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In order to understand the bounds of utilization of Grover’s search algorithm for large unstructured data in the
presence of quantum computer noise, we undertake a series of simulations by inflicting various types of noise,
modeled by the IBM QISKIT. We apply three forms of Grover’s algorithm: (i) the standard one, with 4-10 qubits;
(ii) a recently published modified Grover’s algorithm, set to reduce the circuit depth; and (iii) the algorithms in (i)
and (ii) with multicontrol Toffoli’s gates modified by the addition of an ancilla qubit. Based on these simulations,
we find the upper bound of noise for these cases, establish its dependence on the quantum depth of the circuit,
and provide comparison among them. By extrapolation of the fitted thresholds, we predict what would be the
typical gate error bounds when applying Grover’s algorithms for the search of data in a data set as large as

32 000.
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I. INTRODUCTION

Grover’s algorithm (GA) [1,2] for the search of un-
structured data shows an obvious and convincing quantum
advantage to the classical search algorithms. Thus, GA scales
the number of search iterations (i.e., the search time) with
\/ﬁ rather than with N in the classical search, where N is the
number of searched data. This polynomial acceleration has
been proved to be optimal for the data search problems [3]: A
search job that would run on a classical computer one month
would take about 3.5 h to finish on a quantum computer using
Grover’s algorithm.

Running algorithms such as Grover’s search on modern,
quantum-circuit-based quantum computers is achieved by
consecutive unitary operations. However, the imperfect quan-
tum gates and the thermally induced decoherence in the NISQ
(noisy intermediate-scale quantum) computers are the major
source of noise in current hardware, producing errors in the
quantum operations [4]. The size of the quantum circuit is
characterized by the total number of gates, and often by the
circuit depth, the largest number of gates along any input-
output path, moving forward in time. Thus, circuit depth is
proportional to the smallest amount of time steps to execute
the circuit, assuming that each gate is performed within a
time step, and the gates that act on independent qubits can
be executed simultaneously. Many researchers have analyzed
the impact of various noise types in Grover’s search algo-
rithm [5-9]. With a large circuit depth, quantum programs
for complex tasks propagate and accumulate errors throughout
the whole quantum circuit. As a consequence, the search for
the targeted data fails because of the small signal-to-noise
ratio. For example, with the current level of noise in super-
conducting quantum devices (like the IBM Q and Rigetti),
one could clearly select an element among 8 data (3 qubits),
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while the search for an element among the 16 data (4 qubits)
fails. We show in Fig. 1 the results of the search of the 0011
element at the 4-qubit Hilbert space using an IBM Q computer
of the latest generation. Due to the noise the targeted state
probability is not distinguishable from the probabilities of the
other states. A deterministic version of GA [10] has been
proposed to keep the ideal target probability 100% for any
size of database, which is slightly improved from the standard
GA (SGA) [1], but it does not necessarily help to distinguish
a searched target in the presence of the noise. For the SGA,
the circuit depth and the total number of gates exponentially
increase with the number of qubits, which might induce ex-
ponential magnification of the noise assuming the worst case
that errors are produced with some probability at each gate.
For example, the circuit depth with 3 qubits is 58 (95 gates),
with 4 qubits the depth grows to 242 (322 gates), and for 6
qubits it reaches 1922 (2418 gates).
In this work we define the selectivity S,

S = 101log,, (P /Pun), ey

to be the metric that quantifies the performance of the quan-
tum algorithm, where P, is the measured probability of the
targeted state and P, is the probability of the highest mea-
sured noise signal. The selectivity decreases with increases
of the noise probabilities. In Fig. 1, the largest noise-induced
probability is of the 0000 state (7.6%), which is higher than
the target probability (6.6%), leading to a negative selectivity,
indicating an unsuccessful search. In this study we choose
S = 3 for the lowest acceptable threshold of the selectivity,
which corresponds to P, /Py, & 2. When S = 3 is reached,
the item searched by Grover’s algorithm is considered well
distinguishable from the noise, and we consider the algorithm
to be successfully executed. Thus, this value of the selectivity
defines the highest acceptable bound of the noise for the
successful Grover’s operation. The threshold error probabil-
ities and damping parameters in this work are obtained by
interpolating the computed data to the selectivity S = 3.
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FIG. 1. The 4-qubit Grover’s search of 0011 in a set of 16 data on
IBM’s latest quantum computer “ibmq_paris.” The ideal probability
to measure “0011” is 96.7%; however, the measured one is only 6.6%
due to the quantum noise and the specific topology of the machine.

The goal of this paper is not to mitigate the errors in
Grover’s quantum circuit, but rather to predict how small these
errors need to be in order to reach the acceptable selectiv-
ity of the targeted state. This is done by replicating various
types of noise in the circuits and performing simulation of
Grover’s algorithm by varying the number of qubits n from
4 to 10, which alters the size of the searched data sets as 2".
The quantum circuit depth is increased exponentially with the
number of qubits using the SGA reflecting the dependence on
n of the multicontrol Toffoli (MCT) gates present in oracle
and diffusion operators as well as the number of iterations,
proportional to 2"/? (see Note SI in the Supplemental Material
[11]). However, this increase can be restrained by adding an-
cillas to MCTs (labeled here as MCTA) in both the SGA and
the recently published Grover’s algorithms modified (MGA)
for reduction of the circuit depth [12]. With fewer gates in a
circuit, smaller gate operational errors are accumulated, and
the coherent time domain is increased. We find that adding
one ancilla to the MCTs, as done in IBM Quantum Informa-
tion Science Kit (QISKIT) [13] following Barenco et al. [14],
strongly reduces the circuit depth and consequently reduces
the overall noise in all studied cases.

In Sec. I we introduced the background of noise simu-
lation, as defined in QISKIT. In Secs, III and IV we perform
experiments of simulation for various errors by varying the
number of qubits (i.e., varying the number of gates in the
quantum circuit) to obtain the upper bound of the thresholds
toward a successful Grover’s search. The SGA with the use
of MCTs and MCTAs is studied in Sec. III for the circuit
depth and the response to the various errors in the circuit.
The same is done in Sec. IV where the error response of the
modified GA, which achieves circuit depth reduction by use
of the local diffusion operators [12], is studied. In Sec. V we
provide comparison of the selectivity thresholds due to the er-
rors between all considered algorithms, highlighting the most
successful ones. Finally, in Sec. VI we give our conclusions.

II. NOISE SIMULATION

Various types of errors have been identified and character-
ized in superconducting quantum computers. The design of
a quantum computer can be evaluated by the coherence time
of a qubit (natural relaxation time, 7}, and the time for the

qubit dephasing from the superposition state, 75), as well as
by the gate errors [single-qubit rotations and 2-qubit opera-
tions, such as controlled-NOT (CNOT)] [15] and readout errors.
Soft methods have been developed to mitigate particular error
types. However, the utilization of these methods makes the
quantum circuit more complex, bringing in more gates and
more errors, which limits their effectiveness.

In the real quantum devices, qubits suffer simultaneously
from various types of gate errors and decoherence, which
makes extraction of the effects of the individual errors a
formidable task. The error probabilities are often character-
ized by the qubit multiplicity of the various quantum opera-
tions. For the latest superconducting quantum-computers from
IBM (for example, ibmq_cambridge at 18:23:30 on May 4,
2020), single qubit instructions have an average error prob-
ability of 0.093% for U, gate operations and 0.19% for Us
gate operations, while the CNOT gates have an average error
probability of 3.5%. The U; gate is defined in QISKIT as a
single-qubit rotation gate with three Euler angles: 6, ¢, and
A by Us(0, ¢, 1) = Rz(¢)Rx (—5)Rz(0)Rx (5)Rx (1), where
Rz(0) and Rx(0) are the single-qubit rotations around the Z
and X axes with an angle of 6 on the Bloch sphere, while
the U, gate is defined as U (¢, 1) = Us(3, ¢, A). Besides gate
errors, this machine also suffers from a significant readout
error at average 9.5% and limited coherent time (average
Ty =82 usand T, = 41 us).

We study the effects of the gate and the coherent qubit
time errors as modeled in QISKIT (version 1.16.0) [13]. Gate
errors such as bit and phase flip (so-called Pauli errors) and
depolarization are modeled by assuming that an error happens
with some probability in each gate in the quantum circuit
[16]. The Kraus operators for the Pauli errors are defined in
QISKIT as Ey = /1 — p,I and E; = /p,0, where p, is the
error probability and o = X (bit flip), Z (phase flip), ¥ (com-
bined flips), respectively [13]. These operators yield the mixed
states p' = e(p) = EopE] + E\pE{ = (1 — p,)p + ps0 po,
where the initial state is described by the density operator
p and the functional ¢ is the quantum operation. A qubit is
flipped with probability p, or left unchanged with probability
1 — p,. With a depolarization error, a qubit is depolarized
with a probability pgep. The depolarization channel is defined
as e(p) = (1 — paep)p + pdepé, where [ is the completely
mixed state density and # is the number of qubits in the error
channel [17].

Keeping a quantum state coherent is essential for imple-
mentation of gate operations and measurements of qubits
in quantum computing. Induced by external disturbances,
decoherence erodes the fidelity of quantum executions due
to coupling between the quantum system and the environ-
ment. Thus, decoherence of quantum states is a large obstacle
to scalable quantum computing. We study the Grover’s cir-
cuit response to the amplitude damping (AD) and the phase
damping (PD). In these cases the dimensionless damping
probability pg,m defines the Kraus operators Ey; [17,18] as
Ey|0) = 10), Ep|l) = /1 — paam|1), and E;|0) = O for both
AD and PD, while E{|1) = ,/pdam|x), where x = 0 for AD
and x = 1 for PD, pq.m is the probability of either energy loss
(AD) or information loss (PD) to the environment in a small
time interval §¢. After these dissipation processes repeat many
(m) times in succession, during the gate time #, = mdt, the
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corresponding transition channel decays exponentially [19] as
e T where T is the probability rate I' = 2 s The amplitude
damping is often referred to as the relaxation process for
the time 7}, where 7} = % and I" is the amplitude-damping
probability rate. Similarly, the phase damping is referred to
as the superposition dephasing process for the time 7,, where
L= % and I is the phase-damping rate. 77 and 75 together
are employed to characterize the lifetime of the qubit’s ampli-
tude and phase. The quantum error channels mentioned above
are applied to all single-qubit quantum operations during the
noise simulation. The error channels for 2-qubit operations
are obtained by applying the single-qubit error to each of two
qubits (for example, CNOT) [13].

QISKIT supports simulation of the thermal relaxation mode
by inputting values for 77 and 7, with predefined gate time ¢,,
where T, < 2T; [20,21]. The gate time 7, in the model is set
to 50 ns for single-qubit U, rotations, 100 ns for U; rotations,
300 ns for CNOT gates, 1000 ns for qubit reset, and 1000 ns for
measurements. The 7} and 75 relaxation error rates are defined
as eg, = e /T and ey, = e~'¢/T2, respectively [22].

We also apply our error analysis of Grover’s algorithm
(with MCTs or MCTAs) to the method targeted to lowering
the circuit depth (and fewer number of gates), recently pub-
lished by Zhang and Korepin [12]. They achieved reduction
of the number of gates by replacing the standard Grover’s
operator with the depth-modified one in adjusted sequences,
in which the standard diffusion operator is replaced by a local
diffusion operator [23]. Furthermore, the depth-reduced algo-
rithm can be executed in multiple stages to eliminate noise.
For example, the search target can be divided into two stages,
t; and 1, with |t) = [t;) > |t2). After the first stage |z ), partial
measurement is applied to terminate the search in some of the
qubits. The quantum measurements in the first stage can avoid
qubit idling with unwanted noise in the second stage. The rest
of the qubits are reset and reinitialized before the execution
of the second stage, which also eliminates the unwanted noise
accumulated in the first stage. We here apply MCTA gates of
this modified Grover’s algorithm, obtaining further reduction
of the circuit depth and thus increasing the thresholds in all
studied quantum errors.

III. GROVER’S CIRCUIT WITH ANCILLARY QUBITS

MCT gates are the key components of oracle and diffusion
operators for the Grover’s search. Current IBM quantum com-
puters allow only elementary executions such as single-qubit
rotations and controlled 2-qubit gates. Thus, the multiple-
qubit Toffoli gates are decomposed to elementary operations
during circuit transpiling by QISKIT and hence occupy the
biggest part of the circuit depth, resulting in the main sources
of noise. By using MCTAs the circuit depth and the num-
ber of total gates can be dramatically reduced. In this work,
nonancilla Toffoli gates and 1-ancilla Toffoli gates are used
for composing circuits with different depths. Circuits for the
MCT and MCTA gates are generated by QISKIT functions
(using qiskit.aqua.circuits.gates.mct with modes “noancilla”
and “advanced” which are based on the gray-code sequence
and the recursive splitting method for nonancilla and 1-ancilla
Toffoli gates, respectively [14]). When designing quantum
circuits, various searched targets have their unique oracles.

SGAA  (a)

10" Threshold Error Probability

4 6 8 10 12 14
Number of qubits

FIG. 2. Threshold error probabilities for (a) bit flip (BF), phase
flip (PF), and depolarizing (DEP) and for (b) threshold damping pa-
rameters of amplitude damping (AD) and phase damping (PD), with
various numbers of qubits in the GA search. The hollow symbols
and solid symbols are for SGA and SGAA, respectively. Dashed
(SGA) and solid (SGAA) lines are fitting curves with extrapolation,
as described in the text.

Only one MCT gate is required to construct the oracle for
the encoded search state |1). Hence for the simplest circuit,
[1)®"is chosen as the searched target item in all tests [24].
The gate numbers and the circuit depth are calculated with
QISKIT functions by varying the number of qubits from 4 to
14, for the SGA as well as for the circuits where MCTAs
replaced MCTs (SGAA). These are shown in Table SI of the
Supplemental Material [11]. For example, in the n = 4 qubit
SGA, 3 iterations (marked as Gi) are applied, which yields
322 for the total number of gates. When using MCTAs, the
reduction of the number of gates for n = 4 qubits is about 1.3
times. In the 10-qubit algorithm, the number of gates in the
circuit is reduced nearly 10 times by using MCTAs. For the
14-qubit algorithm this reduction is nearly 50. This leads to
a noticeable degradation of noise, especially when increasing
the number of qubits, as our results below show.

We calculated the upper bounds of noise defined by the
lowest acceptable selectivity defined in the Introduction. We
present these bounds in Fig. 2 for both the SGA and the
SGAA, by changing the types of noise and varying the number
of qubits from 4 to 10. As discussed in the Introduction, using
MCTAs in the SGA increases the upper bound of thresholds
in all studied cases as a consequence of significant contraction
of the quantum depths and the total number of gates (see
Table SI in the Supplemental Material [11]). This contraction
increases with the number of qubits. Even though the gate
errors are accumulated after each gate operation, the noise
is significantly suppressed with the reduction of the number

042609-3



YULUN WANG AND PREDRAG S. KRSTIC

PHYSICAL REVIEW A 102, 042609 (2020)

of gates. From Fig. 2, the circuit for the 4-qubit SGA re-
quires the Pauli, depolarization, and amplitude-damping error
probabilities below 102 and phase damping below 3 x 1072
for acceptable search results, with similar conclusions for the
SGAA. With the 8-qubit search, the SGA and the SGAA start
deviating from each other. The 10-qubit SGA circuit requires
error probabilities below 107> (except for phase damping
<107%), while a circuit depth of the SGAA an order of
magnitude lower than that of the SGA produces a leap in
selectivity; i.e., error thresholds are of the order of 10~*. Thus,
when searching a database of the size of 2'°, the upper bound
of the depolarization error, for example, is about 2 x 1074
Similar conclusions can be obtained for amplitude-damping
(<2 x 10™*) and phase-damping (<7 x 10~*) noise, as well
as for bit-flip and phase-flip error probabilities (<107%): the
threshold parameter values increase an order of magnitude in
10-qubit cases when MCTAs are used.

The selectivity thresholds in Fig. 2 are directly correlated
to the number of gates in the circuits when varying the number
of qubits. To understand this correlation, we first fitted the
data for the number of gates in Table SI of Supplemental
Material [11] vs the number of qubits (4 to 14 qubits) using the
functional forms inspired by the analysis of Barenco et al. [14]
on the number of gates in the MCTs with and without ancilla.
This is explained in detail in Note SI of the Supplemental
Material [11]. For the SGA case, the number of gates (G) is
an exponential function of n, with the fitting function Gsga =
4.6991¢!938"  reflecting the number of iterations, 2"/2, as
well as 2" functional dependence of MCTs on n. However,
the combined product of exponential and power dependencies
fits best the SGAA cases, Gsgaa = 1.27611284010.3436n The
exponent here corresponds to the 2"/ number of iterations,
which confirms the polynomial dependence of the number of
gates on a MCT with ancilla [14]. Similar functional depen-
dencies are obtained for the circuit depths of the SGA and
the SGAA, due to the almost constant ratio of number of
gates and the circuit depth in Table SI of the Supplemental
Material [11]. Since it is expected that the quantum errors
are accumulated proportionally to the number of gates in a
circuit, it is not surprising that the best fits for the selectivity
thresholds (lines in Fig. 2) are obtained with fitting models
similar to those for Gsga and Gsgaa, even with similar values
of exponents. The fitted curves, obtained with high correla-
tions, are shown in Fig. 2 with dashed and solid lines and
fitting parameters are listed in Table SII of the Supplemental
Material [11]. Although the simulations were done with a
top-of-the-line supercomputing cluster [25], 10 qubits was the
limit for successful simulation of GA with QISKIT, mainly due
to the large memory requirements in a classical computer.
Still, by extrapolation of the obtained fits we can predict
with certainty the selectivity thresholds for larger numbers of
qubits. Thus, for the SGA with 15 qubits the threshold error
probabilities are as low as 10~® for phase damping and 10~
for other types of errors. However, the SGAA improves the
error threshold by about 2 orders of magnitude. For example,
the upper bound of depolarizing noise increases from about
4x 1077 t0 1.75 x 1073,

Calculated variations of the thermal relaxation times 77 and
T, with the number of qubits are presented in Fig. 3. Symbols
in the figure show thresholds of the lower bound for 77 and 7
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FIG. 3. Selectivity thresholds for the thermal relaxation times of
the SGA and the SGAA with various numbers of qubits.

defined for the selectivity in the range 2.5 to 3.5 (i.e., P; /Py, in
range 1.778 to 2.239). Unlike the other types of noise where it
was favorable to have a bigger threshold, 7} and 7 are desired
to have lower thresholds, which leads to a smaller coherent
time for execution of the SGA and the SGAA. Each point in
the figure is independently calculated and collected for given
T\ and T,. The results for the 10-qubit SGA search could
not be obtained because the thresholds 77 and 75, exceed the
QISKIT simulation limits (2500 ws). For example, a successful
search through a set of 24 data can be done with 7} and 75
in the range of 15-50 us with both the SGA and the SGAA,
which is well achievable by current quantum hardware. For
the 20 data set, the thresholds for 7} and 75 increase to about
100 s with the SGAA and close to 200 us with the SGA,
while for the 8-qubit search 77 and T, average around 1150
and 330 us, respectively, with the SGAA, but about 1230 and
590 us, respectively, with the SGA. For the 10-qubit SGA, the
requirements for 7; and 7, exceed 10 ms with a total circuit
depth of 128 002. Better results are obtained with the SGAA.
Thus, the relaxation time limits for 77 and 7, with 10 qubits
average 1.8 and 1 ms, respectively.

IV. GROVER’S CIRCUIT BY LOCAL
DIFFUSION OPERATORS

The selectivity thresholds are calculated in this section for
the GA with a modified circuit to reduce the quantum depth
[12] (MGA) in two variants, one-stage (M1GA) and two-stage
(M2GA) with inclusion of noise, as was done in Sec. IIIL
In addition, we also studied the MGA with one ancilla in
MCTs (MKGAA, k =1 and 2), which showed, like in the
case of the SGAA, a further improvement in the error thresh-
olds. Table SIII in the Supplemental Material [11] contains
the studied configurations as well as the information on the
relevant quantum depths and the number of gates (including
both 1- and 2-qubit gates). One-stage and two-stage methods
of depth optimization are both tested for 4-10 qubit cases.
Figure S2 in Note SII of the Supplemental Material [11]
illustrates schematically, as an example, the quantum circuits
for the SGA and the MGA configurations with 4 qubits. The
MGA circuit configurations in Table SIII of the Supplemental
Material [11] are also studied using MCTAs in place of MCTs,
convincingly reducing the depth of the circuits.
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FIG. 4. Fitting curve of selectivity thresholds for the error prob-
ability vs the number of qubits for various types of errors [BF, PF,
and DEP in panel (a) and AD and PD in panel (b)] applied at the
two-stage depth-reduced GA [12] with the use of MCTs (M2GA)
and of MCTAs (M2GAA). Figure S3 in the Supplemental Material
[11] shows the calculated data for the one-stage depth-reduced GA.

The dependencies of the number of gates on the number of
qubits have the functional forms used in Sec. III and discussed
in Note SI of the Supplemental Material [11]. As one would
expect, the numbers of gates for MIGA and M2GA fit well
the exponential function of the number of qubits, Gmiga =
5.0785¢%9%53" and Gyaga = 3.8835¢!02201, respectively. On
the other hand, the power-times-exponential function fits well
the number of gates vs the number of qubits for M1GAA and
M2GAA, i.e., GM]GAA = 1.2823]’12'543980'3880n and GMzGAA =
0.7670n%7%5704125n  The extrapolations of the fitting func-
tions imply that the M1GA circuit requires over 15 000 000
gates with the 15 qubits and nearly 18 000 000 gates for
M2GA. In comparison with 27 000 000 gates for the SGA in
Sec. 111, the improvement of M1GA and M2GA is significant
though it might not be sufficient for practical applications.
However, using MCTAs these numbers drastically decrease to
about 424 000 and 568 000 for M1GAA and M2GAA, respec-
tively, comparable to 484 000 in the case of the SGAA. Thus,
one could expect a huge reduction of noise in the circuits using
MCTAs, as was already shown in Sec. III for the SGA.

Having in mind the correlation of the number of gates and
the selection thresholds for the error probabilities, found in
Sec. III, we apply the functional forms used for the number
of gates to fit the error thresholds versus the number of qubits
for the MGA circuits. Tables SIV and SV in the Supplemental
Material [11] show the fitting coefficients in all cases. The
calculated data for the selectivity thresholds as well as the
fitting curves are shown in Fig. 4 and extrapolated to 15 qubits.
Like in the SGA cases of Fig. 2, by setting the threshold of

1 M2GAA
- @n=4 Q)“‘
T An=6 .
’g | @n=8 .~
=10
Sooap ™ LA o
&= : A R M2GA
L AL A On=4
r Y /\ n=6
0.01¢ e J On=8
B Ll Ll
0.01 0.1 1
Ty (ms)

FIG. 5. Selectivity thresholds for thermal noise of two-stage
modified Grover’s searches [12] (M2GA and M2GAA). Similar re-
sults calculated for the one-stage algorithm are shown in Fig. S4 of
the Supplemental Material [11].

errors to 10™* it follows that M2GA can perform a successful
search with data sets of up to 2% in size. Similar results are
obtained for M1GA and presented in Fig. S3 of the Supple-
mental Material [11]. Most error threshold upper bounds are
below that limit with a 10-qubit search. However, with the
use of MCTAs this data size limit extends to 2'? and 2'* for
MI1GAA and M2GAA, respectively.

We also investigate the effect of decoherence by tuning
T, and T3, like in Sec. III. Data points with a selectivity in
the range 2.5 to 3.5 are collected and plotted in Fig. 5 for
the two-stage depth-reduced method [12]. Similar results for
MI1GA and M1GAA are calculated and shown in Fig. S4 of
the Supplemental Material [11]. The thresholds 77 and 7; for 4
qubits are as low as 15 and 15 ps with M2GA, but for 8 qubits
with M2GA, the averages of 7} and T, decrease to 500 and 350
wus from 1159 and 330 us with the SGA. Use of MCTAs helps
to further reduce the threshold relaxation times. The coherent
requirements for the selectivity with M2GAA yield average
values for 77 and 7, of 110 and 45 us, respectively (6 qubits),
and 400 and 200 us for T; and 75, respectively (8 qubits).
For 10 qubits, a successful GA can be achieved by M2GAA
with an average of 600 and 800 us for 7} and 73, respectively,
which is about 3 times shorter for 7; and about 20% for T,
from the SGAA in Sec. III.

V. COMPARISON AND DISCUSSION OF THE RESULTS

Comparisons of the selectivity thresholds for the error
probabilities of the various types of error, obtained with al-
gorithms in Secs. III and IV for 4-10 qubits as well as for
the extrapolations to 15 qubits, are presented in Figs. 6(a)
(4-8 qubits) and 6(b) (10 and 15 qubits). Due to the presence
of quantum noise, the measured probability of the targeted
state for a large number of qubits is at a low value. However,
the targeted data are still selective and can be distinguished
from other data. For example, in the 10-qubit MIGA with
depolarizing noise (Fig. S5 of the Supplemental Material
[11]), probabilities of the targeted data are about a factor of
2 larger than the highest noise signal, and about 2 orders
of magnitude higher than most of the noise signals, which
ensures a successful Grover’s search. With 4 qubits, SGA,
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FIG. 6. Comparison of the selectivity thresholds due to vari-
ous quantum circuits errors in the standard GA (SGA and SGAA
when MCTA are used), the one-stage depth-reduced GA (M1GA
and M1GAA), and the two-stage depth-reduced GA (M2GA and
M2GAA) for (a) 4, 6, and 8 qubits and (b) 10 and 15 qubits. The
15-qubit case was obtained by extrapolation of the fitting curves in
Secs. 11l and IV. Higher-resolution figures are presented in Fig. S6
of the Supplemental Material [11].

SGAA, and M1GA have very similar error thresholds with
slightly bigger values of M1GA due to the depth reduction
by using local diffusion operators. By applying MCTA in
MI1GA the selectivity thresholds are increased 1.5 (BF and
PF) to 2 times (DEP, AD, and PD). This is not the case
for M2GA when n = 4, which has similar error threshold
values as M2GAA for all types, though slightly bigger than
those of M1GAA. However, these relations for the selectivity
thresholds are not kept when increasing the number of qubits.
Thus, for 10 qubits, the SGAA is significantly more selective
than both M1GA (10 times for AD, about 5 times for others)
and M2GA and is quite close to the values of MIGAA for
all error types. Only M2GAA is convincingly most selective,
leading by about a factor of 2 over SGAA and M1GAA except
for AD and PD error types where it is only slightly better.
The trend of separation of the algorithms which use MCTAs
from the algorithms with MCTs is continuing with further
increase of the number of qubits by extrapolation of the fitting
curves in Secs. IIT and IV (and Tables SII, SIV, and SV of
the Supplemental Material [11]). Thus, with 15 qubits this
separation reaches 2 orders of magnitude. In that case, the

M2GA is up to a factor of 2 more selective than M1GA and
2-4 times more selective than the SGA. The trend for relations
of M2GAA with M1GAA and SGAA with 15 qubits is similar
to that with 10 qubits.

Among all gate errors, depolarization has the highest er-
ror threshold in all configurations and is expected to have
the least impact to the selectivity of the results in the GA
search. Similarly, the phase-damping error thresholds are sig-
nificantly bigger than those with amplitude damping in all
cases. Concerning the considered algorithms, the best results
are obtained by two-stage algorithms, whether these are used
with MCTs or MCTAs. Moreover, with MCTASs used in the
quantum circuits, the decrease in the number of gates with
the number of qubits changes from exponential dependence
to the product of power and a weak exponential dependence.
This leads to a huge improvement in the selectivity loss due
to the noise in the circuit, qualifying M2GAA but also SGAA
and M1GAA for a successful Grover’s search with 10 qubits
if error probabilities are smaller than 1074, i.e., with 15 qubits
when the error probabilities are smaller than 107>,

Therefore, using MCTAs in the quantum circuit in place
of MCTs dramatically improves the noise resistance. Using
MCTASs in GA is as effective as the use of local diffusion
operators in reducing the effect of gate noise, as was done in
Ref. [12]. From the discussion in Sec. IV, it follows also that
the two-stage MGA contributes the most in the reduction of
decoherence.

Nevertheless, the two-stage depth optimization is not
supported on current IBM quantum computers because no
quantum operations are allowed in the circuits after a mea-
surement (see Fig. S2(c) in Note SII of the Supplemental
Material [11]). Another impediment for implementing the
optimal configurations is that all simulations in this paper
are based on the ideal assumption that all qubits are fully
connected to each other, which is not true for the current
superconducting quantum computers. Extra SWAP gates could
be added to a circuit for adapting to the actual device topol-
ogy which can dramatically increase the circuit depth after
circuit transpiling to basis operations. Other computing plat-
forms could be more successful in handling the quantum
noise and thus implementing successfully larger numbers of
qubits in Grover’s search in the near future. For example,
the trapped-ion quantum computers are recognized to have
an exceptionally long coherence time, very high fidelity of
gate operations, state preparation and readout with a high
fidelity, and full connectivity of qubits [26]. Besides, the
symmetry features of a trapped-ion device allow for a more
compact version of Grover’s search with smaller quantum
depth [27].

Another drawback in our work could be the way we applied
the noise models: These are applied to all qubits in quantum
operations in GA. This seems like overestimation of the noise
reality. However, this approach could partially compensate for
our treatment of the 2-qubit gates (2QGs). It is experimentally
known that superconducting 2-qubit gates have significantly
higher error probability than 1-qubit gates. In our model an
error after a 2QG simply arises from the tensor product of
the qubit’s states, which is likely underestimating the error
of the 2QGs. For example, the number of 2QGs in both
the 8-qubit SGA and SGAA circuits is very close to that of
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FIG. 7. Error threshold of BF, PF, DEP, AD, and PD with noise
channels applied only on single qubit gates and 2-qubit gates for
(a) the 8-qubit SGA and (b) the 8-qubit SGAA. Simulated results
with only 1 noisy qubit are also shown, as well as contributions of all
error channels.

1-qubit gates. We show this by including only noisy 2-qubit
gates in the SGA [Fig. 7(a)] and the SGAA [Fig. 7(b)]. We
get a slightly lower error threshold than when including only
noisy single-qubit gates, indicating that in our model 2-qubit
operations contribute only slightly more to a final noise of the
GA circuits. Another simplifying assumption is that all qubits
are equally susceptible to errors, which is certainly not true in
the real superconducting computers. We also test application
of noise to only 1 qubit. This gives, in the 8-qubit case for the
SGA, an error threshold about an order of magnitude higher
(20-60 times for the SGAA) than that for all qubits’ GA
operations.

VI. CONCLUSIONS

We undertake a series of computer simulations of Grover’s
search by applying the noise, modeled in the IBM QISKIT.
We apply three forms of Grover’s algorithm: (i) the standard
one, with 4-10 qubits; (ii) a recently published modified
Grover’s algorithm [12], set to reduce the circuit depth; and
(iii) the algorithms in (i) and (ii) with multicontrol Toffoli’s
gates modified by the addition of an ancilla qubit (MCTAs).
The noise and errors included are the bit and phase flips,
depolarization, amplitude and phase damping, and the energy
and phase relaxation times, determining the system coherence
time. The circuits with MCTAs in all cases show a significant
improvement of the selectivity thresholds for the error proba-
bilities, which goes up to 1 order of magnitude for a 10-qubit
algorithm, and even more for larger numbers of qubits. This
is explained by the exponential growth with the number of
qubits n when MTAs are used, which transforms into the
combination of a power law and weak exponential growth,
when MCTAs are utilized. These result in similar functional
dependencies on n (with flipped sign of both the exponents
and the powers) for the selectivity thresholds due to the errors.
The depth-modified Grover’s algorithm shows an increase of
the error thresholds and a decrease of threshold relaxation
times, which are also notably improved by the use of MCTAs.
By extrapolation of the fitted functional dependencies to n as
large as 15, we also provide predictions of the error thresholds
for successful search with all studied quantum circuit configu-
rations, which set the limit for errors probabilities to 10~ for
successful search of databases as large as 32 000. While these
errors might be beyond anticipated hardware possibilities, the
error limit of 10™* seems to be applicable in the near future for
a GA search with 10 qubits, i.e., for a data set as large as 1000.
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