. (10). Furthermore, Hessian-based optimization
generally converges in fewer iterations than gradient-only op-
timization, especially near the optimum where its convergence
is quadratic. Last but not least, the higher accuracy of the
calculation may help it altogether avoid local traps that can
plague gradient-based quantum optimal control methods.

Hence, we expect Hessian-based optimization to be an
improvement over gradient-only optimization unless the total
number of steps N is significantly large. We emphasize that
for larger Hilbert spaces, the exact matrix diagonalization via
Eq. (8) becomes expensive, and other alternatives in the liter-
ature might be preferable [65,69,70] though the same general
conclusions hold.

In the following sections, we test and benchmark gradient-
only vs Hessian-based optimization on a standard quantum
computational setup.

III. TRANSMON SYSTEM

As a testbed for the Hessian-based optimization, we have
chosen two transmon qubits dispersively coupled through a
linear microwave resonator activated by a microwave field
[45,63,64,71]. This type of setup is currently a frontier within
superconducting circuit-based quantum information [72] and
could enable the realization of many of the quantum technolo-
gies outlined in the Introduction. Such a setup has previously
been studied for gradient and machine-learning-based optimal
control [29,45,55,73].

Transmons are insensitive to charge noise, but suffer from
having relatively low anharmonicity [62,74]. We therefore
include a third level for each transmon qutrit. We use an
effective Hamiltonian, where we adiabatically eliminate the
cavity and replace the qutrit-cavity coupling with an effective
qutrit-qutrit coupling [75]. Our starting point is to model each
transmon as an anharmonic Duffing oscillator [76] and de-
scribe the transmon-cavity coupling via the Jaynes-Cummings
model, which in the absence of control is

H0 =
∑
j=1,2

ω jb
†
jb j + δ j

2
b†

jb j (b
†
jb j − 1) + ωra†a

+
∑
j=1,2

g j (ab†
j + a†b j ). (18)

Here b j (b
†
j ) denotes the annihilation (creation) operator for

the jth transmon in the {|00〉 , |01〉 , . . . , |22〉} basis. We
choose the transmon frequencies to be ω1/2π = 5.0 GHz

042612-4



HESSIAN-BASED OPTIMIZATION OF CONSTRAINED … PHYSICAL REVIEW A 102, 042612 (2020)

(a) (b) (c)

100 200
10−15

10−11

10−7

10−3

10 50 150 250

Gate duration (ns)

B
es

t
in

fi
d
el

it
y

100 200
10−2

10−1

10 50 150 250

Gate duration (ns)

M
ea

n
in

fi
d
el

it
y

100 200

10−1

100

101

102

103

10 50 150 250

100

102

Gate duration (ns)

M
ea

n
w

a
ll
ti

m
e

(s
)

gradient

Hessian

FIG. 2. The results of GRAPE optimizations using Interior-Point with either the Hessian or the gradient-based Hessian-approximation
scheme BFGS (denoted gradient) for the same 5000 seeds which we draw uniformly at random for each gate duration. The figure depicts
(a) the best infidelity, (b) the mean infidelity per seed, and (c) the mean wall time consumption per seed.

and ω2/2π = 5.5 GHz with equal anharmonicities δ1/2π =
δ2/2π = −350 MHz. For the cavity resonance frequency we
choose ωr/2π = 7.5 GHz with equal transmon-cavity cou-
plings g1/2π = g2/2π = 100 MHz. These values are within
typical experimental ranges (see, e.g., Ref. [77]).

In Appendix E we derive an effective Hamiltonian where
we eliminate the cavity and move into a rotating frame. We
further drive the first transmon directly, which leads to the
effective Hamiltonian

Heff(t ) = �b†
1b1 +

∑
j=1,2

δ j

2
b†

jb j (b
†
jb j − 1)

+ J
(
b†

1b2 + b1b†
2

) + �(t )(b†
1 + b1), (19)

where � denotes the detuning between the transmons and J
denotes the effective coupling between the transmons (see
Appendix E). Here � denotes our control, which we limit
to be in the range of �/2π = ±200 MHz. This constrained
amplitude, which will be enforced by the optimization, in part
determines the minimal time and the quantum speed limit
[78] for which the control problem becomes exactly solvable.
For many control tasks, optimal solutions contain segments
that lie on the constraint boundary; hence, how the optimiza-
tion algorithm handles constraints is of vast importance. In
this work, we attempt to make a V = CNOT gate starting
from the identity U0 = 1 and so the projectors in Eq. (1) are
with respect to the qubit subspace P = ∑

i, j=0,1 |i, j〉 〈i, j|.
We steer the system via a single piecewise constant control,
c j,1 = �(t j ), as discussed in the previous section.

IV. HESSIAN- VS GRADIENT-BASED OPTIMIZATION

We consider here the control problem outlined in the pre-
vious section, where we use piecewise constant pulses that
consist of �t = 2.0-ns segments, which is within the band-
width of standard microwave pulse generators. We compare
the two approaches, gradient-only optimization (i.e., BFGS)
vs analytical Hessian-based optimization via an Interior-Point
algorithm (see Appendix D), over a wide range of different
gate durations using multistarting. For each gate duration we
use the two approaches to optimize the same 5000 seeds,
which we draw uniformly at random. The relative optimality
and step tolerance was set to 10−9 and 10−10, respectively (see
documentation [79]). We plot the results in Figs. 2(a)–2(c),

which respectively show the best infidelity over the entire
range of gate durations, the mean infidelity per seed, and the
mean wall time consumption per seed for each gate duration.
The two approaches often find different solutions in the op-
timization landscape, despite starting from the same initial
seed. This stresses the need for selecting the optimization
algorithm with care and also motivates the comparison given
in Appendix D.

In Fig. 2(a), we see that, when the gate duration increases
above 200 ns, the control problem becomes exactly solvable
in the sense that the best infidelities become insignificantly
low. In the literature the minimal amount of time for which
the problem becomes exactly solvable is termed the quantum
speed limit [44,45,59,78]. Here we see that the Hessian-based
optimization is able to come closer to the (unknown) quantum
speed limit relative to gradient-only optimization. Even in
the low-infidelity regime (i.e., below 10−8), Hessian-based
optimization reaches a few orders of magnitude improvement
over gradient-only optimization.

Figure 2(b) depicts the mean infidelity for the two algo-
rithms. The two algorithms perform equally well on average
at shorter gate durations. In contrast, Hessian-based opti-
mization performs better at longer gate durations, with mean
infidelities being 3–4 times lower than those of gradient-only
optimization.

Figure 2(c) depicts the mean wall time consumption for
each gate duration. As already elaborated on, the com-
putational cost of the gradient scales linearly as (O(N ))
while the Hessian scales quadratically as (O(N2)). How-
ever, Hessian-based optimization generally requires fewer
iterations for convergence than BFGS. For this reason,
Hessian-based optimization actually turns out to be com-
parable with gradient-only optimization at very short gate
durations, where the Hessian is cheaper to calculate but the
number of iterations needed remains significantly lower. For
longer gate durations, however, Hessian-based optimization
becomes 2–3 times slower than gradient-only optimization.

In summary, Fig. 2 shows that there are two distinct
regimes, where the analytical Hessian of the unitary dynamics
is preferable to its BFGS approximation, but for different
reasons. For fewer than 50 ns (or 25 control steps), the two
approaches perform equally well with respect to infidelity;
however, the figure and scaling arguments indicate a potential
speed advantage for the Hessian-based approach. Above this

042612-5



DALGAARD, MOTZOI, JENSEN, AND SHERSON PHYSICAL REVIEW A 102, 042612 (2020)

FIG. 3. Distribution of infidelities (lower is better) at different gate durations. Blue depicts gradient-only optimization, while orange depicts
Hessian-based. Brown depicts the overlap of the two distributions. Gate durations are depicted in the figure.

time, and especially near the quantum speed limit, we see the
exact Hessian will produce better gate infidelities, both on
average and for the best case, although at the price of being
slower.

We plot in Fig. 3 histograms over the infidelity distributions
for the same data presented in Fig. 2. At 50 ns in Fig. 3(a)
we see two almost identical distributions. In contrast, at larger
gate durations we see that Hessian-based optimization gener-
ally performs better than gradient-only optimization in terms
of both the quality and the quantity of the best solutions found.

From Figs. 2 and 3 we see that the two approaches con-
verge to different minima although starting from the same
initial seed. We also see that the Hessian-based solutions
tend to be better, i.e., reach lower infidelity compared to
gradient-only optimization, which is clear from the bimodal
distributions in Fig. 3. We attribute this to the fact that
Hessian-based optimization obtains more information about
the curvature of the optimization landscape through the sec-
ond derivative relative to gradient-only optimization, which
only has approximate knowledge of the second derivatives.
This can lead gradient-only optimization to slow down, or
even be unable to converge at all. It may also cause trapping
in local suboptimal solutions as illustrated in Fig. 1(b).

In Fig. 4(a), we also depict the average number of infi-
delity evaluations used by either approach. Here we clearly
see that the Hessian-based optimization uses fewer infidelity
evaluations in comparison to the gradient-only optimization.
This illustrates the difference between quadratic convergence
(Hessian) vs superlinear convergence (gradient) as elaborated
on in Sec. II.

To verify that the two approaches indeed do find different
solutions, we plot in Fig. 4(b) a scatter plot of the optimized
infidelities for the two approaches at 176 ns. If a given point
lies on the dashed diagonal it would imply that the two ap-
proaches (most likely) found the same solution, as the figure
shows this is most often not the case.

Although the Hessian is more expensive to calculate than
the gradient, we showed that Hessian-based optimization can
be advantageous over gradient-only optimization for even
over 100 optimization parameters, which allows for reason-

ably complicated but still practical pulses that may easily be
generated via modern arbitrary wave-form generators. How-
ever, for a much larger number of parameters, Hessian-based
optimization may become too slow to use at one point, even if
the final result would be better. Hence, to include the Hessian
is a question of balancing the quantity and quality of found
solutions. When using only a relatively few seeds (e.g., due

50 100 150 200 250
0

1,000

2,000

3,000

4,000

10 50 150 250

Gate duration (ns)

In
f.

ev
a
l. gradient

Hessian

(a)

(b)

FIG. 4. (a) The average number of infidelity evaluations for
gradient-only and Hessian-based optimization. The figure verifies
that gradient-only optimization scales worse than Hessian-based op-
timization with respect to the number of infidelity evaluations. (b) A
scatter plot of the optimized infidelities from Fig. 3 at 176 ns. The x
axis is the Hessian-based optimized solutions while the y axis is for
the gradient-only method. Solutions that lie on the dashed diagonal
line corresponds to gradient-only and Hessian-based optimization
doing equally well. Above the diagonal is where the Hessian did best
and vice versa.
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to a large amount of optimization parameters or complicated
state spaces that require more exploration), it may be very
unlikely to reach near the global optimum for a practical wall
time: In this case a gradient-only approach may be expected
to produce faster if less reliable results.

Even so, many optimization tasks within quantum control
have less than 125 optimization parameters. For some control
tasks, like the one considered here, increasing this number
would make experimental implementation and calibration in-
feasible. Hence, we believe that explicitly incorporating the
analytical Hessian of the unitary dynamics is advantageous
for many quantum control tasks.

Finally, one may link the apparent utility of the Hessian to
the nature of the control landscape. Indeed, the smoothness of
the landscape [80] has earlier been argued to provide a com-
putational advantage for quantum optimization [12,15,78]. In
the present work, we have explored the case where the cost
functional is strongly constrained. Although such constraints
formally remove the possibility of a global convergence
[48,81], in our context the functional smoothness can nonethe-
less provide a mechanism to greatly speed up convergence
alongside a multistarting strategy with analog controls [61].

V. CONCLUSION

In this paper, we have obtained the Hessian of the unitary
dynamics as an extension to the widely used gradient-based,
quantum optimization algorithm GRAPE. Our calculations,
which were based on diagonalization, revealed that the Hes-
sian may be computed efficiently, with a high level of
reusability of already-calculated quantities obtained when
evaluating the gradient. We believe our efficient calculation
is advantageous to previous proposals and it allowed us to
demonstrate improvements over gradient-only optimization in
equal wall-time simulations without any code parallelization.
We optimized a CNOT gate on a circuit-QED system consisting
of two coupled transmon qubits. Here we demonstrated that a
fast CNOT gate is, in principle, feasible using only a single
control on one qubit driven cross-resonantly.

For the numerical optimization, we used an Interior-Point
algorithm, with either an analytically exact Hessian or the
Hessian-approximation scheme BFGS that only relies on the
gradient. We compared the two approaches, Hessian-based or
gradient-only, for a wide range of different gate durations.
Since the Hessian contains squared the number of elements
of the gradient, it is more expensive to calculate per iteration.
However, Hessian-based optimization generally uses fewer
iterations to converge. Moreover, the convergence occurs with
greater accuracy, which can improve the quality as well as the
quantity of good solutions.

We have found that, depending on the number of con-
trols, either the wall time or the fidelity of the solutions
can be improved compared to the gradient. This appears to
be generally true, although for very complex spaces where
multistarting is not appropriate the gradient may be the only
practical choice. Nonetheless, for over 100 controls, we were
still able to collect statistics over many seeds. We found that
below 25 controls, the Hessian enabled faster convergence
towards extrema. For more controls (and for the experimen-
tally most interesting regime near the quantum speed limit),

incorporating the Hessian provided a higher percentage of
good solutions, often accompanied by bimodal distributions
pointing to avoiding local trapping. Thus, the best-case error
was also seen to be improved.
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APPENDIX A: STATE TRANSFER

When only multiplication is needed in the propagation (as
for typical expansions, see Appendix C), then this can be a
preferred method to use for propagation of only one or a few
orthogonal states [essentially specified by the projector P in
Eq. (1)]. More concretely, we can rewrite Eq. (1) as

F =
∣∣∣∣∣∣

1

dim

dim∑
k=1

〈ψk|V †U |ψk〉
∣∣∣∣∣∣
2

. (A1)

In this case, the propagator scales as O(n2), with n being
the linear dimension, rather than exponentiation and matrix-
matrix multiplication which typically scale as O(n3) [or
O(n2.8)] for dense matrices. Our method is easily adaptable
by replacing the left U L

j and right U R
j unitaries by left 〈ψL

j | =
〈ψtarg|U L

j = 〈ψ0|V †U L
j and right |ψR

j 〉 = U R
j |ψ0〉 states, re-

spectively. 〈ψL
j | and |ψR

j 〉 were dynamically calculated, as
were U L

j and U R
j , using a recursive approach. Similarly, the

second derivatives can recursively use the time-propagated
first-order derivatives, as needed for Eq. (12), as in

∂2
∣∣ψR

j

〉
∂ci,k′∂c j,k

= ∂Uj

∂c j,k
Uj−1 . . .Ui+1

∂Ui

∂ci,k′

∣∣ψR
i−1

〉

= ∂Uj

∂c j,k

∣∣∣∣∂ψR
j−1

∂ci,k′

〉
, (A2)

which uses only matrix-vector multiplication. Thanks to the

recursive definition | ∂ψR
j+1

∂ci,k′ 〉 = Uj+1 | ∂ψR
j

∂ci,k′ 〉, this ends up once
again reducing the algorithm complexity with respect to the
number of time steps (as in the main text) from O(N3) to
O(N2). Using state propagation thus permits avoiding matrix-
matrix multiplication. See also the original Khaneja et al.
GRAPE paper [17].

APPENDIX B: HESSIAN CALCULATION
USING EIGENBASIS

The starting point of these calculations is Eq. (16), which
can be written as

〈m| ∂2Uj

∂c j,k′c j,k
| n〉 =

∑
n′

(
H (m,n′ )

k′ H (n′,n)
k I (n, n′, m)

+ H (m,n′ )
k H (n′,n)

k′ I (m, n, n′)
)
. (B1)
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Here we have defined

I (n, n′, m) = (−i�t )2eλn

∫ 1

0
dααeα(λn′ −λn )

∫ 1

0
dβeβα(λm−λn′ ).

(B2)

In order to evaluate the above we must consider the the
five different scenarios: m �= n �= n′, m = n = n′, m = n′ �= n,
m �= n = n′, and m = n �= n′. We start with the first one,
which is m �= n �= n′. A direct calculation reveals

I (n, n′, m)

= 1

Em − En′

[
e−iEm�t − e−iEn�t

Em − En
− e−iEn′ �t − e−iEn�t

En′ − En

]
.

(B3)

Note that the above expression is invariant under any per-
mutation of the indices. Similarly, the second one, which is
m = n = n′, gives

I (n, n, n) = (−i�t )2

2
e−iEn�t . (B4)

The third one, which is m = n′ �= n, gives

I (n, m, m) = (−i�t )2eλn

∫ 1

0
dααeα(λm−λn ). (B5)

The antiderivative of xekx is (kx−1)
k2 ekx, which can be used to

evaluate the above:

I (n, m, m) = [−i�t (Em − En) − 1]e−iEm�t + e−iEn�t

(Em − En)2
.

(B6)

The fourth one is m �= n′ = n, which gives

I (n, n, m) = e−iEm�t + [−i�t (Em − En) − 1]e−iEn�t

(Em − En)2
. (B7)

And the last one, which is m = n �= n′, gives

I (n, n′, n) = [−i�t (En − En′ ) − 1]e−iEn�t + e−iEn′ �t

(En − En′ )2
. (B8)

We can summarize the above results by writing

I (n1, n2, n3) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
En3 −En2

[I (n3, n2) − I (n2, n1)], if n1 �= n2 �= n3,

−i�t
2 I (n1, n1), if n1 = n2 = n3,

1
En−Em

[I (n, m) − I (m, m)],

⎧⎪⎨
⎪⎩

if n = n1 �= n2 = n3 = m,

or if n = n2 �= n1 = n3 = m,

or if n = n3 �= n1 = n2 = m.

(B9)

We may evaluate the above integral efficiently by storing the already calculated integrals I (m, n) from Eq. (9). Also note that the
above integral is independent of the order of coefficients n1, n2, and n3. This implies that we may calculate the above efficiently
and in advance of evaluating the matrix elements of the second derivative. Since I (n1, n2, n3) is independent of the order of the
indices, we may also take the integral out of parentheses in Eq. (B1) and hence we obtain Eq. (17).

APPENDIX C: HESSIAN CALCULATION USING (TAYLOR) EXPANSION

The analytical gradient and Hessian of the propagation are intricately linked to how the evolution is calculated. In the main
text we used eigenbasis decomposition, which is exact to numerical precision. In certain cases with, e.g., large and/or sparse
Hamiltonians, approximate expansions such as Taylor, BCH, Pade, Suzuki-Trotter, or Chebychev may be preferable (especially
in combination with matrix-vector algebra, Appendix A) [65,70,82].

As a supplementary example to the diagonalization-based approach, we consider here also the case using Taylor expansion
of the propagation [70]. Let such an expansion as Ũj be given by (with c j,0 = 1)

Uj ≈ Ũj =
L∑

l=0

1

l!
[−iH (t j )�t]l =

L∑
l=0

1

l!

(
M∑

k=0

−ic j,kHk�t

)l

(C1)

=
L∑

l=0

1

l!

∑
l0+l1+···+lM=l

l!

l0!l1! . . . lM!

M∏
k=0

(−ic j,kHk�t )lk , (C2)

where we have used the multinomial theorem for the last equality. Here L denotes a truncation parameter. The gradients and
Hessians are calculated exactly as before in the main text, i.e., Eqs. (12) and (13), where only the first and second derivatives of
the single-step unitaries need to be calculated differently. Then,

∂rŨ j

(∂c j,k′ )r
=

L∑
l=0

1

l!

∑
l1+l2+···+lM=l

l!

l1!l2! . . . lM!

lk′ (lk′ − 1)r−1

(c j,k′ )r

[
M∏

k=0

(−ic j,kHk�t )lk

]
, (C3)
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where r = 1 or r = 2. Meanwhile

∂2Ũj

∂c j,k′∂c j,k′′
=

L∑
l=0

1

l!

∑
l1+l2+···+lM=l

l!

l1!l2! . . . lM!

lk′ lk′′

c j,k′c j,k′′

[
M∏

k=0

(−ic j,kHk�t )lk

]
, (C4)

when k′′ �= k′.
Any such expansion for the unitary evolution has its own

exact analytical formulas for the gradient and the Hessian of
the evolutions with respect to the controls. Note also that even
for a very complex method one can always use automatic
differentiation as a substitute, which is also exactly as above,
though we believe this is not strictly necessary or faster in
any particular case. Thus in both cases, regardless of how the
Hamiltonian exponential is calculated, one can still benefit
from the derivatives (12) and (13).

Note that, while the analytical gradient and Hessian are
exact, the expansions themselves are not, which means fixed
expansions must be used if monotonic convergence is to be
guaranteed (i.e., keeping L fixed above) or else machine-
precision-level error tolerance must be enforced. Otherwise,
the directions of the gradient and the Hessian may change
when, e.g., an extra term is added to the expansion or a term
is modified (as would be needed to satisfy adaptive error
tolerance criteria for the expansion).

APPENDIX D: BENCHMARKING DIFFERENT
OPTIMIZATION ALGORITHMS

In the main text we considered synthesizing a CNOT gate
using piecewise constant pulses with �t = 2.0 ns via the
GRAPE algorithm. GRAPE relies on a numerical optimization
algorithm at its back end, for instance, in the main text we
used Interior-Point [83,84] implemented in MATLAB’s library
fmincon [79]. Interior-Point can be supplied either with the
gradient and the Hessian-approximation scheme BFGS or
with the exact Hessian.

To justify this specific choice we benchmark Interior-
Point with other conventional optimization algorithms. An-
other choice, also implemented in MATLAB’s fmincon [79]
for constrained optimization, is the Trust-Region-Reflective
algorithm [85,86]. Similar to Interior-Point, Trust-Region-
Reflective can be supplied with either the gradient or the
Hessian. We also benchmark against an unconstrained op-
timization algorithm quasi-Newton [20] implemented in

FIG. 5. A comparison between different optimization algorithms
with and without the Hessian (see text).

MATLAB’s fminunc, where we instead impose constraint
bounds by adding a penalty term to the cost function. We
choose a quadratic penalty function that is zero inside the
admissible region and grows quadratically outside Jpenalty =
σ (� − �min / max)2, where we set the penalty factor to
σ = 105.

For the comparison we consider the same control problem
as in the main text with a gate duration of T = 200 ns. We let
each optimization algorithm optimize the same 300 random
seeds, which are drawn uniformly at random. The results are
plotted in Fig. 5 where we plot the infidelity for each seed
as a function of wall time consumption, which we limit to
1000 s. From the figure we see that Interior-Point generally
converges faster and at lower infidelity solutions. This justifies
our choice of using Interior-Point for the results presented in
the main text.

APPENDIX E: CIRCUIT QED CALCULATIONS

The following derivation to some extent resembles the one
given in Ref. [75]. The starting point is the drift Hamiltonian
given by Eq. (18). Here we eliminate the cavity by going to a
frame rotating at ωr via R = exp [−iωr (b†

1b1 + b†
2b2 + a†a)].

This gives

H =
∑
j=1,2

� jb
†
jb j + δ j

2
b†

jb j (b
†
jb j − 1)

+
∑
j=1,2

g j (ab†
j + a†b j ), (E1)

where � j = ω j − ωr . Then we perform a Schrieffer-Wolff
transformation [87] using S = ∑

j=1,2
g j

� j
(ab†

j − a†b j ) in or-
der to eliminate the cavity. The resulting Hamiltonian, when
any constant energy shifts have been removed and the cavity
neglected, is

H =
∑
j=1,2

ω̃ jb
†
jb j + δ j

2
b†

jb j (b
†
jb j − 1) + J (b†

1b2 + b1b†
2).

(E2)
Here we see that the transmon-cavity coupling has
been replaced with an effective transmon-transmon cou-

pling where J = g1g2(�1+�2 )
�1�2

and ω̃ j = ω j + g2
j

� j
is now the

dressed transmon state. The last step when transforming
Eq. (E2) into Eq. (19) is doing a second rotation, R′ =
exp [−iω̃2(b†

1b1 + b†
2b2)], such that the detuning becomes

� = ω̃2 − ω̃2. We also add a direct drive on the first transmon,
Hc(t ) = �(t )(b†

1 + b1) (see, e.g., Ref. [75]).

APPENDIX F: TWO-LEVEL EXAMPLE

In Fig. 1(b), we illustrated three optimization methods
based on gradient descent and Interior-Point with either BFGS
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or the Hessian for a two-dimensional optimization problem.
Here we have implemented a simple gradient descent algo-
rithm using a fixed step size, where the step size is chosen
to illustrate typical differences between the gradient descent
and BFGS. We briefly elaborate on what Fig. 1(b) depicts. We
consider the two-level Hamiltonian H (t ) = σx + c(t )σz, with
the goal of synthesizing a X gate. We limit the control to two
steps N = 2, which reveals an analytical solution at TQSL =
π/2 with c1,1 = c1 = 0 and c2,1 = c2 = 0. At T = 3TQSL the
same solution is still optimal, but now several other solutions
emerge in the optimization landscape, an effect also studied

in Ref. [88]. For instance, the figure depicts a suboptimal
solution at (c1, c2) = (0.000, 2.285). We start the optimiza-
tion near the two optima at (c1, c2) = (−0.915, 2.251) and
plot the subsequent optimization. The two gradient-based
optimization approaches fall into the nearest trap (i.e., sub-
optimal solution), while the Hessian optimization manages to
avoid this solution. We attribute this result to the fact that the
Hessian-based optimization has more information about the
landscape curvature, which enables it to avoid the local trap
and instead reach the optimal solution. The reader should of
course keep in mind that this is but one example.
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[31] G. A. Paz-Silva, S. Rebić, J. Twamley, and T. Duty, Phys. Rev.
Lett. 102, 020503 (2009).

[32] X. Wang, A. Bayat, S. G. Schirmer, and S. Bose, Phys. Rev. A
81, 032312 (2010).

[33] M. Nimbalkar, R. Zeier, J. L. Neves, S. B. Elavarasi, H. Yuan,
N. Khaneja, K. Dorai, and S. J. Glaser, Phys. Rev. A 85, 012325
(2012).

[34] S. Ashhab, Phys. Rev. A 92, 062305 (2015).
[35] R. S. Said and J. Twamley, Phys. Rev. A 80, 032303 (2009).
[36] F. Dolde, V. Bergholm, Y. Wang, I. Jakobi, B. Naydenov,

S. Pezzagna, J. Meijer, F. Jelezko, P. Neumann, T. Schulte-
Herbrüggen et al., Nat. Commun. 5, 3371 (2014).

[37] B. Khani, S. T. Merkel, F. Motzoi, J. M. Gambetta, and F. K.
Wilhelm, Phys. Rev. A 85, 022306 (2012).

[38] J. H. M. Jensen, J. J. Sørensen, K. Mølmer, and J. F. Sherson,
Phys. Rev. A 100, 052314 (2019).

[39] Z. Tošner, T. Vosegaard, C. Kehlet, N. Khaneja, S. J. Glaser,
and N. C. Nielsen, J. Magn. Reson. 197, 120 (2009).

[40] J. R. Johansson, P. D. Nation, and F. Nori, Comput. Phys.
Commun. 184, 1234 (2013).

[41] J. Sørensen, J. Jensen, T. Heinzel, and J. Sherson, Comput.
Phys. Commun. 243, 135 (2019).

[42] F. Motzoi, J. M. Gambetta, S. T. Merkel, and F. K. Wilhelm,
Phys. Rev. A 84, 022307 (2011).

042612-10

https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/nature23879
https://doi.org/10.1038/nature10012
https://doi.org/10.1038/nphys2251
https://doi.org/10.1038/nphys2259
https://doi.org/10.1103/PhysRevX.8.021050
https://doi.org/10.1088/0953-4075/40/18/R01
https://doi.org/10.1088/1367-2630/12/7/075008
https://doi.org/10.1140/epjd/e2015-60464-1
https://doi.org/10.1103/PhysRevLett.106.190501
https://doi.org/10.1103/PhysRevA.84.022326
https://doi.org/10.1103/PhysRevLett.89.188301
https://doi.org/10.1103/PhysRevA.68.062308
https://doi.org/10.1126/science.1093649
https://doi.org/10.1103/PhysRevA.92.062343
https://doi.org/10.1016/j.jmr.2004.11.004
https://doi.org/10.1016/j.jmr.2011.07.023
https://doi.org/10.1103/PhysRevA.84.022305
https://doi.org/10.1063/1.2366703
https://doi.org/10.1103/PhysRevLett.107.010501
https://doi.org/10.1016/j.jmr.2012.09.013
https://doi.org/10.1103/PhysRevA.90.012306
https://doi.org/10.1063/1.5141384
https://doi.org/10.1103/PhysRevLett.103.110501
https://doi.org/10.1103/PhysRevB.84.144516
https://doi.org/10.1088/0953-2048/27/1/014001
https://doi.org/10.1103/PhysRevA.97.042348
https://doi.org/10.1103/PhysRevA.101.022321
https://doi.org/10.1103/PhysRevLett.102.020503
https://doi.org/10.1103/PhysRevA.81.032312
https://doi.org/10.1103/PhysRevA.85.012325
https://doi.org/10.1103/PhysRevA.92.062305
https://doi.org/10.1103/PhysRevA.80.032303
https://doi.org/10.1038/ncomms4371
https://doi.org/10.1103/PhysRevA.85.022306
https://doi.org/10.1103/PhysRevA.100.052314
https://doi.org/10.1016/j.jmr.2008.11.020
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1016/j.cpc.2019.04.020
https://doi.org/10.1103/PhysRevA.84.022307


HESSIAN-BASED OPTIMIZATION OF CONSTRAINED … PHYSICAL REVIEW A 102, 042612 (2020)

[43] X. Ge, H. Ding, H. Rabitz, and R.-B. Wu, Phys. Rev. A 101,
052317 (2020).

[44] J. J. W. H. Sørensen, M. O. Aranburu, T. Heinzel, and J. F.
Sherson, Phys. Rev. A 98, 022119 (2018).

[45] M. H. Goerz, F. Motzoi, K. B. Whaley, and C. P. Koch,
npj Quantum Inf. 3, 1 (2017).

[46] T. Schulte-Herbrüggen, A. Spörl, N. Khaneja, and S. Glaser,
J. Phys. B: At. Mol. Opt. Phys. 44, 154013 (2011).

[47] J. J. Sørensen, M. Aranburu, T. Heinzel, and J. Sherson,
arXiv:1802.07521.

[48] E. Zahedinejad, S. Schirmer, and B. C. Sanders, Phys. Rev. A
90, 032310 (2014).

[49] P. Palittapongarnpim, P. Wittek, E. Zahedinejad, S. Vedaie, and
B. C. Sanders, Neurocomputing 268, 116 (2017).

[50] M. Bukov, A. G. R. Day, D. Sels, P. Weinberg, A. Polkovnikov,
and P. Mehta, Phys. Rev. X 8, 031086 (2018).

[51] D. Fitzek, M. Eliasson, A. F. Kockum, and M. Granath,
Phys. Rev. Res. 2, 023230 (2020).

[52] M. Y. Niu, S. Boixo, V. N. Smelyanskiy, and H. Neven,
npj Quantum Inf. 5, 1 (2019).

[53] Z. An and D. Zhou, Europhys. Lett. 126, 60002 (2019).
[54] J. Yao, M. Bukov, and L. Lin, arXiv:2002.01068.
[55] M. Dalgaard, F. Motzoi, J. J. Sørensen, and S. Jacob, npj

Quantum Inf. 6, 6 (2020).
[56] D. Goodwin and I. Kuprov, J. Chem. Phys. 143, 084113 (2015).
[57] D. Goodwin and I. Kuprov, J. Chem. Phys. 144, 204107 (2016).
[58] D. Hocker, C. Brif, M. D. Grace, A. Donovan, T.-S. Ho, K. M.

Tibbetts, R. Wu, and H. Rabitz, Phys. Rev. A 90, 062309
(2014).

[59] G. C. Hegerfeldt, Phys. Rev. Lett. 111, 260501 (2013).
[60] C. Lin, D. Sels, and Y. Wang, Phys. Rev. A 101, 022320

(2020).
[61] D. V. Zhdanov and T. Seideman, arXiv:1709.09423.
[62] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster,

J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J.
Schoelkopf, Phys. Rev. A 76, 042319 (2007).

[63] C. Rigetti and M. Devoret, Phys. Rev. B 81, 134507 (2010).
[64] J. M. Chow, A. D. Córcoles, J. M. Gambetta, C. Rigetti,

B. R. Johnson, J. A. Smolin, J. R. Rozen, G. A. Keefe, M. B.
Rothwell, M. B. Ketchen, and M. Steffen, Phys. Rev. Lett. 107,
080502 (2011).

[65] J. H. M. Jensen, F. S. Møller, J. J. Sørensen, and J. F. Sherson,
arXiv:2005.09943.

[66] Z. Ugray, L. Lasdon, J. Plummer, F. Glover, J. Kelly, and R.
Martí, INFORMS J. Comput. 19, 328 (2007).

[67] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed.
(Springer Science & Business Media, New York, 2006).

[68] R. Wilcox, J. Math. Phys. 8, 962 (1967).
[69] F. F. Floether, P. De Fouquieres, and S. G. Schirmer, New J.

Phys. 14, 073023 (2012).
[70] D. L. Goodwin, Advanced Optimal Control Methods for Spin

Systems, Ph.D. thesis, University of Southampton (2017).
[71] G. S. Paraoanu, Phys. Rev. B 74, 140504(R) (2006).
[72] G. Wendin, Rep. Prog. Phys. 80, 106001 (2017).
[73] J. L. Allen, R. Kosut, and E. Ginossar, arXiv:1902.08056.
[74] L. Theis, F. Motzoi, S. Machnes, and F. Wilhelm,

Europhys. Lett. 123, 60001 (2018).
[75] E. Magesan and J. M. Gambetta, Phys. Rev. A 101, 052308

(2020).
[76] B. Khani, J. Gambetta, F. Motzoi, and F. K. Wilhelm, Phys. Scr.

2009, 014021 (2009).
[77] D. C. McKay, S. Filipp, A. Mezzacapo, E. Magesan, J. M.

Chow, and J. M. Gambetta, Phys. Rev. Appl. 6, 064007 (2016).
[78] T. Caneva, M. Murphy, T. Calarco, R. Fazio, S. Montangero, V.

Giovannetti, and G. E. Santoro, Phys. Rev. Lett. 103, 240501
(2009).

[79] See documentation at https://se.mathworks.com/help/optim/ug/
fmincon.html.

[80] L. Hardy, arXiv:quant-ph/0101012.
[81] D. V. Zhdanov and T. Seideman, Phys. Rev. A 92, 052109

(2015).
[82] M. Ndong, H. Tal-Ezer, R. Kosloff, and C. P. Koch, J. Chem.

Phys. 130, 124108 (2009).
[83] R. H. Byrd, M. E. Hribar, and J. Nocedal, SIAM J. Optim. 9,

877 (1999).
[84] R. A. Waltz, J. L. Morales, J. Nocedal, and D. Orban,

Math. Program. 107, 391 (2006).
[85] T. F. Coleman and Y. Li, Math. Program. 67, 189 (1994).
[86] T. F. Coleman and Y. Li, SIAM J. Optim. 6, 418 (1996).
[87] J. R. Schrieffer and P. A. Wolff, Phys. Rev. 149, 491 (1966).
[88] M. Larocca, P. M. Poggi, and D. A. Wisniacki, J. Phys. A: Math.

Theor. 51, 385305 (2018).

042612-11

https://doi.org/10.1103/PhysRevA.101.052317
https://doi.org/10.1103/PhysRevA.98.022119
https://doi.org/10.1038/s41534-017-0036-0
https://doi.org/10.1088/0953-4075/44/15/154013
http://arxiv.org/abs/arXiv:1802.07521
https://doi.org/10.1103/PhysRevA.90.032310
https://doi.org/10.1016/j.neucom.2016.12.087
https://doi.org/10.1103/PhysRevX.8.031086
https://doi.org/10.1103/PhysRevResearch.2.023230
https://doi.org/10.1038/s41534-019-0141-3
https://doi.org/10.1209/0295-5075/126/60002
http://arxiv.org/abs/arXiv:2002.01068
https://doi.org/10.1038/s41534-019-0241-0
https://doi.org/10.1063/1.4928978
https://doi.org/10.1063/1.4949534
https://doi.org/10.1103/PhysRevA.90.062309
https://doi.org/10.1103/PhysRevLett.111.260501
https://doi.org/10.1103/PhysRevA.101.022320
http://arxiv.org/abs/arXiv:1709.09423
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/PhysRevB.81.134507
https://doi.org/10.1103/PhysRevLett.107.080502
http://arxiv.org/abs/arXiv:2005.09943
https://doi.org/10.1287/ijoc.1060.0175
https://doi.org/10.1063/1.1705306
https://doi.org/10.1088/1367-2630/14/7/073023
https://doi.org/10.1103/PhysRevB.74.140504
https://doi.org/10.1088/1361-6633/aa7e1a
http://arxiv.org/abs/arXiv:1902.08056
https://doi.org/10.1209/0295-5075/123/60001
https://doi.org/10.1103/PhysRevA.101.052308
https://doi.org/10.1088/0031-8949/2009/T137/014021
https://doi.org/10.1103/PhysRevApplied.6.064007
https://doi.org/10.1103/PhysRevLett.103.240501
https://se.mathworks.com/help/optim/ug/fmincon.html
http://arxiv.org/abs/arXiv:quant-ph/0101012
https://doi.org/10.1103/PhysRevA.92.052109
https://doi.org/10.1063/1.3098940
https://doi.org/10.1137/S1052623497325107
https://doi.org/10.1007/s10107-004-0560-5
https://doi.org/10.1007/BF01582221
https://doi.org/10.1137/0806023
https://doi.org/10.1103/PhysRev.149.491
https://doi.org/10.1088/1751-8121/aad657

