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Due to its unique scalability potential, continuous-variable quantum optics is a promising platform for
large-scale quantum computing. In particular, very large cluster states with a two-dimensional topology that are
suitable for universal quantum computing and quantum simulation can be readily generated in a deterministic
manner, and routes towards fault tolerance via bosonic quantum error correction are known. In this article we
propose a complete measurement-based quantum computing architecture for the implementation of a universal
set of gates on the recently generated two-dimensional cluster states [M. V. Larsen et al., Science 366, 369 (2019);
W. Asavanant et al., Science 366, 373 (2019)]. We analyze the performance of the various quantum gates that
are executed in these cluster states as well as in other two-dimensional cluster states (the bilayer-square lattice
and quad-rail lattice cluster states [R. N. Alexander et al., Phys. Rev. A 94, 032327 (2016); N. C. Menicucci,
Phys. Rev. A 83, 062314 (2011)]) by estimating and minimizing the associated stochastic noise addition as well
as the resulting gate error probability. We compare the four different states and find that, although they all allow
for universal computation, the quad-rail lattice cluster state performs better than the other three states, which all
exhibit similar performance.

DOI: 10.1103/PhysRevA.102.042608

I. INTRODUCTION

Measurement-based quantum computation (QC) [1] on
continuous-variable (CV) cluster states [2,3], also known as
cluster state computation, shows great potential for scalable
quantum information processing. This is due to the simplic-
ity of generating a deterministic and scalable cluster state
resource and the efficiency by which Gaussian gates can
be implemented with high-efficiency homodyne detection as
already experimentally demonstrated on few-mode cluster
states [4–8]. The generation of large one-dimensional (1D)
cluster states was realized several years ago [9–11], but for
QC at least two dimensions are required, one for encoding and
another for computation. There are multiple feasible proposals
for the generation of 2D cluster states [12–16], and recently
two different 2D cluster states were experimentally realized
[17,18]. A natural question is then how the different 2D cluster
states compare with regard to their suitability for QC.

Computation schemes for some of the popular 2D cluster
states already exist [12,16,19,20]. Here we summarize these
schemes and propose alternative computation schemes for the
recently experimentally realized states. Since physical CV
cluster states always include noise due to finite squeezing,
we furthermore perform a noise analysis of the discussed
computation schemes. While similar noise analyses have been
done for the 1D dual-rail wire cluster state [21] and the regular
2D square lattice cluster state [22], such analysis on exper-
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imentally feasible 2D cluster states has not yet been carried
out. Here we aim to find the best noise performance for QC
with the discussed schemes on each cluster state.

As such, this work is partly a review of existing com-
putation schemes, an introduction to alternative computation
schemes of experimentally realized cluster states, a detailed
noise analysis of QC on the different 2D CV cluster states, and
a comparison of these. The paper begins with an introduction
to the notation and a review of basic concepts in Sec. II.
In Sec. III we introduce an alternative computation scheme
for the 2D cluster state experimentally realized by us in [17]
and perform a noise analysis of this scheme. In Sec. IV we
describe corresponding computation schemes on three other
popular 2D cluster states, namely, the quad-rail lattice [19],
the bilayer square lattice [12], and the recently generated
cluster state by Asavanant et al. [18]. For each of them, we
repeat the same noise analysis as presented in Sec. III. In
Sec. V we compare the topology and noise performance of
the different cluster states and discuss the requirements for
universal QC. Finally, we conclude on the results in Sec. VI.
Depending on the reader’s motivation and prior knowledge of
cluster state computation, the reader may skip sections and
jump to that of interest; we have carefully cross-referenced
the sections of this paper.

II. PREREQUISITE

In this section we review the basic concepts of continuous-
variable cluster state quantum computation that we will be
using in this work. In case the reader is familiar with these
concepts, the section can be skipped.
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A. Definitions

Throughout the paper we assume that h̄ = 1 and [x̂, p̂] = i
such that the light field amplitude x̂ (or position) and phase
p̂ (or momentum) quadratures can be written as x̂ = (â +
â†)/

√
2 and p̂ = −i(â − â†)/

√
2, respectively, where â is the

annihilation operator. With these definitions, the variance of
the vacuum is 1

2 . We will make use of six different unitary
operators: the identity operator Î , the phase rotation operator
R̂(θ ) = e−iθ (x̂2+p̂2 )/2 (where θ is the rotation angle) with the
Fourier operator F̂ = R̂(π/2) as a special case, the squeezing
operator Ŝ(s) = ei ln(s)(x̂ p̂+p̂x̂)/2 [where r = − ln(s) is the stan-
dard squeezing parameter], the shear operator P̂(p) = eipx̂2/2

(where p is a shearing parameter), the controlled-Z operator
ĈZ (g) = eigx̂⊗x̂ (where g is the coupling coefficient), and the
balanced beam splitter operator B̂ = e−iπ (x̂⊗p̂−p̂⊗x̂)/4. Each of
these operators is Gaussian and can be described by sym-
plectic matrices representing the evolution of the quadrature
operators, arranged in a vector (x̂1, . . . , x̂n, p̂1, . . . , p̂n)T for n
modes, in the Heisenberg picture

I =
(

1 0
0 1

)
, R =

( cos θ sin θ

− sin θ cos θ

)
,

S =
(

1
s 0
0 s

)
, P =

(
1 0
p 1

)
,

CZ =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 g 1 0
g 0 0 1

⎞
⎟⎠, B = 1√

2

⎛
⎜⎝

1 −1 0 0
1 1 0 0
0 0 1 −1
0 0 1 1

⎞
⎟⎠
(1)

for Î , R̂(θ ), Ŝ(s), P̂(p), ĈZ (g), and B̂, respectively.
To allow for quantum error correction, in this paper we

consider the encoding of qubits in bosonic modes of compu-
tation |ψin〉. Numerous different qubit encodings have been
proposed such as encoding in cat states [23,24] and bino-
mial states [25,26], but here we will consider the efficient
Gottesman-Kitaev-Preskill (GKP) encoding [27]. For these
codes, a qubit is encoded on a square lattice in phase space
in a way that allows for the suppression of relevant errors
(such as loss) to a certain extend. To combat residual qubit
errors, the GKP code must be concatenated with another qubit
error-correction code such as the seven-qubit Steane code [28]
or Knill’s C4/C6 code [29]. GKP encoding is the only known
bosonic code for which a universal Gaussian gate set allows
logic Clifford computation and error correction of encoded
qubits. A logic single-mode Clifford gate set is realized by
the Gaussian gate set {Î, F̂ , P̂(1)} together with displace-
ments, while two-mode gates are enabled by the ĈZ (1) gate. A
non-Clifford gate completes the universal encoded qubit gate
set. While the non-Clifford gate requires challenging non-
Gaussian transformations, practical proposals do exist, which
are discussed further in Sec. V B. Here in Sec. II, as well as in
Secs. III and IV, we will focus on the implementations of the
Gaussian gates Î , F̂ , P̂(1), and ĈZ (1).

Gaussian gates are implemented on a cluster state by
quadrature measurement of each mode in different bases ro-
tated by θ with respect to the x̂ quadrature, i.e., measuring
x̂(θ ) = x̂ cos θ + p̂ sin θ . In this paper we use the Heisenberg

FIG. 1. (a) Generalized teleportation circuit implementing a
single-mode Gaussian operation on the input state |ψin〉 by joint
measurement of the input state with one mode of an ancillary ap-
proximate cluster state using a two-mode measurement device. The
measurement device consists of a beam splitter, with the arrow
pointing from the first to the second mode in Eq. (1), followed by
homodyne detection measuring in bases x̂i(θi ) = x̂i cos θi + p̂i sin θi.
(b) Short graphical notation of the circuit in (a) used in this paper,
with the nodes representing the modes in (a). Here ε = e−2r . The
node colors have no physical meaning and are only used to identify
the modes in (a). The graphical notation can be thought of as a
snapshot of the logic level in (a) where the computation takes place.

picture, in which we simulate the evolution of the quadrature
operators and where the noise contributions simply appear as
additive Gaussian noise terms. In the following we consider
the generalized teleportation circuit as an example, which
as well plays an important role in the quantum computation
schemes presented in Secs. III and IV.

B. Generalized teleportation

An arbitrary Gaussian transformation on a single bosonic
mode can be realized by means of the generalized tele-
portation circuit, as diagrammatically depicted in Fig. 1(a).
Here the term generalized teleportation is in terms of the
generalized measurement bases, where different gates are
implemented on a teleported state depending on the basis
setting. Generalized teleportation consists of an input state, an
entangled multimode ancillary state, and a measurement de-
vice. In conventional single-mode teleportation, the ancillary
entangled state is a two-mode squeezed state [30], while tradi-
tionally for measurement-based quantum computing (MBQC)
we consider a cluster state. The two-mode squeezed state and
two-mode cluster state are equivalent (up to a phase rotation),
but since well-developed theoretical tools exist for cluster
states in the language of graphical calculus [31], here we focus
on cluster states. In practice, the ancillary entangled state is
an approximate cluster state composed of finitely momentum-
squeezed states that are entangled by a controlled-Z gate of
weight t [3]. In Fig. 1(a), the momentum variance is ε/2,
where ε = e−2r , with r the squeezing parameter. To imple-
ment a gate, a joint measurement is performed on the input
state and one mode of the cluster state using the measurement
device marked in Fig. 1(a) consisting of a beam splitter and
two homodyne detectors. The resulting transformation of the
quadratures in the Heisenberg picture is(

x̂′
3

p̂′
3

)
= G

(x̂1
p̂1

)
+ N

(
p̂2
p̂3

)
+ D

(
m1
m2

)
. (2)

Here the first term represents the implemented Gaussian gate
with G corresponding to the gate symplectic matrix. The
second term, with N being a matrix, represents noise added

042608-2



ARCHITECTURE AND NOISE ANALYSIS OF … PHYSICAL REVIEW A 102, 042608 (2020)

to the quadratures due to finite squeezing in the cluster state;
it vanishes in the infinite squeezing limit as 〈p̂2,3〉 = 0 and
Var( p̂2,3) = e−2r/2 → 0 for r → ∞. This term represents the
gate noise. The last term, with D being a matrix, is the com-
putational by-product in the form of a displacement, where
m1 and m2 are the measurement outcomes of modes 1 and 2,
respectively. The matrices G, N, and D are each described in
detail in the following sections.

When considering multimode computing schemes with
large cluster states, the circuit model in Fig. 1(a) becomes
tedious. Instead, it is customary to use graphical notation as
illustrated in Fig. 1(b), where the cluster state is represented
by its corresponding graph with imaginary self-loops indicat-
ing the finite squeezing of the cluster state modes [31], the
beam splitter of the measurement device is represented by
an arrow, and the input state is represented by a free node.
For the schemes presented in this work, we assume that all
cluster state modes are equally squeezed. Hence, we will omit
the identical iε self-loops on the cluster state nodes; they
are always there and only vanish in the nonphysical infinite
squeezing limit. Finally, we will define the logic level as being
the level in the circuit diagram where the computation takes
place, i.e., after the cluster state generation where the input
state appears and before the measurement device for compu-
tation. The logic level is marked in Fig. 1(a), and the graphical
notation in Fig. 1(b) is a snapshot of this logic level with
the arrow indicating the subsequent beam-splitter operation
of the measurement device. An alternative formulation is to
use macronodes as in [12,21], where, instead of joint mea-
surements of localized modes in the logic level, one considers
single-mode measurements of distributed modes. In Fig. 1(a)
this macronode formulation corresponds to locating the logic
level right after the beam-splitter transformation and keeping
in mind that in the logic level the mode under computation is
distributed between modes 1 and 2 as (â1 + â2)/

√
2.

In the following we describe each term of Eq. (2) in more
detail.

1. Gate

The gate implemented in Eq. (2) depends on the measure-
ment bases of the two quadrature measurements (defined as θ1

and θ2) as

G = 1

sin θ−

( 1
t cos θ+ + 1

t cos θ− 1
t sin θ+

−t sin θ+ t cos θ+ − t cos θ−

)
,

where θ± = θ1 ± θ2, and corresponds to the operation [32]

Ŝ(t )R̂

(
θ+
2

)
Ŝ

(
tan

θ−
2

)
R̂

(
θ+
2

)
. (3)

By implementing such an operation twice, corresponding to
two consecutive runs of the teleportation circuit in Fig. 1(a),
it is possible to induce an arbitrary single-mode Gaussian
transformation [21] U(x̂, p̂)T + c, where U = G2G1 while
the displacement c is ubiquitous and simply implemented by
shifting the measurement result and updating the bases of the
subsequent measurements [2,3]. However, in the following we
consider only the subset of single-mode Gaussian transforma-
tion that is required for GKP state computation, namely, the
set {Î, F̂ , P̂(1)}.

The identity operator Î can be executed in a single compu-
tation step of the teleportation circuit in Fig. 1(a) by choosing

(θ+, θ−)I = (0, 2 arctan 1/t ),

as easily seen from Eq. (3). For the Fourier gate F̂ and the
P̂(1) gate two computation steps are necessary: If we let the
output state |ψ〉out of the first computation step in Fig. 1(a),
with bases (θ+1, θ−1), be the input state on a second identical
circuit, but with bases (θ+2, θ−2), the gate

Ŝ(t )R̂

(
θ+2

2

)
Ŝ

(
tan

θ−2

2

)
R̂

(
θ+2

2

)

× Ŝ(t )R̂

(
θ+1

2

)
Ŝ

(
tan

θ−1

2

)
R̂

(
θ+1

2

)

is implemented. Choosing

(θ+1, θ−1, θ+2, θ−2)F =
(

π

2
,
π

2
, 0, 2 arctan

1

t2

)

implements the F̂ gate, while

(θ+1, θ−1, θ+2, θ−2)P =
(

arctan 2,− arctan 2,
π

2
,
π

2

)

implements the P̂(1) gate. To implement the two-mode ĈZ

gate a scheme with at least two input modes is required. This
will be discussed in Secs. III and IV, where we find that also
two teleportation steps are necessary.

2. Gate noise

The second term in Eq. (2) represents the gate noise and is
governed by the matrix

N =
(− 1

t 0

0 1

)
,

which is independent of the measurement bases. However,
for gates realized in two steps, such as the F̂ and P̂(1) gates
described above, the gate noise of the first step enters the
gate of the second step, leading to the final gate noise that
depends on the bases of the second computation step. For two
concatenated circuits of the type in Fig. 1(a), with the cluster
state of the second circuit being denoted by modes 4 and 5,
the combined gate noise becomes

G2N1

(
p̂2

p̂3

)
+ N2

(
p̂4

p̂5

)
≡ N

⎛
⎜⎜⎜⎝

p̂2

p̂3

p̂4

p̂5

⎞
⎟⎟⎟⎠, (4)

where N1( p̂2, p̂3)T is the gate noise of the first step, and
G2 and N2( p̂4, p̂5)T are the gate symplectic matrix and gate
noise of the second step, respectively. Here the combined
gate noise matrix N is a 2×4 matrix. Note that in Secs. III
and IV, N is in general the combined gate noise matrix of an
implemented gate in one or more teleportation steps, with the
number of columns equal to the number of quadratures in the
output mode(s) and the number of rows equal to the number
of ancillary cluster state modes involved in the implemented
gate.
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Assuming that all cluster state modes in Eq. (4) are equally
squeezed, Var( p̂l ) = ε/2 for l = 2, 3, 4, 5, the gate noise
variance amounts to

∑4
j=1 N2

i jε/2 for i = 1, 2. From this ex-
pression, it is clear that the gate noise can be reduced by
both increasing the degree of squeezing of the cluster state
modes (reducing ε/2) and minimizing the sums

∑4
j=1 N2

i j ,
i = 1, 2. We will refer to these two sums as the quadrature
noise factors, one for each quadrature. In the schemes for gate
implementation presented in Secs. III and IV, the focus is
on optimizing the quadrature noise factors for the gate set
{Î, F̂ , P̂(1), ĈZ (1)} in order to minimize the probability of
inducing errors on the GKP-encoded qubit as discussed in
Sec. II C.

3. Displacement by-product

The displacement matrix in Eq. (2) reads

D =
√

2

sin θ−

(− 1
t cos θ2 − 1

t cos θ1

t sin θ2 t sin θ1

)
,

and so, since we know the measurement bases (θ1, θ2) to-
gether with the measurement outcome (m1, m2), the amount
of displacement of a single computation step is known. By
keeping track of the displacements in each computation step,
the displacement can be accounted for in the following steps
by updating the measurement bases and results (i.e., feed-

forward) [3]. When all gates are Gaussian, the displacement
by-product can be compensated for in the measurement result
of the final output state |ψout〉, known as Gaussian parallelism
[2].

In this work we will ignore the displacement by-product
as it has no effect on the gate noise performance. However,
for the actual experimental implementations of the schemes
discussed in this work, the compensation for the displacement
is important.

4. Wigner function representation

To understand the effect of the quadrature transformation
and gate noise in Eq. (2), it is useful to analyze the generalized
teleportation in the Wigner function representation. This does
not add anything new, but considering the gate noise from a
different perspective helps to understand it. Here the Wigner
function of the input state to the teleportation circuit in Fig. 1,
|ψin〉1 Ŝ(e−r ) |0〉2 Ŝ(e−r ) |0〉3, is

Win(x1, p1)G1/ε(x2)Gε(p2)G1/ε(x3)Gε(p3),

where Gδ is a normalized Gaussian function of variance δ/2
and Win is the Wigner function corresponding to |ψin〉1, but not
necessarily of a pure state. After the quadrature transformation
in the generalized teleportation circuit and measurement of
x̂1(θ1) and x̂2(θ2), the output Wigner function corresponding
to |ψout〉 on mode 3 in Fig. 1 becomes

Wout(x3, p3) = NG1/ε(x3)
∫

dη2Gε(η2)Gt2/ε(p3 − η2)
∫

dη1Gε/t2 (η1)Win

(
G−1

(
x3 − dx − η1
p3 − dp − η2

))
, (5)

where N is a normalization factor depending on the ba-
sis setting (θ1, θ2) and measurement outcome (m1, m2), and
(dx, dp)T = D(m1, m2)T subtracted from the (x3, p3)T argu-
ment in Win corresponds to the displacement by-product.
Here each index in the vector argument of Win should be
understood as the two arguments in Win(·, ·). It is clear
from the expression that the input state undergoes an op-
eration of symplectic matrix G by the transformation of
its Wigner function arguments by G−1. This corresponds
to the implemented gate. The gate noise N( p̂2, p̂3)T with
variance (ε/t2, ε)T /2 is seen to become a Gaussian convo-
lution of the Wigner function with corresponding variance
after applying the gate G. Finally, the Wigner function is
subjected to a Gaussian envelope in both quadratures: one
of variance t2/2ε in the p̂ quadrature after convolution in
the x̂ quadrature with Gε/t2 , followed by one of variance
1/2ε in the x̂ quadrature after convolution in the p̂ quadrature
with Gε. These envelopes in each quadrature are the result
of convolutions in orthogonal quadratures, as the quadratures
are related by the Fourier transform: Convoluting a Wigner
function in the x̂ quadrature with Gδ leads to an envelope of
the Wigner function in the p̂ quadrature of G1/δ (p) and vice
versa.

Two limits of Eq. (5) are interesting: In the ideal in-
finite squeezing limit, the convolution functions Gε/t2 and
Gε become δ functions, while the Gaussian envelopes be-
come infinitely broad, and so Wout(x3 + dx, p3 + dp)T =
Win(G−1(x3, p3)T ). In the limit t = 0, where we expect no

information to transfer from Win to Wout, the envelope on
Win(G−1(x3, p3)T ) becomes a δ function in the p̂ quadra-
ture, which is then convoluted by Gε, while the x̂ quadrature
is convoluted by an infinitely broad Gaussian followed by
an envelope of G1/ε. As a result, for t = 0, Wout(x3, p3) =
G1/ε(x3)Gε(p3), corresponding to the initial input squeezed
state in the cluster state, as expected.

C. Error correction

It is now clear that cluster state quantum computation will
inevitably suffer from gate noise that will accumulate through-
out the computation. To avoid noise accumulation, quadrature
error correction is required in between every implemented
gate. For this purpose, symmetric GKP states are particu-
larly useful, not only as the qubit but also as ancillaries for
error correction. GKP states have been thoroughly reviewed
in several places [33,34], while here they are reviewed in
terms of MBQC focusing on the added gate noise caused by
finite squeezing in the cluster states. The GKP state Wigner
function Win(x) [with x = (x1, . . . , xn, p1, . . . , pn)T for an n-
mode state] consists of δ functions arranged on a square lattice
in phase space of each mode with a lattice constant of

√
π

and its qubit eigenstates of the Pauli-Z and -X operators are
| jL〉X,Z = ∑

i∈Z |(2i + j)
√

π〉x,p in the quadrature eigenstate
bases |s〉x and |s〉p [27].

As a result of the execution of an n-mode gate G in one
or more computation steps, the gate noise N( p̂c1, p̂c2, . . .)T

042608-4



ARCHITECTURE AND NOISE ANALYSIS OF … PHYSICAL REVIEW A 102, 042608 (2020)

(where pci are ancillary cluster state modes) leads to a broad-
ening of the GKP δ functions into Gaussian functions of
variances in σ2 = Var{N( p̂c1, p̂c2, . . .)T } in the 2n quadratures
(σ2 is a 2n vector). Furthermore, as the ideal GKP encod-
ing with vanishing variance (represented by δ functions) is
nonphysical, we instead consider the physical approximate
GKP states in Win(x) with δ functions replaced by symmetric
Gaussian functions of identical variance, δ, in x̂ and p̂ quadra-
ture. The quadrature variance of the Gaussian spikes in the
approximate GKP state after the implementation of a noisy
gate is then

δ′ = Var{Gx̂δ} + σ2, (6)

where x̂ is decomposed into a sum of x̂0 + x̂δ, where x̂0
and x̂δ are the centers and variance of the GKP spikes,
respectively. Note that for ideal GKP states x̂ = x̂0. As exam-
ples, Var{Gxδ} = (δ, δ)T for the Î and F̂ gates, Var{Gxδ} =
(δ, 2δ)T for the P̂(1) gate, and Var{Gxδ} = (δ, δ, 2δ, 2δ)T for
the two-mode ĈZ (1) gate.

To avoid gate noise accumulating on the GKP-encoded
qubit state, after every implemented Î , F̂ , P̂(1), and ĈZ (1)
gate, we measure the quadratures x̂ mod

√
π and p̂ mod

√
π

using ancillary GKP states and perform quadrature error
correction by displacing back the state depending on the mea-
surement outcome

(7)

where |0L〉 are approximate GKP states with spike variances
in both quadratures of δ. Note that while this circuit illus-
trates the correction algorithm for a single mode of Wout,
similar circuits are required for each other mode. After the
two measurements with outcomes mx and mp, the encoded
qubit is projected into a “fresh” GKP state, but displaced
in x̂ and p̂ quadratures depending on the values of mx and
mp: If mx(p)mod

√
π is smaller than

√
π/2, the encoded state

is displaced back by mx(p)mod
√

π in x̂( p̂), while if it is
larger than

√
π/2, the encoded states is displaced forward

by
√

π − mx(p)mod
√

π , and so we obtain an error-corrected
version of Wout(x) → W erc

out (x), which is then the input to the
next gate. The possible values of mx and mp are Gaussian
distributed with variance δ′

i + δ, where δ′
i in δ′ of Eq. (6) is the

corresponding spike quadrature variance of the encoded state
after gate implementation, Wout, and δ is the spike variance of
the |0L〉 ancillary states. As a result, for large δ′

i and/or δ, there
is a risk of measuring a GKP spike closer to its neighboring
spikes of the orthogonal qubit state, i.e., outside the bin range
[x0 − √

π/2; x0 + √
π/2], where x0 is the spike center, and

thereby inducing a qubit error when “correcting” the state by
displacing it in the wrong direction. The combined probability
of displacing an n-mode encoded state with 2n quadrature
corrections in the wrong direction is shown to be [22]

Perr(δ
′, δ) = 1 −

2n∏
i=1

erf

( √
π

2
√

2(δ′
i + δ)

)
, (8)

where each factor in the product term is the probability of
a successful quadrature correction. It is important to men-
tion that Perr is not a true qubit error probability, as it does
not account for the probability of measuring a spike at its
next-nearest-neighbor bin range [x0 ± 3

√
π/2; x0 ± 5

√
π/2],

which leads to a 2
√

π displacement of the GKP state when
corrected, and thereby not a qubit error, although it is an error.
This leads to, for example, Perr → 1 for large δ′

i + δ, while
the actual error probability should be 1

2 . Furthermore, Eq. (8)
does not account for the overall envelope on the spikes of
the GKP state and for the fact that the error probability is
qubit dependent: Displacing the p̂ quadrature by

√
π leads

to an error on |+L〉, but no error on |0L〉. Therefore, for a
true estimation of the qubit error probability, we need to take
these effects into account. However, despite these issues, in
this work (as in [22]) we will use Perr as a figure of merit
as it constitutes a good approximation to the actual error
probability for reasonably large squeezing levels in which
δ′

i + δ is small enough for 2
√

π (or larger) displacements to
be neglected during quadrature corrections.

Since the two-mode ĈZ (1) gate requires four quadrature
corrections, while the Î , F̂ , and P̂(1) gates only require two,
the error probability after the ĈZ (1) gate is in general larger.
In the schemes presented in Secs. III and IV, when possible,
we search for a basis setting for the ĈZ (1) gate that minimizes
Perr.

III. DOUBLE-BILAYER SQUARE LATTICE

Having discussed the general concept of CV quantum
computation and the associated error analysis, we are now
equipped with the relevant tools to rigorously analyze the
performance of cluster state computation based on different
types of cluster states. In this section we will consider the
double-bilayer square lattice (DBSL) cluster state, while in
Sec. IV we will consider three other known clusters states.

The cylindrical 2D cluster state produced in Ref. [17]
can be straightforwardly projected into a universal DBSL
cluster which will be analyzed in the following. The cylin-
drical DBSL cluster state with a 2D topology of Ref. [17]
(corresponding to a cylindrical H-graph state) was generated
by “coiling up” a 1D cluster state (a dual-rail wire [9]) of
temporal mode duration τ using an Nτ long delay line and
interfering it with itself; the generation setup is summarized
in Fig. 2(a). As this H-graph state is self-inverse and bipartite
for even N , it is transformed into a DBSL cluster state through
π/4 phase rotations of all modes. Since this transformation
simply corresponds to a redefinition of the quadratures, the
DBSL H-graph state and the corresponding cluster state are
equivalent [17,31]. In the following we will therefore only
consider the DBSL cluster state.

It is also important to note that in Ref. [17] it was shown
that the DBSL cluster state can be projected into a regular
square lattice cluster state, which is known to be a universal
resource for quantum computing. However, due to the result-
ing low edge weights of this square lattice, this approach is
rather inefficient and leads to unnecessary large gate noise. In
the following we present a more efficient computation scheme
of the DBSL and quantify it by a gate noise analysis.
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FIG. 2. (a) Temporal encoded DBSL cluster state generation and computation setup. While the DBSL cluster state is generated after
the third beam splitter, for computation we consider the cluster state in the marked logic level and the third beam splitter as part of a joint
measurement device for computation. The cluster state temporal mode duration τ is defined by the short delay line. The device marked by
an asterisk is an identity gate when implementing gates (1), an optical switch when switching in a state for computation (2), or the circuit
in Eq. (7) for correcting gate noise after each implemented gate (3). (b) Cluster state in the logic level. A dual-rail wire is coiled up by the
Nτ long delay, leading to a cylinder with N temporal modes in the circumference; the temporal mode indices are marked on the time axis.
Computation is performed in wires including the modes in the marked gray areas, while modes in between the gray areas are control modes.
Measuring the control modes in an alternating basis of (−1)iθc induces edges between the wire modes as shown in (c), allowing single-mode
computation in each N/2 wire with one computation step marked with a red area of dotted edge. Measuring a control mode in a different
basis creates coupling between the two neighboring wires as shown in Fig. 3, allowing multimode gates. The edge weights shown here are in
the limit of infinite squeezing and θc = π/4. For finite squeezing the edge weights are multiplied by tanh 2r while self-loops of i sech2r are
present on each cluster state mode. For easy comparison, the experimental setup, logic cluster state, and its projection into wires are shown in
Appendix C together with the schemes considered in Sec. IV.

A. Efficient computation scheme

Similar to the generalized teleportation scheme in Sec. II,
we define a multimode measurement device that includes the
third beam splitter as marked in Fig. 2(a). The resulting logic
level is located just before the measurement device, where the
generated 1D cluster state is coiled up, but not yet interfered
with itself. A section of the cylindrical coiled up 1D cluster
state at the logic level is shown in Fig. 2(b). Here the hori-
zontal direction follows the cluster state cylinder axis, while
the vertical direction corresponds to the circumference of the
cylinder whose size is limited by the long delay line to N
temporal modes.

In the following we assume that the cylindrical cluster state
has an even number of temporal modes in the circumference
(N is an even number, which is necessary for the generated H-
graph state to be bipartite), each with a temporal mode index
k. Every second temporal mode (k + 2i for i ∈ Z) forms wires
for computation along the cylinder [shaded area in Fig. 2(b)],
while the remaining temporal modes (k + 2i − 1 for i ∈ Z)
are control modes that are used to control couplings between
wires. In this way we have N/2 wires, and thereby N/2 modes
for computation. We will further assume that the number of
wires is even, i.e., N/2 being an even number. As an example,
the experimental realization of the DBSL in [17] had N = 12
leading to six wires. Using an optical switch in the lower
spatial mode at point B in the logic level in Fig. 2(a), an
input state can be switched into the circuit. It corresponds
to adding input states to the blue (marked by B) nodes in
Fig. 2(b). Optical switches have previously been demonstrated
in quantum settings [35,36].

By inducing certain phase rotations (−1)iθc of the control
modes it is possible to create new edges along the wires as il-
lustrated in Fig. 2(c) [31]. If these phase rotations are followed

by measurement of the control modes in the x̂ basis, the modes
and their edges are “deleted” and we are consequently left
with N/2 parallel wires suitable for single-mode computation
of N/2 modes. It is also worth noting that this combination of
phase rotation and x̂ measurement corresponds to measuring
the quadrature x̂([−1]iθc) on each control mode individually,

(9)

where the beam splitter on the left-hand side is the beam split-
ter of the measurement device and m± = (m1 ± m2)/

√
2. As

an example, we may consider the case of infinite squeezing as
pictured in Fig. 2(c). Here the edge weights of the wires tend
towards the optimal values of ±1 (where the sign alternates
between neighboring wires) by choosing θc = π/4. For finite,
thus practical, squeezing levels, the induced wire edge weight
is lower, while θc may be optimized for minimizing the gate
noise. For simplicity, in the computation scheme presented
here, we keep θc = π/4 for all squeezing levels, while in
Sec. III C we discuss the effect of varying θc.

The projected wires in Fig. 2(c) are now suitable for
single-mode Gaussian computation: One computation step
(one horizontal time step from temporal mode k to k + N)
corresponds to the generalized teleportation circuit in Sec. II B
with an input from the previous computation step, or switched
into the cluster using an optical switch as previously men-
tioned. Similar to the generalized teleportation, the resulting
operation of one single-mode computation step on a wire is

Ŝ([−1]i4t2)R̂

(
θ+
2

)
Ŝ

(
tan

θ−
2

)
R̂

(
θ+
2

)
, (10)
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FIG. 3. (a) Logic cluster state after measuring all temporal con-
trol modes in Fig. 2(c) except control modes in temporal mode
k + N − 1. (b) Cluster state after further phase rotation and mea-
surement of the remaining two control modes in (a), leading to
direct edges between the neighboring two wires. The edge weights
shown here are for the case of infinite squeezing, θc = π/4, and the
central control modes further phase rotated by arctan 1

2 , i.e., g = 1 in
Eq. (11).

where θ± = θBk ± θAk and t is the absolute edge weight in the
logic dual-rail wire cluster state in Fig. 2(b), which equals 1

2
in the infinite squeezing limit; the case of finite squeezing is
discussed in Sec. III B. For derivation of (10) see Appendix A.
The negative edge weight on every second wire (uneven i)
leads to a π phase rotation in each computation step which
then cancels out in every second step or can be compensated
for in the required basis setting for the desired gate. As for the
generalized teleportation, any Gaussian single-mode gate can
be implemented in two steps.

Now let us discuss how a two-mode gate can be imple-
mented by coupling two neighboring wires. In Fig. 3(a) all
control modes except one have been measured in the basis
(−1)iθc = (−1)iπ/4 in order to separate wires as described
above; the remaining two central control modes in Fig. 3(a)
have only been phase shifted by π/4, but not measured.
Phase rotating these remaining control modes further before
measurements (i.e., measuring them in another basis than
the neighboring control modes) leads to coupling between
the two neighboring wires which is seen as direct edges in
Fig. 3(b). In this way, by controlling the measurement bases
of a temporal control mode, together with the measurement
bases of its neighboring wires, a desired two-mode gate can be
implemented. As an example, in the infinite squeezing limit of
Fig. 3, the base setting

θ ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θAk−2

θBk−2

θAk

θBk

θAk+N−2

θBk+N−2

θAk+N−1

θBk+N−1

θAk+N

θBk+N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(−1)i3π/8

−(−1)iπ/8

(−1)i3π/8

−(−1)iπ/8

(−1)iπ/4 − arctan(g/2)

−(−1)iπ/4

(−1)iπ/4 + arctan(g/2)

(−1)iπ/4 + arctan(g/2)

(−1)iπ/4 − arctan(g/2)

−(−1)iπ/4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11)

leads to an implementation of the gate [R̂(π/4) ⊗
R̂(π/4)]ĈZ (g) between the blue input modes (marked by B)
in temporal modes k − 2 and k, where R̂(π/4) ⊗ R̂(π/4) can
be compensated for with the following single-mode gates.

In summary, we have now shown that a universal Gaussian
gate set can be efficiently implemented on a DBSL cluster
state: Single-mode gates can be realized along parallel wires
in the cluster, while the two-mode controlled-Z gate can be
realized between neighboring wires.

B. Gate noise analysis

As mentioned previously, if the squeezed states used to
construct the cluster state are infinitely squeezed, the gates
will be realized perfectly without noise addition, thus without
adding any processing errors. However, in a realistic setting,
the degree of squeezing is finite, which inevitably will result
in processing noise. In the following we will be analyzing the
impact it has when using the DBSL for computation.

Assuming that the two squeezed input states of the circuit
in Fig. 2(a) have squeezed variances of e−2r in the x̂ or p̂
quadrature, the edge weights and self-loops of the coiled up
1D cluster state at the logic level become ±t = ± tanh(2r)/2
and iε = i sech2r, respectively [17,31]. Note that the exis-
tence of self-loops is a result of the finite input squeezing,
while

√
ε can be considered as the effective momentum

squeezing in the cluster state modes.
The finite squeezing leads to two effects: gate noise

appearing in each computation step and distortion of the im-
plemented gate. As seen in Eq. (10), for single-mode gates
the distortion is caused by an additional squeezing transfor-
mation Ŝ([−1]i tanh2 2r) on the output of each computation
step. However, as for generalized teleportation, the unwanted
squeezing transformation can be compensated for simply
by tuning the basis settings. The gate noise [introduced in
Sec. II B and corresponding to the second term of Eq. (2)]
of one single-mode computation step from temporal mode
k to k + N (derived in Appendix A) is represented by the
quadratures

N( p̂Ak−1, p̂Ak, p̂Ak+1, p̂Bk+N−1, p̂Bk+N , p̂Bk+N+1)T ,

with

N =
( 1

4t
−1
4t2

−1
4t

1
4t 0 1

4t

t 0 t t 1 −t

)
,

leading to quadrature noise factors (introduced in Sec. II B) of

Nx =
∑

j

N2
1 j = 1

tanh4 2r
+ 1

tanh2 2r
,

Np =
∑

j

N2
2 j = tanh2(2r) + 1 (12)

in x̂ and p̂, respectively.
To avoid accumulating gate noise during computation, we

consider the usage of GKP-encoded qubit states, in which
the gate noise is translated into qubit errors by quadrature
corrections after each implemented gate using auxiliary GKP
states as described in Sec. II C. To prevent erroneous compu-
tation, the qubits may then be error corrected by including a
qubit error-correction scheme in the computation. Within the
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GKP-encoded qubit subspace, a logic complete Clifford gate
set is realized by the Gaussian gate set {Î, F̂ , P̂(1), ĈZ (1)} on
the bosonic modes. We therefore only consider the implemen-
tation of this gate set in the noisy cluster state. An additional
non-Clifford gate in the GKP qubit subspace completes the
gate set for universal qubit computation and is further dis-
cussed in Sec. V B.

Similar to the generalized teleportation circuit in Sec. II B
[Eq. (3)] but by replacing the edge weights t with
(−1)i tanh2 2r, the single-mode gate Î is implemented from
temporal mode k to k + N with the basis setting

(
θ+
θ−

)
I
=

(
0

(−1)i2 arctan(tanh−2 2r)

)
,

where θ± = θBk ± θAk and with gate noise variances of Nxε/2
and Npε/2 in x̂ and p̂ quadratures, respectively. The F̂ and
P̂(1) gates are implemented in two computation steps from
mode k to k + 2N : Choosing

⎛
⎜⎜⎜⎝

θ+1

θ−1

θ+2

θ−2

⎞
⎟⎟⎟⎠

F

=

⎛
⎜⎜⎜⎝

π/2

π/2

0

2 arctan(tanh−4 2r)

⎞
⎟⎟⎟⎠

implements F̂ with equal gate noise variance of (Nx + Np)ε/2
in x̂ and p̂, while

⎛
⎜⎜⎜⎝

θ+1

θ−1

θ+2

θ−2

⎞
⎟⎟⎟⎠

P

=

⎛
⎜⎜⎜⎝

arctan 2

− arctan 2

π/2

π/2

⎞
⎟⎟⎟⎠

implements P̂(1) with gate noise variances of 2Nxε/2 and
2Npε/2 in x̂ and p̂, respectively. Here θ±1 = θBk ± θAk and
θ±2 = θBk+N ± θAk+N . For the two-mode ĈZ gate, the gate
distortion due to finite squeezing, as well as how it is compen-
sated for, is less trivial. In the following we search for basis
settings that compensate for finite squeezing and optimize the
gate noise in order to minimize the error probability of the
encoded qubit after quadrature corrections.

The GKP quadrature corrections can be realized by im-
plementing the circuit in Eq. (7) at mode B in the logic
level in Fig. 2 where the processed state is encoded. This
may be challenging, as it requires tunable ĈZ (g) coupling
strengths with g = 1 when performing error correction and
g = 0 otherwise. An alternative is to occupy the free wires
with ancillary |0L〉 GKP states and then implement the re-
quired ĈZ (1) gates through measurements. However, with this
approach, the error-correcting gate is subjected to the same
kind of gate noise that we are trying to correct for in the
encoded state. For simplicity, we assume successful imple-
mentation of the quadrature correction circuit in Eq. (7) at
the logic level using a supply of ancillary GKP states with
quadrature symmetric spike variance equal to the variance of
the resource squeezing δ = e−2r/2.

As discussed in Sec. III A and illustrated in Fig. 3, the
ĈZ (1) gate between two wires is implemented in two com-
putation steps, and while staying within the encoded qubit
subspace, we are allowed to implement any ĈZ (1) gate with

a by-product of gates in {F̂ , P̂(1)} in order to minimize the
resulting GKP-encoded qubit errors. The P̂(1) gate transforms
quadratures as (x̂, p̂) → (x̂, x̂ + p̂), which, before adding gate
noise, already leads to an increase of the spike variances in
the GKP-encoded state as (δ, δ) → (δ, 2δ), where the first
and second indices correspond to variance in the x̂ and p̂
quadratures, respectively. Thus, adding P̂(1) gates to ĈZ (1)
will hardly improve the error probability. On the other hand,
the F̂ gate transforms the quadratures as (x̂, p̂) → ( p̂,−x̂) and
the GKP spike variance in each quadrature (before adding gate
noise) is unchanged. Hence, we may improve the error proba-
bility if we can improve the resulting gate noise by adding F̂
gates to the ĈZ (1) gate. We have investigated the gates (F̂ n ⊗
F̂ m)ĈZ (1) for all n, m ∈ {−1, 0, 1, 2} and find that gates with
n, m = ±1 are optimal. We choose n = 1 and m = (−1)i,
where the index i denotes the control modes between the two
coupled wires. The improvement on the ĈZ (1) gate noise by
adding F̂ ⊗ F̂±1 may be explained intuitively: The F̂ gates
rotate the states in computation during the two computation
steps implementing (F̂ ⊗ F̂±1)ĈZ (1), which leads to the gate
noise being better distributed on the quadratures, similar to
the symmetrically distributed gate noise when implementing
the single-mode F̂ gate as described above. The by-product
of F̂ ⊗ F̂±1 can then be compensated for by applying the
associated single-mode gates after GKP error correction. In
the following we first consider the case for even i and to
shorten the notation we write F̂ F̂ĈZ where the tensor product
and ĈZ weight have been ignored.

To implement the F̂ F̂ĈZ gate between two neighboring
wires as in Fig. 3, we adjust the basis setting θ in Eq. (11).
Using a global search algorithm, we search for θ minimizing
the objective function

f (θ ) = ‖G − T‖1 + w log10 Perr(δ
′, δ), (13)

where G and T are the symplectic matrices of the imple-
mented gate, governed by θ , and the target gate F̂ F̂ĈZ (see
Appendix A for the procedure of calculating G), ‖A‖1 =∑

i, j |Ai j | is the entrywise matrix 1-norm, and Perr is the error
probability in Eq. (8). Here δ = e−2r/2 for the ancillary GKP
states and δ′ = (2δ, 2δ, δ, δ)T + σ2 for the F̂ F̂ĈZ gate with
gate noise variance σ2 = (Nx1, Nx2, Np1, Np2)T sech(2r)/2,
where Ni are basis-dependent quadrature noise factors. The
first term of f (θ ) in Eq. (13) is minimized for G = T and thus
helps us find the basis setting implementing the target gate T.
Since multiple solutions θ leading to G = T may exist, we
search for a solution that also minimizes the error probability
Perr, which is the purpose of the second term in Eq. (13). To
resolve Perr close to 0 we use the logarithm of Perr, while the
weight w is varied in the range 10−8−1 for different resource
squeezing in order for the global search algorithm not to favor
one term in (13) while ignoring the other term. Finally, the
objective function is considered successfully minimized only
when the resulting gate is close to the target gate. To check
this, we use the condition

‖G − T‖1 < 10−5,

with all results not satisfying this condition being discarded.
Depending on the global search algorithm used, we are not
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FIG. 4. (a) Basis settings as a function of resource squeezing found by minimizing f (θ ) in Eq. (13) for implementing the ĈZ (1) gate as
(F̂ ⊗ F̂ )ĈZ (1) (in short F̂ F̂ĈZ ) for even i on the central control modes. The mode numbers are labeled on the graph to the right, where control
modes outside the shaded area are measured in the basis (−1)iθc = (−1)iπ/4. For uneven i, (F̂ ⊗ F̂−1)ĈZ (1) is implemented with the same
gate noise by changing the sign of the bases in modes 3, 4, 6, 7, 8, and 10. (b) Resulting error probabilities of Eq. (8) for the Î , F̂ , and P̂(1) gates
and the (F̂ ⊗ F̂±1)ĈZ (1) gate implemented with the basis settings in (a). (c) Gate noise responsible for the error probability in (b) together with
approximate ancillary GKP states of the e−2r/2 spike variance. Here the resource variance squeezing e−2r and effective variance squeezing in
the cluster state modes sech2r are shown as well (the two lower black and gray lines, respectively). The resource squeezing and gate noise
in decibel scale are relative to a vacuum variance of 1

2 . Note that the p̂-quadrature gate noise of the P̂(1) and F̂ F̂ĈZ gates overlap. For easy
comparison, the gate noise here is shown in Appendix C together with the gate noise of the schemes considered in Sec. IV.

guaranteed to find the best basis settings minimizing the
error probability. However, repeating the algorithm many
times with different w and starting points increases the confi-
dence of the resulting basis settings being optimal.

The resulting bases minimizing the objective function f (θ )
for the F̂ F̂ĈZ target gate (with even i for the central con-
trol mode) are presented in Fig. 4(a) for different resource
squeezing levels as input in Fig. 2(a). In the following we will
refer to the mode numbering labeled in Fig. 4(a). According to
Eq. (10), with (θ1,3, θ2,4) = (−π/4, π/4) in the first computa-
tion step, ignoring the coupling between wires, the input mode
is simply teleported to the second computation step with a
by-product (in addition to displacement) of Ŝ(tanh2 2r). Here
control mode 8 is measured in the same θc = π/4 basis used
for separating wires, while control mode 7 is measured in a
different basis in order to couple the two wires. With the com-
bined basis setting of modes 5, 6, 7, 9, and 10, the by-product
squeezing of the first step is compensated and the F̂ F̂ĈZ gate
is implemented. Finally, for uneven i on the control modes
between the two coupled wires, the (F̂ ⊗ F̂−1)ĈZ (1) gate is
implemented by changing the sign on modes 3, 4, 6, 7, 8, and
10. The resulting gate noise and error probability are the same
as for F̂ F̂ĈZ with even i.

After quadrature correction in the GKP scheme the result-
ing error probability of the above-described basis settings for
the Î , F̂ , and P̂(1) single-mode gates and the two-mode F̂ F̂ĈZ

gate are shown in Fig. 4(b). As expected, the error probability
is seen to go towards 0 for increasing resource squeezing and
towards 1 for vanishing squeezing. Furthermore, the F̂ F̂ĈZ

gate is seen to have the highest error probability due to four
successful quadrature corrections necessary to avoid qubit
error, while the Î gate leads to the lowest error probability
as it is implemented in a single computation step. In Sec. V A
these error probabilities are compared with error probabili-
ties when using other relevant cluster states and computing
schemes.

To gain a better understanding of the error probabilities, we
consider the responsible gate noise. The gate noise variance,
for the basis settings in Fig. 4(a) and described above, is
plotted in Fig. 4(c). In the large squeezing limit, the effective
variance squeezing in the cluster state modes of sech2r is a
factor of 2 (3 dB) larger than the resource variance squeezing
of e−2r , which is the cost of preparing the cluster state with
off-line squeezing [3]. The Î gate, implemented in a single
computation step, has a gate noise in the range two times
higher than the effective squeezing due to Nx, Np → 2 for
r → ∞. The F̂ and P̂(1) gates have further gate noise of
around a factor 2, since they are implemented in two compu-
tation steps. Finally, the F̂ F̂ĈZ gate, also implemented in two
computation steps, has similar gate noise, but slightly higher
due to the noise of an additional control mode included in
the gate to couple two neighboring wires. The gate noise is
in general asymmetric in the quadratures (besides for the F̂
gate with equal noise factors in the two quadratures), also for
the F̂ F̂ĈZ gate with optimized basis settings: Since the Perr in
Eq. (8) rely on the product of quadrature correction success
and because the encoded GKP spike noise is also asymmetric
after the F̂ F̂ĈZ and P̂(1) gates, the error probability is not
necessarily minimum with quadrature symmetric gate noise,
and at low squeezing we see the majority of the gate noise in
one quadrature. Finally, in the vanishing squeezing limit the
gate noise diverges. To understand this, consider the Wigner
function transformation of the generalized teleportation in
Eq. (5): With the diverging gate noise variance, the Wigner
function is convoluted with infinitely broad Gaussian func-
tions in x̂ and subjected to corresponding δ-function envelopes
in p̂, erasing all information of the encoded state. Together
with convolutions in the p̂ quadrature and corresponding en-
velopes in the x̂ quadrature, the Wigner function is ensured
to go towards vacuum for 0-dB resource squeezing. This is
further described in Appendix B with the Wigner function
transformation of single-mode gates on the DBSL.
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FIG. 5. (a) Basis setting implementing (F̂ ⊗ F̂ )ĈZ (1) (shortened
F̂ F̂ĈZ ) for even i with variable control basis θc minimizing the error
probability of Eq. (8), while (F̂ ⊗ F̂−1)ĈZ (1) is implemented for
uneven i by changing the sign on modes 3, 4, 6, 7, 8, and 10. Here
the mode numbering used is that of Fig. 4(a). (b) Resulting error
probabilities using variable θc in (a) optimized for F̂ F̂ĈZ , relative to
the corresponding error probabilities in Fig. 4(b) for fixed θc = π/4.

C. Variable control mode basis

For simplicity, so far, we have set the control mode basis to
θc = π/4, which only leads to unity wire edge weight in the
infinite squeezing limit. Allowing variable θc implements

Ŝ([−1]i4t2 tan θc)R̂

(
θ+
2

)
Ŝ

(
tan

θ−
2

)
R̂

(
θ+
2

)

single-mode gates in each computation step with

N =
( 1

4t
−1

4t2 tan θc

−1
4t

1
4t 0 1

4t

t tan θc 0 t tan θc t tan θc 1 −t tan θc

)

for the gate noise leading to

Nx =
∑

j

N2
1 j = 1

tanh4 2r tan2 θc
+ 1

tanh2 2r
,

Np =
∑

j

N2
2 j = tanh2 2r tan2 θc + 1

noise factors. As a result, by varying θc we are able to dis-
tribute the gate noise between the quadratures in order to
minimize the GKP-encoded qubit errors.

To prevent unwanted couplings between wires, θc needs to
be the same for all gates. With the two-mode ĈZ (1) gate being
the gate of largest error probability, we may optimize θc to
minimize the error probability of the (F̂ ⊗ F̂±1)ĈZ (1) gate. In
Fig. 5 optimized basis settings, as well as the corresponding
error probabilities relative to the error probabilities for fixed
θc = π/4, are shown as a function of resource squeezing
when including θc in the objective function in Eq. (13). The
error probability for the (F̂ ⊗ F̂±1)ĈZ (1) gate, for which θc

is optimized, is seen at best to decrease to 0.97 of the er-
ror probability with fixed θc, and thus the gain of variable
θc is little. Furthermore, since θc is only optimized for the
(F̂ ⊗ F̂±1)ĈZ (1) gate, for some ranges of resource squeezing,
the error probabilities for the Î , F̂ , and P̂(1) gates are seen to
become worse. In conclusion, there may be a small advantage
of optimizing θc, but this depends on the amount of resource

squeezing available and what gates dominate the quantum
algorithm to be implemented.

IV. OTHER CLUSTER STATES

Besides the DBSL, there are three other interesting cluster
states with corresponding self-inverse and bipartite H-graph
states and thus realizable with off-line squeezing and linear
optics: the quad-rail lattice (QRL) [13] with the efficient com-
putation scheme in Ref. [19]; the bilayer square lattice (BSL)
[12,16], also with an efficient computation scheme; and the
recently demonstrated cluster state by Asavanant et al. [18]. In
the following we refer to this last cluster state as the modified
bilayer square lattice (MBSL) since computation on this state
is similar to computation on the BSL with few modifications.
Below we summarize the computation schemes for each clus-
ter state focusing on the {Î, F̂ , P̂(1), ĈZ (1)} gate set which,
together with

√
π displacements in x̂ and p̂ quadratures, con-

stitute a universal Clifford gate set in the GKP-encoded qubit
subspace. Here we apply the same search for basis settings
that optimize the gate noise in order to minimize qubits errors,
as a figure of merit we use the error probability of Eq. (8).
For easy comparison, the figures summarizing the different
schemes considered and the resulting gate noise are also put
together in Appendix C. The resulting error probabilities are
then compared with the error probabilities for the DBSL in
Sec. V A, while universality through the implementation of
a non-Clifford gate in the various schemes is discussed in
Sec. V B.

A. Bilayer square lattice

The two-dimensional BSL can be generated in the time-
frequency domain using a single optical parametric oscillator
[12] or solely in the time domain using four squeezing sources
[16] as summarized in Fig. 6(a). We emphasize that the time-
only encoding of the BSL in [16] is not necessarily more
favorable than the frequency-time encoding in [12]; one may
even argue that the frequency-time encoding has a better
scaling performance. Here we simply present the time-only
encoded version of the setup, since it is comparable to that
of the QRL and the MBSL, but it is important to note that
the analysis presented in this work holds also for the time-
frequency encoded BSL.

The setup in Fig. 6(a) produces a self-inverse and bipartite
H-graph state, which under phase rotations is transformed
into a cluster state. An efficient universal computation scheme
is well described by Alexander et al. [12,16] in the language
of macronodes in which each macronode corresponds to the
logic level marked in Fig. 6(a). The computation takes place at
this level and the logic cluster state consists of square cluster
states as presented in Fig. 6(b) with ±t = ± tanh(2r)/

√
2

edge weight and iε = i sech2r self-loops. The measuring sys-
tem comprises two joint measurements for each temporal
mode k: a joint measurement of the control modes B and C in
basis (−1)kθc to project the cluster state into wires as shown
in Fig. 6(c) and a joint measurement of the wire modes A and
D to implement gates on these wires. As for the DBSL, we
find that θc = π/4 is near optimal. Measuring wire modes A
and B of temporal mode k in bases θAk and θDk implements the
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FIG. 6. Bilayer square lattice. (a) Experimental setup for generating the H-graph state corresponding to the BSL cluster state [12,16]. Here
the device marked by an asterisk is described in Fig. 2 for the DBSL and represents a switch for switching in and out states or a GKP quadrature
correction circuit. The logic level in which the computation takes place is marked and the corresponding logic cluster state is shown in (b) with
arrows representing the beam splitters of the measurement device, while in (c) the logic cluster state is projected into wires for computation.
The edge weights shown here are in the limit of infinite squeezing and θc = π/4. (d) Basis setting implementing the (F̂ ⊗ F̂−1)ĈZ (1) gate for
even temporal modes k with a minimum error probability. For uneven k, (F̂ ⊗ F̂ )ĈZ (1) is implemented by changing the sign of the bases. The
error probability in Eq. (8) of the single-mode Î , F̂ , and P̂(1) gates with θc = π/4 and the (F̂ ⊗ F̂±1)ĈZ (1) gate are presented in (e) with the
corresponding gate noise shown in (f) Here F̂ F̂ĈZ is short for (F̂ ⊗ F̂±1)ĈZ (1). The experimental setup, logic cluster state and its projection
into wires, and the resulting gate noise are shown together with the other schemes considered in Appendix C for easy comparison.

single-mode gate

Ŝ([−1]k+12t2)R̂

(
θ+
2

)
Ŝ

(
tan

θ−
2

)
R̂

(
θ+
2

)
(14)

from temporal mode k to k + N (one computation step) where
θ± = θDk ± θAk . The resulting gate noise for one computation
step is N( p̂Ak, p̂Bk, p̂Ck+1, p̂Dk+N )T , where

N =
( 1

2t2
1
2t − 1

2t 0

0 −t −t 1

)
. (15)

Thus, the variance of the gate noise added to the output
quadratures in each computation step is Nxε/2 and Npε/2 for
the x̂ and p̂ quadratures, respectively, where

Nx = 1

tanh4 2r
+ 1

tanh2 2r
,

Np = tanh2(2r) + 1

are quadrature noise factors
∑

j N2
i j , introduced in Sec. II B 2,

and we note that they are identical to the noise factors of the
DBSL. The Î gate is implemented in a single computation step
by choosing

(
θ+
θ−

)
I
=

(
0

(−1)k+12 arctan(tanh−2 2r)

)
.

The F̂ and P̂(1) gates are implemented in two computation
steps from temporal mode k to k + 2N . By choosing basis

settings
⎛
⎜⎜⎜⎝

θ+1

θ−1

θ+2

θ−2

⎞
⎟⎟⎟⎠

F

=

⎛
⎜⎜⎜⎝

π/2

π/2

0

2 arctan(tanh−4 2r)

⎞
⎟⎟⎟⎠,

F̂ is implemented with equal gate noise variance of (Nx +
Np)ε/2 in x̂ and p̂ quadratures, while P̂(1) is realized with

⎛
⎜⎜⎜⎝

θ+1

θ−1

θ+2

θ−2

⎞
⎟⎟⎟⎠

P

=

⎛
⎜⎜⎜⎝

arctan 2

− arctan 2

π/2

π/2

⎞
⎟⎟⎟⎠,

resulting in gate noise variances of 2Nxε/2 and 2Npε/2 in
x̂ and p̂ quadratures, respectively. Here θ±1 = θDk ± θAk and
θ±2 = θDk+N ± θAk+N . Notice the similarity to the DBSL: The
basis settings and gate noises are identical and the BSL and
DBSL are expected to perform single-mode gates equally
well.

Measuring control modes B and C of one temporal mode in
different bases leads to coupling between the two neighboring
wires and thus allow for the implementation of two-mode
gates. In Ref. [12], the basis setting for implementing the
ĈZ (g) gate is given for the case of infinite squeezing. Here
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FIG. 7. Modified bilayer square lattice. (a) Experimental setup for generating the H-graph state corresponding to the MBSL cluster state
by Asavanant et al. [18]. Here the device marked by an asterisk is described in Fig. 2 for the DBSL and represents a switch for switching in
and out states or a GKP quadrature corrections circuit. The logic level in which the computation takes place is marked and the corresponding
logic cluster state is shown in (b) with arrows representing the beam splitters of the measurement device, while in (c) the logic cluster state
is projected into wires for computation. The edge weights shown here are in the limit of infinite squeezing and θc = π/2. (d) Basis setting
implementing the (F̂ ⊗ F̂ )ĈZ (1) gate with a minimum error probability. The error probability in Eq. (8) of the single-mode Î , F̂ , and P̂(1)
gates with θc = π/2 and the (F̂ ⊗ F̂±1)ĈZ (1) gate are presented in (e) with the corresponding gate noise shown in (f). Here F̂ F̂ĈZ is short for
(F̂ ⊗ F̂ )ĈZ (1). Note that each gate noise variance in the p̂ quadratures of each mode for the (F̂ ⊗ F̂ )ĈZ (1) gate equals that of the P̂(1) and F̂
gates. The experimental setup, logic cluster state and its projection into wires, and the resulting gate noise are shown together with the other
schemes considered in Appendix C for easy comparison.

we extend this analysis by searching for the basis setting that
minimizes the error probability of two encoded qubits after
the ĈZ (1) gate for the more relevant case of finite squeezing.
To do so, we use the same technique as for the DBSL by
minimizing the objective function in Eq. (13). Note that to
compensate for finite squeezing distortion [as Ŝ(± tanh2 2r)
in Eq. (14) for single-mode gates], two computation steps are
required to implement ĈZ (1). For all (F̂ n ⊗ F̂ m)ĈZ (1) gates
with n, m = 0, 1, 2, 3 we find the lowest error probability for
n, m = ±1 and we choose (n, m) = (1, (−1)k+1), where k
is the temporal mode index of the control modes coupling
the two wires. The resulting basis settings implementing the
(F̂ ⊗ F̂−1)ĈZ (1) gate are shown in Fig. 6(d) for even k, while
for uneven k the (F̂ ⊗ F̂ )ĈZ (1) gate is implemented with
equal error probability by changing the sign of all bases in
Fig. 6(d). If we allow for a variable θc in the objective function
of Eq. (13), we find no improvement of the error probability,
and we conclude there will be no gain of a variable θc when
implementing the (F̂ ⊗ F̂±1)ĈZ (1) gate.

Note how the basis settings in Fig. 6(d), different from the
DBSL in Fig. 4(a) and the MBSL later in Fig. 7(d), seem
to depend on the resource squeezing in the full squeezing
range shown. The reason for this is that there exist multiple
solutions for basis settings that implement a desired ĈZ (1)
gate with a minimum error probability. The same is the case
for the DBSL and MBSL; however, in Figs. 4(d) and 7(d) a
more consistent solution set of basis settings as a function

of resource squeezing is shown, while here for the BSL a
slightly inconsistent solution set is shown. This effect often
occurs when unnecessarily large degrees of freedom in the
basis settings are used when minimizing the objective function
in Eq. (13). However, this does not mean that the basis settings
in Fig. 6(d) are not optimal, but are rather an example of the
existence of multiple basis setting solutions and proper use of
Eq. (13) to derive a suitable solution for a given experimental
implementation.

The resulting error probabilities of Eq. (8) when correcting
the quadratures after the Î , F̂ , P̂(1), and (F̂ ⊗ F̂±1)ĈZ (1)
gates as described above are presented in Fig. 6(e). As ex-
pected, the two-mode ĈZ (1) gate is seen to have the highest
error probability since four successful quadrature corrections
are necessary to avoid inducing an error on the encoded
qubits. Finally, the gate noise variances are presented in
Fig. 6(f), and here we clearly see behavior similar to that for
the DBSL: For infinite squeezing, the Î gate in one compu-
tation step has a gate noise variance of twice the effective
variance squeezing sech2r (as Nx, Np → 2 when r → ∞),
while the F̂ and P̂(1) gates implemented in two computation
steps have gate noise variances four times that. In the other
extreme of vanishing squeezing, the gate noise diverges in the
x̂ quadrature, thereby erasing all information of the encoded
state as previously explained for the DBSL. This can also be
seen from the corresponding Wigner function transformation
in Appendix B.
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B. Modified bilayer square lattice

The experimental setup of the MBSL cluster state, re-
cently generated by Asavanant et al. [18] and summarized
in Fig. 7(a), is very similar to the setup of the all-time en-
coded BSL in Fig. 6(a), and we can therefore adopt the
computation scheme for the BSL with only a few changes.
The corresponding cluster state at the logic level is shown in
Fig. 7(b), in which we see that the square clusters of the BSL
have been replaced with “butterfly” clusters. As for the BSL,
the edge weight and self-loops are ±t = ± tanh(2r)/

√
2 and

iε = i sech2r, respectively. The spatial modes C and D of each
temporal mode k constitute wire modes, while A and B are
control modes. In contrast to the square clusters in the BSL,
the butterfly clusters already contain direct edges in the wires
before potential phase rotation of the control modes. Thus we
can directly delete the control modes by measuring them in
the x̂ basis, i.e., θc = 0, and implement the operations

Ŝ(t )R̂

(
θ+
2

)
Ŝ

(
tan

θ−
2

)
R̂

(
θ+
2

)
(θc = 0)

in one computation step from temporal mode k to
k + N with θ± = θCk ± θDk . The resulting gate noise is
N( p̂Dk, p̂Ak, p̂Bk+1, p̂Ck+N )T , with

N =
(− 1

t 0 0 0

0 0 0 1

)
(θc = 0),

such that the gate noise variance is Nxε/2 and Npε/2 in x̂ and
p̂ quadratures, respectively, with quadrature noise factors of

Nx = 2/tanh2 2r, Np = 1 (θc = 0).

Alternatively, we can measure the control modes in the
p̂ basis, i.e., θc = π/2, rearranging the edge weights of the
butterfly cluster states to increase the edge weight between
wire modes as shown in Fig. 7(c). In this case, the operation

Ŝ(2t )R̂

(
θ+
2

)
Ŝ

(
tan

θ−
2

)
R̂

(
θ+
2

)
(θc = π/2)

is implemented with the gate noise

N =
(− 1

2t − 1
2t 0 0

0 0 −1 1

)
(θc = π/2) (16)

such that

Nx = 1/ tanh2 2r, Np = 2 (θc = π/2).

Other values of θc are also possible, but in this case the
implemented gate as well as gate noise is less trivial. However,
in the later analysis of the ĈZ (1) gate we do find that θc = π/2
is indeed optimal. Notice that, unlike the BSL with square
cluster states, all control modes are measured in the same
basis without an alternating sign for different temporal modes.
This is because the wire modes are directly connected with
equal edge weights for all temporal modes, or connected with
three edges through two control modes, while for the square
cluster states, wire modes have two connections, each through
a single control mode, but with different sign on the edge
weights depending on whether the control mode is in the next
or previous temporal mode.

For θc = π/2, the basis setting(
θ+
θ−

)
I

=
( 0

2 arctan[tanh−1(2r)/
√

2]

)

with θ± = θCk ± θDk implements the Î gate in one compu-
tation step from temporal mode k to k + N and gate noise
variances Nxε/2 and Npε/2 in x̂ and p̂ quadratures, respec-
tively. The basis setting⎛

⎜⎜⎜⎝

θ+1

θ−1

θ+2

θ−2

⎞
⎟⎟⎟⎠

F

=

⎛
⎜⎜⎜⎝

π/2

π/2

0

2 arctan[tanh−2(2r)/2]

⎞
⎟⎟⎟⎠

implements the F̂ gate in two computation steps with equal
(Nx + Np)ε/2 gate noise variances in x̂ and p̂ quadratures,
while ⎛

⎜⎜⎜⎝

θ+1

θ−1

θ+2

θ−2

⎞
⎟⎟⎟⎠

P

=

⎛
⎜⎜⎜⎝

arctan 2

− arctan 2

π/2

π/2

⎞
⎟⎟⎟⎠

implements the P̂(1) gate in two computation steps with
2Nxε/2 and 2Npε/2 gate noise variances in x̂ and p̂ quadra-
tures, respectively. Here θ±1 = θCk ± θDk and θ±2 = θCk+N ±
θDk+N when implementing F̂ and P̂(1) from temporal mode k
to k + 2N .

To couple pairs of wires for the implementation of a two-
mode gate, one measures the control modes A and B of one
temporal mode k in different bases by which a coupling be-
tween the wires in temporal modes k − 1 and k is induced. The
ĈZ (1) gate is again implemented in two computation steps,
and similar as for the BSL and the DBSL, we search the
basis setting that minimizes the objective function in Eq. (13)
and thus the error probability in Eq. (8) of that particular
gate. Again, we need to investigate all (F̂ n ⊗ F̂ m)ĈZ (1) gates
for n, m = 0, 1, 2, 3 and find n = m = 1 to be optimal. The
resulting basis setting is shown in Fig. 7(d), where θc = π/2
is found to be optimal. Note that, unlike the DBSL and BSL,
this basis setting is independent of the temporal mode index k,
as the control basis does not have an alternating sign governed
by k.

The resulting error probability of the single-mode Î , F̂ , and
P̂(1) gates and the two-mode (F̂ ⊗ F̂ )ĈZ (1) gate, with the
basis settings described above and in Fig. 7(d), is shown in
Fig. 7(e). The single-mode gates are all seen to have a lower
error probability than in computations with the DBSL and
BSL cluster states. This is explained by the lower quadrature
noise factors Nx and Np due to the structure of the butterfly
cluster states with initial edges between wire modes before
projecting the logic cluster state into wires. As expected, due
to the four quadrature corrections, the error probability of
the (F̂ ⊗ F̂ )ĈZ (1) gate is largest. Gate noise variances are
shown in Fig. 7(f). For single-mode gates, in general we see
lower gate noise variance than for the DBSL and BSL, and
in the large squeezing limit where Nx → 1 for r → ∞ and
θc = π/2, while Np = 2, we see the gate noise variances in
x̂ quadratures of the Î gate to equal the effective squeezing
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(a) (b)

(d)(c)

FIG. 8. Quad-rail lattice. (a) Experimental setup for generating the H-graph state corresponding the QRL cluster state. Here the devices
marked by an asterisk are described in Fig. 2 and represent optical switches switching in and out states or GKP quadrature correction circuits
as in Eq. (7). The logic level in which the computation takes place is marked, with the corresponding logic cluster state shown in (b) with
arrows representing the beam-splitter network of the measurement device. The edge weight shown is in the infinite squeezing limit, while
for finite squeezing it is t = tanh 2r, while iε = i sech2r self-loops are present on all nodes. Temporal mode indices are marked on the time
axis, while a single computation step is marked with input modes in1 and in2 and output modes out1 and out2. (c) Example of single-mode
computation along the cluster state cylinder by restricting the bases with θAk = θDk and θBk = θCk , thereby implementing Û in Eq. (17) in each
computation step. With two computation steps, the Ŝ(t ) distortion in Eq. (17) due to finite squeezing can be compensated in the second step
by implementing Ŝ(t−1) or, more generally, any single-mode Gaussian gate can be implemented as Ĝ = Û1Û2. Here input modes in spatial
modes B are ignored. After implementation of gates, the output modes marked with an outer circle are quadrature corrected. (d) Example
of implementing the (F̂ ⊗ F̂ )ĈZ (1) gate between input modes in2 and in3. Since all gates are implemented on pairs of modes, first one
computation step is required to guide the in2 and in3 modes to the (F̂ ⊗ F̂ )CZ (1) gate, while gates of the form Ŝ(t−1)Û can be implemented
on other computation modes. After the (F̂ ⊗ F̂ )CZ (1) gate, all computation modes are aligned to the same vertical position in the lattice using
Î gates [notice that Ŝ(t±1)Ŝ(t∓1) = Î]. To prevent accumulating gate noise, GKP quadrature correction is performed after every implemented
gate on modes marked with an outer circle. The experimental setup and logic cluster state are shown together with the other schemes considered
in Appendix C for easy comparison.

variance of sech2r. For vanishing squeezing, the gate noise
variance diverges in the x̂ quadrature, erasing all information
of the encoded state as is also the case for computing with
the BSL and DBSL (also eluded by the Wigner function
transformation in Appendix B). Notice that, unlike the DBSL
and BSL, the gate noise of the (F̂ ⊗ F̂ )ĈZ (1) gate is not
symmetric in the quadratures of the two modes.

C. Quad-rail lattice

In Ref. [14] it was proposed to generate a cluster state with
a quad-rail lattice structure in the frequency domain from a
single optical parametric oscillator, while in Ref. [13] it was
suggested to construct a time domain version of the QRL
clusters state. With temporal encoding, the generated state
has a cylindrical topology reminiscent of the DBSL, BSL,
and MBSL, allowing for computation along the cylinder with
information encoded on the circumference of the cylinder. The
scheme for generating the temporally encoded QRL state is
summarized in Fig. 8(a). Since the QRL is self-inverse and
bipartite, this QRL H-graph state has a corresponding QRL
cluster state (under phase rotations), which we consider in the
following.

An efficient computation scheme on the QRL cluster state
is presented in [19] in the language of macronodes. It cor-
responds to the logic level marked in Fig. 8(a), which is

followed by a measurement device consisting of a beam-
splitter network of four beam splitters (BS1–4) and four
homodyne detections. The cluster state at the logic level is
shown in Fig. 8(b). With the logic level at a beam-splitter
depth of only one, the edge weight of t = tanh 2r is larger
than in the DBSL, BSL, and MBSL, while the self-loops
are equal iε = i sech2r. The logic cluster state consists of
two-mode entangled states as in the generalized teleportation
circuit in Sec. II B, and no projection of the cluster state into
wires before computation is necessary. This, together with the
larger edge weight, reduces the gate noise and thus makes
computation on the QRL more efficient. On the other hand,
the increased complexity of the measurement device (a joint
measurements of four modes) makes the computation scheme
presented here more tricky and may seem less intuitive.

One computation step is marked in Fig. 8(b). It implements
a two-mode operation from input modes Ck (in1) and Bk
(in2) to the output modes Ck + N (out1) and Bk + 1 (out2).
In the following we will refer to the mode in computation
from in1 (in2) to out1 (out2) as computation mode 1 (2). It
is possible to decouple the two computation modes 1 and 2
by restricting the basis settings to θAk = θDk and θBk = θCk . In
the same way as in Eq. (9), this effectively cancels the beam
splitters BS3 and BS4, since equal phase shifts commute with
the beam splitter. Then single-mode gates can be implemented
using BS1 and BS2 in the same way as for the generalized
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teleportation in Sec. II B, but the same gate will be applied to
both computation modes 1 and 2 due to the basis restriction.
That is, Û ⊗ Û will be implemented, where

Û = Ŝ(tanh 2r)R̂

(
θ+
2

)
Ŝ

(
tan

θ−
2

)
R̂

(
θ+
2

)
, (17)

with θ± = θCk ± θDk . Similarly, using the basis permutation
rules in [19], restricting to θDk = θBk and θAk = θCk imple-
ments Û ⊗ Û on modes from in1 and in2 to out2 and out1,
respectively. As a result, when implementing Û ⊗ Û , the
modes in computation may travel straight across each other
on the cluster state lattice or they may do a 90◦ change in
their computation direction on the lattice depending on the
basis restriction. For implementation of single-mode gates,
we will mainly focus on the former case in which one mode
(computation mode 1) travels in the direction of the cluster
state cylinder, while the other mode (computation mode 2),
traveling around the cylinder, is ignored, as illustrated in
Fig. 8(c). Regardless of the basis restriction, the gate noise
of one computation step is N( p̂Ak, p̂Dk, p̂Bk+1, p̂Ck+N )T , with

N =

⎛
⎜⎜⎜⎜⎝

− 1
tanh 2r 0 0 0

0 − 1
tanh 2r 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠

leading to equal quadrature noise factors in the two computa-
tion modes of

Nx = 1

tanh2 2r
, Np = 1

in x̂ and p̂ quadratures, respectively.
As for the generalized teleportation circuit, the single-

mode Î gate is implemented in a single computation step with
basis setting

(
θ+
θ−

)
I

=
(

0

2 arctan(tanh−1 2r)

)

with gate noise variances Nxε/2 and Npε/2 in x̂ and p̂ quadra-
tures, respectively. The F̂ and P̂(1) gates are implemented in
two computation steps: With the basis setting

⎛
⎜⎜⎜⎝

θ+1

θ−1

θ+2

θ−2

⎞
⎟⎟⎟⎠

F

=

⎛
⎜⎜⎜⎝

π/2

π/2

0

2 arctan(tanh−2 2r)

⎞
⎟⎟⎟⎠,

F̂ is implemented with equal gate noise variances in x̂ and p̂
of (Nx + Np)ε/2, while

⎛
⎜⎜⎜⎝

θ+1

θ−1

θ+2

θ−2

⎞
⎟⎟⎟⎠

P

=

⎛
⎜⎜⎜⎝

arctan 2

− arctan 2

π/2

π/2

⎞
⎟⎟⎟⎠

implements P̂(1) with gate noise variances of 2Nxε/2 and
2Npε/2 in x̂ and p̂, respectively. Here, for the mode in compu-
tation traveling straight along the cylinder, θ±1 = θCk ± θDk

and θ±2 = θCk+N ± θDk+N , while (θBk, θAk ) = (θCk, θDk ) and
(θBk+N , θAk+N ) = (θCk+N , θDk+N ).

To implement the ĈZ (1) gate, we have investigated (F̂ n ⊗
F̂ m)ĈZ (1) for n, m = 0, 1, 2, 3 and find that n = m = 1 leads
to the lowest error probability in Eq. (8) of the GKP-encoded
qubits. With the basis setting

⎛
⎜⎜⎜⎝

θAk

θBk

θCk

θDk

⎞
⎟⎟⎟⎠

CZ

=

⎛
⎜⎜⎜⎜⎝

π/2 − arctan 1
2

0

π/2 + arctan 1
2

0

⎞
⎟⎟⎟⎟⎠,

[Ŝ(t ) ⊗ Ŝ(t )](F̂ ⊗ F̂ )ĈZ (1) is implemented in a single com-
putation step, where the two modes in computation goes from
in1 and in2 to out2 and out1, respectively (i.e., they do not
cross, but each mode is redirected 90◦). Here [Ŝ(t ) ⊗ Ŝ(t )] is
the distortion due to finite squeezing and is compensated for
in each computation mode in a second computation step with
basis setting

(
θ+
θ−

)
S(t−1 )

=
(

0
2 arctan(tanh−2 2r)

)
.

As a result, (F̂ ⊗ F̂ )ĈZ (1) is implemented in two computation
steps with equal gate noise variance in all four quadratures
of (Nx + Np)ε/2 as for the F̂ gate. As gates on the QRL are
in general performed on pairs of modes in computation and
require two computation steps (with the exception of the Î
gate), implementing (F̂ ⊗ F̂ )ĈZ (1) among other computation
modes may be tricky. However, an example of a possible
implementation is shown in Fig. 8(d).

The gate noise variance for each of the implemented gates
in {Î, F̂ , P̂(1), (F̂ ⊗ F̂ )ĈZ (1)} is shown in Fig. 9(a) as a func-
tion of the initial squeezing of the p̂-quadrature variance in
the resource state e−2r . Notice that in the high squeezing limit,
the gate noise of the Î gate is equal to the effective variance
squeezing of the cluster state modes sech2r, which is better
than seen for the other computation schemes presented in this
work and is due to the large edge weight in the logic cluster
state with no projection of the cluster state necessary before
computation. The F̂ and P̂(1) gates, implemented in two com-
putation steps, naturally have double gate noise compared to
the Î gate and so does the (F̂ ⊗ F̂ )ĈZ (1) gate, unlike the ĈZ (1)
gates implemented on the DBSL, BSL, and MBSL. This
improvement for the (F̂ ⊗ F̂ )ĈZ (1) gate happens because no
extra control modes are included when coupling two compu-
tation modes. In the limit of vanishing resource squeezing,
the gate noise variance of each computation diverges in the x̂
quadrature, erasing all information of the encoded state as for
the generalized teleportation circuit in Eq. (5).

To prevent gate noise accumulating on the GKP-encoded
qubits, quadrature corrections as described in Sec. II C should
be performed on modes in computation after each imple-
mented gate. Here, with two computation modes in each
computation step, two quadrature correction devices are nec-
essary: one in each spatial mode B and C as marked in
Fig. 8(a). After quadrature correcting modes as shown in
the examples in Figs. 8(c) and 8(d), the error probabili-
ties of Eq. (8) are shown in Fig. 9(b) for each of the four
gates Î , F̂ , P̂(1), and (F̂ ⊗ F̂ )ĈZ (1). As expected, with four
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(a)

(b)

FIG. 9. (a) Gate noise variance of the Î , F̂ , P̂(1), and (F̂ ⊗ F̂ )
ĈZ (1) gates (in short F̂ F̂ĈZ ) on the QRL cluster state as functions of
input resource squeezing in Fig. 8(a). Here e−2r and sech2r mark the
resource and effective squeezing variance. Note that the gate noise
variance in each of the four quadratures when implementing F̂ F̂ĈZ is
equal to the gate noise variance when implementing the F̂ gate. The
gate noise here is shown together with the other schemes considered
in Appendix C for easy comparison. (b) Resulting error probabilities
of Eq. (8) after quadrature corrections.

successful quadrature corrections required to avoid qubit er-
ror, the (F̂ ⊗ F̂ )ĈZ (1) gate has the highest error probability.
In Sec. V A it is compared with the DBSL, BSL, and MBSL.

V. DISCUSSION

Below, in Sec. V A we compare the cluster states and
computation schemes presented and discussed in Secs. III and
IV, while the figures summarizing the different computation
schemes and resulting gate noise are shown in Appendix C. In
Sec. V B we then comment on computation universality with
these cluster states.

A. Cluster state comparison

For all four cluster states considered in Secs. III and IV, the
implemented two-mode ĈZ (1) gates lead to the highest error
probability of the GKP-encoded qubits among the gates of the
set {Î, F̂ , P̂(1), ĈZ (1)}. An indicative measure of the perfor-
mance of a particular cluster state for quantum computing is
thus the error probability associated with the implementation
of the ĈZ (1) gate. In Fig. 10(a) these are plotted for the DBSL,
BSL, MBSL, and QRL. Here the error probability of ĈZ (1)
implemented on a canonically generated square lattice (SL)
cluster state in [22] is plotted for comparison.

As discussed in Sec. II C, the error probability in Eq. (8)
is fueled by the gate noise, the noise of the GKP qubits, and
the noise introduced in quadrature error correction. Gate noise
is governed by the amount of squeezing of the cluster state,

(a)

(b)

FIG. 10. (a) Error probabilities for ĈZ (1) gates implemented on
the DBSL in Sec. III, the BSL, the MBSL and QRL in Sec. IV,
and the canonically generated square lattice cluster state in [22].
Depending on the cluster state, the implemented ĈZ (1) gates have
a Fourier gate by-product on each mode. Note that the error proba-
bilities for the DBSL and BSL are overlapping. The gray area marks
the error probability in the case of zero gate noise, where qubit errors
are caused only by the available squeezing in the GKP encoding.
(b) Error probabilities in (a) relative to that of the DBSL.

while the noise of the qubits and correction is produced by
the finite squeezing of the peaks in the GKP state. Here, as
described in Sec. III B, we have assumed the peak variances
of both quadratures in the GKP states to equal the squeez-
ing resource variance of e−2r/2. To see how much the finite
squeezing in the GKP encoding and correction contributes to
the error probability, the ĈZ (1) error probability in the case of
zero gate noise [corresponding to setting σ2 = 0 in Eq. (6)] is
also plotted in Fig. 10(a). No matter what computation scheme
is considered with the GKP encoding used here, we will not be
able to perform better than the case of zero gate noise, as the
noise contributions from the GKP encoding and quadrature
correction are unavoidable.

The DBSL, BSL, and MBSL are seen to have similar
performances, while the QRL is superior and almost matches
the performance of the canonically generated SL cluster state.
Approximately 2.5 dB of additional squeezing is necessary
in the squeezing resources for the DBSL and BSL to match
the performance of the QRL. This performance advantage of
the QRL is due to the larger cluster state edge weight in the
logic level and that the cluster state needs no projection by
measurement of control modes, which adds additional noise
to the state in computation. It is worth considering whether
similar computation schemes can be developed for the DBSL,
BSL, and MBSL, possibly by placing the logic levels closer
to the squeezing sources in the setups after the first beam
splitters (leading to temporally delocalized macronodes in the
macronode language).
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To quantify further the performance difference of the
DBSL, BSL, and MBSL, the ĈZ (1) error probabilities are
plotted in Fig. 10(b) relative to the ĈZ (1) error probability of
the DBSL. Here the BSL and DBSL are seen to have very
similar performances in the range of resource squeezing inves-
tigated. The MBSL performs better with an error probability
down to 70% of the error probability in the DBSL at 21 dB
resource squeezing, while the relative error probability is ap-
proximately 83% using the currently achievable squeezing of
15 dB [37]. However, in practice, one also has to account for
experimental imperfections and setup complexity when decid-
ing which setup to use: The generation scheme of the DBSL is
technically simpler than that of MBSL as it requires only two
squeezing sources and three interference points contra four
squeezing sources and five interference points.

At first sight, with only two squeezing sources, the DBSL
seems to require fewer resources than the BSL and MBSL.
However, in the DBSL cluster state, only every second tem-
poral mode holds control modes, while for the BSL and
MBSL every single temporal mode includes both control and
wire modes. As a result, the DBSL only contains half as
many modes for computation in the same number of temporal
modes. Doubling the long delay Nτ in the generation setup
in Fig. 2(a) doubles the cylindrical cluster state circumference
and compensates for only having wire modes in every second
temporal mode. However, by doubling the circumference, the
time needed to implement gates doubles as well. As a result,
there is a cost of using only two squeezing sources in the
DBSL, which unfolds as fewer computation modes or longer
computation time, but not as additional computation noise.

Finally, we compare the architecture of the computation
schemes on the cluster states considered. The DBSL, BSL,
and MBSL all use the same principles of measuring con-
trol modes to control coupling between wires with modes
in computation. Turning on and off coupling between wires
makes it intuitive to implement multimode gates decomposed
into single- and two-mode gates, while on the QRL one has
to take care of the surrounding modes when implementing
two-mode gates as for the ĈZ (1) gate in Fig. 8(d). However,
the control-mode-based architectures only allow coupling be-
tween neighboring wires, whereas the QRL is more “flexible”
as introduced in [19]. As an example, consider an arbitrary
SWAP gate X̂i j swapping the modes in computation on wires
i and j. On the DBSL, a SWAP gate (with an unimportant
Fourier gate applied to the two output modes) can be per-
formed between two neighboring wires in two computation
steps from temporal mode (k − 2, k) to (k + 2N, k + 2N − 2)
with the basis setting

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θAk−2

θBk−2

θAk

θBk

θAk+N−2

θBk+N−2

θAk+N−1

θBk+N−1

θAk+N

θBk+N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

X

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

π/4
−π/4
π/4

−π/4
π/2

0
π/2

0
π/2

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(a) (b)

FIG. 11. Implementation of a SWAP gate between computation
modes 1 and 4, X̂14, separated by computation modes 2 and 3,
on (a) the DBSL and (b) the QRL. Since only coupling between
neighboring wires is possible on the DBSL in (a), a circuit depth
of 3 is required, corresponding to six horizontal computation steps
necessary along the cylindrical cluster state. The same goes for the
BSL and the MBSL. On the QRL in (b), the same SWAP gate can
be implemented in a single horizontal computation step using cross-
ing identity gates Î . Here computation mode 1 crosses computation
modes 2 and 3, while computation mode 4 is led all the way around
the cluster state cylinder to appear in the next horizontal computation
step, crossing other computation modes on its way.

independent of the amount of resource squeezing and with
gate noise variances Nxε/2 and Npε/2 in x̂ and p̂ quadratures,
respectively, where Nx = tanh−4(2r) + 3 tanh−2 2r and Np =
tanh2(2r) + 3. Thus, to swap two modes on wires separated
by n wires in between, n + 1 SWAP gates are required on each
mode leading to 2(n + 1) required computation steps. On the
QRL, on the other hand, using vertically traveling modes in
Fig. 8, two modes can be swapped in only a single horizontal
computation step independent on the initial distance between
the modes on the cluster state lattice. This is illustrated in
Fig. 11 for X̂14 with a mode distance of 2. As a result, depend-
ing on the interconnectivity required in the quantum algorithm
to be implemented, computation times can be shorter on the
QRL than on the DBSL, BSL, and MBSL.

Finally, we want to comment on the performance of the
QRL compared to the canonically generated SL cluster state.
It is clear that the QRL performs almost as well as the SL,
while the SL is much more challenging to generate since it
requires on-line squeezing to perform canonical ĈZ (g) opera-
tions and the total squeezing cost is in general larger [3,38].
However, for a fair comparison, it should be mentioned that
the ĈZ (1) implemented in [22] on the SL was not optimized.
It was implemented with four computation steps, where each
of the x̂ and p̂ quadrature corrections in the GKP scheme was
performed in two different computation steps, both leading
to more noise on the GKP-encoded qubits. The ĈZ (1) error
probability on the SL may be improved by optimizing the
required basis settings to implement the ĈZ (1) gate in fewer
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computation steps and performing GKP quadrature correc-
tions of both the x̂ and p̂ quadratures on the last cluster state
mode as for the computation schemes considered in this work.

B. Towards universality and fault tolerance

The four different computation schemes in Secs. III and
IV involve only Gaussian measurements (in the form of ho-
modyne detection) on Gaussian cluster states. In this pure
Gaussian realm, one is only able to perform universal Gaus-
sian computation [3], which with Gaussian input modes
may be simulated classically [39,40]. To achieve universal
quantum computation, non-Gaussian operations or resources
are required [41]. There exist different proposals on how
to achieve a universal gate set, which we summarize and
discuss in the following. Non-Gaussianity of states and oper-
ations has been obtained in numerous systems [42], including
some recent results on optical non-Gaussian state prepara-
tion [43] and non-Gaussian transformations on cluster states
[44].

In many CV quantum computing architecture proposals,
the Gaussian gate set is complemented with the non-Gaussian
cubic phase gate K̂ (χ ) = eiχ x̂3/3 [3,27] to achieve univer-
sal quantum computation on the bosonic modes [41]. Such
a non-Gaussian gate can be implemented, for example, by
redirecting specific modes of the cluster to a photon counter,
thereby realizing a measurement-induced non-Gaussian gate
transformation [3]. Moreover, in [16] it was shown how
K̂ (χ ) may be implemented on the BSL using an ancillary
cubic phase state |χ〉 = ∫

ds eiχs3/3 |s〉x as a non-Gaussian
resource switched into the logic level of the computation
scheme as an input state. Such a cubic phase state may
be prepared using photon counting [27]. Given the simi-
larities between computations on the BSL, the DBSL, and
the MBSL, it is straightforward to adopt this method of
implementing K̂ (χ ) by inputting |χ〉 in these computation
schemes. A similar approach may also be viable on the
QRL.

Using GKP states with symmetric quadrature noise, one
can expect a bad performance of the cubic phase gate due
to the applied phase by K̂ (χ ) on the finitely squeezed GKP
peaks being a cubic function of x̂ [27,45]. A more efficient
approach to quantum universality is to consider a gate set that
is only universal in the encoded logic space rather than in the
full infinite-dimensional Hilbert space. This requires an ample
supply of qubit magic states such as the Hadamard eigenstates
|HL〉 = cos π/8 |0L〉 + sin π/8 |1L〉. By injecting these states
into the computation wires as input states using an optical
switch, the non-Clifford π/8 gate can be executed with only
Gaussian transformations of the bosonic modes [27,46]. Such
magic GKP states may be prepared similarly to the GKP-
encoded input states or directly distilled using GKP |0L〉 states
[47]. In conclusion, the inherent non-Gaussianity of the GKP
states is sufficient to achieve universal quantum computation
in the GKP-encoded qubit subspace using solely Gaussian
transformations. Moreover, adding magic state distillation to
the scheme may not increase the experimental requirements
significantly since the squeezing needed for the distillation is
expected to be lower than the squeezing already required to
reach fault-tolerant Clifford computation [22,47].

Finally, for fault-tolerant computation, the qubit error-
correction scheme, concatenated with the GKP error-
correction scheme, should be considered when estimating the
required squeezing. With the quadrature corrections of states
in computation after each implemented gate, gate noise and
finite squeezing in the approximate GKP-encoded qubit states
are translated to qubit errors. For fault-tolerant computation,
these qubit errors are corrected with an appropriate qubit
error-correction scheme, where a logic qubit is encoded in
multiple GKP qubits. Here it is not appropriate just to choose
a qubit error-correction scheme with a large qubit error thresh-
old, as considerations on how to practically implement the
scheme are also of critical importance. For this reason, here
we will not estimate a squeezing threshold for fault tolerance.
As an example, the seven-qubit Steane code with an ∼10−3

error threshold requires two-mode gates between arbitrary
modes in computation [28], while the computation schemes
discussed in Secs. III and IV only implement two-mode gates
between neighboring computation modes. Thus, to implement
the seven-qubit Steane code a number of SWAP gates are
required for each syndrome measurement, each leading to
an increase in the combined qubit error probability before
qubit error correction. The QRL may have an advantage when
considering the implementation of a qubit error-correction
scheme owing to its flexibility as previously discussed and
illustrated for a SWAP gate in Fig. 11. Future work includes
considerations on the practical implementation of qubit error
correction on suitable and realizable cluster states.

VI. CONCLUSION

In summary, we have reviewed the principles of CV
measurement-based QC based on generalized teleportation,
we have proposed an efficient computation scheme for the
DBSL cluster state that was experimentally generated in [17],
and we have carefully analyzed and compared quantum com-
putation based on that state with the BSL, QRL, and MBSL
cluster states.

Through a careful study of the added gate noise for the
different cluster states, we find that the DBSL, the BSL, and
the MBSL exhibit similar performances. We also find that
the QRL is superior in terms of performance and flexibility,
allowing implementation of quantum circuits in a minimum
number of time steps. Finally, we have reviewed proposals for
implementation of a universal gate set, either on the bosonic
modes or just in the GKP-encoded qubit subspace, and con-
cluded that universal qubit computation is possible in all four
cluster states considered, given the availability of GKP states.

To optimize the performance of the various computation
schemes, we introduced a tool to find the basis setting im-
plementing a desired gate with minimum GKP-encoded qubit
errors. We believe that this technique for finding the optimal
basis settings will be important for future developments and
optimizations of new types of gates and algorithms. It should
however be noted that the technique of optimizing the basis
setting might not be the only strategy for minimizing the
error probability: We have only considered GKP qubit encod-
ings on a square grid in phase space, which is appropriate
for symmetric noise addition among conjugate quadratures.
However, since the computation schemes considered in
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general add noise asymmetrically in the quadratures, it may be
beneficial to encode the qubits in a rectangular lattice. Since
different gates have different gate noise asymmetry in x̂ and p̂
quadratures, the optimal lattice ratio depends on which gates
dominate the circuit to be implemented: As an example, the
Fourier gate F̂ in general adds symmetric gate noise, in which
case a square lattice is optimal, while the gate noise asymme-
try of the identity gate Î depends on the resource squeezing.
One can argue that with the ĈZ gate being the noisiest gate, the
GKP lattice ratio should be optimized to minimize qubit error
for this gate. In this case, for the DBSL, BSL, and MBSL, the
optimal ratio again depends on the resource squeezing, while
for the superior QRL with symmetric gate noise, the square
lattice seems optimal. However, one further complication is
that when performing the ĈZ gate or the P̂ gate, not only is gate
noise added, but also noise from the state in computation is
added due to the addition of quadratures in these gates. Thus,
the optimal lattice ratio depends as well on the noise perfor-
mance of the states in computation and the determination of a
general optimal lattice ratio for a given application is outside
the scope of this work. Finally, one has to keep in mind that
changing the lattice ratio also alters the logic operators in the
GKP encoding. As an example, with a rectangular lattice the
logic Hadamard gate becomes a combination of the Fourier
and squeezing gates.

Throughout this article, we have assumed all cluster states
to be pure, while in practice the cluster state will have some
degree of mixedness in the form of excess noise in the an-
tisqueezed quadratures. However, it was shown in Ref. [48]
that excess noise in the antisqueezed quadrature does not
affect the performance of the computation, and thus our purity
assumption in this article is well justified. It is however worth
mentioning that in practice it is still favorable to produce
highly pure squeezed states as large excess noise will decrease
the amount of squeezing due to inevitable phase instabilities
of the experimental setup.

In this article we have not studied the actual implementa-
tion of qubit error correction. Thus, as an outlook, it would be
interesting to study how a qubit error-correction algorithm is
most efficiently implemented such that the squeezing thresh-
old for fault-tolerant quantum computation is minimized. An
interesting solution could be topological QC, for which the
resulting squeezing threshold is within the already experi-
mentally demonstrated range [49,50]. In topological QC, the
qubits are encoded in a two-dimensional plane while the
actual computation takes place in a third dimension, thus
rendering the need for the construction of 3D cluster states.
Proposals do exist for the generation of 3D cluster states
[51,52], and the next interesting step is thus to analyze the
performance of these states using the techniques developed in
this article.
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APPENDIX A: CALCULATION OF QUADRATURE
TRANSFORMATIONS

In this Appendix we present an example of the quadrature
transformation of the single-mode computation step on the
DBSL that leads to the expressions (10) and (12) in Sec. III.
The modes involved are shown on the graph in Fig. 12(a) with
the corresponding circuit in Fig. 12(b). We will use the mode
numbering labeled in Fig. 12(a).

The approximate cluster state (ancillary modes 2–7) con-
sists of vacuum states squeezed by

√
ε and connected by ĈZ (g)

operations of weights that are described by the adjacency
matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
0 0 t t t −t 0
0 t 0 0 0 0 −t
0 t 0 0 0 0 −t
0 t 0 0 0 0 t
0 t 0 0 0 0 −t
0 0 −t −t t −t 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus, in the Heisenberg picture, we consider the generation
of the cluster state as a quadrature transformation described
by the symplectic matrix

SCZ =
( I 0

A I

)

on the input and initially squeezed ancillary modes, where I
and 0 are the 7×7 identity and zero matrix, respectively (note
that the quadratures of the input mode 1 are left unchanged
by SCZ ). The input mode 1 is then connected to the cluster
state by a beam splitter [the beam splitter of the measurement
device in Fig. 2(a)], leading to the quadrature transformation

SBS =
(B 0

0 B

)
,

where

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/
√

2 −1/
√

2 0 0 0 0 0
1/

√
2 1/

√
2 0 0 0 0 0

0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here we have ignored beam-splitter operations on the control
modes 3–6, as these operations can be directly compensated
for by adding or subtracting the measurement outcomes of the
homodyne detectors as shown in Eq. (9). Finally, each mode
j, except the output mode 7, is measured in basis x̂(θ j ). This is
represented first by a phase rotation R̂(θ j ), followed by a ho-
modyne measurement of x̂ j . Thus, before the x̂ measurements,
the quadratures are transformed as

SR =
( c s
−s c

)
,

where c and s are matrices with (cos θ1, . . . , cos θ7) and
(sin θ1, . . . , sin θ7) in the diagonal, respectively, and zero
elsewhere. For implementing single-mode gates, the con-
trol mode measurement bases are set to (θ3, θ4, θ5, θ6) =
(−1)iθc(1, 1,−1,−1), where θc = π/4 for simplicity, and
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(a) (b) (c)

FIG. 12. (a) Graphical notation of a single-mode computation step on the DBSL. For an input in temporal mode k, the mode numbering
translates as (1, 2, 3, 4, 5, 6, 7) = (Bk, Ak, Ak − 1, Bk + N − 1, Ak + 1, Bk + N + 1, Bk + N ), where A and B are spatial modes in Fig. 2(a).
(b) Corresponding circuit where the blue (dark) and yellow (bright) two-mode gates represent ĈZ (g) gates of weights t and −t , respectively.
(c) Outline of the symplectic matrix S = SRSBSSCZ representing the quadrature transformation in (b).

the output mode cannot be phase rotated, θ7 = 0. Here i is
the wire number as shown in Fig. 2(b). The total quadrature
transformation of the input and squeezed cluster state modes
just before measurements is then

q̂′ = SRSBSSCZ q̂ = Sq̂,

where q̂ = (x̂1, . . . , x̂7, p̂1, . . . , p̂7)T and q̂′ =
(x̂′

1, . . . , x̂′
7, p̂′

1, . . . , p̂′
7)T are vectors of quadrature operators

before and after the transformation as marked in Fig. 12(b).
It should be noted that for the cluster state prepared as an H
graph with off-line squeezing only, the effective amount of
squeezing of the cluster state modes is ε = sech2r, where r
is the squeezing parameter of the initially prepared off-line
squeezed state with variance e−2r [3].

Next we solve for the antisqueezed x̂ quadratures of the
cluster state modes x̂anc = (x̂2, . . . , x̂7)T as a function of the
measured x̂ quadratures x̂meas = (x̂′

1, . . . , x̂′
6)T ,

x̂meas = Ux̂anc + Vq̂in

�
x̂anc = U−1x̂meas − U−1Vq̂in,

where q̂in = (x̂1, p̂1, . . . , p̂7)T , while U and V are the parts of
S that transform x̂anc and q̂in to x̂meas as shown in Fig. 12(c).
Finally, we substitute the x̂ quadratures of the cluster state
with the quadratures of output mode 7, q̂out = (x̂′

7, p̂′
7):

q̂out = Yx̂anc + Zq̂in

= Y(U−1x̂meas − U−1Vq̂in ) + Zq̂in

= (Z − YU−1V)q̂in + YU−1x̂meas.

With x̂meas → (m1, . . . , m6) when measuring, YU−1x̂meas cor-
responds to the by-product displacement, while M ≡ Z −
YU−1V of size 2×8 corresponds to the combined gate sym-
plectic matrix G and gate noise matrix N in Eq. (2) as
M = (G N). Extracting G as the first two columns of M

transforming (x̂1, p̂1) to (x̂′
7, p̂′

7), we get

G = 1

sin θ−

( 1
t ′ cos θ+ + 1

t ′ cos θ− 1
t ′ sin θ+

−t ′ sin θ+ t ′ cos θ+ − t ′ cos θ−

)
,

which is the symplectic matrix corresponding to the op-
eration in Eq. (10) where t ′ = (−1)i4t2 and θ± = θ1 ± θ2.
Further, N is associated with the remaining six columns
of M,

N =
(− 1

4t2
1
4t

1
4t − 1

4t
1
4t 0

0 t t t −t 1

)
, (A1)

which leads to the quadrature noise factors coined in Eq. (12)
when t = tanh(2r)/2.

The procedure shown here for calculating the gate sym-
plectic matrix G and gate noise matrix N is not limited to
the single-mode one computation step on the DBSL but rep-
resents a general procedure that can be used to analyze the
noise of all gates in this work (irrespective of the cluster state)
as done in Secs. III and IV: If SCZ represents the construction
of any cluster state and SRSBS represents any Gaussian mea-
surement, we can determine the resulting linear quadrature
transformation corresponding to an arbitrary Gaussian oper-
ation on a single-mode or multimode input state. For each
case, we need to keep track of the following quadratures:
x̂anc including antisqueezed x̂ quadratures of the cluster state,
q̂in including the input mode quadratures and squeezed p̂
quadratures of the cluster state leading to gate noise, x̂meas

including the transformed x̂ quadratures to be measured, and
q̂out including the output mode quadratures of nonmeasured
modes.

APPENDIX B: WIGNER FUNCTION TRANSFORMATIONS

In this Appendix we discuss the single-mode computation
step in the DBSL, BSL, and MBSL in the Wigner function
representation. Here, for simplicity, the basis setting for im-
plementing the Î gate is chosen, while to shorten the notation,
we have postselected on measurement outcomes equal zero.
As described in Sec. II B, nonzero measurement outcomes
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lead to an unimportant displacement in phase space. For the
QRL, the two-mode cluster state corresponds to the one con-
sidered for the generalized teleportation in Sec. II B, and so
the Wigner function transformation is similar to that presented
in Eq. (5).

For a single-mode Î gate performed on the DBSL in
one computation step, described in Secs. III A and III B, the
transformation of the Wigner function can be calculated in
the same way as we did for the generalized teleportation in
Sec. II B, resulting in

Wout(x, p) = NG1/ε(x)
∫

dη4Gε(η4)G4t2/ε(p − η4)
∫

dη3Gε/4t2 (η3)

× G1/4t2ε(x − η3)
∫

dη2G4t2ε(η2)G16t4/ε(p − η2 − η4)
∫

dη1Gε/16t4 (η1)Win

(
x − η1 − η3

p − η2 − η4

)
,

where N is a normalization factor and Gδ is a normalized Gaussian function of δ/2 variance. The transformation includes
two convolutions in each quadrature and corresponding envelopes in the conjugate quadrature due to the Fourier relation
between quadratures. Comparing with Eq. (A1) and referring to the mode numbering in Fig. 12(a), in the x̂ quadrature
the first convolution with Gε/16t4 corresponds to noise from the finitely squeezed mode 2, while the third convolution with
Gε/4t2 corresponds to noise of control modes 3–6. In the p̂ quadrature, the second convolution with G4t2ε corresponds to
noise from the control modes 3–6, while the last convolution with Gε corresponds to the finite squeezing noise of the
output mode 7. In the limit of infinite squeezing r → ∞ (assuming t �= 0), the convolution functions become δ functions
since ε = sech2r → 0, while their corresponding envelopes in the orthogonal quadratures become infinitely broad, and so
Wout(x, p) → Win(x, p). In the limit of t = 0 where we expect no information to pass from the input mode 1 to the output
mode 7, the first three convolutions lead to the Wigner function of an infinitely squeezed state in p̂, erasing all information of
the input state, while the last convolution with Gε in p̂ quadrature ensures that the output Wigner function equals the initial
squeezed Wigner function of mode 7, Wout(x, p) = G1/ε(x)Gε(p), which equals vacuum for no squeezing as ε = sech2r = 1
when r = 0.

On the BSL, the single-mode Î gate performed in one computation step transforms the Wigner function as

Wout(x, p) = NG1/ε(x)
∫

dη4Gε(η4)G2t2/ε(p − η4)
∫

dη3Gε/(2t2 )(η3)

× G1/2t2ε(x − η3)
∫

dη2G2t2ε(η2)G4t2/ε(p − η2 − η4)
∫

dη1Gε/4t4 (η1)Win

(
x − η1 − η3

p − η2 − η4

)
.

Similar to the DBSL, comparing with N in Eq. (15), the convolutions with Gε/4t4 and Gε/2t2 in the x̂ quadrature correspond,
respectively, to noise added from the first wire mode Ak and the two control modes Bk + 1 and Ck + N in a square cluster of the
BSL in Figs. 6(a) and 6(b). In the p̂ quadrature, the convolution with G2t2ε corresponds to noise from the control modes Bk + 1
and Ck + N , while the convolution with Gε corresponds to noise from the output mode Dk + N . Again, in the limit of infinite
squeezing, Wout(x, p) → Win(x, p), while for t = 0 the output Wigner function becomes Wout(x, p) = G1/ε(x)Gε(p), as expected.

For the MBSL, the Wigner function transformation of the Î gate in one computation step with the control basis θc = π/2 is

Wout(x, p) = NG1/ε(x)G2ε+4t2/ε(p)
∫

dη3Gε/4t2 (η3)G1/ε(x − 2η3)
∫

dη2G2ε(η2)

× G4t2/ε(p − η2)
∫

dη1Gε/4t2 (η1)Win

(
x − η1 − η3

p − η2

)
.

Due to the direct edges along the computation wires of the
butterfly cluster states in Fig. 7, the Wigner function transfor-
mation becomes less intuitive. Here the envelope G2ε+4t2/ε(p)
corresponds to an envelope of G4t2/ε(p) convoluted with G2ε.
Comparing with Eq. (16), the first and third convolutions in
the x̂ quadrature, both with Gε/4t2 , correspond to noise added
from wire mode Dk and control mode Ak. The second convo-
lution with G2ε in the p̂ quadrature corresponds to noise from
both control mode Bk + 1 and the output mode Ck + N . In
the infinite squeezing limit, Wout(x, p) → Win(x, p). For t = 0
we get Wout(x, p) = G1/ε(x)G2ε(p)G2ε(p) = G1/ε(x)Gε(p).

If instead of the identity gate Î an arbitrary single-
mode Gaussian gate of one computation step is implemented
with symplectic matrix G, the resulting Wigner function

transformation corresponds to that presented above, but with
the arguments of Win transformed by G−1 as shown in Eq. (5)
for the generalized teleportation. For single-mode gates im-
plemented in two computation steps, the output Wigner
function of the first step becomes the input Wigner function of
the second step, leading to addition of the gate noise variance
since a convolution of two Gaussian functions is a Gaussian
function with the combined variance, i.e., additive Gaussian
gate noise. For multimode gates, more modes are involved,
leading to more convolutions in the expression of the out-
put Wigner function, and the Wigner function representation
becomes tedious. However, the principle is the same as for
single-mode gates: The gate noise leads to convolutions with
Gaussian functions of variance equal the gate noise variance.
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FIG. 13. Setup, cluster state in the logic level, and resulting gate noise of each DBSL, BSL, MBSL, and QRL cluster state studied in
Secs. III and IV. For the DBSL, BSL, and MBSL, the projection into wires is shown as well, while this is not required for computation
on the QRL.

APPENDIX C: CLUSTER STATE COMPARISON
CHEAT SHEET

In Secs. III and IV the computation schemes on the
different cluster states are analyzed separately in order to

facilitate easy lookup of a specific cluster state. The different
schemes are discussed and compared in Sec. V, while in
this Appendix the schemes are arranged in Fig. 13 for easy
comparison.
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