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Performing efficient quantum computer tune-up and calibration is essential for growth in system complexity.
In this work we explore the link between facilitating such capabilities and the underlying architecture of the
physical hardware. We focus on the specific challenge of measuring (“mapping”) spatially inhomogeneous
quasistatic calibration errors using spectator qubits dedicated to the task of sensing and calibration. We introduce
an architectural concept for such spectator qubits: arranging them spatially according to prescriptions from
optimal two-dimensional approximation theory. We show that this insight allows for efficient reconstruction of
inhomogeneities in qubit calibration, focusing on the specific example of frequency errors which may arise from
fabrication variances or ambient magnetic fields. Our results demonstrate that optimal interpolation techniques
display near optimal error scaling in cases where the measured characteristic (here the qubit frequency) varies
smoothly, and we probe the limits of these benefits as a function of measurement uncertainty. For more complex
spatial variations, we demonstrate that the noise mapping for quantum architectures formalism for adaptive
measurement and noise filtering outperforms optimal interpolation techniques in isolation and, crucially, can be
combined with insights from optimal interpolation theory to produce a general purpose protocol.
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I. INTRODUCTION

The scale-up of near-term quantum devices presents new
challenges associated with fabrication, tune-up, characteriza-
tion, and control as the total number of qubits increases [1–5].
For instance, in larger devices, we simultaneously see that fab-
rication tolerances may lead to performance variation across
systems [6], while the number of measurements required in
order to bring systems online grows rapidly. These concerns
add to the general issue of decoherence due to undesired
coupling of qubits to spatially inhomogeneous ambient fields.
Accordingly, the procedure by which quantum devices must
be characterized and tuned-up presents a challenge which
grows with the size and complexity of each new generation
of device [7,8].

In response, there has been an emergence of interest in
the deployment of automated and nondestructive data infer-
ence and control approaches to this problem, exploiting the
presence of spatial correlations in the performance variations
[8]. One interesting approach to this problem involves char-
acterization of classical noise or device variations in space
using spectator qubits [9]; additional dedicated devices are
employed to gain information about hardware performance
such that information-carrying data qubits may operate undis-
turbed. Even within this framework we are still faced with
the challenge of efficiently extracting information from po-
tentially large numbers of these ancillary sensing devices.
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In such circumstances, classical adaptive filtering tech-
niques can play an essential role in efficiently characterizing,
calibrating, and controlling mesoscale quantum devices in an
attempt to extract improved performance [2,4,10]. In earlier
work, the authors presented two distinct methods with radi-
cally different applications for the approximate reconstruction
of unknown continuous physical phenomena using discretized
projective measurements on qubits. The first method [11] was
an efficient approach to quantum state tomography of single-
mode continuous variable systems using bivariate optimal
Lagrange interpolation at the Padua points [12–16]. The sec-
ond method was inspired by probabilistic robotics and enabled
adaptive scheduling of measurements on two-dimensional
(2D) multiqubit arrays for noise spatial mapping, referred to
as noise mapping for quantum architectures (NMQA) [17,18].

In this work, we combine these apparently disparate tech-
niques in order to address the problem of how to most
efficiently extract useful information for mesoscale tune-up
and calibration using spectator qubits. We model the un-
derlying hardware performance variations as a “field” and
thus seek the most efficient means to characterize the spatial
field. To this end we are inspired by the observation that
ideal interpolation theory provides insights on how to con-
duct optimal sampling on any continuously varying, bivariate
function (e.g., space, time, and relative phase). We associate
such optimal sampling points with the physical locations of
sensor qubits in order to efficiently determine spatial vari-
ations in the field at the location of the (unmeasured) data
qubits.

In particular, we suggest sensor qubits should be located
on a grid defined by the so-called Padua points [13–16],
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which enables efficient Lagrange polynomial interpolation
of the underlying field. We employ numeric simulations of
field characterization using different algorithmic approaches
to estimation and explore the influence of the underlying
sensor-qubit locations on the quality of the estimates. We
demonstrate that Lagrange-Padua reconstructions in 2D out-
performs other interpolation or statistical estimation methods
for the reconstruction of polynomial fields, while using ∼10×
fewer sensor qubits. Our simulations show how these benefits
are lost in conditions when optimal interpolation theory can-
not be applied, and demonstrate that the alternative adaptive
measurement approach NMQA [17,18] achieves the lowest
expected error. We study the impact of quantum projection
noise on field estimation quality, including the role of averag-
ing over the discretized outcomes of projective measurements.
Our results demonstrate that NMQA is agnostic to the spatial
arrangement of sensor qubits on hardware, motivating the use
of a Padua sensor grid as a default architectural choice for
embedded sensors.

Our work shows that using sensors on a Padua grid is
always the favored strategy. In cases where the field is well
approximated by a polynomial, interpolation methods may be
used; in cases where this is violated, NMQA may be employed
without degradation of the mapping. Ultimately combining
insights from the estimation procedure into the physical lay-
out of devices is a key finding of this work. We outline our
approach in Sec. II, where we present a classical spatial re-
construction and prediction problem over a 2D arrangement of
sensor and data qubits. Two distinct types of device configura-
tions are considered where a sensor-qubit sublattice is nested
in a fixed data-qubit grid. For each device configuration, we
introduce the appropriate spatial reconstruction strategy and
test performance. Results from numeric simulations and com-
parative analyses are presented in Sec. III. We conclude with
a summary and brief future outlook in Sec. IV.

II. APPROACHES TO SPATIAL FIELD ESTIMATION VIA
SPECTATOR QUBITS

We consider a notional 2D multiqubit array in which qubits
are partitioned into “sensor” and “data” qubits; these noninter-
acting qubits are subject to spatial inhomogeneities in a device
parameter (e.g., qubit frequency), modeled as an external clas-
sical field with finite spatial correlations. For concreteness we
implement a term coupling to the qubit Hamiltonian ∝σ̂z Pauli
operator, as would be the case for qubit frequency variations
or an inhomogeneous magnetic field. The question arising in
this work is the extent to which the spatial configuration of the
sensor qubits affects the accuracy of the field reconstruction at
the proximal data qubits.

To probe this Hamiltonian term we assume a single-shot
Ramsey experiment with a fixed interrogation time τ can be
performed on each qubit, though the general framework is
compatible with arbitrary measurement routines. Each mea-
surement yields a “0” or “1” outcome representing the state
of the qubit. By considering a sensor-qubit state initialized
in a superposition of Pauli σ̂z eigenstates in the appropriate
interaction picture, an arbitrary detuning δω(t ) of the sensor-
qubit frequency with respect to the system master clock is

expressible for each independent sensor-qubit Hamiltonian as

Hint (t ) := δω(t )

2
σ̂z, (1)

where the detuning δω(t ) is written in a general time-
dependent form. A nonzero detuning term gives rise to an
experimentally measurable phase φ(τ ) between the qubit su-
perposition states through the application of two temporally
separated pulses in a Ramsey experiment [19],

φ(τ ) = (φ2 − φ1) +
∫ τ

0
δω(t ′)dt ′, (2)

where τ is the temporal separation in which the qubit under-
goes free evolution and φ1,2 are the reference phases of each
applied control pulse. The accumulated phase φ(τ ) can be
seen as a path difference leading to interference between the
probability amplitudes of qubit basis states as |0〉 + e−iφ(τ )|1〉.
The probability of obtaining a particular 0 or 1 outcome varies
as

Pr(Y ) := cos[φ(τ )/2]Y sin[φ(τ )/2]1−Y , Y ∈ {0, 1}, (3)

where Y is a qubit-state projective measurement outcome and
the expression above represents the ideal case in the absence
of any additional measurement noise. Restricting to the static
case where δω(t ) ≡ δω, ∀t , we fix τ and consider repeated
Ramsey measurements on sensor qubits distributed on a 2D
multiqubit array. Here, φ(τ ) for each sensor qubit exhibits
spatial variations over 2D space, accruing either to hardware
control imperfections or the presence of inhomogeneous ex-
ternal fields. The choice of τ determines the resolution at
which detuning errors are resolved for identifying the frequen-
cies of qubits that may be far off resonance during calibration
and tune-up.

Our procedure yields space-stamped discrete binary sam-
ples at the location of sensor qubits reflecting the underlying
spatial inhomogenieties of the dephasing field. In the limit
of high-fidelity measurements on each sensor qubit, the task
of mapping the field at the data-qubit locations transitions
from an estimation problem to a bivariate interpolation or an
approximation problem. Let x (similarly, x′) correspond to the
spatial coordinates of a sensor qubit (data qubit) in 2D, and let
f (x) [similarly, f (x′)] be the estimated field value measured
by repeated projective measurements. A key insight in this
work is the recognition that some interpolation techniques are
associated with an optimal choice of point set at which to
sample, χ := {xi}|χ |

i=1, and that these points should be associ-
ated with the spatial locations of sensor qubits. The canonical
example in 1D is the Chebshev points. In 2D, the Padua points
are a recently discovered family of point sets for optimally
sampling a bivariate continuous function, for which Lagrange
polynomial interpolation yields the lowest-error reconstruc-
tion [13–16].

The Padua points are families of point sets that occur on the
unit square [−1, 1]2. The geometric interpretation of Padua
points can be obtained by envisioning them as equally spaced
points along a generating curve on the unit square, defined by

γκ (z) := (− cos[(κ + 1)z],− cos(κz)), (4)

where z is any real continuous parameter. The intersection of
this generating curve with itself, the edges of the square, or
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its vertices yields the Padua point set. The Padua points are
equispaced along z and indexed by j, j′ as

z( j, j′ ) := jκ + j′(κ + 1)

κ (κ + 1)
π, j, j′ � 0, j + j′ � κ. (5)

Each Padua point set is associated with a positive integer
order, κ , which indicates that a Lagrange interpolant can be
constructed at the Padua points using a family of polynomials
with degree n � κ . Different κ’s yield Padua point sets, χκ ,
that differ in both size and arrangement on the unit square,
with the number of points in the set given by

|χκ | = (κ + 2)(κ + 1)

2
. (6)

The structure of the Padua grid is unique with respect to the
data-qubit grid for κ > 2, while for κ = 1, 2 the Padua grid is
degenerate with a square grid containing the relevant number
of sites.

For any point in the unit square x′ ∈ [−1, 1]2, the Padua-
Lagrange interpolant [13,14] of a true field, denoted f , is
written:

L( f )(x′) :=
∑
x∈χκ

f (x)l (x, x′). (7)

Here the Lagrange basis polynomials, l (x, x′), form an or-
thonormal basis over the Padua points, such that for any two
Padua points x1, x2 ∈ χκ , l (x1, x2) = 1 if and only if x1 = x2,
and l (x1, x2) = 0 otherwise [14,15]. If either one or both of
x1, x2 is not a Padua point, l (x1, x2) � 0, and can be computed
efficiently from the coordinate locations x1 and x2 using matri-
ces involving the so-called “product grids” of the Chebychev
polynomials in 1D, as detailed in [5], and restated for com-
pleteness in the Appendixes.

Locating sensor qubits at Padua points may be contrasted
with methods in which the sensor-qubit array is matched to the
underlying geometry of the data qubits, but incorporated as a
nested, regular sublattice. In this circumstance, a polynomial
basis need not be an optimal choice for interpolation. We
may instead perform interpolation using radial basis functions
(RBF) [20,21]. The RBF method uses a nonpolynomial (e.g.,
sigmoidal or Gaussian) function basis to conduct interpolation
and scales well to multivariate interpolation problems.

So far we have discussed deterministic analysis meth-
ods such as interpolation, but we also consider nonlinear
statistical estimation techniques that incorporate a projective-
measurement model. We choose an algorithm presented in
previous literature as NMQA [17,18], which estimates an
unknown 2D field by adaptively scheduling measurements on
sensor qubits. NMQA can be implemented directly on any
sensor-qubit arrangement, including both regular (rectangu-
lar) lattices or Padua locations for sensor qubits. However,
not all of the available sensor qubits need to be measured,
as NMQA’s controller selects the next physical measurement
adaptively based on state estimation in the previous iteration
step. It is thus distinct from interpolation methods as it focuses
on building a “map” of f iteratively as new measurements are
obtained using a spatial information sharing and prediction
mechanism. NMQA procedures are characterized in detail in
Refs. [17,18].

III. RESULTS AND DISCUSSION

In this section, we employ a numeric simulation to char-
acterize the performance of these techniques for true fields
exhibiting different forms of spatial variation, while incorpo-
rating different spatial arrangement of sensors on hardware.
Our studies consider a fixed 5 × 5 regular (square) grid of
data qubits with an overlaid grid of sensor qubits arranged at
locations dictated by the chosen estimation scheme [Fig. 1(a)].
Simulated measurements from the sensor qubits are used to
reconstruct a map of the field f at the locations of the data
qubits on the array. For any mapping algorithm we calculate
error via the uniform error, i.e., the infinity norm, and refer
to this quantity as the “mapping error.” The data inference
procedures discussed here are compared against a baseline
approach using a square grid of sensors and simply assign-
ing sensor results to nearest-neighbor data qubits (“standard”
protocol). This standard protocol uses a total of nine sensor
qubits for a 5 × 5 grid data-qubit grid, where each sensor qubit
is associated with up to four nearest-neighboring data qubits.
Full details of the specific realization of the standard protocol
grid in four possible orientations and all other hardware ge-
ometries used in comparative simulations are provided in the
Appendixes.

A. Dependence of interpolation performance on sensor grid

We begin by examining the dependence of mapping error
on the choice of interpolation strategy and sensor grid in
Fig. 1(b). Calculations take as input data the binary outcomes
0 or 1 of simulated projective single-qubit measurements
and receive the same fixed total measurement budget. Mea-
surements are “batch processed” and the total measurement
budget is fixed as a multiple of the grid size, so that every sen-
sor qubit is measured m times. Thus, for m > 1, measurements
at every sensor qubit are used to produce an estimate for the
expectation value of the measurement, and this floating-point
number is then given to the algorithm.

The main panel in Fig. 1(b) shows simulated mapping error
vs the polynomial order n of different fields f , as achieved
using different interpolation methods. Each data point in
Fig. 1(b) shows the average mapping error and standard de-
viation for a set of 50 randomly sampled polynomial fields
of a given order n. Examples of true fields for different n are
depicted as a color scale in the top row of insets. The mapping
error for Lagrange-Padua interpolation is plotted for κ = n
and m = 50 measurements per sensor qubit (black dashed
triangles). This data set may be compared directly with a RBF
interpolation using the maximum number of sensors possible
irrespective of the order n of the field f : a 54 sensor-qubit
regular grid (green dashed) with an approximately 2 : 1 ratio
of sensor to data qubits.

Since the number of sensors in Lagrange-Padua interpola-
tion scales with n, we may also directly compare interpolation
on a regular vs Padua grid with approximately the same num-
ber of sensor qubits. The choices of d × d regular grid for d =
2, 3, 4, 5, 9 and Padua grid with κ = 1, 3, 4, 6, 9 form differ-
ent spatial geometries with approximately the same number
of sensor qubits. In these specific cases, we plot the output
of RBF interpolation as a separate data set (blue squares),
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FIG. 1. Impact of sensor-qubit layout on field mapping quality in
a 2D device. (a) Fixed 5 × 5 data qubits (gray dots) used in all anal-
yses. Left to right: sensor qubits (red dots) are arranged in regularly
spaced d × d grid for d = 4 (left) or according to Padua points of
order κ = 1, 4 (middle, right). Generating curve for Padua point sets
illustrated by red dashed line. (b) Mapping error in radians (rad) vs
polynomial order n for three different interpolation strategies. Top
row of insets depicts an example of true polynomial field of degree
n on a fixed 5 × 5 regular grid of data qubits. Main panel: each
data marker corresponds to an average over 50 trials of randomly
generated true fields. In a single trial, a true field is generated as a
polynomial of degree n with random coefficients, and the output of
the polynomial is scaled and shifted to lie between [0, π ] radians.
Interpolation at Padua points of order κ is performed using Lagrange
polynomials with κ = n (black dashed triangles). Interpolation on a
d × d regular grid is performed using RBF, where the total number
of sensors is within ±3 qubits on both regular and Padua grids, with
d = 2, 3, 4, 5, 9 (blue squares). For d = 9, sensor qubits that overlap
with data qubits are removed, leading to a total of 54 sensor qubits.
In the extreme case where the number of sensor qubits on regular
grid are much greater than Padua grid for all orders n < 9, RBF
interpolation is performed on a fixed, regular grid using d = 9 (“Max
regular” in green dashed markers). Error bars represent one standard
deviation within the distribution of 50 random trial polynomials. For
all interpolation schemes m = 50 measurements per sensor qubit is
used.

where blue data markers for polynomial order n < 5 (n � 5)
correspond to a maximum size difference of ±1 (±3) sensor
qubits between regular vs Padua grids.

In Fig. 1(b) we observe that, for all polynomial orders
n, the Lagrange-Padua interpolation approach outperforms
both alternative RBF interpolation strategies, demonstrating
the impact of the sensor-qubit architecture on interpolation
quality. This observation holds irrespective of whether regular
and Padua grids are approximately the same size or if RBF is
provided a distinct advantage with a high number of sensor
qubits.

The inclusion of error in sensor-qubit measurements due
to quantum projection noise represents a deviation from the
core assumptions of ideal interpolation theory (for both RBF
and Padua), where the value of the field at the sensors is
assumed to be known exactly. Indeed, comparisons to opti-
mal interpolation theory are only formally facilitated in the
regime where ideal measurements are obtained as m → ∞.
Nonetheless, Lagrange-Padua reconstructions give low-error
reconstructions of polynomial fields for κ = n despite the fact
that m is finite and that all interpolation methods receive noisy
measurements at the location of sensor qubits.

B. Comparison between interpolation and adaptive
measurement strategies

Having confirmed the utility of the Lagrange-Padua ap-
proach, we now relax assumptions of ideal interpolation
theory in Fig. 2. We plot average mapping error vs the total
number of sensor qubits, but we change the true field so that
a representation on the finite polynomial basis increases in
difficulty from (a) to (c), which have fixed underlying fields.
For each data point, we simulate 50 repetitions of the mea-
surement outcomes for the same underlying field and report
an average mapping error and standard error.

Panel (a) in Fig. 2 corresponds to a simple linear vari-
ation, and in panel (b) we plot a common test function in
interpolation literature known as the Franke function [22].
This function consists of a weak linear background favoring a
Lagrange-Padua approach, but with the addition of a superpo-
sition of two Gaussian functions, favoring the Gaussian basis
in RBF interpolation. In panel (c), the true field is nonpoly-
nomial with a form ∝cos[exp(2x + y)] sin(y) that does not
permit any finite polynomial or Gaussian representation.

The deviation from fields exactly describable by polyno-
mial functions motivates the inclusion of the alternate adaptive
mapping strategy, NMQA. In NMQA, a single-qubit binary
measurement is fed iteratively into the algorithm; NMQA
revises the state estimation procedure after each measurement
and the NMQA controller iteration adaptively chooses which
sensor qubit to measure next. This adaptive measurement pro-
cedure means that, for any fixed total measurement budget,
sensor qubits under NMQA are not all uniformly measured m
times.

We compare the different interpolation and adaptive mea-
surement strategies across these three different fields using
simulations setting m = 50, but varying the number of sensor
qubits employed. Figure 2(a) numerically demonstrates that
the Lagrange-Padua interpolation method for low order κ

performs the best of our chosen methods. This benefit arises
because the underlying field is a degree-1 polynomial. In this
case, the simple structure of the underlying field makes the
use of additional sensor qubits with κ > 1 unnecessary, as
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FIG. 2. Performance of interpolation strategies and NMQA for reconstructing different true fields for both regular and Padua geometries.
True fields are depicted as a color scale on a fixed 5 × 5 grid of data qubits in insets. Main panels (a)–(c) show expected mapping error in
radians (rad) vs number of sensors for (a) linear, (b) Franke function, and (c) nonpolynomial true field, with visible error bars depicting 1
std. error over 50 repeated simulations. For Padua sensor locations, we plot NMQA (open red circles) vs Lagrange polynomial interpolation
(black dashed triangles). For a regular d × d grid, we plot NMQA (filled circles) vs radial basis functions (blue squares). Standard assignment
approach is shown as a threshold using a fixed arrangement of nine sensor qubits and averaged over four nonunique orientations (gray solid
line). Data shown for m = 50 measurements per sensor qubit, with d = 2, 3, 4, 6, 9 and κ = 1, 2, 3, 4, 5, 10.

measurement errors from quantum projection noise for each
additional sensor increase the total error in the reconstruction.
This increase in reconstruction error is illustrated by the grad-
ual increase in mapping error with the sensor-qubit number for
the black dashed triangles. The RBF interpolation strategy ini-
tially performs worse than Lagrange-Padua interpolation, but
the two methods become approximately equivalent as more
qubits are added, even though the field complexity remains
fixed. In this case NMQA performs substantially worse than
Lagrange-Padua interpolation for small qubit numbers, but its
in-built noise filtering properties lead all methods to converge
in the high m, κ regime.

Moving to other functional forms for f , our results for the
Franke function in Fig. 2(b) show that the performance of
the Lagrange-Padua method improves with increasing κ , but
does not outperform other methods, particularly for small or
moderate values of κ , where it is not even well distinguished
from the standard assignment approach. RBF’s superior per-
formance in the high-data limit is somewhat unsurprising
since Gaussian components of the Franke function are much
stronger than the background linear drift, and these Gaussian
spatial variations are naturally expressed in the functional
basis of RBF. In this case, NMQA performs marginally better
in the low-data regime but is outperformed by RBF in the
large-measurement limit.

Finally, we observe strikingly different behavior when f is
not approximated well by the natural functional basis of any
interpolant. The final panel, Fig. 2(c), represents a challenging
field reconstruction problem for all of our chosen methods.
Interpolation using Lagrange polynomials on Padua grids vs
RBF on regular grids shows that both interpolation methods
perform similarly and provide little if any benefit relative to

the standard assignment approach. In this case we observe that
NMQA substantially outperforms any other reconstruction
strategy, illustrating the relevance of an adaptive measurement
strategy when one cannot use an interpolant in some ideal
functional basis relative to the true field.

A surprising feature of panels 2(a)–2(c) is that the error
scaling behavior of NMQA appears to depend only on the
total number of sensor qubits on the unit square, and not on
the spatial arrangement of sensor qubits (Padua vs regular
grid), unlike interpolation. The difference between NMQA
and interpolation strategies can also be examined by varying
the number of single-qubit measurements per sensor qubit, m.
In Fig. 3, we plot mapping error vs m for two different field
configurations (rows) and three different orders for the sensor
grid (columns). The limit m → ∞ implies that a true field is
known perfectly on the locations of the sensor qubits for ideal
interpolation, indicating that errors in functional evaluation
are reduced from left to right along the x axis in each panel
of Fig. 3.

In Fig. 3(a), κ = n = 1 is close to satisfying conditions for
optimal interpolation on a linear field and the Lagrange-Padua
method provides the lowest error reconstruction for all m.
The opposite is true in 3(d)–(f), where NMQA significantly
outperforms Lagrange-Padua on a nonpolynomial field. For
the panels with κ > 1 the performance of Lagrange-Padua
methods deteriorates with respect to NMQA due to quantum
projection noise. In some cases [e.g., panels 3(b) and 3(c)], we
see a crossover in performance between Lagrange-Padua in-
terpolation and NMQA with m (as projection noise decreases
with m). However, this behavior disappears in the more chal-
lenging field reconstruction settings of 3(e) and 3(f), where
NMQA’s benefits are more substantial. A comparison of open
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FIG. 3. Expected mapping error in radians (rad) vs measure-
ments per sensor qubit m for linear field (n = 1) in top row
(a)–(c) and nonpolynomial field in bottom row (d)–(f). Columns de-
pict increasing order of the Padua grid from left to right κ = 1, 4, 10.
In each panel, mapping error vs m number of measurements per
sensor qubit is plotted for NMQA (open red circles) vs Lagrange
polynomial interpolation (black dashed triangles) over 50 trials with
visible error bars depicting 1 std. error. Padua sensor arrangements
(red dots) and associated generating curve (red dashed) for each
column is shown as bottom left insets in (d)–(f). For a linear field in
(a), κ = n = 1 is optimal Lagrange-Padua interpolation for m → ∞
and (b),(c) represent an unnecessary increase in the number of sensor
qubits. In (d)–(f), a nonpolynomial true field permits no finite order
polynomial representation.

circles in the top vs bottom row of panels shows that mapping
error trajectories for NMQA do not change with the type of
true field. This observation empirically confirms that, unlike
interpolation, NMQA’s efficacy depends on branching random
processes [17], and hence its structure precludes choosing a
functional basis for map reconstruction.

If a priori information about the true field is available, the
results of Figs. 2 and 3 demonstrate that the appropriate con-
figuration of Lagrange-Padua methods will yield the lowest
error field reconstruction on unmeasured data qubits. If no
such information is available, then NMQA satisfies our physi-
cal intuition that reconstruction performance improves with an
increase in the number of sensor qubits, whereas this intuition
is not always true for RBF or Lagrange interpolation if the
interpolant is poorly specified with respect to the properties of
the true field.

One anticipates that if κ is sufficiently high relative to
the polynomial order of the true field, and functional evalu-
ation errors approach zero for large m, then Lagrange-Padua
interpolation will always reflect a low-error reconstruction rel-
ative to RBF and NMQA approaches. Since there is no finite
polynomial representation of the test function in Fig. 2(c),
we have not been able to numerically ascertain the value of
κ that results in Lagrange-Padua interpolation outperforming
NMQA.

IV. CONCLUSION

Under the spectator qubit paradigm, we investigated pro-
tocols to efficiently characterize spatial inhomogeneities in
qubit calibration or performance, modeled as a classical scalar
field in 2D. By collecting measurements on a dedicated sub-
lattice of sensor qubits, we estimated the field values at
the locations of proximal, unmeasured data qubits in a 2D
multiqubit device, assuming a dephasing-type Hamiltonian.
Drawing from optimal interpolation and statistical estimation
theory, we used simulated data to compare the performance
of reconstruction methods in the presence of different field
configurations, studying the impact of the underlying sensor-
qubit architecture of field characterization.

Our results showed that in most circumstances it is ad-
vantageous to arrange sensor qubits at the Padua points,
an optimal point set for 2D interpolation. In circumstances
where the field is well approximated by polynomial func-
tions, Lagrange-Padua interpolation outperforms comparable
interpolation strategies using regular sensor-qubit lattices, as
well as adaptive measurement strategies. If, however, fields
are not well approximated by polynomial functions, adaptive
inference procedures such as NMQA perform best. Crucially,
as we have shown here, the performance of NMQA shows
limited sensitivity to the underlying sensor arrangement.

For complicated spatial variations, our results indicate
that both finite-measurement effects and the presence of
nonpolynomial field structure reduce the utility of opti-
mal Lagrange-Padua or RBF interpolation strategies in a
spectator-qubit paradigm. In some cases a priori information
about spatial variation in a target field parameter may be avail-
able, but unless the interpolant can be appropriately specified,
increasing the number of sensor qubits can increase over-
all field-reconstruction error. This observation runs counter
to the physical intuition that providing more sensors in a
field reconstruction problem should improve the quality of
the reconstruction. By contrast, the noise-filtering properties
of adaptive strategies such as NMQA enable the algorithm
to reduce mapping error as the total amount of information
increases (e.g., increasing sensor counts).

In this application NMQA also natively accommodates the
potential to incorporate temporal drifts which are not com-
patible with interpolation strategies. The dynamical model in
NMQA can be modified to include temporal dynamics that
may either be specified a priori or learned through data. In
the adaptive control [23] and probabilistic robotics literature
[24], particularly in the context of spatiotemporal mapping
applications for self-navigating vehicles [25], a time-varying
environment is often sampled rapidly such that a formal
dynamical model need not be specified and estimated state
information is “forgotten” by the algorithm over some time
scale. Contemporary inference proposals use hidden Markov
autoregressive moving average models [26] or Gaussian pro-
cesses [27] to introduce temporal correlations to an otherwise
static pattern estimation problem [28–30]. A full spatiotempo-
ral analysis of NMQA remains an exciting subject for future
work.

A hybrid of both NMQA and Lagrange-Padua techniques
yield a general protocol for spatial field characterization.
For higher accuracy, one may first use NMQA for a
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coarse-grained characterization of a target field, followed by
a Lagrange-Padua method on local regions that are approx-
imately polynomial (with interpolation order and number of
measurements informed by the results of NMQA). For qua-
sistatic linear or quadratic spatial variation, only first- or
second-order polynomial interpolants are needed, in which
case the Padua point set is an exact subset of a regular square
grid, as explained in the Appendixes. Thus NMQA characteri-
zation and local refinements via Lagrange-Padua interpolation
are practically viable even for regular grids. Alternatively,
building 2D qubit arrays in Padua arrangements is equally
attractive, as Padua-grid-configured hardware will not impede
any NMQA-based characterization procedures. We look for-
ward to greater exploration of how physical-layer quantum
computer architectures may be impacted by the control and
characterization strategies in use.

Access to the code base and data required to reproduce all
figures is provided via Ref. [31].
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APPENDIX A: GRID GEOMETRIES
FOR NUMERICAL SIMULATION

In Fig. 4 we illustrate the grid arrangements that have been
used throughout the analysis of the main text.

The top row of Fig. 4 shows four possible orientations
for the standard local neighborhood assignment method that
have been averaged over in all the data figures presented.
Local neighborhood assignments cannot generally be defined
uniquely in 2D. For a regular data-qubit grid defined on a
unit square, we choose the first four nearest-neighbor data
qubits for every sensor qubit, thereby maximizing the number
of first nearest neighbors in regular lattice. This procedure
can continue at the interior points of any regular data-qubit
grid when the number of rows and columns are even. For an
odd row or column, the first nearest neighbors are necessarily
equivalent to a 1D case where two data qubits are allocated
to each sensor. The intersection of odd rows and columns is a
vertex about which no neighbors are defined. We consider this
asymmetric case for a 5 × 5 data-qubit grid and we average
over the four possible orientations when we present results of
data simulations.

The middle and bottom rows depict the regular and Padua
spatial grid arrangements that have been investigated in the
scope of our empirical study. Observing the Padua point sets
in the bottom row of Fig. 4, we see that the Padua locations
for κ = 1, 2 are an exact subset of a regular square grid ar-
rangement. This suggests that quasistatic spatial variations for
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d Sensor qubit
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FIG. 4. Placement of sensor and data qubits on the unit square [−1, 1]2 for standard local neighborhood value-assignment (top), regular
(middle), and Padua (bottom) configurations. A 5 × 5 grid of data qubits (gray circles) is fixed in all panels, while sensor qubit (red circles)
are varied. Top: four possible orientations of local neighborhood assignment of data qubits to a single sensor. Shaded regions depict fixed
neighborhood groups. Middle: regular nested grid of d × d sensors, with d = 2, 3, 4, 6. For d = 9, sensor qubits that overlap exactly with data
qubits are removed, leading to a total of 54 sensor qubits. Bottom: Padua locations for order κ = 1, 2, 3, 4, 5, 10 and associated generating
curve (red dashed).
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κ � 2 could be analyzed using Lagrange-Padua methods on
specific types of regular grids.

APPENDIX B: IDEAL INTERPOLATION
AND APPROXIMATION THEORY

The details for the formalism of ideal interpolation and ap-
proximation theory is the subject of this section. We restate the
theoretical formalism following [32] and establish notation to
present the relevant results of [13–16,33,34].

1. Least-squares criterion

Let C(�) be the space of continuous functions of two
variables defined on an open, connected, and bounded subset
� ⊂ R2 [32]. The geometry of � affects the interpolation
problem and we focus on the case where � := [−1, 1]2 takes
the form of a unit square. Our true function is denoted by
f ∈ C(�) and f is the subject of our approximation recon-
struction over the region �.

We now wish to define two members in the space of
bivariate polynomials. Let Pκ be the space of bivariate poly-
nomials of degree at most κ with dimension N . Let the points
χ := {xi}L

i=1 denote the position of L known values of f , and
define a set of associated positive weights as W := {wi}L

i=1 ⊂
R+ \ {0}. We define the best polynomial approximation to
f as p∗ and the minimum least-squares polynomial as pL

satisfying

min
pL

‖ f − pL ‖2= min
pL

√√√√ L∑
i=1

w2
i | f (xi ) − pL(xi )|2. (B1)

This minimum least-squares operator is often restated in
approximation problems as the interpolant L that maps f
to pL, L : C(�) → Pκ . The interpolant, L, is thus a linear
operator that depends on the point set χ , the weight set W ,
and the approximation space Pκ parametrized by the value κ .

The least-squares approximating polynomial pL can be
found by writing L in an appropriate polynomial basis, and
solving for pL. We recap the specific inverse problem and the
error properties of L in terms of χ and κ below.

Let {p j}N
j=1 be a polynomial basis for Pκ and Vχ :=

[p j (xi )] be the L × N Vandermonde matrix for this basis using
the point set χ . The interpolant at some arbitrary location
x ∈ � is written in terms of coefficients in this basis:

L( f )(x) := ρ(x)T c =
N∑

j=1

p j (x)c j, x ∈ �, (B2)

c := [c1 c2 . . . cN ]
T
, (B3)

ρ := [p1 p2 . . . pN ]
T
. (B4)

Here, c represents N scalar coefficients; ρ represents an N-
polynomial basis with each element corresponding to a basis
polynomial p j . The coefficients c are solutions to a linear
system of equations WVχc = W Fχ , where

W := diag(w1 . . . wL ), (B5)

Fχ := [ f (x1) f (x2) . . . f (xL )], {xi}L
i=1 ∈ χ. (B6)

The coefficients are thus determined via optimization or using
the pseudoinverse c = (WVχ )†W Fχ , yielding

L( f )(x) := ρ(x)T (WVχ )†W Fχ , x ∈ �. (B7)

Here, the matrix W is invertible by construction. The pseu-
doinverse governs error properties of the interpolant L.

Following [32], the statement that the solution c is unique is
equivalent to the condition that Vχ has full rank. If additionally
L = N , then the point set χ is called unisolvent for which Vχ

is invertible and the interpolant simplifies to

L( f )(x) := ρ(x)T V −1
χ Fχ , x ∈ �. (B8)

2. Conditioning of the interpolant

Using notation in the previous section, we now examine
least-squares solutions and add perturbations to the linear
system of the previous section. In practical application of in-
terpolation theory, these perturbations arise from inaccuracies
in our choice of basis Vχ or the point set χ that lead to inac-
curacies in the solution c. For the purposes of this section, we
present the concept of a condition number η(V ) for a choice
of a basis for the matrix V . The condition number is unity for
an optimal basis, which means that any errors in the matrix V
are not magnified as errors in the solution c. These errors are
to be contrasted with the effect of measurement noise or errors
in the data set, which will be presented in future subsections,
and thus Fχ is noiseless in the discussion below.

Let the following equations represent a true linear system
of equations and a perturbed linear system, denoted via ˜ as

WVχc = W Fχ , (B9)

WṼχ c̃ = W Fχ . (B10)

Next, we impose the ∞ or the uniform norm which satisfies
consistency when applied to matrices and vectors such that
‖Ax‖ � ‖A‖‖x‖, where A and x represent arbitrary matrices
and vectors. Let E be an error matrix such that Ṽχ = Vχ + E

W Fχ = W (Vχ + E )c̃ = WVχc (B11)

⇒ (WVχ + W E )c̃ = WVχc (B12)

⇒ [I + (WVχ )†W E ]c̃ = c (B13)

⇒ c̃ − c = (WVχ )†W E )c̃ (B14)

⇒ ‖c̃ − c‖ �
∥∥(WVχ )†W E )

∥∥‖c̃‖. (B15)

In the above simplification, we assume (WVχ )† is a left pseu-
doinverse and we apply consistency of the ∞ norm. If the
quantity ‖(WVχ )†W E )‖ < 1, then the error in the estimated
interpolation coefficients c̃ relative to the true (unknown) co-
efficients c can be written as the following inequality [35]:

‖c̃ − c‖
‖c‖ � ‖(WVχ )†W E )‖

(1 − ‖(WVχ )†W E )‖)
. (B16)

To interpret this inequality, we explicitly introduce the
condition number by expanding and rewriting the term
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‖(WVχ )†W E )‖ in terms of the condition number η(V ):∥∥(WVχ )†W E )
∥∥ �

∥∥(WVχ )†
∥∥‖W E‖ (B17)

= ∥∥(WVχ )†
∥∥‖WṼχ − WVχ‖ (B18)

= η(V )
‖WṼχ − WVχ‖

‖WVχ‖ (B19)

η(V ) := ∥∥(WVχ )†
∥∥‖WVχ‖. (B20)

In this derivation, we apply the consistency of the uniform
norm and we substitute the expression for E . The norm of the
matrix WVχ is added as a dummy variable, yielding the final
expression for the condition number. When ‖(WVχ )†W E )‖ <

1, we can write the following approximate inequality that links
the condition number of Vχ as the magnification of true errors
when any errors in the matrix Vχ are passed on to the solution
for c:

‖c̃ − c‖
‖c‖ � η(V )

‖WṼχ − WVχ‖
‖WVχ‖ . (B21)

It is well known that the optimal condition number is one and,
in general, η(V ) � 1 [35].

The effect of the condition number on the ∞ norm of
the interpolant can be seen by rearranging terms to obtain
‖L( f )‖ � η(V )‖ρ(x)T ‖‖c‖. Note that the condition number
does not depend on f but only the structure of the linear
system which we are trying to solve. Hence, for a general
point set χ and choice of polynomial basis for Pκ , η(V ) can
be large.

Under an optimal choice of basis, however, the condition
number satisfies η(V ) = 1, i.e., errors are not magnified in
the inversion process [32]. This optimal basis for the least-
squares problem is in fact an orthonormal polynomial basis
with respect to a discrete inner product over χ [32]:

〈pi, p j〉 :=
L∑

k=1

w2
k pi(xk )p j (xk ) (B22)

= δi, j, {xk}L
k=1 ∈ χ, {pi}N

i=1. (B23)

The geometry of � influences whether an optimal basis can
be found for a given application.

3. Lebesgue constant

The ∞ norm of the interpolant ‖L( f )‖ is typically used
in approximation error analysis—in particular, to answer the
question “how good is L( f ) as an approximation to f ?” To
address this question, one seeks the so-called Lebesgue con-
stant, �L, to provide the lowest upper bound on the norm of
the interpolant:

�L := min{λ � 0‖L( f )‖ � λ‖ f ‖, ∀ f ∈ C(�)}. (B24)

Here, the constant �L is independent of the form of the func-
tion f or the construction of L( f ). Hence the behavior of �L
enables a definition of optimal across different interpolation
strategies or different geometries.

In addition to providing a bound on the ∞ norm of the
interpolant, we can also use �L to provide an upper bound
on approximation error. To do this, we consider three points

in the space of continuous polynomials and apply the triangle
inequality [32]. Since Pκ ⊂ C(�), we may consider f ,L( f )
and the best approximating polynomial p∗ as points in the
space of continuous functions on �. One applies the triangle
inequality to obtain

‖ f − L( f ) ‖�‖ f − p∗ ‖ + ‖ p∗ − L( f ) ‖, ∀ f ∈ C(�).
(B25)

Here, the best approximating polynomial is optimal with
respect to the ∞ norm ‖ f − p∗‖, and thus it should be dis-
tinguished from the least-squares criterion used to construct
the interpolant L( f ).

Using L(p∗) := p∗ and the linearity of the interpolant, one
substitutes

‖ p∗ − L( f ) ‖ =‖ L(p∗ − f ) ‖ (B26)

��L ‖ p∗ − f ‖ (B27)

⇒ ‖ f − L( f )‖ � (1 + �L)‖ f − p∗‖. (B28)

The last step combines the two inequality relations and en-
ables the interpretation of the Lebesgue constant as a measure
of how much worse an interpolant performs with respect to
some best approximating polynomial p∗.

APPENDIX C: SOURCES OF ERROR

1. Measurement errors in true f

In this section, we analyze the effect of errors in the func-
tional values at the point set χ . Let f̃ denote the perturbed
function for the true f , with the error in functional values
expressed as

ε(x) := f (x) − f̃ (x), f , f̃ ∈ C(�); x ∈ χ. (C1)

The error in the interpolant is thus linear by the linearity of
the operator L:

L( f ) − L( f̃ ) := L( f − f̃ ) (C2)

= L(ε). (C3)

Letting Fχ and F̃χ denote the corresponding vectors where
each element is computed using f and f̃ , respectively, we
obtain an expression for the error in the interpolant:

L(ε)(x) := ρ(x)T (WVχ )†W (Fχ − F̃χ ), x ∈ �. (C4)

If we assume further that ε ∈ C(�), we can use the definition
of the Lebesgue constant:

‖L(ε)‖ � �L‖ f − f̃ ‖. (C5)

.
Under the specific condition that ‖L( f )‖ � ‖ f ‖, the in-

equality above can be cast to establish ‖L( f )‖ as the condition
number for passing on errors in functional values to the inter-
polant:

‖L(ε)‖
‖L( f )‖ � �L

‖ f − f̃ ‖
‖ f ‖ . (C6)

In 1D, this condition is met for the Lagrange polynomials,
leading to the straightforward interpretation that interpolation
strategies with minimal �L reduce sensitivity of the resulting
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interpolant to errors in functional values (see [33] for 1D
case). The condition ‖L( f )‖ � ‖ f ‖ is generally not true for
an arbitrary polynomial basis for an interpolation strategy in
2D. For the specific case where χ represents the Padua point
set on a unit square, one can derive the optimality relations
discussed in subsequent sections.

2. Perturbed point set χ

In this section, we assess the impact of a perturbed point
set χ . For a chosen χ and polynomial basis for Pκ , finite
size effects mean that accessing exact x ∈ χ during practical
applications is impossible.

There is very limited research on this subject (see [36] for
the case of 1D continuous function on an equispaced grid
with a fixed perturbation) and as yet no analysis for bivariate
interpolation problems on specific geometries (e.g., the unit
square).

In lieu of a formal derivation of error bounds, we consider
the case that each point x in the selected point set χ is weakly
perturbed by a fixed displacement ε → 0:

ε := x̃ − x, ∀x ∈ χ. (C7)

The introduction of these errors now results in two nonlin-
ear perturbations: first, in the elements of Vχ → Vχ,ε and,
similarly, Fχ → Fχ,ε , where the subscript χ,ε denotes that
the matrix or vector elements are being computed using the
perturbed points x̃.

For weak noise, the size of the perturbations depend on the
derivatives of the function f and the chosen polynomial basis
{p j} for the space Pκ .

A first-order Taylor expansion recasts the effect of these
perturbations on the functional values Fχ,ε as approximately
linear:

f (x̃) := f (x) + ε f ′(x) + O(ε2) (C8)

⇒ Fχ,ε := Fχ + εF ′ + O(ε2) (C9)

F ′ := [ f ′(x1) . . . f ′(xL )]. (C10)

Thus, to first order, Fχ,ε will manifest as measurement errors
of the previous section. Higher orders may be considered
depending on the specific form of f . The strength of the errors
will depend on the derivatives of f .

Similarly, first-order expansions of the basis polynomials
lead to an expression for the perturbed Vandermonde matrix:

p j (x̃i ) := p j (xi ) + εp′
j (xi ) + O(ε2) (C11)

⇒ Vχ,ε := Vχ + εV ′ + O(ε2) (C12)

V ′ := [p′
j (xi )] (C13)

j = 1, . . . , N (C14)

i = 1, . . . , L. (C15)

We now observe that the quantity V ′ will have a first column
consisting of all zeros and the remaining elements form the
basis for the polynomial space Pκ−1. Hence V ′ is singular,
but a pseudoinverse for the quantity WV ′ exists. We substitute
these new matrices into the interpolant formula to get

L(ε)(x) := ρ(x)T (WVχ + εWV ′)†W (Fχ + εF ′), x ∈ �.

(C16)

We use the properties of the Moore-Penrose pseudoinverse
for any pair of m × n matrices A and B [37],

(A + B)† = 1

2
[In In]

[A B
B A

]†[Im

Im

]
, (C17)

to rewrite the pseudoinverse of the first- and second-order L ×
N Vandermonde matrices:

V (ε) := (WVχ + εWV ′)† (C18)

= 1

2
[IN IN ]

[ WVχ εWV ′
εWV ′ WVχ

]†[IL

IL

]
(C19)

= 1

2ε
[IN IN ]

[WVχ/ε WV ′
WV ′ WVχ/ε

]†[IL

IL

]
, ε �= 0,

(C20)

where the last line is obtained by using the basic property that
the pseudoinverse of any nonzero scalar multiple of matrix A
is the reciprocal multiple of the pseudoinverse A† satisfying
(εA)† = ε−1A†, for some ε �= 0.

Under the weak perturbation approximation, and to first
order in ε, we see that the combined effect of a perturbed χ

manifests as both errors in V (ε) and in functional evaluation:

L(ε)(x) = 1

2
ρ(x)T [IN IN ]

[
WVχ/ε WV ′
WV ′ WVχ/ε

]†[IL

IL

]

×W

(
Fχ

ε
+ F ′

)
,

ε �= 0. (C21)

In this form, it appears that the total error will be mediated by
the condition number η(V (ε)) and additional magnification
of order 1

|ε| in functional evaluation in the weak error limit
|ε| → 0. For f approximately slowly varying or constant,
we can ignore errors in functional evaluation caused by the
perturbed grid and set F ′ ≈ 0, thereby noticing that an error
ε inside the pseudoinverse term and the functional evaluation
term do not easily cancel out in general and only cancel if
the off-diagonal first-order terms additionally satisfy V ′ ≈ 0.
It remains an open question to see if a perturbed grid can
be recast as functional evaluation errors under some other
considerations.

APPENDIX D: BIVARIATE POLYNOMIAL
INTERPOLATION AT THE PADUA POINTS

1. Optimality on the unit square

For the unit square, � := [−1, 1]2, it was discovered that
the product Chebshev polynomials evaluated at the so-called
Padua point set χp and with the correct theoretically derived
weights Wp form an optimal basis with respect to the dis-
crete inner product. Here, the subscript p denotes Padua-based
interpolation strategies. Further, the interpolation problem
presented in earlier sections turns out to be unisolvent, en-
abling a unique least-squares solution for the interpolants cp

and the matrix WpVχp turns out to have a unity condition
number [32].

For the set of 2D problems mappable to the unit square, bi-
variate Lagrange interpolation at the Padua points also yields
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the slowest-growing error bound for approximation error as
�Lp ∼ O(log2(κ )), where κ denotes the order of the Padua
points to interpolate f at most degree κ [13–15]. In particular,
for some constant a( f , k) that depends on f ∈ Ck (�) and its
k continuous derivatives [16],

‖ f − L( f )‖ � (1 + �L)‖ f − p∗‖ � a( f , k)
log2(κ )

κk
. (D1)

Here, κ represents both the space of polynomials of degree at
most κ as well as the order of the Padua point set; k denotes
the number of continuous derivatives and a is a constant that
depends on both the function f and k.

2. Lagrange-Padua interpolation

Padua points can be generated in three equivalent ways:
(a) via the use of a generating curve approach [13], the
ideal theory approach [14], and through the merger of two
Chebychev-like grids [15]. There are four families of Padua
points and we focus on the first family for the equations below.

Let x ∈ χ be a point in the set of Padua points χ of order
κ over the unit square � := [−1, 1]2. The number of Padua
points depends on the order, κ , as

|χκ | := (κ + 2)(κ + 1)

2
, κ > 0. (D2)

The geometric interpretation of Padua points can be ob-
tained by envisioning them as equally spaced points along a
generating curve, γκ (t ), on the unit square, �. The intersection
of this generating curve with itself, the edges of the square, or
its vertices yields the Padua point set. The generating curve
can be defined as

γκ (t ) := (− cos[(κ + 1)t],− cos(κt )). (D3)

On this curve, the Padua points are equispaced along t and
indexed by j, m as

t( j,m) := jκ + m(κ + 1)

κ (κ + 1)
π, j, m � 0, j + m � κ. (D4)

The set of Padua points are classified as interior, bound-
ary, or vertex points. Two vertex points occur at (1, 1) and
((−1)κ , (−1)κ+1) and edge points occur on the boundary of
the square. The curve of Eq. (D3) is consistent with [15].

The so-called cubature weight wx of the point x depends
on its classification:

wx := 1

κ (κ + 1)

{1/2, x vertex,

1, x boundary,

2, x interior.
(D5)

The cubature weights above agree with [15].
The formulas above enable interpolation for any true f

using Lagrange polynomial interpolation of degree at most κ .
The interpolation formula is written as [13,14]

L( f )(x′) :=
∑
x∈Pκ

f (x)wx(Kκ (x, x′) − Tκ (x[0])Tκ (x′[0]))

(D6)

=
∑
x∈Pκ

f (x)l (x, x′), (D7)

l (x, x′) := K∗(x, x′)
K∗(x, x)

, (D8)

K∗(x, y) := Kκ (x, y) − Tκ (x[0])Tκ (y[0]), (D9)

Kκ (x, y) :=
κ∑
j

j∑
i

Ti(x[0])Tj−i(x[1])Ti(y[0])Tj−i(y[1]),

(D10)

wx := 1

K∗(x, x)
, (D11)

where (x[0], x[1]) are the coordinates of x in 2D, Tκ (·) are
the Chebychev polynomials of order κ , and Kκ (x, y) is a
reproducing kernel for the space of bivariate polynomials on
the unit square with degree at most κ [14,15]. The Lagrange
basis polynomials form an orthonormal basis over the Padua
points, having the property l (x1, x2) = 1 ⇐⇒ x1 = x2 and
zero otherwise, for any two Padua points x1, x2 ∈ χκ .

We supplement the geometric picture of Padua points with
an alternative formulation that enables rapid calculation. In
this alternative picture, the Padua points are a subset of a grid
of Chebyshev-Gauss-Lobatto points, χκ ⊂ Cκ+1 × Cκ+2. The
interpolant can be written in terms of a matrix of coefficients,
C0(·), and a rectangular Chebyshev matrix T (·):

L( f )(X) := ((T (X1))tC0( f )T (X2))t
, (D12)

T (S) :=
⎡
⎣T̂0(s1) . . . T̂0(sm)

... . . .
...

T̂κ (s1) . . . T̂κ (sm)

⎤
⎦, (D13)

S = [s1, . . . , sm], T̂y(·) :=
√

2Ty(·). (D14)

Here, X := X1 × X2 is a discrete Cartesian grid; Xi is a vector
of the ith coordinate of all test points for the interpolation
of the function f . The notation t denotes a matrix transpose.
The Chebyshev matrix T (Xi ) has dimensions κ × dims(Xi )
and has elements given by the scaled Chebyshev polynomials√

2Ty(·) of order y.
The matrix of coefficients, C0( f ), is computed as essen-

tially the left upper triangular component of a (κ + 1) × (κ +
1) square matrix C( f ):

C( f ) := T (Cκ+1)G( f )(T (Cκ+2))t . (D15)

There is one modification: the last element of the first column
of C0( f ) is multiplied by a factor of one-half. The construc-
tion of the remaining matrices will be discussed below.

The rectangular Chebyshev matrices are now defined by
a vectorized set of Chebyshev-Gauss-Lobatto points of order
κ + 1:

Cκ+1 := {
zκ

j = − cos(( j − 1)π/κ ), j = 1, . . . , κ + 1
}
.

(D16)

In the above, the negative sign is required so that the Padua
points, generating curve, and the Chebyshev grids yield the
same point set.

Lastly, the (κ + 1) × (κ + 2) matrix G( f ) incorporates the
effect of the values of f evaluated on the Padua point set, as
well as the Padua curbature weights. Entries of this matrix are
nonzero only if the index of the matrix element coincides with
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a Padua point:

G( f ) := (gr,s), (D17)

=
{
wx f (x), if x = (

zκ
r , zκ+1

s

) ∈ χκ,

0, if
(
zκ

r , zκ+1
s

) ∈ Cκ+1 × Cκ+2 \ χκ.

(D18)

The entries of G( f ) which coincide with the Padua points
can be quickly discovered by selecting only every other point
in flattened “mesh grid” of (κ + 1) × (κ + 2) entries. The
flattened mask is subsequently reshaped into a 2D matrix
for odd values of κ as (κ + 1) × (κ + 2). For even values of
κ , the mask is reshaped to (κ + 2) × (κ + 1), followed by a
matrix transpose. If this mask is applied to the mesh grid of
the Chebyshev-Gauss-Lobatto points Cκ+1 × Cκ+2, the Padua
points of the generating curve approach in the previous sec-
tion are recovered. Computationally, it is easier to construct
G( f ) by generating and merging the two Chebyshev grids,
Cκ+1,Cκ+2, to obtain the Padua points.

The connection with the geometric interpretation is easier
to see if we rewrite the Padua points with slightly modified

index notation [14]:

x[0] := cos
kπ

κ
, 0 � k � κ, (D19)

x[1] :=
{

cos (2 j−1)π
(κ+1) , k even,

cos (2 j−2)π
(κ+1) , k odd,

j = 1, . . . �κ/2� + 1.

(D20)

The formulas above result in duplicate Padua points that can
be removed by inspection; direct comparison with the defi-
nition of the Chebyshev-Gauss-Lobatto points confirms that
χκ ⊂ Cκ+1 × Cκ+2.

Two additional modifications to our Python codebase are
required: first, the L( f )(X) matrix is flipped from left to right
(corresponding to the use of the left upper triangular matrix
of coefficients). Secondly, L( f )(X) is globally divided by a
factor of four to compensate for the scaling factors in the rect-
angular Chebyshev matrix T (·). Both of these modifications
yield the final result in the correct orientation consistent with
[15].
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