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We present a comprehensive theoretical study of the cross-resonance gate operation covering estimates for gate
parameters and gate error as well as analyzing spectator qubits and multiqubit frequency collisions. Starting from
the Josephson nonlinearity and by accounting for the eigenstates renormalization, due to counterrotating terms,
we derive a starting model for the cross-resonance gate with modified qubit-qubit interaction and drive matrix
elements. Employing time-dependent Schrieffer-Wolff perturbation theory, we derive an effective Hamiltonian
for the cross-resonance gate with estimates for the gate parameters calculated up to the fourth order in drive
amplitude. The model with renormalized eigenstates lead to 10%–15% relative correction of the effective gate
parameters compared to Kerr theory. We find that gate operation is strongly dependent on the ratio of qubit-
qubit detuning and anharmonicity. In particular, we characterize five distinct regions of operation, and propose
candidate parameter choices for achieving high gate speed and low coherent gate error when the cross-resonance
tone is equipped with an echo pulse sequence. Furthermore, we generalize our method to include a third spectator
qubit and characterize possible detrimental multiqubit frequency collisions.
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I. INTRODUCTION

Fault-tolerant quantum computation schemes [1–4] require
a universal set of high-fidelity quantum gates, where an ar-
bitrary quantum operation is decomposed in terms of a set
of single- and two-qubit gates [5]. Architectures based on
superconducting qubits [6–9] provide a promising platform
for this purpose due to a desirable combination of quantum
control, coherence and flexibility in design. In particular,
the transmon design [10,11] is a common choice because it
strongly suppresses charge noise at the expense of a weaker
anharmonicity. Transmon qubits are controlled via dipole cou-
pled microwave drives, which allows for arbitrary rotations in
the Bloch sphere by varying the envelope and phase of the
microwave field. State-of-the-art implementations for single
qubit gates can reach very low errors, close to 10−4 [12].

The difficult task, however, is entangling qubits together
in such a way as to realize a low-error two-qubit gate with
a high on-off contrast. One method is to add flux tunability
to the circuit, where gates can be enabled by dynamically
tuning qubits into resonance conditions [13,14] or by para-
metric modulation of the tunable elements [15,16]. However,
tunability comes at a definite cost in terms of coherence
and scalability. By contrast, an architecture based on fixed-
frequency transmons with exchange coupling has a high
degree of coherence, stability, and ease of control [17–20].
In such a design, only two-qubit gates enabled by microwave
drives (all-microwave gates) are possible. Although there are
fewer options for all-microwave gates, there is one type—
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cross-resonance (CR)—which has demonstrated tremendous
promise in multiqubit setups and can achieve errors below
10−2 [21].

The idea of the CR gate is rather simple; apply a microwave
drive to one qubit (the control) at the frequency of another
qubit (the target) [22–25]. Due to the static interaction be-
tween the qubits, a Rabi oscillation will occur on the target,
where the axis of rotation will depend on the state of the con-
trol. The ideal CR effect generates a ZX interaction term. The
first experimental attempt of the CR gate [26] achieved a gate
fidelity of 81%. This was later improved to 90% by introduc-
ing an echo pulse sequence canceling unwanted single qubit
terms during the gate [27]. Currently, gate fidelities exceeding
99% are possible using a combination of an echo sequence
and a secondary active cancellation tone on the target qubit
[21]. To improve the CR gate even further, a better theoretical
understanding of the gate is required.

Theoretical analysis of CR began with modeling physical
qubits as two-level systems [22,23]. Such models provide
a general understanding of the dominant ZX interaction
for the gate, while failing to capture the entirety of two-
qubit interactions such as the parasitic ZZ , and the large
single-qubit terms, such as IX , which are the same order
of magnitude as ZX in true multilevel transmons. Despite
continuous experimental effort to improve the gate operation,
there has been a gap on the theoretical part until very re-
cently [24,25,28,29]. In Ref. [24], it was argued that higher
transmon states have non-negligible impact on the effective
dynamics in the computational basis. In particular, using a
generalized Schrieffer-Wolff perturbation theory (SWPT) to
multiple blocks, analytical estimates for gate parameters were
derived that agree well with experiments [21].

SWPT is a powerful analytical method for studying ef-
fective low-energy physics of an underlying more complex
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physical interaction [30,31]. This method provides great flex-
ibility in determining the form of the desired effective model
depending on the nature of the problem. A very common
application is to find the eigenenergies and eigenstates of a
Hamiltonian by obtaining the transformation to the diago-
nal frame. A prime example in circuit-QED is the effective
dispersive Jaynes-Cummings model used to describe the dis-
persive readout scheme [32]. In the context of the CR gate,
the dominant (resonant) interactions occur between the lowest
two states of the target qubit when the control qubit is in
a well-defined quantum state. Therefore, we would like to
devise a Schrieffer-Wolff transformation, from the laboratory
frame to a frame, in which the effective Hamiltonian becomes
block-diagonal with respect to the Hilbert space of the target
qubit [24]. Since the CR gate time (100 ns) is much shorter
than the typical coherence times (100 μs), we focus entirely
on the unitary dynamics of the gate. Nevertheless, if needed,
dissipation can also be studied within a SWPT framework.
This was shown in a recent study, by one of the authors, where
SWPT was generalized to open quantum systems by deriving
effective master equations with renormalized eigenenergies as
well as dissipators [33,34].

In this paper, we follow a similar SWPT as in Ref. [24]
to derive an effective Hamiltonian for the CR gate. We
employ a starting Hamiltonian based on what we call energy-
basis representation of a transmon qubit. In contrast to Kerr
theory, our model captures the renormalization of the interac-
tion rates between the two-qubit states due to the counterro-
tating contributions in the Josephson potential [10,35]. Using
this model, we obtain estimates for CR gate parameters that
can deviate up to 15% from the ones predicted by Kerr theory,
but converge to the old estimates as a limiting case. Using the
perturbative results, we provide an analytical understanding
of the CR gate parameters with an echo pulse [21,27] devised
to mitigate the unwanted two-qubit interactions. Furthermore,
we calculate the gate fidelity and provide optimal operating
parameters to achieve coherent gate error between 10−4 and
10−3. In order to consider a more realistic scenario of CR gate
operation, we generalize our model to include a third spectator
qubit which could be coupled to either the control or the target
qubits. The goal is to quantify the impact of spectator qubits
on the intended CR gate operation and summarize various
multiqubit frequency collisions that may occur between the
control qubit and the drive, between the control and target
qubits, or between the control, target, and spectator qubits.

The rest of the main text is organized as follows: In Sec. II
we demonstrate a starting Hamiltonian for the CR gate based
on energy-basis representation of transmon qubits. Section III
discusses the derivation of an effective Hamiltonian for the CR
gate via a time-dependent SWPT method. In Sec. IV, using the
perturbative results, we provide an analytical understanding
of the CR gate parameters with an echo pulse [21] devised
to mitigate the unwanted two-qubit interactions. In Sec. V
we generalize our model to include a third spectator qubit. In
Sec. VI we summarize various multiqubit frequency collisions
that arise from perturbative analysis of CR. Last, Sec. VII is
devoted to the conclusion.

There are seven appendices, which will be referred to in the
main text when necessary. Appendix A provides the deriva-
tion of energy-basis representation of a transmon qubit. In

Appendix B we discuss the transformation to the basis that
is dressed by the exchange interaction between the qubits.
Appendix C discusses the derivation of a time-dependent
SWPT used to obtain an effective Hamiltonian for the CR
gate. Appendix D revisits the CR gate parameters in the pres-
ence of classical cross talk in the circuit. In Appendix E we
provide an approximate estimate for the nonlocal properties
of the CR echo operation in terms of the Makhlin invariants
[36]. In Appendix F we apply the semianalytical method of
Ref. [25] to our revised starting model for the CR gate and
study saturation behavior of gate parameters in the strong
drive regime. In Appendix G we look at prospects for ob-
serving the difference between the Kerr and energy basis in
experimentally measured quantities.

II. MODEL

Modeling the transmon circuit as a weakly anharmonic os-
cillator, as opposed to a two-level system, provides a broader
possibility of interactions leading to a renormalization of the
parameters of the effective CR Hamiltonian in the computa-
tional basis. For instance, besides the desired ZX interaction,
there also appears unwanted ZZ interaction that would not
exist if the qubits are modeled as two-level systems [24].
Here we employ a distinct model that is slightly modified with
respect to the Kerr theory used in Refs. [24,25].

In particular, we quantify the error in approximating the
qubit as a Kerr oscillator. Note that Kerr theory accounts only
for the balanced contributions (equal number of creation and
annihilation operators) in the lowest order expansion of the
Josephson nonlinearity (i.e., ϕ̂4), and hence provides relative
correction of O(

√
2EC/EJ ) to eigenenergies, where EC and

EJ are the charging and the Josephson tunneling energy of
the junction. Under this approximation, the number states
remain eigenstates of the bare qubit Hamiltonian. In reality,
however, transmon eigenstates are also renormalized due to
the counterrotating terms in the Josephson potential and ac-
counting for this correction results in modified qubit-qubit and
qubit-drive interaction, which in turn leads to renormalized
gate parameters.

The experimental motivation behind such a correction is
that the exchange coupling and the drive amplitude for the
CR gate are not known a priori and are commonly inferred
from the measurement of the ZZ and the ZI rates (see Ap-
pendix G). Therefore, we can think of a set of self-consistent
measurements where based on the value of the diagonal gate
parameters (ZZ and ZI) we first find J and � and then predict
the ZX rate. A comparison between the Kerr theory and the
energy basis models shows that the Kerr theory overestimates
the gate parameters.

In Sec. II A we quantify the correction to Kerr theory that
arises from eigenstate renormalization. We then employ the
result of Sec. II A to come up with a starting Hamiltonian for
the CR gate in Sec. II B.

A. Modified interaction in energy basis

In this section, instead of making a Kerr approximation, we
start from the cosine potential describing the Josephson junc-
tion and solve for the renormalized eigenstates. Note that the
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spectrum of a transmon qubit can be fully described with two
alternative parameters: a harmonic frequency ωh ≡ √

8ECEJ

and a unitless anharmonicity measure ε ≡ √
2EC/EJ . This

alternative form can be derived from the common trans-
mon Hamiltonian Ĥq = 4ECN̂2 − EJ cos(ϕ̂) by replacing the
phase and number operators in terms of their zero-point fluc-
tuation amplitudes as

ϕ̂ = ϕzpfx̂ =
(

2EC

EJ

)1/4

(b̂ + b̂†), (1a)

N̂ = Nzpfŷ = 1

2

(
EJ

2EC

)1/4

[−i(b̂ − b̂†)], (1b)

resulting in a unitless form for the transmon Hamiltonian as
[33–35,37]

Ĥq = ωh

4

[
ŷ2 − 2

ε
cos(

√
εx̂)

]
. (2)

In Eq. (2) we have denoted x̂ ≡ b̂ + b̂† and ŷ ≡ −i(b̂ − b̂†) as
the unitless phase (flux) and number (charge) quadratures for
the qubit.

We note that the spectrum of Hamiltonian (2) is in prin-
ciple exactly solvable in terms of Mathieu functions [10]. In
practice, however, the unitless anharmonicity measure is small
in the transmon regime (EJ � Ec) so that we can develop a
perturbative correction to the eigenenergies and eigenstates of
the transmon (see Appendix A and Ref. [35]). The first four
eigenenergies up to O(ε3) are found as

E1 − E0

ωh
= 1 − 1

4
ε − 1

16
ε2 + O(ε3), (3a)

E2 − E0

ωh
= 2 − 3

4
ε − 17

64
ε2 + O(ε3), (3b)

E3 − E0

ωh
= 3 − 3

2
ε − 45

64
ε2 + O(ε3), (3c)

with En denoting the eigenenergy of the nth eigenstate and the
ground state is indexed as 0. The corresponding lowest four
eigenstates are also found up to O(ε3) in Appendix A [see
Eqs. (A10a)–(A10d)]. The qubit frequency in this notation
equals the energy difference between the first two eigenstates
as ω ≡ E1 − E0. Moreover, from Eqs. (3a) and (3b), we can
find the qubit anharmonicity as

α

ωh
≡ (E2 − E1) − (E1 − E0)

ωh
= −1

4
ε − 9

64
ε2 + O(ε3).

(4a)

Note that although we here express qubit quantities in powers
of ε, it is not feasible to measure ε directly. However, we can
infer ε from qubit frequency ω and anharmonicity α. Dividing
Eq. (7) by Eq. (3a) we find the following approximate equa-
tion for ε as[

9 − 4
(α

ω

)]
ε2 + 16

[
1 −

(α

ω

)]
ε + 64

(α

ω

)
= 0, ε > 0.

(4b)

For typical IBM transmons with ω ≈ 5 GHz and α ≈
−330 MHz [21], one finds ε ≈ 0.2.

Moreover, based on Eqs. (3a)–(4a), we can express the
transmon qubit Hamiltonian under a four-level approximation

in the energy basis as

Ĥq = ω |ψ1〉 〈ψ1| + (2ω + α) |ψ2〉 〈ψ2|
+ (3ω + 3α + β ) |ψ3〉 〈ψ3|, (5)

where |ψn〉 denotes the nth energy eigenstate. Furthermore,
β ≡ −(6/64)ε2ωh + O(ε3) provides the deviation of the
energy of the third excited state from Kerr theory. For IBM
transmons, β can be as large as 30 MHz. We neglect such a
correction and use the Kerr eigenenergies in our perturbative
result for clarity. This would only become more relevant when
the CR drive frequency is near-resonant with the |ψ2〉 ↔ |ψ3〉
transition.

A more important consequence of eigenstate renormaliza-
tion is that the resulting interactions between the qubits are
also modified. To quantify this correction, we need to project
the interactions into the transmon energy eigenstates. Assum-
ing that the interaction Hamiltonian is linear in quadratures
of each qubit, which is the case for a capacitive or inductive
interaction, it is sufficient to find the matrix representation of
the unitless flux and charge operators in our basis as μmn ≡
〈ψm| x̂ |ψn〉 and νmn ≡ 〈ψm| ŷ |ψn〉. For simplicity, we separate
the lowering (−) and raising (+) parts of the quadratures as
x̂ = x̂− + x̂+ and ŷ = −i(ŷ− − ŷ+), where x̂+ = (x̂−)† and
ŷ+ = (ŷ−)†. Using the perturbative solutions for the first four
eigenstates, we find the following matrix representations for
x̂− up to the fourth level of transmon (see Appendix A):

x̂− ≈

⎡
⎢⎢⎣

0 μ01 0 μ03

0 0 μ12 0
0 0 0 μ23

0 0 0 0

⎤
⎥⎥⎦, (6a)

where μmn are found up to O(ε3) as

μ01 = 1 + 1

8
ε + 13

256
ε2 + O(ε3), (6b)

μ12 =
(

1 + 1

4
ε + 95

512
ε2

)√
2 + O(ε3), (6c)

μ23 =
(

1 + 3

8
ε + 105

256
ε2

)√
3 + O(ε3), (6d)

μ03 = −
√

6

48
ε − 3

√
6

128
ε2 + O(ε3). (6e)

Similarly, for the lowering part of charge operator ŷ− we find
the following matrix representation in the energy basis:

ŷ− ≈

⎡
⎢⎢⎣

0 ν01 0 ν03

0 0 ν12 0
0 0 0 ν23

0 0 0 0

⎤
⎥⎥⎦, (7a)

where νmn read

ν01 = 1 − 1

8
ε − 11

256
ε2 + O(ε3), (7b)

ν12 =
(

1 − 1

4
ε − 73

512
ε2

)√
2 + O(ε3), (7c)

ν23 =
(

1 − 3

8
ε − 79

256
ε2

)√
3 + O(ε3), (7d)

ν03 = −
√

6

16
ε − 5

√
6

128
ε2 + O(ε3). (7e)
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FIG. 1. Schematic circuit of the CR gate. The control qubit is
driven via a charge line by a continuous-wave tone of amplitude �(t )
and frequency ωd = ω̄t that is set to the lowest two-level transition
frequency of the dressed target qubit. In our analysis, we neglect the
pulse shape of the drive amplitude for simplicity and set �(t ) → �.
The phase φd determines the type of effective interaction in the equa-
tor of the target qubit. For the most part, we assume φd = π , which
results in an effective ZX interaction. Deviation from this assumption
can happen due to classical cross-talk, resulting in additional ZY
interaction, which is studied in Appendix D. Moreover, we consider a
direct exchange interaction between the qubits, although the interac-
tion is often experimentally mediated via a common bus resonator
[9]. This assumption is valid when the bus resonator frequency
is far-detuned from the qubit frequencies, resulting in an effective
exchange interaction J ≈ gcgt (ωc+ωt −2ωr )

2(ωc−ωr )(ωt −ωr ) − gcgt (ωc+ωt +2ωr )
2(ωc+ωr )(ωt +ωr ) with gc,t

denoting the direct qubit-resonator coupling (see Sec. II of Ref. [24]
for a derivation and Ref. [21] for an experimental realization).

Setting ε = 0 in Eqs. (6b)–(6e) and (7b)–(7e), we recover
the harmonic or Kerr limit for the lowering operators, i.e.,
lim
ε→0

x̂− = lim
ε→0

ŷ− = b̂.

Based on Eqs. (6b)–(6e) and (7b)–(7e), we find that the
matrix elements of the flux (charge) operator are enhanced
(suppressed) with respect to Kerr theory. Moreover, there is
also a direct interaction between the ground and the third
excited state proportional to ν03 (μ03) depending on the nature
of interaction. Processes involving such a transition, if kept
in our perturbation, contribute very little (10–100 Hz) to the
gate parameters and hence are dropped to achieve simpler
expressions. Since the qubit-qubit interaction and the drive are
commonly implemented capacitively, we expect the resulting
interactions to be suppressed, i.e., Kerr theory overestimates
the interaction rates. In Sec. II B we express the CR gate
Hamiltonian in the energy eigenstates of the qubits.

B. Cross-resonance Hamiltonian in energy basis

Following representation (2), our starting Hamiltonian for
the CR gate can be written as (see Fig. 1)

Ĥ0 =
∑
j=c,t

ωjh

4

[
ŷ2

j − 2

ε j
cos(

√
ε j x̂ j )

]
, (8a)

Ĥint(t ) = Jŷcŷt + �ŷc sin(ωdt + φd ), (8b)

where x̂c,t ≡ (b̂c,t + b̂†
c,t ) and ŷc,t ≡ −i(b̂c,t − b̂†

c,t ) denote the
unitless flux and charge quadratures for the control and the
target qubits, respectively. Moreover, we have considered a
capacitive interaction Hamiltonian of the form Jŷcŷt as well
as a drive tone that couples capacitively to the control qubit
with strength �. Cross-resonance is achieved when the drive
frequency is set to be equal to the lowest transition of the
dressed target qubit denoted as ωd = ω̄t , where a bar notation
is employed to distinguish between bare and dressed quanti-

ties (see also Appendix B). In our analysis, we keep the drive
phase as φd = π in order to implement an effective ZX inter-
action in the computational basis. At φd = π/2, the situation
is reversed and an effective ZY is found, and anywhere in
between both types of interactions exist.

In writing Hamiltonian (8a) and (8b), we have considered
the bare qubit Hamiltonian as the zeroth-order and kept the
qubit-qubit exchange interaction and the drive as the interac-
tion part (see Sec. III for details). Following Sec. II A, we can
solve for the spectrum of each qubit independently. Therefore,
the bare qubit Hamiltonian Ĥ0 can be represented as

Ĥ0 ≈
3∑

m,n=0

(Ec,m + Et,n) |ψc,m〉 |ψt,n〉, (9)

where the first index denotes the qubit and the second de-
notes the corresponding state. Depending on the context and
for clarity, we may also use a shorthand notation for the
two-qubit state as |ψmn〉 ≡ |ψc,m〉 |ψt,n〉 (see, e.g., Fig. 2 and
Tables II and III below). The main distinction with respect to
Kerr theory appears in the renormalization of the interaction
Hamiltonian, where the transition rates between the states are
modified in terms of the matrix elements νmn of Eqs. (7b)–
(7e). For instance, the exchange interaction between the qubits
can be expressed as

ĤJ = −J (ŷ−
c − ŷ+

c )(ŷ−
t − ŷ+

t ) ≈ J (ŷ−
c ŷ+

t + ŷ+
c ŷ−

t )

≈
3∑

m,n=0
m<n

3∑
l,r=0
l<r

νc,mnνt,lrJ (P̂c,mnP̂t,rl + P̂c,nmP̂t,lr ), (10)

where we have defined the projection operators P̂i,mn ≡
|ψi,m〉 〈ψi,n| into the subspace mn of qubit i = c, t . Similarly,
the drive Hamiltonian in the energy basis reads

Ĥd = �

2
(ŷ−

c − ŷ+
c )(eiωd t − e−iωd t )

≈ �

2
(ŷ−

c eiωd t + ŷ+
c e−iωd t )

≈
3∑

m,n=0
m<n

1

2
νmn�(P̂c,mneiωd t + P̂c,nme−iωd t ). (11)

Note that, for simplicity, we have neglected the counter-
rotating contributions in both the exchange and the drive
interactions. We have checked, using our time-dependent
SWPT, that the impact of these counterrotating terms on the
gate parameters is negligible for the CR drive range consid-
ered in our work. Figure 2 provides a comparison between our
and the original Kerr theory under approximating transmon as
a four-level system (see the end of Sec. III B for a comparison
of different Hilbert space cutoff numbers).

III. EFFECTIVE CR GATE HAMILTONIAN

In this section, we discuss the derivation of an effective
Hamiltonian for the CR gate based on our modified model
given by Eqs. (9)–(11). First, we discuss the method of
time-dependent SWPT that is used to obtain the effective
Hamiltonian (see also Appendix C). Next, in Secs. III A and
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FIG. 2. Two-qubit energy ladder for the CR gate: (a) Kerr rep-
resentation, and (b) energy-basis representation that accounts for
eigenstate renormalization according to Eqs. (9)–(11). For clarity,
the ladder is shown in the rotating frame of the drive (denoted
by a tilde), and we have used the shorthand notation |ψ̃mn〉 ≡
|ψ̃c,m〉 |ψ̃t,n〉 to denote the two-qubit states. Compared to the Kerr
ladder, the interaction rates are modified with the matrix elements
of the charge operator in the energy basis, i.e., νi,mn. Importantly,

replacing |ψ̃mn〉 → ˜|m, n〉, νi,01 → 1, νi,12 → √
2, and νi,23 → √

3
for i = c, t yields back the Kerr model. Note that we have neglected
the direct interaction between the ground and third excited state of
strength proportional to νi,03, since the resulting contributions to gate
parameters are small and keeping them would unnecessarily com-
plicate the perturbative expressions at higher order. Furthermore, to
compare our model to Kerr theory, we denote the energy of the third
excited level as 3�ct + 3αc, despite having found a small deviation
from Kerr level structure in Eq. (5). Such a deviation becomes more
relevant only when the drive frequency is near-resonant with the
|ψc,2〉 ↔ |ψc,3〉 transition.

III B, we provide the lowest and the next order nonzero cor-
rections to the CR gate parameters, respectively.

Note that, in principle, we first need to obtain the renor-
malization of qubit states due to the exchange interaction

J , and study the gate parameters when the drive frequency
is set to the dressed frequency of the target qubit. In other
words, the perturbation needs to be applied in two steps:
(1) in exchange coupling J and (2) in the drive amplitude � as
in Refs. [24,25] (see also Appendix B for the dressed eignen-
states and eigenenergies). On the other hand, we implement
a SWPT that provides corrections jointly in J and � for two
practical reasons. First, the exchange coupling for the CR gate
is typically of the order of a few MHz and is at least one order
of magnitude smaller than the drive amplitude �. Second, per-
forming perturbation in two stages makes the bookkeeping of
corrections more difficult. This will become more challenging
especially for larger network of qubits and in particular for
our analysis of the spectator qubit physics. We find that as
long as the block diagonalization is done consistently, for each
of the perturbative methods, the main difference between the
two calculations is the static frequency shifts of the qubits
(IZ or ZI) proportional to J2 up to the lowest order. In
experiment, however, only the dynamic (caused by �) part of
the frequency shifts are observable. Hence, in our predictions
for the gate parameters and especially the gate error we have
to be careful to exclude the static parts.

To develop a perturbation theory simultaneously in J and
�, we introduce a fictitious expansion parameter λ such that
the total Hamiltonain is expressed as

Ĥs(t ) = Ĥ0 + λĤint(t ), (12)

with Ĥ0 and Ĥint = ĤJ + Ĥd given in Eqs. (9)–(11). Having
the additional parameter λ helps to collect consistent powers
of the interaction during perturbation, while it is eventually set
to λ = 1. Since the interaction Hamiltonian consists of both
the exchange interaction and the drive simultaneously, O(λp)
contributions contain any combination of the form Jm�n such
that m + n = p. To simplify the implementation of perturba-
tion, we move to the interaction frame with respect to Ĥ0 as

λĤI(t ) ≡ eiĤ0t [λĤint(t )]e−iĤ0t . (13)

Equation (13) is the starting Hamiltonian for our pertur-
bation theory. In order to find an effective Hamiltonian, we
employ a time-dependent SWPT as

ĤI,eff(t ) ≡ eiĜ(t )[λĤI(t ) − i∂t ]e
−iĜ(t ), (14)

where Ĝ(t ) is the generator of SW transformation that needs
to be solved for order by order such that the effective Hamil-
tonian becomes block-diagonal with respect to the Hilbert
space of the target qubit. We follow a series solution for
the generator Ĝ(t ) and the effective Hamiltonian ĤI,eff(t ) by
expanding in terms of λ as

Ĝ(t ) =
∞∑

λ=1

λnĜn(t ), (15a)

ĤI,eff(t ) =
∞∑

λ=1

λnĤ(n)
I,eff(t ). (15b)

Inserting Eqs. (15a)–(15b) into Eq. (14), employing the BCH
lemma, one finds operator-valued ordinary differential equa-
tions (ODEs) for the successive orders of SWPT up to O(λ4)
(see Appendix C).
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Since the interaction terms are not in the desired block-
diagonal form from the outset, the effective Hamiltonian is
zero up to the first order, while the generator Ĝ1(t ) is solved
for in order to remove all the non-block-diagonal parts as

O(λ) :

{
Ĥ(1)

I,eff = 0,

˙̂G1 = ĤI .
(16a)

Following the same procedure, up to the second order, we
obtain

O(λ2) :

{
Ĥ(2)

I,eff = B
(

i
2 [Ĝ1, ĤI ]

)
,

˙̂G2 = N
(

i
2 [Ĝ1, ĤI ]

)
,

(16b)

where now the commutator [Ĝ1, ĤI ] can produce both block-
diagonal and non-block-diagonal contributions, hence B(•)
and N (•) denote these two parts with respect to the energy
basis of the target qubit, respectively. The result for the third
order can be summarized as

O(λ3) :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ĥ(3)
I,eff = B

(− i
2 [Ĝ1,

˙̂G2] + i
2 [Ĝ2, ĤI ]

− 1
3 [Ĝ1, [Ĝ1, ĤI ]]

)
,

˙̂G3 = N
(− i

2 [Ĝ1,
˙̂G2] + i

2 [Ĝ2, ĤI ]

− 1
3 [Ĝ1, [Ĝ1, ĤI ]]

)
.

(16c)

Finally, the fourth order reads

O(λ4) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ĥ(4)
I,eff = B

(− i
2 [Ĝ1,

˙̂G3] − i
2 [Ĝ2,

˙̂G2]

+ 1
6 [Ĝ1, [Ĝ1,

˙̂G2]] + i
2 [Ĝ3, ĤI ]

− 1
3 [Ĝ1, [Ĝ2, ĤI ]] − 1

3 [Ĝ2, [Ĝ1, ĤI ]]

− i
8 [Ĝ1, [Ĝ1, [Ĝ1, ĤI ]]]

)
,

˙̂G4 = N
(− i

2 [Ĝ1,
˙̂G3] − i

2 [Ĝ2,
˙̂G2]

+ 1
6 [Ĝ1, [Ĝ1,

˙̂G2]] + i
2 [Ĝ3, ĤI ]

− 1
3 [Ĝ1, [Ĝ2, ĤI ]] − 1

3 [Ĝ2, [Ĝ1, ĤI ]]

− i
8 [Ĝ1, [Ĝ1, [Ĝ1, ĤI ]]]

)
.

(16d)

Equations (16a)–(16d) provide the main results for SWPT
that can be solved iteratively by finding the generator that
removes the non-block-diagonal part at each order. In practice,
by keeping Nc,t levels for the control and target qubits, we can
calculate the generator and the corresponding effective Hamil-
tonian by solving a system of ODEs of dimension (NcNt )2.
We find that keeping energy states beyond the computational
space of transmon induce non-negligible renormalization of
the gate parameters compared to a two-level model. There-
fore, in our analytical calculation of the gate parameters, we
make a four-level approximation (Nc = Nt = 4) and justify
this choice by quantifying the resulting error compared to
three- and two-level models (see Sec. III B).

Once the effective Hamiltonian in the extended Hilbert
space is obtained, we can infer the effective CR gate Hamilto-
nian in the computational space as

ĤCR,eff ≡
∑

m,n=i,x,y,z

1

2
ωσmσn σ̂m ⊗ σ̂n, (17a)

ωσmσn ≡ 1

2
Tr[(σ̂m ⊗ σ̂n)ĤI,eff], (17b)

where σi,x,y,z are the Pauli operators, ωσmσn is the correspond-
ing two-qubit gate parameter and the order of Hilbert space
components is control ⊗ target. In what follows, for simplic-
ity, we use the shorthand notation σ̂i = Î , σ̂x = X̂ , σ̂y = Ŷ , and
σ̂z = Ẑ and relax the explicit tensor product notation as well.
Following this procedure, we find five nonzero two-qubit gate
parameters as

ĤCR,eff = ωix
Î X̂

2
+ ωiz

Î Ẑ

2
+ ωzi

Ẑ Î

2
+ ωzx

ẐX̂

2
+ ωzz

ẐẐ

2
,

(18)

indicating that additional unwanted two-qubit interactions are
also induced on top of the desired ZX term. In Sec. IV, we
discuss how the effect of unwanted terms can be mitigated
via the echo sequence commonly used in experiments, e.g.,
Ref. [21]. Furthermore, note that there are indeed two con-
ventions for the definition of the ZZ rate. The one according
to Eq. (18) can be related to the difference in the target qubit
frequency conditioned on the state of the control qubit as

ωzz ≡ 1
2 (ωt |c=1 − ωt |c=0). (19)

It is more common in experiment, however, to call the total
frequency shift of the target as the ZZ rate, which would be
twice the value we quote in this paper.

In the following, we provide the lowest and the next order
estimates for the gate parameters in Secs. III A and III B,
respectively.

A. Lowest order analytics

The lowest nonzero estimate for the gate parameters arise
from the O(λ2) contribution given in Eq. (16b). Solving for
Ĝ1(t ) from the O(λ) Eq. (16a), we find the lowest order
effective Hamiltonian as

Ĥ(2)
I,eff(t ) = B

{
i

2

[∫ t

dt ′ĤI(t
′), ĤI(t )

]}
, (20)

where B(•) denotes the block-diagonal part with respect to
the target qubit Hilbert space. Since we have accounted for the
exchange and the drive Hamiltonian on equal footing through
λ, at this order, we anticipate quadratic corrections in J and �

of any of the following forms: �2, J�, and J2.
Next, we discuss the effective gate parameters introduced

in Eq. (18). The ZX and IX rates are obtained as

ω(2)
zx = 1

2

(
νt,01ν

2
c,12

�ct + αc
− 2νt,01ν

2
c,01

�ct

)
J�, (21a)

ω
(2)
ix = − νt,01ν

2
c,12

2(�ct + αc)
J�, (21b)

which are proportional to J�. An alternative and more heuris-
tic derivation of these rates can be understood from the
interaction rates ã0 and ã1 in Fig. 2, in terms of which
ωzx = ã0 − ã1 and ωix = ã0 + ã1 [25]. There are multiple
processes that contribute to these rates up to the lowest
nonzero order in perturbation. The only contribution to ã0

is the transition from |ψ00〉 to |ψ01〉 via |ψ10〉 with the net
rate (νc,01�/2)(−1/�ct )(νc,01νt,01J ). The first contribution
to ã1 comes from the transition |ψ10〉 to |ψ11〉 via |ψ01〉
leading to the rate (νc,01νt,01J )(1/�ct )(νc,01�/2). The second
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TABLE I. Lowest order estimates for CR gate parameters. The left two columns summarize the result from Kerr theory [24,25], and the
right two columns present expressions using energy-basis representation. System parameters are chosen from Refs. [21,24] as ωc = 5114 MHz,
ωt = 4914, �ct = 200 MHz, αc = αt = −330 MHz, J = 3.8 MHz, and � = 50 MHz. From Eq. (4b), one obtains an estimate for unitless
anharmonicity measures as εc = 0.217 and εt = 0.224. Importantly, setting νi,01 → 1 and νi,12 → √

2 for i = c, t yields the lowest order
estimates from Kerr theory.

Operator Coefficient (Kerr) Estimate (MHz) Coefficient (energy basis) Estimate (MHz)

1
2 Î X̂ − 1

�ct +αc
J� 1.462 − νt,01ν2

c,12
2(�ct +αc ) J� 1.250

1
2 Ẑ Î [ 1

2(�ct +αc ) − 1
2�ct

]�2 −15.865 [
ν2

c,12
4(�ct +αc ) − ν2

c,01
2�ct

]�2 −14.371

1
2 ẐX̂ ( 1

�ct +αc
− 1

�ct
)J� −2.411 1

2 (
νt,01ν2

c,12
�ct +αc

− 2νt,01ν2
c,01

�ct
)J� −2.118

1
2 ẐẐ ( 1

�ct −αt
− 1

�ct +αc
)J2 0.138 1

2 (
ν2

c,01ν2
t,12

�ct −αt
− ν2

t,01ν2
c,12

�ct +αc
)J2 0.114

contribution to ã1 comes from the transition |ψ10〉 to |ψ11〉
via |ψ20〉 resulting (νc,12�/2)[−1/(�ct + αc)](νc,12νt,01J ).
Adding these contributions accordingly recovers expressions
(21a) and (21b) for the ZX and the IX rates. Importantly, note
that neglecting the eigenstate renormalization of qubits, i.e.,
setting νi,01 → 1 and νi,12 → √

2, yields the old results from
Kerr theory in Refs. [24,25].

The ZZ interaction is understood as half of the difference
in the target qubit frequency, when the control is in the excited
or the ground state and is obtained as

ω(2)
zz = 1

2

(
ν2

c,01ν
2
t,12

�ct − αt
− ν2

t,01ν
2
c,12

�ct + αc

)
J2. (21c)

In terms of the two-qubit ladder of Fig. 2, the first term in
Eq. (21c) is just a frequency renormalization of state |ψ11〉 due
to repulsion from the state |ψ02〉 with the corresponding in-
teraction matrix element νc,01νt,12J and frequency difference
�ct − αt . The second term is due to state |ψ20〉 with the corre-
sponding interaction matrix element νc,12νt,01J and frequency
difference −(�ct + αc). Thus, the lowest order contribution to
the ZZ rate comes from the third level of each qubit. In other
words, a two-level model is unable to predict a ZZ rate for the
CR gate.

As brought up earlier, the qubit frequency shifts have two
distinct sources. The first static contribution comes from the
exchange interaction between the qubits resulting in dressed
qubit frequencies (see also Appendix B)

ω̄c ≡ ωc + 1

2

(
ν2

c,01ν
2
t,12

�ct − αt
− ν2

c,12ν
2
t,01

�ct + αc
+ 2ν2

c,01ν
2
t,01

�ct

)
J2,

(21d)

ω̄t ≡ ωt + 1

2

(
ν2

c,01ν
2
t,12

�ct − αt
− ν2

c,12ν
2
t,01

�ct + αc
− 2ν2

c,01ν
2
t,01

�ct

)
J2,

(21e)

where we have denoted the dressed frequencies with a bar. We
will not include these contributions in our estimate for ZI and
IZ rate as such static terms are not measurable. On top of this,
there is a dynamic Stark shift that is induced by the drive. At
this order in perturbation, the Stark shift only appears in the
frequency of the control qubit as

ω
(2)
zi =

[
ν2

c,12

4(�ct + αc)
− ν2

c,01

2�ct

]
�2. (21f)

For typical CR parameters the dynamic Stark shift on the
control is much larger (at least two orders of magnitude)
compared to the static contributions. Table I summarizes the
lowest order perturbative result for the gate parameters as well
as an experimental estimate based on circuit parameters of
Refs. [21,24].

B. Higher order analytics

In this section, we summarize the next order contributions
to the gate parameters. We find that nonzero terms in the
effective Hamiltonian of the CR gate come in alternating
orders in perturbation, i.e., the O(λ3) Eq. (16c) leads to an
indirect contribution through a nonzero Ĝ3 while Ĥ(3)

I,eff = 0.
Therefore, the next nonzero correction comes from the O(λ4)
Eq. (16d), leading to dominant terms of the form J2�2, J�3,
and �4. Generally speaking, the diagonal gate parameters
(ZI , IZ , and ZZ) will adopt only even powers of �, while
the off-diagonal gate parameters (ZX and IX ) contain odd
powers.

Such higher order contributions, in particular to the diag-
onal rates, contain a large number of independent physical
processes. Here, for simplicity, we quote only the result for
the the ZX rate as

ω(4)
zx =

[
ν4

c,01νt,01

2�3
ct

+ −ν2
c,01ν

2
c,12νt,01 − 3ν2

c,12ν
2
c,23νt,01

4�2
ct (�ct + αc)

+ ν2
c,01ν

2
c,12νt,01 − ν2

c,12ν
2
c,23νt,01

4�ct (�ct + αc)2 − ν4
c,12νt,01

4(�ct + αc)3

− ν2
c,01ν

2
c,12νt,01

4�2
ct (2�ct + αc)

+ 9ν2
c,12ν

2
c,23νt,01

4�2
ct (2�ct + 3αc)

]
J�3,

(22)

resulting in a correction proportional to J�3. Importantly, by
mapping the interaction matrix elements to the ones from
Kerr theory, we recover the higher order estimate found in
Refs. [24,25] as

ω
(4)
zx,Kerr =

(
3α5

c + 11α4
c �ct + 15α3

c �
2
ct + 9α2

c �
3
ct

)
J�3

2�3
ct (�ct + αc)3(2�ct + αc)(2�ct + 3αc)

.

(23)

Figure 3 compares the lowest and the next order perturba-
tive estimates between Kerr and energy-basis representations
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(a) (b)

(c)

(e)

(d)

FIG. 3. Gate parameters as a function of drive amplitude �:
(a) IX rate, (b) IZ rate, (c) ZI rate, (d) ZX rate, and (e) ZZ rate.
System parameters are the same as Table I. The solid blue curve
shows the result for the lowest order Kerr theory, the dashed blue
shows the higher order Kerr theory, the solid red shows the lowest
order in the energy basis, and the dashed red shows the higher order
in the energy basis. Note that we have implemented the perturbation
up to O(λ4), therefore it will capture terms proportional to �4, if any,
in the gate parameters. We find such behavior only in the ZI rate
(dashed red) of panel (c). On the other hand, the available results
from Kerr theory were presented up to O(�3) in Refs. [24,25].

for the parameters of Refs. [21,24] (same as Table I). We find
that the next order corrections to ZX and IX rates come in op-
posite sign compared to the previous order, hence suppressing
the rates at stronger drive. Furthermore, we observe that the
ZZ rate is slightly increased with a correction proportional
to J2�2 [Fig. 3(e)]. The Stark shift on the control qubit (ZI
rate) is suppressed by a correction proportional to �4 at higher
drive [dashed red curve in Fig. 3(c)]. In comparison, the Stark
shift on the target qubit is much smaller and of the order of 10
KHz for medium drive power [Fig. 3(b)]. All in all, roughly
speaking, one observes a relative difference of up to 15%
between the two theories where in all instances the energy
basis predicts smaller rates in absolute value.

In Fig. 3 and Table I, we have considered a specific choice
of parameters with control-target detuning �ct = 200 MHz
that translates in terms of anharmonicity as �ct ≈ −0.61αc.

TABLE II. Summary of resonances that emerge under the as-
sumption of four energy states for each qubit and up to the
fourth-order perturbation in � and J . From left to right, the first
column denotes the underlying physical process in terms of qubit
and drive photon states, the second shows the corresponding reso-
nance condition in terms of qubit-qubit detuning, the third gives the
experimental estimate in MHz assuming αc = αt = −330 MHz, and
the fourth labels such resonances in terms of broader categories for
multiqubit resonances (see Sec. VI). It is important to note that the
resonances are classified in terms of the underlying physical process,
and the degeneracy between some of them is merely due to ωd ≈ ωt .
The resonances translate as poles in our perturbative solution and
divide the parameter space for the qubit-qubit detuning into distinct
regions of operation.

States (|CT 〉 |D〉) Condition �ct Type

|ψ11〉 |nd 〉 ∼ |ψ02〉 |nd 〉 �ct = αt −330 IIB

|ψ01〉 |nd 〉 ∼ |ψ10〉 |nd〉 �ct = 0 0 IIA

|ψ20〉 |nd 〉 ∼ |ψ02〉 |nd 〉 2�ct = αt − αc 0 IIC

|ψ21〉 |nd 〉 ∼ |ψ12〉 |nd 〉 �ct = αt − αc 0 IID

|ψ00〉 |nd + 2〉 ∼ |ψ20〉 |nd 〉 2�ct = −αc 165 IA

|ψ11〉 |nd 〉 ∼ |ψ20〉 |nd〉 �ct = −αc 330 IIB

|ψ10〉 |nd + 1〉 ∼ |ψ20〉 |nd 〉 �ct = −αc 330 IC

|ψ00〉 |nd + 3〉 ∼ |ψ30〉 |nd 〉 3�ct ≈ −3αc 330 IB

|ψ10〉 |nd + 2〉 ∼ |ψ30〉 |nd 〉 2�ct = −3αc 495 ID

|ψ21〉 |nd 〉 ∼ |ψ30〉 |nd〉 �ct = −2αc 660 IIE

|ψ20〉 |nd + 1〉 ∼ |ψ30〉 |nd 〉 �ct = −2αc 660 IE

We find, however, that the gate parameters are extremely
sensitive to the qubit-qubit detuning. The underlying reason is
numerous possibilities for a resonance between the two-qubit
states in a rather narrow frequency interval. These two-qubit
resonances can be better understood from the energy lad-
der of Fig. 2 and are summarized in Table II. To make
a connection with our perturbative result, these resonances
translate as poles in our expressions for the gate parameters
and hence break the landscape for the qubit-qubit detuning
�ct into multiple regions. Under a four-level model for each
qubit, we recognize the following five distinct regions in our
calculation that was first introduced in Ref. [25]: (I) −αt <

�ct < 0, (II) 0 < �ct < −αc/2, (III) −αc/2 < �ct < −αc,
(IV) −αc < �ct < −3αc/2, and (V) −3αc/2 < �ct < −2αc.
Assuming αc = αt = −330 MHz, the detuning range trans-
lates as −330 MHz < �ct < 660 MHz.

Next, in Fig. 4 we take a closer look into the gate parame-
ters as a function of both drive amplitude � and qubit-qubit
detuning �ct . The aformentioned detuning regions can be
clearly distinguished with their distinct behavior. Note that
we expect the perturbation to be valid close to the mid-
dle of each region and away from the poles. In terms of
achieving the largest ZX rate (fastest gate), we find from
Fig. 4(d) that the best operating point is region III for �ct ≈
−0.61αc (200 MHz). This is further confirmed in Appendix F,
where we numerically calculate ZX rate following the semi-
analytical method of Ref. [25]. Up to medium drive power,
region II results in a ZX rate that is comparable to region
III [blue, yellow, and green curves in Fig. 4(d)], while it
saturates to a smaller maximum rate of approximately 0.6J
(see also Appendix F). In terms of achieving the lowest ZZ
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(a) (b)

(c) (d)

(e) (f)

FIG. 4. Two-qubit rates as a function of qubit-qubit detuning �ct

and drive amplitude � with other parameters the same as Table I. Ac-
cording to the perturbative result, there exist poles at detuning values
�ct = αt , 0, −αc/2, −αc, −3αc/2, which naturally divides the val-
ues for detuning into five regions: (I) −αt < �ct < 0, (II) 0 < �ct <

−αc/2, )III) −αc/2 < �ct < −αc, (IV) −αc < �ct < −3αc/2, and
(V) −3αc/2 < �ct < −2αc (see also Ref. [25]). (a) IX , (b) IZ ,
(c) ZI , (d) ZX , (e) ZZ , and (f) ZX/ZZ ratio.

rate, however, region II has an important advantage, where
the static ZZ is comparably small and increasing the drive
seems to further decrease the rate as shown in Fig. 4(e). On the
other hand, region III has a larger static ZZ to begin with and
depending on the detuning can exhibit distinct dependences
on the drive: (1) close to the pole at −αc/2, ZZ rate is slightly
increased, (2) in the middle close to �ct ≈ −0.61αc, the rate
becomes insensitive to drive, and (3) close to the pole at
−αc, the rate becomes substantially large, while decreasing
with drive. The ratio of the desired ZX rate to the unwanted
ZZ rate is a heuristic measure for finding candidate detuning
spots for achieving low coherent error for the CR gate. This
is shown in Fig. 4(f), where we find ZX/ZZ is maximized in
the middle of regions II, I, and III. Hence, we would expect
to get desirable two-qubit coherent error for such detuning
intervals. This qualitative understanding will be confirmed in
Sec. IV, where we quantify the gate error with a CR echo
pulse sequence.

Last, we revisit the impact of Hilbert space cutoff number
for the qubits on the gate parameters in Fig. 5. The results
presented so far is with the assumption of keeping the first four

(a) (b)

FIG. 5. Dependence of gate parameters on Hilbert space cutoff:
(a) ZX rate and (b) ZZ rate. The purple and the beige area represents
the correction in going from two to three and three to four energy
states, respectively. Adding the fifth level of the control qubit brings
a correction of O(J�5) to the ZX rate that would only appear up to
sixth order in perturbation and becomes relevant at stronger drive.

energy eigenstates for each qubit. From a two- (dashed-dotted
black) to a three-level model (dotted blue), one observes a
large correction for both ZX and ZZ rates. In the case of
ZZ , the two-level model is unable to predict a nonzero rate.
Adding the fourth level of the control qubit (dashed red)
brings corrections of O(J�3) to the ZX rate and O(J2�2) to
the ZZ rate. This dynamic change to the ZZ rate is especially
important in our analysis of the gate fidelity in the following
section. On the other hand, we find that adding the fourth ex-
cited state (solid orange) to our perturbative calculations up to
the fourth order would not bring additional corrections. This
can be understood as there is a deeper connection between the
Hilbert space cutoff number and the order of the perturbation
theory and increasing the former without going to higher order
perturbation would not lead to any further renormalization of
the low-energy subspace. For instance, the correction coming
from the fourth excited state to the ZX rate will be of O(J�5)
that would appear only in the sixth-order perturbation theory.
In summary, within the bounds of the fourth-order pertur-
bation theory, having four levels (especially for the control)
is optimal, and we find that the fifth level and beyond have
negligible impact on CR gate operation for the drive strengths
of up to 50 MHz that we consider in this work. For stronger
drive power one can use existing numerical methods, such
as the numerical block diagonalization of Ref. [24] or the
semianalytical method of Ref. [25] (see also Appendix F).

IV. EFFECTIVE HAMILTONIAN AND GATE FIDELITY
WITH ECHO PULSE

In this section, we study the CR gate operation combined
with an echo pulse sequence introduced in Refs. [21,27]. The
echo pulse is designed to suppress the unwanted gate param-
eters, while leaving the intended ZX term intact. Figure 6
demonstrates the pulse sequence that is applied on the control
qubit. In Sec. IV A we derive the resulting time-evolution
operator and the corresponding effective echo Hamiltonian.
In Sec. IV B we provide an estimate for the coherent error
of CR echo and characterize optimal parameters (qubit-qubit
detuning in particular). Furthermore, in Sec. IV C we discuss
local equivalence of two-qubit operations [38] and provide an
estimate for the nonlocal CR echo fidelity [39] and entangling
power [40] in terms of Makhlin invariants [36].
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FIG. 6. Schematic of the echo pulse sequence, where the original
CR pulse is broken into two parts of duration τp with positive and
negative amplitudes, i.e., a π phase difference in the CR tone, ac-
companied by two π rotations of the control qubit around the X axis
in between. Equation (24) shows the time-evolution operator under
this pulse sequence.

A. Effective echo Hamiltonian

The CR echo sequence consists of two CR tones with
flipped amplitudes accompanied with intermediate π rotations
of the control qubit around its X axis as shown schematically
in Fig. 6. In the following, we derive analytical expressions
for the time evolution operator of the echo sequence as well
as an approximate CR echo Hamiltonian.

The time-evolution operator with the CR echo pulse can be
expressed as

Ûech(�, τp) ≡ R̂X (−π )ÛCR,eff(−�, τp)R̂X (π )ÛCR,eff(�, τp)

= e+i π
2 X̂ Î e−iĤCR,eff (−�)τpe−i π

2 X̂ Î e−iĤCR,eff (+�)τp,

(24)

with τp being the half-CR pulse duration and ĤCR,eff has the
same form as in Eq. (18). In order to implement our desired
ZX operation of the form Ûide ≡ exp[−iπ ẐX̂/4], τp needs to
be set as

ωzx × (2τp) = π

2
(mod 2π ). (25)

The perturbative result for the two-qubit rates revealed that
ZX and IX are odd functions of the drive amplitude �, while
ZZ , ZI , and IZ rates are even functions. Hence, flipping the
drive amplitude in the echo sequence yields

ĤCR,eff(+�) = ωix
Î X̂

2
+ ωiz

Î Ẑ

2
+ ωzi

Ẑ Î

2

+ωzx
ẐX̂

2
+ ωzz

ẐẐ

2
, (26a)

ĤCR,eff(−�) = −ωix
Î X̂

2
+ ωiz

Î Ẑ

2
+ ωzi

Ẑ Î

2

−ωzx
ẐX̂

2
+ ωzz

ẐẐ

2
. (26b)

Next, we obtain an explicit solution for the time-evolution
operator by substituting Eqs. (26a)–(26b) into Eq. (24). We
find that the echo pulse removes ZI , IX , and ZZ interactions,
but in turn induces effective echoed IY , IZ , and ZX rates as

Ûech(�, τp) = uiiÎ Î + uiyÎŶ + uizÎ Ẑ + uzxẐX̂ . (27)

The corresponding coefficients uii, uiy, uiz, and uzx can be
found as

uii ≡ cos

(
1

2
ω+τp

)
cos

(
1

2
ω−τp

)
+
[
ω2

ix − ω2
iz − ω2

zx+ω2
zz

]
ω+ω−

× sin

(
1

2
ω+τp

)
sin

(
1

2
ω−τp

)
, (28a)

uiy ≡ 2i(ωzxωzz − ωixωiz )

ω+ω−

× sin

(
1

2
ω+τp

)
sin

(
1

2
ω−τp

)
, (28b)

uiz ≡ i
ωzz − ωiz

ω−
cos

(
1

2
ω+τp

)
sin

(
1

2
ω−τp

)

− i
ωzz + ωiz

ω+
sin

(
1

2
ω+τp

)
cos

(
1

2
ω−τp

)
, (28c)

uzx ≡ i
ωix − ωzx

ω−
cos

(
1

2
ω+τp

)
sin

(
1

2
ω−τp

)

− i
ωix + ωzx

ω+
sin

(
1

2
ω+τp

)
cos

(
1

2
ω−τp

)
. (28d)

According to Eqs. (28a)–(28d), the echo dynamics can be
understood as a beating between two collective two-qubit
frequencies ω± that are found in term of the bare rates as

ω+ ≡
√

(ωzx + ωix )2 + (ωiz + ωzz )2, (28e)

ω− ≡
√

(ωzx − ωix )2 + (ωiz − ωzz )2. (28f)

These collective frequencies slightly deviate from the in-
tended ZX frequency depending on the strength of unwanted
terms in the effective Hamiltonian (ωix, ωzz, and ωiz). In
Sec. IV B we compare the explicit solutions (27)–(28f) to the
ideal CR unitary and provide an estimate for the coherent
error.

To visualize the impact of echo pulse on the two-qubit
rates, we can also obtain an approximate effective echo
Hamiltonian by writing

Ûech(�, τp) ≈ exp[−iĤech(�, τp)(2τp)]. (29)

Equation (29) is true under the assumptions that first the single
qubit rotations happen on a timescale much smaller than τp

of the CR tone, and, second, that all pulses have constant
amplitude and transient effects are negligible. Substituting
Eq. (27) for Ûech into Eq. (29) we find

Ĥech(�, τp) ≈ ωii,ech
Î Î

2
+ ωiy,ech

ÎŶ

2
+ωiz,ech

Î Ẑ

2
+ ωzx,ech

ẐX̂

2
,

(30)

where the echoed gate parameters are obtained as

ωii,ech ≡ i

2τp
[ln(uii + u) + ln(uii − u)], (31a)

ωiy,ech ≡ i

2τp

uiy

u
[ln(uii + u) − ln(uii − u)], (31b)

ωiz,ech ≡ i

2τp

uiz

u
[ln(uii + u) − ln(uii − u)], (31c)

ωzx,ech ≡ i

2τp

uzx

u
[ln(uii + u) − ln(uii − u)], (31d)

with u ≡
√

u2
iy + u2

iz + u2
zx.

The resulting echoed gate parameters are studied further
in Fig. 7. Comparing Figs. 7(c) and 4(d), we observe that
the echoed and the bare ZX rates are more or less equal,
indicating that the pulse sequence barely touches the intended
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FIG. 7. Echoed gate parameters based on Eqs. (28a)–(28d) and
(31a)–(31d). (a) Echoed IY , (b) echoed IZ , and (c) echoed ZX .
System parameters are the same as those of Fig. 4 and Table I. Note
that the splitting of the poles around �ct = 0 and �ct = −αc is an
artifact of using the perturbative result for ZX rate [Fig. 4(d)] to set
the pulse time τp according to Eq. (25). Hence, the result is valid only
in the middle of each region.

ZX rate. On top of this, one finds residual echoed IY and IZ
rates. Looking at Fig. 7(a) we find that, in terms of lowest
IYech, regions II, I, and III provide the most optimal detuning
values, respectively. On the other hand, Fig. 7(b) suggests that
smallest IZech is achieved in regions I, III, and II, respectively.
All in all, we expect to observe reasonable coherent error in
the middle of each of those aforementioned regions. This is
studied in more detail in the following subsection.

B. Gate fidelity

We define the CR echo Gate fidelity as the overlap between
Ûech that is implemented via CR echo in Eq. (27) and the ideal
ZX operation Ûide as [41,42]

F (Ûech, Ûide) ≡ Tr(Û †
echÛech)

d (d + 1)
+ |Tr(Û †

echÛide)|2
d (d + 1)

, (32)

where d = 4 is the dimension of the two-qubit Hilbert space.
Two-qubit gate error is hence defined as the distance between
the implemented and the ideal time-evolution operators and is
expressed in terms of the fidelity measure (32) as

Eech ≡ 1 − F (Ûech, Ûide). (33)

Figure 8(a) shows the resulting gate error as a function of
both qubit-qubit detuning and drive. As expected, we observe
a suppression of gate error in the middle of each region.
Moreover, increasing the drive amplitude up to � = 50 MHz
improves the coherent error and widens the optimal interval in
certain regions as the ratio of ZX over other unwanted terms
is enhanced. However, this trend continues until a certain
drive amplitude by which the ZX rate starts to saturate and

(a)

(b)

(c)

FIG. 8. (a) CR echo error obtained from Eqs. (32) and (33),
(b) nonlocal CR echo error obtained from Eq. (38), and (c) entangling
power of CR echo found from Eq. (40) as a function of qubit-qubit
detuning �ct and drive amplitude �. Other parameters and legends
(CR drive amplitudes) are the same as those in Fig. 4 and Table I. The
dashed vertical lines separate the five regions of qubit-qubit detuning.
Note that the splitting of the poles around �ct = 0 and �ct = −αc is
an artifact of using the perturbative result for ZX rate [Fig. 4(d)] to
set the pulse time τp based on Eq. (25). Hence, the result is valid only
in the middle of each region.
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also the leakage to higher qubit levels become non-negligible
[24]. Furthermore, we find that the most optimal qubit-qubit
detuning lies in the middle of region II (�ct ≈ 100 MHz ≈
−0.30αc), for which an error of the order of 10−4 is predicted.
A similar error is also observed in region I, centered around
�ct ≈ −100 MHz ≈ 0.30αc, with the caveat that the optimal
region is much narrower and the error increases significantly
as the detuning gets closer to the pole at �ct = αt . This
increase in error for larger negative detuning can be traced
back to two simultaneous detrimental effects. First, the ZZ
rate is noticeably enhanced as a result of resonance between
states |ψ11〉 and |ψ02〉 that occurs at �ct = αt [Fig. 4(e)],
and, second, the ZX rate is noticeably suppressed outside
the detuning interval 0 < �ct < −αc [Fig. 4(d)]. Region III
(�ct ≈ 200 MHz ≈ −0.61αc) provides a slightly larger error
compared to regions II and I, but with the important advantage
that the optimal detuning interval is wide for any drive ampli-
tude. This flexibility is crucial for fixed frequency transmons,
for which there is no precise control over the fabricated qubit
frequency [43,44].

C. Nonlocal gate fidelity and entangling power

Two-qubit unitary operators can be categorized in terms
of local equivalence classes, where two operators belong to
the same class if they can be transformed into one another
merely by single-qubit operations. In this section, we provide
the error budget of CR echo sequence in terms of local and
nonlocal contributions. The local contribution can in principle
be corrected by designing a series of single-qubit operations.
The nonlocal part, however, provides a lower bound for the
optimal CR echo error and shows how close the implemented
unitary is to a perfect CNOT entangler [38–40,45,46].

An arbitrary two-qubit unitary operator is uniquely deter-
mined in terms of 15 independent parameters. Based on the
above equivalence relation, there are only three independent
parameters that determine the local equivalence class, known
as nonlocal invariants [36,38]. In the canonical form, a two-
qubit unitary operator can be uniquely represented in terms of
its Cartan coordinates cx, cy, and cz as

Û = K̂LÂK̂R, (34a)

Â ≡ e− i
2 (cxX̂cX̂t +cyŶcŶt +czẐcẐt ), (34b)

with K̂L ≡ L̂c ⊗ L̂t and K̂R ≡ R̂c ⊗ R̂t being the local change
of basis that can be decomposed in terms of single-qubit
operations R̂c, R̂t , L̂c, and L̂t .

Calculating the Cartan representation directly can be chal-
lenging. Makhlin invariants [36], on the other hand, can be
computed more conveniently by rewriting the unitary in the
Bell (magic) frame, defined by the unitary change of basis

Q̂ ≡ 1√
2

⎡
⎢⎢⎣

1 0 0 i
0 i 1 0
0 i −1 0
1 0 0 −i

⎤
⎥⎥⎦, (35)

as ÛM,ech ≡ Q̂†ÛechQ̂. In particular, Makhlin proved that the
spectrum of the operator M̂ech ≡ Û T

M,echÛM,ech remains in-

variant under single-qubit operations [36], resulting in an
alternative set of invariants as

gx ≡ Re

{
Tr2(M̂ech)

16Det(ÛM,ech)

}
, (36a)

gy ≡ Im

{
Tr2(M̂ech)

16Det(ÛM,ech)

}
, (36b)

gz ≡ Tr2(M̂ech) − Tr
(
M̂2

ech

)
4Det(ÛM,ech)

. (36c)

There is a one-to-one correspondence between Makhlin in-
variants and Cartan coordinates and they uniquely determine
the equivalence class of an arbitrary two-qubit operation. For
instance, the ideal ZX unitary Ûide belongs to the CNOT class
identified with gx = gy = 0, gz = 1 and corresponding Cartan
coordinates cx = π/2 and cy = cz = 0.

We define the nonlocal CR echo fidelity in terms of
the overlap between the nonlocal parts of Ûech and Ûide

[Eqs. (34a)–(34b)] as [39]

F (nl)
ech ≡ F (Âech, Âide) = Tr(Â†

echÂech)

d (d + 1)
+ |Tr(Â†

echÂide)|2
d (d + 1)

.

(37)

Given that the echo pulse produces a unitary evolution that
is sufficiently close to the CNOT class in the nonlocal coor-
dinates, it is possible to derive a rather simple estimate for
the nonlocal CR echo error only in terms of the Makhlin
invariants as (see Appendix E 1)

E (nl)
ech ≡ 1 − F (nl)

ech = 1
10 (4gx − gz + 1) + O(�c4). (38)

This measure is shown in Fig. 8(b) alongside the regular CR
echo error. We observe that the generic behavior is similar
in terms of qubit-qubit detuning and drive, and the result
indicates that there is room for improvement in all possible
detuning values. In particular, in regions II and I, the lower
bound on the coherent error can be as small as 10−8, while in
region III it is 10−7.

Entangling power is another important measure that quan-
tifies the average entanglement that a unitary operator can
produce when acting on separable states [40]. The entangling
power of a two-qubit unitary operator depends only on its
nonlocal properties and can be written directly in terms of the
Cartan coordinates as [46]

ep(Û ) = 1
18 [3 − cos(2cx ) cos(2cy)

− cos(2cy) cos(2cz ) − cos(2cz ) cos(2cx )]. (39)

The maximum value of entangling power is 2/9 and is
achieved if and only if the two-qubit unitary operator belongs
to the set of special perfect entanglers such as CNOT, DCNOT,
and B classes [45,46]. Given that Ûecho and Ûide are sufficiently
close in the Cartan space, a modified measure can be defined
as the difference between the entangling powers of the ideal
CR and the implemented CR echo unitary operators as

ep(Ûide) − ep(Ûech) = 2
9 gx + O(�c4), (40)

where we have expressed the result in terms of Makhlin in-
variant gx up to O(�c4) in the Cartan coordinate difference
between Ûech and Ûide (see Appendix E 2). Figure 8(c) shows
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FIG. 9. Schematic circuit for CR with (a) a control spectator and
(b) a target spectator qubit. For simplicity, we assume the exchange
interaction between all qubit pairs is the same.

the entangling power based on Eq. (40), where we observe a
similar behavior as the nonlocal error of Fig. 8(b).

All in all, we conclude that there is a correlation between
the regular gate fidelity, nonlocal gate fidelity, and entangling
power of CR echo unitary such that the optimal qubit-qubit
detuning spots are more or less the same for all considered
measures. We note that finding the exact single-qubit rotations
that map the local to the nonlocal coordinates, i.e., K̂L,R, is in
general challenging and beyond the scope of this paper.

V. SPECTATOR QUBITS

So far, we have analyzed the operation of an isolated CR
gate. In reality, however, both the control and the target qubits
may be connected to neighboring qubits in a quantum proces-
sor. The goal of this section is to understand how the original
two-qubit gate parameters are influenced by the presence of a
third spectator qubit. We consider a minimal extension of our
original model for CR with either a control or a target specta-
tor qubit as shown in Fig. 9. We study each case independently
in Secs. V A and V B, respectively.

The main results of this section are presented as follows.
The three-qubit gate parameters are shown in Figs. 10, 11,
and 12 for the aforementioned two scenarios up to the fourth
order in perturbation theory. In our analysis, we have fixed the
control-target detuning to lie in the optimal detuning interval
of region II based on our two-qubit calculation in Sec. III B
(�ct = 80 MHz) and sweep the spectator qubit frequency. The
resulting three-qubit resonances are summarized in Table III.

FIG. 10. Three-qubit gate parameters as a function of spectator-target detuning �st with fixed control-target detuning �ct = 80 MHz for
the circuit of Fig. 9(a). Other parameters are set as J = 3.8 MHz and αc = αt = αs = −330 MHz. The order of gate operators is taken as
spectator ⊗ control ⊗ target. The observed resonances are understood in terms of two- and three-qubit processes and are summarized in the
top panel of Table III.
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TABLE III. Summary of three-qubit resonances with a control
spectator qubit (top table) and a target spectator (bottom table) that
appear up to the fourth order in perturbation theory and with four
energy eigenstates for each qubit. From left to right, the first column
denotes the underlying physical process in terms of qubit and drive
photon states, the second shows the corresponding resonance condi-
tion in terms of qubit-qubit detuning, the third gives an experimental
estimate in MHz for spectator-target detuning �st in terms of a fixed
control-traget detuning as �ct = 80 MHz, and the fourth labels such
resonances in terms of broader categories for multiqubit resonances
(see Sec. VI). The resonances are ordered increasingly for this par-
ticular choice of control-target detuning. However, note that if the
parameters change there is a possibility for the resonances to move
around.

States (|SCT 〉 |D〉) Condition �st Type

|ψ111〉 |nd 〉 ∼ |ψ030〉 |nd 〉 �st = 2�ct + 3αc −830 IIIE

|ψ120〉 |nd 〉 ∼ |ψ030〉 |nd 〉 �st = �ct + 2αc −580 IIE

|ψ101〉 |nd 〉 ∼ |ψ002〉 |nd 〉 �st = αt −330 IIIB

|ψ110〉 |nd 〉 ∼ |ψ020〉 |nd 〉 �st = �ct + αc −250 IIB

|ψ101〉 |nd 〉 ∼ |ψ020〉 |nd 〉 �st = 2�ct + αc −170 IIID

|ψ100〉 |nd 〉 ∼ |ψ001〉 |nd 〉 �st = 0 0 IIIA

|ψ100〉 |nd 〉 ∼ |ψ010〉 |nd 〉 �st = �ct 80 IIA

|ψ210〉 |nd 〉 ∼ |ψ120〉 |nd 〉 �st = �ct + αc − αs 80 IID

|ψ200〉 |nd 〉 ∼ |ψ101〉 |nd 〉 �st = −αs 330 IIIB

|ψ200〉 |nd 〉 ∼ |ψ110〉 |nd 〉 �st = �ct − αs 410 IIB

States (|CT S〉 |D〉) Condition �st Type

|ψ111〉 |nd 〉 ∼ |ψ030〉 |nd 〉 �st = −�ct + 3αt −1070 IIIE

|ψ101〉 |nd 〉 ∼ |ψ020〉 |nd 〉 �st = −�ct + αt −410 IIID

|ψ011〉 |nd 〉 ∼ |ψ020〉 |nd 〉 �st = αt −330 IIB

|ψ101〉 |nd 〉 ∼ |ψ200〉 |nd 〉 �st = �ct + αc −250 IIIB

|ψ001〉 |nd 〉 ∼ |ψ010〉 |nd 〉 �st = 0 0 IIA

|ψ002〉 |nd〉 ∼ |ψ020〉 |nd 〉 2�st = αt − αs 0 IIC

|ψ001〉 |nd 〉 ∼ |ψ100〉 |nd 〉 �st = �ct 80 IIIA

|ψ102〉 |nd〉 ∼ |ψ201〉 |nd 〉 �st = �ct + αc − αs 80 IIIC

|ψ002〉 |nd〉 ∼ |ψ011〉 |nd 〉 �st = −αs 330 IIB

|ψ002〉 |nd〉 ∼ |ψ101〉 |nd 〉 �st = �ct − αs 410 IIIB

A. Control spectator

Here we consider the impact of a control spectator qubit on
the CR gate parameters. The starting CR Hamiltonian (8a)–
(8b) is now modified according to Fig. 9(a) as

Ĥ0 =
∑

j=s,c,t

ωjh

4

[
ŷ2

j − 2

ε j
cos(

√
ε j x̂ j )

]
, (41a)

Ĥint(t ) = Jŷsŷc + Jŷcŷt − �ŷc sin(ωdt ), (41b)

where the spectator qubit operators and parameters are labeled
with s and we have considered a direct interaction between
the control and the spectator qubits of the same strength J for
simplicity. Furthermore, the order of subsystems in the com-
posite Hilbert space is taken as spectator ⊗ control ⊗ target
consistent with Fig. 9(a).

Starting from Hamiltonian (41a)–(41a) and following
SWPT Eqs. (16a)–(16d), we obtain an effective Hamiltonian
for this extended model via block-diagonalization with respect
to the Hilbert space of the target qubit. The corresponding
three-qubit gate parameters are then read off of the effective

FIG. 11. A closer look into the IZZ term for the case of a
control spectator [same as Fig. 10(e)]. The induced resonances by
the spectator qubit are labeled with the underlying physical process
according to Table III and Sec. VI. Ideally, the spectator frequency
should be tuned such that it is sufficiently far from these resonances.
The boundaries of the resulting detuning regions can move around
dependent on the control-target detuning.

Hamiltonian in the computational basis. Note that, in princi-
ple, there are 64 distinct gate parameters for the three-qubit
problem under consideration. However, only a few contain
dominant resonant processes. Since the drive is resonant only
with the target qubit frequency, the dominant interactions may
only involve Î , Ẑ for the control and the spectator sectors,
and all four Pauli matrices for the target sector. Furthermore,
we assume that the phase of the CR drive is set such that it
induces only a resonant X̂ interaction on the target. With all
these considerations, there are 2 × 2 × 3 − 1 = 11 indepen-
dent nonzero gate parameters, where we neglect the irrelevant
energy shift due to the III term.

The lowest order estimates for the gate parameters recover
the original dominant gate parameters in the control ⊗ target
sector as those in Table I, as well as a ZZ interaction between
the control and the spectator qubits. Fourth-order expressions
include a plethora of independent multiqubit multiphoton pro-
cesses and hence are not given explicitly. In Fig. 10, we study
the behavior of all nonzero three-qubit gate parameters as a
function of spectator-target detuning �st and up to the fourth
order in perturbation. To better understand the result, we can
break the gate parameters into two subcategories.

The first category includes those gate parameters with the
spectator sector being idle such as IIX , IIZ , IZI , IZX , and
IZZ as shown in Figs. 10(a)–10(e), respectively. We observe
that these rates remain almost intact compared to the ones
found without a spectator qubit, unless the spectator frequency
is sufficiently close to specific values that are understood in
terms of two- or three-qubit resonances (see top panel of
Table III). Moreover, the strength of each resonance, i.e.,
the numerator in the perturbative expansion, determines its
effective width in frequency. Generally speaking, we find that
resonances involving nearest neighbors result in stronger and
hence wider peaks and are in turn more detrimental from a de-
sign perspective. This has been illustrated in Fig. 11 in terms
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(a)

(e)

(i) (j) (k)

(f) (g) (h)

(b) (c) (d)

FIG. 12. Three-qubit gate parameters as a function of spectator-target detuning �st with fixed control-target detuning �ct = 80 MHz for
the circuit of Fig. 9(b). Other parameters are set as J = 3.8 MHz and αc = αt = αs = −330 MHz. Notice the different order of gate operators,
control ⊗ target ⊗ spectator, compared to the case of a control spectator in Fig. 10.

of observed resonances in the IZZ gate parameter. In partic-
ular, we find that the strongest resonance occurs when the
control spectator qubit frequency, transition |ψs,0〉 ↔ |ψs,1〉,
is equal with transition |ψc,1〉 ↔ |ψc,2〉 of the control qubit,
which translates as �st = �ct + αc (see the type IIB collision
at �st = −250 MHz in Fig. 11).

The second category contains gate parameters with spec-
tator sector set to the Z Pauli matrix as given in Figs. 10(f)–
10(k). In particular, ZII and ZZI , Figs. 10(f) and 10(i), belong
to the reduced spectator ⊗ control sector and hence exhibit
a more pronounced dependence on �st . On the other hand,
gate parameters ZIX , ZIZ , ZZX , and ZZZ describe an effec-
tive mediated interaction between the target and the spectator
qubits via the control. The underlying processes are fourth
order in nature, and the estimates can range from 0.1–10 KHz
[Figs. 10(g), 10(h), 10(j), and 10(k)].

Last, we note that a specific gate parameter contains spe-
cific combination of multiqubit multiphoton processes. For
instance, the IIZ rate exhibits a resonance at �st = 0, while
the IIX rate does not. The entirety of such multiqubit reso-
nances that emerge in Fig. 10, as a result of a control spectator,
have been explained in terms of their underlying physical
process and summarized in the top panel of Table III.

B. Target spectator

The case of a target spectator is shown schematically in
Fig. 9(b), with the corresponding bare and interaction Hamil-

tonian defined as

Ĥ0 =
∑

j=c,t,s

ωjh

4

[
ŷ2

j − 2

ε j
cos(

√
ε j x̂ j )

]
, (42a)

Ĥint(t ) = Jŷcŷt + Jŷt ŷs − �ŷc sin(ωdt ). (42b)

In contrast to the case of a control spectator, the order of
the composite Hilbert space is taken as control ⊗ target ⊗
spectator in agreement with Fig. 9(b).

Most of our discussions from the previous section applies
to the target spectator as well. Hence, to avoid repetition, we
briefly summarize our main findings. Up to the second order,
we recover the results of two-qubit calculation in addition to
a ZZ interaction between the target and the spectator qubits.
There are again 11 nonzero gate parameters up to the fourth
order in perturbation, which are shown in Fig. 12 as a function
of spectator-target detuning �st and drive amplitude �. The
observed resonances have been explained in terms of two- and
three-qubit processes in the bottom panel of Table III.

VI. SUMMARY OF MULTIQUBIT RESONANCES

The two- and three-qubit perturbative calculations in
Secs. III and V revealed various possibilities for multiqubit
resonances. Here we summarize such resonances in terms
of three broader categories which have been used to label
and understand the similarity between those particular reso-
nances that appeared in Tables II and III. Two key factors
in our categorization are the number of qubits involved in a
particular resonance and the underlying qubit states or the
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physical process. In general, there are numerous possibilities
and the purpose of this section is to summarize only those
resonances that emerge within a four-level approximation for
each qubit and up to the fourth-order perturbation in drive
amplitude.

To make a connection with our perturbative results, the
analysis in this section categorizes only the distinct energy de-
nominators. The numerator of a process, on the other hand, is
determined by the matrix elements of the underlying interac-
tion Hamiltonian. Whether or not a particular process appears
in a physical quantity depends on whether those states that
are involved in that process are occupied in the time evolution
of that physical quantity. A general rule of thumb is that the
resonances involving higher energy states and next-nearest
neighboring qubits appear to be weaker. In the following,
we enumerate three resonance types, where the first index
shows how many qubits are involved and the second labels
the subtype.

Type I: This category includes the single-qubit resonances
that occur as a result of drive frequency ωd (approximately the
same as ωt ) being resonant with different transition frequen-
cies of the control qubit.

(IA) A two-photon process, where twice the drive frequency
is resonant with the transition |ψc,0〉 → |ψc,2〉 of the control
qubit, resulting in the effective resonance condition 2�ct =
−αc.

(IB) A three-photon process, where three times the drive
frequency is resonant with the transition |ψc,0〉 → |ψc,3〉 of
the control qubit, resulting in the effective resonance condition
3�ct ≈ −3αc [approximate sign is due to neglecting βc in
Eq. (5)].

(IC) A single-photon process, where the drive frequency
is resonant with the transition |ψc,1〉 → |ψc,2〉 of the control
qubit, resulting in the effective resonance condition �ct =
−αc.

(ID) A two-photon process, where twice the drive fre-
quency is resonant with the transition |ψc,1〉 → |ψc,3〉 of the
control qubit, resulting in the effective resonance condition
2�ct = −3αc.

(IE ) A single-photon process, where the drive frequency
is resonant with the transition |ψc,2〉 → |ψc,3〉 of the control
qubit, resulting in the effective resonance condition �ct =
−2αc.

Type II: This category contains the resonances between any
two neighboring qubits in the network denoted by indices m
and n.

(IIA) Transition |ψm,0〉 → |ψm,1〉 of qubit m is resonant
with transition |ψn,0〉 → |ψn,1〉 of qubit n resulting in the
resonance condition �mn = 0.

(IIB) Transition |ψm,0〉 → |ψm,1〉 of qubit m is resonant
with transition |ψn,1〉 → |ψn,2〉 of qubit n, or vice versa, re-
sulting in the resonance condition �mn = αn or �mn = −αm,
respectively.

(IIC) Transition |ψm,0〉 → |ψm,2〉 of qubit m is resonant
with transition |ψn,0〉 → |ψn,2〉 of qubit n resulting in the
resonance condition 2�mn = αn − αm.

(IID) Transition |ψm,1〉 → |ψm,2〉 of qubit m is resonant
with transition |ψn,1〉 → |ψn,2〉 of qubit n resulting in the
resonance condition �mn = αn − αm.

(IIE ) Transition |ψm,2〉 → |ψm,3〉 of qubit m is resonant
with transition |ψn,0〉 → |ψn,1〉 of qubit n, or vice versa, re-
sulting in the resonance condition �mn = −2αm or �mn =
2αn, respectively.

Type III: This category contains possible three-qubit reso-
nances. We label the qubits as m, n, and l and without loss
of generality we assume that m is connected to n, and n is
connected to l . Some of the types enumerated below resemble
the ones in Type II as it involves only two of the qubits. The
important distinction, however, is that here those resonance
happen between next-nearest-neighboring qubits.

(IIIA) Transition |ψm,0〉 → |ψm,1〉 of qubit m is resonant
with transition |ψl,0〉 → |ψl,1〉 of qubit l resulting in the reso-
nance condition �ml = 0.

(IIIB) Transition |ψm,0〉 → |ψm,1〉 of qubit m is resonant
with transition |ψl,1〉 → |ψl,2〉 of qubit l , or vice versa, re-
sulting in the resonance condition �ml = αl or �ml = −αm.

(IIIC) Transition |ψm,1〉 → |ψm,2〉 of qubit m is resonant
with transition |ψl,1〉 → |ψl,2〉 of qubit l resulting in the reso-
nance condition �ml = αl − αm.

(IIID) Sum of transition frequencies |ψm,0〉 → |ψm,1〉 and
|ψl,0〉 → |ψl,1〉 of qubits m and l is resonant with transition
|ψn,0〉 → |ψ0,2〉 of qubit n resulting in the resonance condition
�mn + �ln = αn.

(IIIE ) Sum of transition frequencies |ψm,0〉 → |ψm,1〉,
|ψn,0〉 → |ψn,1〉 and |ψl,0〉 → |ψl,1〉 of qubits m, n, and l is
resonant with transition |ψn,0〉 → |ψn,3〉 of qubit n resulting
in the resonance condition �mn + �ln = 3αn.

Despite the fact that the broad resonance types enumerated
above are found for only two- or three-qubit systems, they lay
out a realistic guideline for avoiding frequency collisions and
frequency crowding in a larger network of qubits [43,44,47–
49]. This is true since the resonances involving qubits beyond
next-nearest neighbors only appear in higher order perturba-
tion and tend to be orders of magnitude weaker, unless for
very strong drive regime.

VII. CONCLUSION

In this work, we followed a bottom-up approach in our
analysis of CR gate operation. Starting from a slightly modi-
fied model that accounts for qubit eigenstate renormalization,
compared to previous theoretical studies [24,25], we first
analyzed an isolated CR gate and characterized candidate pa-
rameters to achieve reasonable gate speed and gate error. Our
calculations confirm that for drive amplitude close to 50 MHz,
a ZX rate of the order of 2 MHz can be achieved when control-
target detuning is in the straddling regime 0 < �ct < −αc. In
particular, detuning region III (−αc/2 < �ct < −αc) results
in the largest ZX rate and hence the fastest gate. Analysis of
the gate error with an echo pulse sequence revealed that there
are optimal spots in the middle of detuning regions II (0 <

�ct < −αc/2), I (αt < �ct < 0) and III, where the coherent
error can range in 10−4 < Eech < 10−3. Splitting the error into
local (single-qubit) and nonlocal (two-qubit) parts shows a
wide room for error improvement provided that the echo pulse
is amended with additional single-qubit rotations. Having un-
derstood the two-qubit physics, we considered the simplest
generalization consisting of three qubits, in which either the
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control or the target is coupled to a spectator qubit. Spectator
qubit analysis reveals a series of multiqubit processes causing
detrimental frequency collisions, which are crucial to avoid in
designing a network of qubits. In summary, our analysis lays
out the groundwork and provides a road map for designing
optimal CR gate operation in a quantum processor.
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APPENDIX A: TRANSMON SPECTRUM AND MODIFIED
TWO-QUBIT INTERACTIONS

In this Appendix, we revisit the spectrum of a transmon
qubit and provide perturbative results for its eigenenergies and
eigenstates in terms of the unitless anharmonicity scale ε ≡√

2EC/EJ . The main difference with respect to Kerr theory
appears in the renormalization of the eigenstates, which leads
to modified matrix elements for qubit-qubit interaction and
drive.

We start from the transmon Hamiltonian in terms of the
charging (EC) and Jopsephson (EJ ) energies as

Ĥq = 4ECN̂2 − EJ cos(ϕ̂), (A1)

where ϕ̂ and N̂ are the phase and number operators, respec-
tively. Next, we replace the quadratures in terms of their
zero-point fluctuation amplitudes as

ϕ̂ = ϕzpfx̂ =
(

2EC

EJ

)1/4

(b̂ + b̂†), (A2a)

N̂ = Nzpfŷ = 1

2

(
EJ

2EC

)1/4

[−i(b̂ − b̂†)], (A2b)

in terms of which we obtain a representation of the transmon
Hamiltonian as

Ĥq = ωh

4

[
ŷ2 − 2

ε
cos
(√

εx̂
)]

. (A3)

In Eq. (A3), ωh ≡ √
8ECEJ is the harmonic frequency of the

qubit and ε ≡ √
2EC/EJ is a unitless anharmonicty measure in

terms of which we can solve for the spectrum perturbatively.
Moreover, x̂ ≡ b̂ + b̂† and ŷ ≡ −i(b̂ − b̂†) are the unitless
phase and number operators.

Next, we expand Hamiltonian (A3) in powers of ε as

Ĥq =
∞∑

p=0

ε pĤ(p)
q , (A4)

where the harmonic part is given as Ĥ(0)
q =

ωhb̂†b̂. The nonlinear contributions for p � 1

read

Ĥ(p)
q ≡ ωh

(−1)p

2(2p + 2)!
(b̂ + b̂†)2p+2

= ωh

p∑
m=0

l=m+1∑
l=−(m+1)

[
(−1)p

2p−m+1(p − m)!

× (b̂†)m+1+l

(m + 1 + l )!

b̂m+1−l

(m + 1 − l )!

]
, (A5)

where the first expression shows the Taylor expansion of
the cosine potential and the last step shows the normal-
ordered form. We then develop a perturbative expansion of
the eigenenergies and eigenstates of the transmon in powers
of ε as

En =
∞∑

p=0

ε pE (p)
n , (A6a)

|ψn〉 =
∞∑

p=0

ε p
∣∣ψ (p)

n

〉
. (A6b)

Replacing Eqs. (A4), (A6a), and (A6b) into the eigenvalue
problem Ĥq |ψn〉 = En |ψn〉, one can solve for the spectrum
recursively as (see also Ref. [35])

E (p)
n =

p−1∑
r=0

〈n| Ĥ(p−r)
q

∣∣ψ (r)
n

〉
, (A7a)

∣∣ψ (p)
n

〉 = ∑
m �=n

{
1

(n − m)ωh

[
〈m| Ĥ(p)

q |n〉

+
p−1∑
r=0

〈m| (Ĥ(p−r)
q − E (p−r)

n

) ∣∣ψ (r)
n

〉 ]}|m〉. (A7b)

For our analytical calculation of the CR gate parameters,
we keep four transmon levels, which is essential to correctly
capture the higher order behavior of gate parameters in terms
of drive amplitude �. Therefore, the eigenenergies up to
O(ε3) are found as

E1 − E0

ωh
= 1 − 1

4
ε − 1

16
ε2 + O(ε3), (A8a)

E2 − E0

ωh
= 2 − 3

4
ε − 17

64
ε2 + O(ε3), (A8b)

E3 − E0

ωh
= 3 − 3

2
ε − 45

64
ε2 + O(ε3), (A8c)

where Eq. (A8a) provides the expression for qubit frequency
ω ≡ E1 − E0. Furthermore, from Eqs. (A8a) and (A8b) we
obtain qubit anharmonicity α as

α

ωh
≡ (E2 − E1) − (E1 − E0)

ωh
= −1

4
ε − 9

64
ε2 + O(ε3).

(A9)
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The first four transmon eigenstates read

|ψ0〉 =
(

1 − 13

3072
ε2

)
|0〉 +

(
1

8
√

2
ε + 13

384
√

2
ε2

)
|2〉

+
(√

6

96
ε +

√
6

96
ε2

)
|4〉 + 23

768
√

5
ε2 |6〉

+
√

35
2

1536
ε2 |8〉 + O(ε3), (A10a)

|ψ1〉 =
(

1 − 35

1024
ε2

)
|1〉 +

(
5

8
√

6
ε + 37

128
√

6
ε2

)
|3〉

+
(

1

16

√
5

6
ε + 41

64
√

30
ε2

)
|5〉 + 11

256

√
7

5
ε2 |7〉

+ 1

512

√
35

2
ε2 |9〉 + O(ε3), (A10b)

|ψ2〉 =
(

− 1

8
√

2
ε − 5

96
√

2
ε2

)
|0〉 +

(
1 − 419

3072
ε2

)
|2〉

+
(

7

8
√

3
ε + 145

256
√

3
ε2

)
|4〉

+
(

1

16

√
5

2
ε + 103

96
√

10
ε2

)
|6〉

+ 43

384

√
7

5
ε2 |8〉 + 5

512

√
7

2
ε2|10〉 + O(ε3), (A10c)

|ψ3〉 =
(

− 5

8
√

6
ε − 13

32
√

6
ε2

)
|1〉 +

(
1 − 405

1024
ε2

)
|3〉

+
(

3
√

5

8
ε + 79

√
5

256
ε2

)
|5〉

+
(

1

16

√
35

6
ε + 103

64

√
7

30
ε2

)
|7〉

+ 53

128

√
7

15
ε2 |9〉 + 5

512

√
77

6
ε2 |11〉 + O(ε3).

(A10d)

Based on Eqs. (A8a)–(A10d), we can write the qubit Hamil-
tonian in the energy basis as

Ĥq = ω |ψ1〉 〈ψ1| + (2ω + α) |ψ2〉 〈ψ2|
+ (3ω + 3α + β ) |ψ3〉 〈ψ3|, (A11)

where β ≡ −(6/64)ε2ωh + O(ε3) provides the deviation
from the Kerr level structure for the third excited state of
transmon, which is negligible unless the drive frequency is
near-resonant with the |ψ2〉 ↔ |ψ3〉 transition.

Eigenstate renormalization leads to modified interactions
between the qubits. To see this explicitly, we need to project
the interaction Hamiltonian into the energy basis. If the inter-
actions between the qubits is linear (capacitive or inductive),
it is sufficient to first obtain the matrix elements of x̂ and ŷ in
our basis as

μmn ≡ 〈ψm| x̂|ψn〉, (A12a)

νmn ≡ 〈ψm| ŷ|ψn〉. (A12b)

For simplicity, we separate the lowering (−) and raising (+)
parts of the quadratures as

x̂ = x̂− + x̂+, (A13a)

ŷ = −i(ŷ− − ŷ+), (A13b)

where x̂+ = (x̂−)† and ŷ+ = (ŷ−)†. Note that in the harmonic
limit of the problem one finds lim

ε→0
x̂− = lim

ε→0
ŷ− = b̂. Using

Eqs. (A10a)–(A10d) we find the following matrix representa-
tions for x̂− up to the fourth level of transmon:

x̂− ≈

⎡
⎢⎢⎢⎣

0 μ01 0 μ03

0 0 μ12 0

0 0 0 μ23

0 0 0 0

⎤
⎥⎥⎥⎦, (A14a)

where μmn are found up to O(ε3) as

μ01 = 1 + 1

8
ε + 13

256
ε2 + O(ε3), (A14b)

μ12 =
(

1 + 1

4
ε + 95

512
ε2

)√
2 + O(ε3), (A14c)

μ23 =
(

1 + 3

8
ε + 105

256
ε2

)√
3 + O(ε3), (A14d)

μ03 = −
√

6

48
ε − 3

√
6

128
ε2 + O(ε3). (A14e)

We find a similar matrix representation for ŷ− as

ŷ− ≈

⎡
⎢⎢⎢⎣

0 ν01 0 ν03

0 0 ν12 0

0 0 0 ν23

0 0 0 0

⎤
⎥⎥⎥⎦, (A15a)

where νmn read

ν01 = 1 − 1

8
ε − 11

256
ε2 + O(ε3), (A15b)

ν12 =
(

1 − 1

4
ε − 73

512
ε2

)√
2 + O(ε3), (A15c)

ν23 =
(

1 − 3

8
ε − 79

256
ε2

)√
3 + O(ε3), (A15d)

ν03 = −
√

6

16
ε − 5

√
6

128
ε2 + O(ε3). (A15e)

Equations (A11) and (A14a)–(A15e) are the main results
of this Appendix and are used to construct a starting Hamilto-
nian for the CR gate [see Eqs. (9)–(11) and Fig. 2].

APPENDIX B: TWO-QUBIT DRESSED BASIS

In this Appendix, we obtain the dressing of transmon en-
ergy eigenstates due to the exchange interaction J . Note that
J is at least one order of magnitude smaller than the drive
amplitude �. Hence, in practice, it is sufficient to obtain only
the lowest order correction to eigenenergies and eigenstates
due to the exchange interaction. We note that the outcome
of this Appendix is not directly utilized in the main body of
the paper, since we performed a simultaneous perturbation in
J and �. However, we present the dressed two-qubit states
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for completeness and for a sanity check on our simultaneous
perturbative results. Moreover, for more precise numerical
analysis, the knowledge of the dressed frame becomes essen-
tial.

The undriven system Hamiltonian for the CR gate can be
expressed as

Ĥs = Ĥqc + Ĥqt + ĤJ , (B1)

where Ĥqc and Ĥqt denote the control and the target qubit
Hamiltonians, and ĤJ is the exchange interaction, respec-
tively. We employ a four-level representation of each qubit
following our discussion in Appendix A. The qubit Hamilto-
nian is then expressed as

Ĥqc
= ωc |ψc,1〉 〈ψc,1| + (2ωc + αc) |ψc,2〉 〈ψc,2|

+ (3ωc + 3αc) |ψc,3〉 〈ψc,3|, (B2)

Ĥqt
= ωt |ψt,1〉 〈ψt,1| + (2ωt + αt ) |ψt,2〉 〈ψt,2|

+ (3ωt + 3αt ) |ψt,3〉 〈ψt,3|, (B3)

with ωq/c and αc/t denoting the frequency and the anharmonic-
ity for each qubit. The exchange Hamiltonian is engineered
through a charge-charge interaction of the form

ĤJ = Jŷcŷt ≈ J (ŷ+
c ŷ−

t + ŷ+
t ŷ−

c ), (B4)

with the raising and lowering operators ŷ±
c/t given in terms of

Eqs. (A15a)–(A15e).
In the following, we apply a time-independent perturba-

tion theory in J/�ct to obtain corrections to the two-qubit
eigenenergies and eigenstates (16 in total for a four-level
model of each transmon). We note that there are mul-
tiple perturbation techniques available, namely either the
Rayleigh-Schrödinger perturbation used in Appendix A
or the SWPT of Appendix C [Eqs. (C11b)–(C11f)], and we
confirm that regardless of the technique the results agree.
To visualize the underlying interactions and understand the
corrections better, we refer the reader to Fig. 2.

We set the order of composite Hilbert space as control ⊗
target and group the results in terms of sectors labeled by
the state of the control qubit. The eigenenergies in the c = 0
sector of the two-qubit Hilbert space read

Ē00 = E00, (B5a)

Ē01 = E01 − ν2
c,01ν

2
t,01J2

�ct
, (B5b)

Ē02 = E02 − ν2
c,01ν

2
t,12J2

�ct − αt
, (B5c)

Ē03 = E03 − ν2
c,01ν

2
t,23J2

�ct − 2αt
, (B5d)

where we have used a bar notation to distinguish between bare
and dressed states. Similarly, when the control is in the first
excited state c = 1, the dressed eigenenergies are found as

Ē10 = E10 + ν2
c,01ν

2
t,01J2

�ct
, (B5e)

Ē11 = E11 + ν2
c,01ν

2
t,12J2

�ct − αt
− ν2

c,12ν
2
t,01J2

�ct + αc
, (B5f)

Ē12 = E12 + ν2
c,01ν

2
t,23J2

�ct − 2αt
− ν2

c,12ν
2
t,12J2

�ct + αc − αt
, (B5g)

Ē13 = E13 − ν2
c,12ν

2
t,23J2

�ct + αc − 2αt
. (B5h)

The dressed eigenenergies in the c = 2 sector are obtained as

Ē20 = E20 + ν2
c,12ν

2
t,01J2

�ct + αc
, (B5i)

Ē21 = E21 + ν2
c,12ν

2
t,12J2

�ct + αc − αt
− ν2

c,23ν
2
t,01J2

�ct + 2αc
, (B5j)

Ē22 = E22 + ν2
c,12ν

2
t23J2

�ct + αc − 2αt
− J2ν2

c,23ν
2
t,12J2

�ct + 2αc − αt
, (B5k)

Ē23 = E23 − J2ν2
c,23ν

2
t,23

�ct + 2αc − 2αt
. (B5l)

Last, when the control qubit is in the third excited state, i.e.,
c = 3 sector, we find

Ē30 = E30 + ν2
c,23ν

2
t,01J2

�ct + 2αc
, (B5m)

Ē31 = E31 + ν2
c,23ν

2
t,12J2

�ct + 2αc − αt
, (B5n)

Ē32 = E32 + ν2
c,23ν

2
t,23J2

�ct + 2αc − 2αt
, (B5o)

Ē33 = E33. (B5p)

The lowest order corrections to eigenstates are proportional
to J . The states with c = 0 are renormalized as

|ψ̄00〉 = |ψ00〉, (B6a)

|ψ̄01〉 = |ψ01〉 − νc,01νt,01J

�ct
|ψ10〉, (B6b)

|ψ̄02〉 = |ψ02〉 − νc,01νt,12J

�ct − αt
|ψ11〉, (B6c)

|ψ̄03〉 = |ψ03〉 − νc,01νt,23J

�ct − 2αt
|ψ12〉. (B6d)

In the c = 1 sector we find

|ψ̄10〉 = |ψ10〉 + νc,01νt,01J

�ct
|ψ01〉, (B7a)

|ψ̄11〉 = |ψ11〉 + νc,01νt,12J

�ct − αt
|ψ02〉 − νc,12νt,01J

�ct + αc
|ψ20〉,

(B7b)

|ψ̄12〉 = |ψ12〉 + νc,01νt,23J

�ct − 2αt
|ψ03〉 − νc,12νt,12J

�ct + αc − αt
|ψ21〉,

(B7c)

|ψ̄13〉 = |ψ13〉 − νc,12νt,23J

�ct + αc − 2αt
|ψ22〉. (B7d)

The eigenstates in the c = 2 sector read

|ψ̄20〉 = |ψ20〉 + νc,12νt,01J

�ct + αc
|ψ11〉, (B8a)
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|ψ̄21〉 = |ψ21〉 + νc,12νt,12J

�ct + αc − αt
|ψ12〉 − νc,23νt,01J

�ct + 2αc
|ψ30〉,

(B8b)

|ψ̄22〉 = |ψ22〉 + νc,12νt,23J

�ct + αc − 2αt
|ψ13〉

− νc,23νt,12J

�ct + 2αc − αt
|ψ31〉, (B8c)

|ψ̄23〉 = |ψ23〉 − νc,23νt,23J

�ct + 2αc − 2αt
|ψ32〉. (B8d)

Last, the eigenstates in the c = 3 sector are obtained as

|ψ̄30〉 = |ψ30〉 + νc,23νt,01J

�ct + 2αc
|ψ21〉, (B9a)

|ψ̄31〉 = |ψ31〉 + νc,23νt,12J

�ct + 2αc − αt
|ψ22〉, (B9b)

|ψ̄32〉 = |ψ32〉 + νc,23νt,23J

�ct + 2αc − 2αt
|ψ23〉, (B9c)

|ψ̄33〉 = |ψ33〉. (B9d)

Based on Eqs. (B5a), (B5b), (B5e), and (B5f) we find static
renormalizations of the qubit frequencies as well as an effec-
tive static ZZ interaction. The resulting effective Hamiltonian
in the computational basis reads

Ĥs,TLA = ω̄iz
Î Ẑ

2
+ ω̄zi

Ẑ Î

2
+ ω̄zz

ẐẐ

2
, (B10a)

with static ω̄iz, ω̄zi, and ω̄zz given as

ω̄zz ≡ 1

2

⎛
⎝ν2

c,01ν
2
t,12

�ct − αt
− ν2

c,12ν
2
t,01

�ct + αc

⎞
⎠J2, (B10b)

ω̄iz ≡ −ωt − ω̄zz + ν2
c,01ν

2
t,01J2

�ct
, (B10c)

ω̄zi ≡ −ωc − ω̄zz − ν2
c,01ν

2
t,01J2

�ct
. (B10d)

Our knowledge of the dressed frame becomes important
when the CR drive is added to the picture, since only the
dressed frequencies are accessible experimentally. Therefore,
the drive frequency is indeed tuned to the dressed frequency
of the target qubit as

ωd ≈ ωt + 1

2

(
ν2

c,01ν
2
t,12

�ct − αt
− ν2

c,12ν
2
t,01

�ct + αc
− 2ν2

c,01ν
2
t,01

�ct

)
J2.

(B11)

Hence, the CR Hamiltonian can be expressed as

Ĥs(t ) = Ĥs + Ĥd (t ), (B12)

with Ĥs given in Eq. (B1) and Ĥd (t ) as

Ĥd (t ) = −�ŷc sin(ωdt ) ≈ �

2
(ŷ−

c eiωd t + ŷ+
c e−iωd t ). (B13)

So far, we found the diagonal form for Ĥs in terms of the
dressed two-qubit basis. On the other hand, we also need

to rotate Ĥd (t ) into this frame. Based on Eq. (B13), it is
sufficient to find the representation of the lowering charge
operator ŷ−

c in the dressed basis as

ŷ−
c =

3∑
m,n=0
l,p=0

〈ψ̄mn| ŷ−
c |ψ̄l p〉 |ψ̄mn〉 〈ψ̄l p|. (B14a)

In principle, there are quite a few nonzero matrix elements
which can be found from Eqs. (B6a)–(B9d) for the dressed
states and Eq. (A15a) for ŷ−

c . Here, for simplicity, we quote
only the nonzero matrix elements in the computational basis
as

〈ψ̄00| ŷ−
c |ψ̄01〉 = −ν2

c,01νt,01J

�ct
, (B14b)

〈ψ̄00| ŷ−
c |ψ̄10〉 = νc,01, (B14c)

〈ψ̄01| ŷ−
c |ψ̄11〉 = νc,01, (B14d)

〈ψ̄10| ŷ−
c |ψ̄11〉 = ν2

c,01νt,01J

�ct
− ν2

c,12νt,01J

�ct + αc
, (B14e)

from which we find how the drive indirectly acts on the target
qubit while being mediated by the control.

To summarize the main results of this Appendix, we found
the transformation between the energy-basis representation
of the CR gate to the basis that is dressed by the exchange
coupling J for the main reason that the dressed basis is the one
that is probed experimentally. Consequently, we reexpressed
the drive Hamiltonian in this frame, which serves as a pertur-
bation to the system. Note that the result in this section can
be trivially generalized to the spectator calculation, since up
to the lowest order the renormalizations are pairwise and will
not include next-nearest-neighbor coupling.

APPENDIX C: TIME-DEPENDENT SCHRIEFFER-WOLFF
PERTURBATION THEORY

In this Appendix, we provide the derivation of a time-
dependent SWPT up to the fourth order. The perturbative
equations are used to find an effective Hamiltonian for the
CR gate. In Appendix C 1 we start our analysis in the lab-
oratory frame and present our results in terms of a set of
linear operator-valued ODEs for the generator of the SW
transformation. Next, in Appendix C 2 we argue that the form
of perturbative equations become simpler when we reexpress
them in the interaction frame. Last, in Appendix C 3, we
fine-tune the generic perturbative equations for the CR gate,
where we are interested in transforming to a frame in which
the effective CR Hamiltonian is block-diagonal with respect
to the Hilbert space of the target qubit.

1. Lab frame

The Hamiltonian in the laboratory frame can be written as

Ĥs(t ) = Ĥ0 + λĤint(t ), (C1)

where λ is a small expansion parameter and Ĥint(t ) is the
time-dependent perturbation that is applied to the system. We
assume that the interaction is off-diagonal. Otherwise, one can
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always add the diagonal parts of Ĥint to Ĥ0 and redefine the
zeroth order Hamiltonian.

In order to obtain an effective Hamilotnian, we apply a SW
transformation as

Ĥeff(t ) = eiĜ(t )[Ĥs(t ) − i∂t ]e
−iĜ(t ), (C2)

where Ĝ(t ) is the generator of the SW transformation that can
be solved for order by order in the small parameter λ.

To obtain a perturbative expansion, we use the BCH lemma
as

eÂB̂e−Â =
∞∑

n=0

1

n!
Cn[Â]B̂ = B̂ + [Â, B̂] + 1

2
[Â, [Â, B̂]] + · · · ,

(C3a)

where Â and B̂ are two arbitrary operators and Cn[Â](•) is a
nested commutator defined as

Cn[Â](•) = [Â, [Â, [Â, [. . .︸ ︷︷ ︸
n

, •]]]]. (C3b)

According to Eq. (C2), there are three separate contribu-
tions to the effective Hamiltonian found as the transformations
of Ĥ0, λĤint(t ) and the energy operator −i∂t . In the following,
we focus on each term separately. To this aim, we write the
generator as

Ĝ(t ) =
∞∑

n=1

λnĜn(t ), (C4)

where Ĝn(t ) denotes the solution to the generator at order λn.
We first consider the transformation of Ĥ0. Setting Â =

iĜ(t ) and B̂ = Ĥ0 in the BCH lemma (C3a) and inserting the
expansion for Ĝ(t ) from Eq. (C4) we find

eiĜ(t )Ĥ0(t )e−iĜ(t ) = Ĥ0 + i[Ĝ, Ĥ0] − 1

2
[Ĝ, [Ĝ, Ĥ0]] − i

6
[Ĝ, [Ĝ, [Ĝ, Ĥ0]]] + 1

24
[Ĝ, [Ĝ, [Ĝ, [Ĝ, Ĥ0]]]] + · · ·

= Ĥ0 + λ(i[Ĝ1, Ĥ0]) + λ2(i[Ĝ2, Ĥ0] − 1

2
[Ĝ1, [Ĝ1, Ĥ0]]) + λ3(i[Ĝ3, Ĥ0]

− 1

2
[Ĝ1, [Ĝ2, Ĥ0]] − 1

2
[Ĝ2, [Ĝ1, Ĥ0]] − i

6
[Ĝ1, [Ĝ1, [Ĝ1, Ĥ0]]])

+ λ4(i[Ĝ4, Ĥ0] − 1

2
[Ĝ1, [Ĝ3, Ĥ0]] − 1

2
[Ĝ2, [Ĝ2, Ĥ0]] − 1

2
[Ĝ3, [Ĝ1, Ĥ0]]

− i

6
[Ĝ1, [Ĝ1, [Ĝ2, Ĥ0]]] − i

6
[Ĝ1, [Ĝ2, [Ĝ1, Ĥ0]]] − i

6
[Ĝ2, [Ĝ1, [Ĝ1, Ĥ0]]]

+ 1

24
[Ĝ1, [Ĝ1, [Ĝ1, [Ĝ1, Ĥ0]]]] + O(λ5), (C5)

where in the last step we have collected distinct powers of λ and dropped the time dependence of operators for clarity.
In a similar manner, we can find the transformation of the interaction term λĤint(t ) as

eiĜ(t )[λĤint(t )]e−iĜ(t ) = λĤint + i[Ĝ, λĤint] − 1

2
[Ĝ, [Ĝ, λĤint]] − i

6
[Ĝ, [Ĝ, [Ĝ, λĤint]]] + · · ·

= λĤint(t ) + λ2(i[Ĝ1, Ĥint]) + λ3(i[Ĝ2, Ĥint] − 1

2
[Ĝ1, [Ĝ1, Ĥint]]) + λ4(i[Ĝ3, Ĥint]

− 1

2
[Ĝ1, [Ĝ2, Ĥint]] − 1

2
[Ĝ2, [Ĝ1, Ĥint]] − i

6
[Ĝ1, [Ĝ1, [Ĝ1, Ĥint]]]) + O(λ5), (C6)

where we find fewer terms due to the fact that the interaction Hamiltonian is of order λ to begin with.
Last, we need to transform the energy operator −i∂t . We start from the time derivative of an operator exponential as

d

dt
eÔ(t ) =

∫ 1

0
dzezÔ(t ) ˙̂O(t )e(1−z)Ô(t ). (C7)

Using identity (C7) we can write

eiĜ(t )(−i∂t )e
−iĜ(t ) =

∫ 1

0
dzei(1−z)Ĝ(t )[− ˙̂G(t )]e−i(1−z)Ĝ(t ) =

∫ 1

0
dzeizĜ(t )[− ˙̂G(t )]e−izĜ(t ), (C8)

where in the last line, we have employed the change of variable z → 1 − z to simplify the integral. Setting Â = izĜ(t ) and
B̂ = − ˙̂G(t ) in the BCH lemma (C3a) and taking the resulting z integral in Eq. (C8) we find

eiĜ(t )(−i∂t )e
−iĜ(t ) = −

n∑
n=0

in

(n + 1)!
Cn[Ĝ] ˙̂G = − ˙̂G − i

2!
[Ĝ, ˙̂G] + 1

3!
[Ĝ, [Ĝ, ˙̂G]] + i

4!
[Ĝ, [Ĝ, [Ĝ, ˙̂G]]] + · · · . (C9)
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Inserting the expansion (C4) in Eq. (C9) and collecting equal powers of λ we find

eiĜ(t )(−i∂t )e
−iĜ(t ) = λ(− ˙̂G1) + λ2(− ˙̂G2 − i

2
[Ĝ1,

˙̂G1]) + λ3(− ˙̂G3 − i

2
[Ĝ1,

˙̂G2] − i

2
[Ĝ2,

˙̂G1] + 1

6
[Ĝ1, [Ĝ1,

˙̂G1]])

+ λ4

(
− ˙̂G4 − i

2
[Ĝ1,

˙̂G3] − i

2
[Ĝ2,

˙̂G2] − i

2
[Ĝ3,

˙̂G1] + 1

6
[Ĝ1, [Ĝ1,

˙̂G2]]

+ 1

6
[Ĝ1, [Ĝ2,

˙̂G1]] + 1

6
[Ĝ2, [Ĝ1,

˙̂G1]] + i

24
[Ĝ1, [Ĝ1, [Ĝ1,

˙̂G1]]]
)

+ O(λ5). (C10)

Adding equal powers of λ in Eqs. (C5), (C6), and (C10) we find the effective Hamiltonian as

Ĥeff(t ) =
∞∑

n=0

λnĤ(n)
eff (t ), (C11a)

where

Ĥ(0)
eff = Ĥ0, (C11b)

Ĥ(1)
eff = − ˙̂G1 + i[Ĝ1, Ĥ0] + Ĥint, (C11c)

Ĥ(2)
eff = − ˙̂G2 − i

2
[Ĝ1,

˙̂G1] + i[Ĝ2, Ĥ0] − 1

2
[Ĝ1, [Ĝ1, Ĥ0]] + i[Ĝ1, Ĥint], (C11d)

Ĥ(3)
eff = − ˙̂G3 − i

2
[Ĝ1,

˙̂G2] − i

2
[Ĝ2,

˙̂G1] + 1

6
[Ĝ1, [Ĝ1,

˙̂G1]] + i[Ĝ3, Ĥ0] − 1

2
[Ĝ1, [Ĝ2, Ĥ0]] − 1

2
[Ĝ2, [Ĝ1, Ĥ0]]

− i

6
[Ĝ1, [Ĝ1, [Ĝ1, Ĥ0]]] + i[Ĝ2, Ĥint] − 1

2
[Ĝ1, [Ĝ1, Ĥint]], (C11e)

Ĥ(4)
eff = − ˙̂G4 − i

2
[Ĝ1,

˙̂G3] − i

2
[Ĝ2,

˙̂G2] − i

2
[Ĝ3,

˙̂G1] + 1

6
[Ĝ1, [Ĝ1,

˙̂G2]] + 1

6
[Ĝ1, [Ĝ2,

˙̂G1]] + 1

6
[Ĝ2, [Ĝ1,

˙̂G1]]

+ i

24
[Ĝ1, [Ĝ1, [Ĝ1,

˙̂G1]] + i[Ĝ4, Ĥ0] − 1

2
[Ĝ1, [Ĝ3, Ĥ0]] − 1

2
[Ĝ2, [Ĝ2, Ĥ0]] − 1

2
[Ĝ3, [Ĝ1, Ĥ0]]

− i

6
[Ĝ1, [Ĝ1, [Ĝ2, Ĥ0]]] − i

6
[Ĝ1, [Ĝ2, [Ĝ1, Ĥ0]]] − i

6
[Ĝ2, [Ĝ1, [Ĝ1, Ĥ0]]] + 1

24
[Ĝ1, [Ĝ1, [Ĝ1, [Ĝ1, Ĥ0]]]]

+ i[Ĝ3, Ĥint] − 1

2
[Ĝ1, [Ĝ2, Ĥint]] − 1

2
[Ĝ2, [Ĝ1, Ĥint]] − i

6
[Ĝ1, [Ĝ1, [Ĝ1, Ĥint]]]. (C11f)

Equations (C11b)–(C11f) provide the generic result for the effective Hamiltonian up to the fourth order in perturbation.
Depending on the nature of the problem, we determine the successive orders Ĝn(t ) to reach a desired form.

2. Interaction frame

It is important to note that the form of corrections become significantly simpler if we apply the perturbation to the interaction
frame from the outset. The interaction frame Hamiltonian is defined as

λĤI (t ) ≡ eiĤ0t [Ĥ0 + λĤint(t ) − i∂t ]e
−iĤ0t = eiĤ0tλĤint(t )e−iĤ0t . (C12)

Applying the perturbation theory on Hamiltonian (C12) instead leads to

ĤI,eff(t ) =
∞∑

n=0

λnĤ(n)
I,eff(t ), (C13a)

where

Ĥ(0)
I,eff = 0, (C13b)

Ĥ(1)
I,eff = − ˙̂G1 + ĤI , (C13c)

Ĥ(2)
I,eff = − ˙̂G2 − i

2
[Ĝ1,

˙̂G1] + i[Ĝ1, ĤI ], (C13d)
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Ĥ(3)
I,eff = − ˙̂G3 − i

2
[Ĝ1,

˙̂G2] − i

2
[Ĝ2,

˙̂G1] + 1

6
[Ĝ1, [Ĝ1,

˙̂G1]] + i[Ĝ2, ĤI ] − 1

2
[Ĝ1, [Ĝ1, ĤI ]], (C13e)

Ĥ(4)
I,eff = − ˙̂G4 − i

2
[Ĝ1,

˙̂G3] − i

2
[Ĝ2,

˙̂G2] − i

2
[Ĝ3,

˙̂G1] + 1

6
[Ĝ1, [Ĝ1,

˙̂G2]] + 1

6
[Ĝ1, [Ĝ2,

˙̂G1]] + 1

6
[Ĝ2, [Ĝ1,

˙̂G1]]

+ i

24
[Ĝ1, [Ĝ1, [Ĝ1,

˙̂G1]]] + i[Ĝ3, ĤI ] − 1

2
[Ĝ1, [Ĝ2, ĤI ]] − 1

2
[Ĝ2, [Ĝ1, ĤI ]] − i

6
[Ĝ1, [Ĝ1, [Ĝ1, ĤI ]]]. (C13f)

SWPT provides flexibility in determining the desired form for the effective Hamiltonian and the corresponding solution for the
generator Ĝ(t ) depending on the nature of the problem. Important examples are obtaining diagonal or block-diagonal effective
Hamiltonian. For CR, since the drive frequency is resonant with target and off-resonant from the control, we are interested in a
block-diagonal form with respect to the Hilbert space of the target qubit.

3. Block diagonalization

The CR interaction Hamiltonian ĤI(t ) is not block-
diagonal with respect to the target qubit from the outset.
Hence, at the lowest order, we need to solve for Ĝ1 such that
it removes ĤI (t )

O(λ) :

{
Ĥ(1)

I,eff = 0,

˙̂G1 = ĤI ,
(C14a)

Replacing the solution for Ĝ1 from Eq. (C14a) into the generic
O(λ2) correction (C13d) we obtain

O(λ2) :

{
Ĥ(2)

I,eff = B
(

i
2 [Ĝ1, ĤI ]

)
,

˙̂G2 = N
(

i
2 [Ĝ1, ĤI ]

)
,

(C14b)

where B(•) and N (•) denote the block-diagonal and non-
block-diagonal parts of an operator with respect to the target
qubit. Using Eq. (C14a), we can simplify expressions (C13e)–
(C13f) for higher orders as

O(λ3) :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ĥ(3)
I,eff = B

(− i
2 [Ĝ1,

˙̂G2] + i
2 [Ĝ2, ĤI ]

− 1
3 [Ĝ1, [Ĝ1, ĤI ]]

)
,

˙̂G3 = N
(− i

2 [Ĝ1,
˙̂G2] + i

2 [Ĝ2, ĤI ]

− 1
3 [Ĝ1, [Ĝ1, ĤI ]]

)
,

(C14c)

O(λ4) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ĥ(4)
I,eff = B

(− i
2 [Ĝ1,

˙̂G3] − i
2 [Ĝ2,

˙̂G2]

+ 1
6 [Ĝ1, [Ĝ1,

˙̂G2]] + i
2 [Ĝ3, ĤI ]

− 1
3 [Ĝ1, [Ĝ2, ĤI ]] − 1

3 [Ĝ2, [Ĝ1, ĤI ]]

− i
8 [Ĝ1, [Ĝ1, [Ĝ1, ĤI ]]]

)
,

˙̂G4 = N
(− i

2 [Ĝ1,
˙̂G3] − i

2 [Ĝ2,
˙̂G2]

+ 1
6 [Ĝ1, [Ĝ1,

˙̂G2]] + i
2 [Ĝ3, ĤI ]

− 1
3 [Ĝ1, [Ĝ2, ĤI ]] − 1

3 [Ĝ2, [Ĝ1, ĤI ]]

− i
8 [Ĝ1, [Ĝ1, [Ĝ1, ĤI ]]]

)
.

(C14d)

Equations (C14a)–(C14d) are the main results of this Ap-
pendix and have been used in the main text to both study the
isolated CR gate as well three-qubit models with a spectator
qubit, in Secs. III and V, respectively.

APPENDIX D: CLASSICAL CROSS-TALK

In this Appendix, we revisit the dependence of CR gate
parameters on classical cross-talk between the control and

target qubits [21]. To model cross-talk, we assume that a
portion of the CR drive will act directly on the target qubit due
to unwanted microwave channels in the circuit. We consider a
modified drive Hamiltonian of the form

Ĥd (t ) = −(1 − Ac)�ŷc sin(ωdt ) − At�ŷt sin(ωdt + φt )

≈ (1 − Ac)�

2
(ŷ−

c eiωd t + ŷ+
c e−iωd t )

+ At�

2
(ŷ−

t ei(ωd t+φt ) + ŷ+
t e−(iωd t+φt ) ), (D1)

where Ac denotes the suppression in the supposed drive on
the control qubit, At denotes the relative strength on the target
qubit and φt is the phase difference as a result of the distance
between the control and the target qubits.

Following the results for SWPT from the previous Ap-
pendix, Eqs. (16a)–(16d), and substituting the drive Hamilto-
nian (D1), we solve for the CR gate parameters order by order.
The lowest order results for gate parameters are summarized
in Table IV. We find that the lowest order expressions for
gate parameters in the presence of cross-talk can be inferred
from Table I (no cross-talk) in the following manner. Dynamic
contributions (dependent on �) to gate parameters can be
found by replacing � → (1 − Ac)�, which is the ratio by
which the drive on the control qubit is suppressed. On top of
this, there is also direct contributions coming from the drive
on the target qubit to the IX and IY rates as νt,01At� cos(φt )
and νt,01At� sin(φt ), respectively. Higher order corrections to
gate parameters are shown in Fig. 13.

TABLE IV. Lowest order CR gate parameters in the presence of
classical cross-talk based on Eq. (D1). System parameters are the
same as those in Table I, with the cross-talk parameters chosen as
Ac = At = 0.05 and φt = π/36.

Op. Coeff. (energy basis) Est. (MHz)

1
2 Î X̂ νt,01At� cos(φt ) − νt,01ν2

c,12
2(�ct +αc ) J (1 − Ac )� 3.603

1
2 ÎŶ νt,01At� sin(φt ) 0.211

1
2 Ẑ Î [

ν2
c,12

4(�ct +αc ) − ν2
c,01

2�ct
](1 − Ac )2�2 −12.969

1
2 ẐX̂ 1

2 (
νt,01ν2

c,12
�ct +αc

− 2νt,01ν2
c,01

�ct
)J (1 − Ac )� −2.012

1
2 ẐẐ 1

2 (
ν2

c,01ν2
t,12

�ct −αt
− ν2

t,01ν2
c,12

�ct +αc
)J2 0.114
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(a) (b)

(c) (d)

(e)

(g)

(f)

FIG. 13. CR gate parameters as a function of drive and cross-
talk. (a) IX , (b) IY , (c) IZ (d), ZI , (e) ZX , (f) ZY , and (g) ZZ . Circuit
parameters are the same as those in Table I. Cross-talk parameters are
Ac = At that range in [0,0.1] and φt = 0.

APPENDIX E: NONLOCAL INVARIANTS

Here we provide estimates for the nonlocal gate fidelity
[39] and entangling power [40,46] in terms of Makhlin in-
variants [36,38] in Appendix E 1 and E 2, respectively.

1. Nonlocal gate fidelity in terms of Makhlin invariants

We define the nonlocal fidelity as the overlap between the
nonlocal parts of the ideal and implemented CR echo unitary
as

F (nl )
echo ≡ F (Âech, Âide) = Tr(Â†

echÂech)

d (d + 1)
+ |Tr(Â†

echÂide)|2
d (d + 1)

,

(E1)

where Â denotes the nonlocal part according to the decompo-
sition Û = K̂LÂK̂R introduced in Eqs. (34a)–(34b) and d = 4
is the dimension of the two-qubit Hilbert space. In the fol-
lowing, we first provide an estimate for Eq. (E1) in terms
of the difference between the Cartan coordinates of Âech and
Âide. Next, using the one-to-one correspondence between the
Makhlin and Cartan coordinates, we rewrite our expression in
terms of the Makhlin invariants. The results of this section
are valid given that the two unitary transformations under
consideration, i.e., Âech and Âide, are sufficiently close such
that |�c| � 1.

The nonlocal operators Âide and Âech can be represented in
the canonical form as

Âide = e−i π
4 X̂cX̂t , (E2a)

Âech = e− i
2 [(π/2+�cx )X̂cX̂t +�cyŶcŶt +�czẐcẐt ], (E2b)

where for Âide we have substituted the Cartan coordinates
(π/2, 0, 0) denoting the CNOT class and we have assumed
that Âech only slightly deviates from this configuration with
coordinates (π/2 + �cx,�cy,�cz ) such that |�c| � 1. Un-
der this assumption, we first reexpress the nonlocal fidelity
(E1) in terms of �cx, �cy, and �cz. Since Âech is unitary, by
construction, the first term in Eq. (E1) is found as

Tr(Â†
echÂech)

d (d + 1)
= d

d + 1
= 1

5
, (E3)

with d = 4 being the dimension of the two-qubit Hilbert
space. Substituting Eqs. (E2a)–(E2b) into the second term of
Eq. (E1) we obtain

Tr(Â†
echÂide) = 4 cos

(
�cx

2

)
cos

(
�cy

2

)
cos

(
�cz

2

)

− 4i sin

(
�cx

2

)
sin

(
�cy

2

)
sin

(
�cz

2

)

= 4

[
1 − 1

8

(
�c2

x + �c2
y + �c2

z

)]+ O(�c4).

(E4)

Therefore, we find the nonlocal gate fidelity in terms of the
difference in the Cartan coordinates as

F (Âech, Âide) = 1

5
+ 16

20

[
1 − 1

4

(
�c2

x + �c2
y + �c2

z

)]
= 1 − 1

5

(
�c2

x + �c2
y + �c2

z

)+ O(�c4). (E5)

Since the Makhlin invariants are more straightforward to
compute for a given two-qubit unitary, it is beneficial to
rewrite Eq. (E5) in terms of our coordinates. The Cartan and
Makhlin coordinates are related as

gx = 1

4
[cos(2cx ) + cos(2cy) + cos(2cz )

+ cos(2cx ) cos(2cy) cos(2cz )], (E6a)

gy = 1

4
sin(2cx ) sin(2cy) sin(2cz ), (E6b)

gz = cos(2cx ) + cos(2cy) + cos(2cz ). (E6c)
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FIG. 14. (a) Normalized ZX rate and (b) normalized IX rate as a function of drive amplitude with sample ratios of qubit-qubit detuning
over control qubit anharmonicity. Other parameters are the same as Table I. The results are obtained by applying the semianalytical method of
Tripathi et al. [25] to our energy-basis model of Eqs. (9)–(11). One observes a formation of bands depending on in which of the five regions
the detuning is set [25]: (I) −αt < �ct < 0 (shades of red), (II) 0 < �ct < −αc/2 (shades of yellow), (III) −αc/2 < �ct < −αc (shades of
green), (IV) −αc < �ct < −3αc/2 (shades of blue), and (V) −3αc/2 < �ct < −2αc (shades of cyan).

Expanding cx, cy, and cz around the CNOT class as cx =
π/2 + �cx, cy = �cy and cz = �cz, we can simplify
Eqs. (E6a)–(E6c) up to the lowest nonzero order in �c as

gx = �c2
x + O(�c4), (E7a)

gy = −2�cx�cy�cz + O(�c5), (E7b)

gz = 1 + 2
(
�c2

x − �c2
y − �c2

z

)+ O(�c4). (E7c)

Employing Eqs. (E7a) and (E7c) we rewrite �c2
x + �c2

y +
�c2

z in terms of the Makhlin invariants as

�c2
x + �c2

y + �c2
z + O(�c4) = 2gx + 1 − gz

2
. (E8)

Last, using Eqs. (E8) and (E5) we obtain the nonlocal fidelity
(error) as

F (nl )
ech ≈ 1 − 1

10
(4gx + 1 − gz ) + O(�c4), (E9a)

E (nl )
ech ≡ 1 − F (nl )

ech ≈ 1

10
(4gx + 1 − gz ) + O(�c4). (E9b)

2. Entangling power in terms of Makhlin invariants

Entangling power of a unitary operator Û over a bipartite
Hilbert space is defined as the average entanglement that the
operator can produce when acting on separable states [40],

ep(Û ) ≡ Ent(Û |ψc〉 ⊗ |ψt 〉)
|ψc〉,|ψt 〉

, (E10a)
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where the bar denotes an average over separable states and
Ent(|ψ〉) is the entanglement measure of choice. It is common
to employ the linear entanglement measure, as opposed to the
von Neumann entropy, defined as

Ent(|ψ〉) = 1 − Trc
(
ρ̂2

c

)
, (E10b)

ρ̂c ≡ Trt (|ψ〉 〈ψ |). (E10c)

It can be shown that the entangling power of a two-qubit
unitary operator depends only on its nonlocal properties,
hence can be directly expressed in terms of the corresponding
Cartan coordinates [46]

ep(Û ) = 1

18
[3 − cos(2cx ) cos(2cy)

− cos(2cy) cos(2cz ) − cos(2cz ) cos(2cx )]. (E11)

Here we derive an estimate for ep(Ûech). Inserting ansatz (E2b)
for Ûech into Eq. (E11) and expanding in terms of �c we find

ep(Ûech) = 1

18
[3 + cos(2�cx ) cos(2�cy)

− cos(2cy) cos(2�cz ) + cos(2�cz ) cos(2�cx )]

= 2

9
− 2

9
�c2

x + O(�c4)

= 2

9
− 2

9
gx + O(�c4), (E12)

where in the last step we employed Eq. (E7a) to replace
�c2

x with the Makhlin gx invariant. Therefore, the difference
between the entangling power of an ideal CNOT and the imple-
mented CR echo unitary operators is obtained as

ep(Ûide) − ep(Ûech) = 2

9
gx + O(�c4). (E13)

Equations (E9a)–(E9b) and (E13) are the main results of
this Appendix and have been used in Sec. IV C and Fig. 8.

APPENDIX F: SATURATION OF CROSS-RESONANCE
GATE PARAMETERS AT STRONG DRIVE

SWPT provides reliable estimates for the gate parameters
up to medium (50 MHz) drive amplitude. On the other hand,
it is also crucial to understand the behavior of rates at strong
drive power. Some important questions are the following:
(1) Is there an upper bound for the ZX rate? (2) How does this
bound depend on the circuit parameters, especially qubit-qubit
detuning and qubit anharmonicity? and (3) What is the lowest
drive amplitude at which we can reach a reasonable fraction
of this bound? Note that any perturbation theory in drive
amplitude � is unable to predict a saturation behavior, by
construction, due to the fact that the results are always poly-
nomials of �, which will inevitably diverge at strong drive.
Reference [25] introduced a semianalytical method designed
specifically to study strong-drive behavior of the ZX rate.
In the following, we apply this method to the modified CR
Hamiltonian in terms of energy basis [Eqs. (9)–(11)].

The idea of the semianalytical method [25] is to use the
analytical expression for ZX and IX interactions in terms of
interaction constants an ≡ J〈ψn1|Ĥd |ψn0〉J as

ωix = a0 + a1, (F1a)

FIG. 15. Plot of the absolute value of Eq. (G2) versus control-
target detuning for different fixed values of the control qubit
frequency (varying the target frequency). The anharmonicity is fixed
to −330 MHz. The shaded region shows the typical operating regime
for CR, where the difference in the theories does not lead to a large
error in the observable measured quantities. However, outside this
regime the error can be close to 10%.

ωzx = a0 − a1, (F1b)

while calculating these interaction rates numerically. In prin-
ciple, an quantifies the interaction that is induced by the
drive between the two-qubit states in the frame dressed by
the exchange interaction J (see Fig. 2). However, at suffi-
ciently strong drive, the exchange interaction J is significantly
smaller (at least one order of magnitude) than �. Hence,
in practice, the drive needs to be accounted for nonper-
turbatively, while the exchange interaction acts as a small
correction between the resulting states dressed by the drive.
Employing this interchangability, the semianalytical method
proposes the following expression for the interaction rates an:

an = J〈ψn1|Ĥd |ψn0〉J ≈ �〈ψn1|ĤJ |ψn0〉�, (F2)

where the first expression shows the exact definition in terms
of the dressed states by J and the second provides the semi-
analytical approximation in terms of the dressed states by �.
Although no formal proof is presented for the validity of this
approximation, Tripathi et al. [25] show a good agreement
between the semianalytical and full numerical calculation of
the ZX rate. It can be shown that the drive will only sub-
stantially dress the states of the control qubit and hence one
can approximate the two-qubit problem by disentangling the
target qubit as

|ψnm〉� ≈ |ψc,n〉� |ψt,m〉. (F3)

The dressed control qubit eigenstates are then obtained nu-
merically by solving a 1D Schrödinger equation as(

Ĥqc + Ĥd
) |ψc,n〉� = Ec,n(�)|ψc,n〉�. (F4)

Figure 14 presents ZX over a wide range of drive amplitude
�. First, the results confirm our understanding from SWPT,
where depending on the relation between qubit-qubit detuning
and control qubit anharmonicity completely distinct behavior
is observed [25]. In particular, separate bands are formed for
each of the five parameter regions (see Sec. III B). Second, in
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all cases, the saturation limit of the ZX rate is the same order
as exchange interaction J . Importantly, curves belonging to
the same band asymptote to the same limit. Third, in terms of
achieving the largest ZX rate at a smaller drive amplitude �,
we find that parameter region III (shades of green in Fig. 14)
serves as the best operating point. In particular, as was found
from SWPT, the ratio �ct ≈ −0.6αc leads to the largest ZX
rate.

APPENDIX G: EXPERIMENTAL SIGNATURES
OF THE ENERGY-BASIS CORRECTIONS

The energy-basis corrections described in this manuscript
lead up to 15% relative correction in measured quantities such
as ZI (the Stark shift), ZZ , ZX , and IX for a given J and �
(see Table I). However, experimentally, J and � are inferred
quantities and are not known a priori. Hence, we can only look
at consistency between the measured quantities. Typically this
set of consistent quantities includes ZI , ZZ , and ZX , while
IX is susceptible to classical crosstalk. Therefore, we want to

quantify the error in predicting one of the measured quantities
if we adopt the Kerr vs the energy basis theory. To lowest
order, ZX = AJ�, ZZ = BJ2, ZI = C�2, where A, B,C are
the prefactors in Table I, and we use coefficients A, B,C for
the energy basis and Ã, B̃, C̃ for the Kerr theory. Given the
measurement for ZZ and ZI , the predicted value of ZX in
terms of the measured quantities reads

ZX = A
√

ZZ × ZI√
BC

. (G1)

Therefore, the relative experimental error between the energy
basis and Kerr can be defined as

ZX − ˜ZX

ZX
= 1 − Ã

√
BC

A
√

B̃C̃
. (G2)

Substituting in the values from Table I for the parameters,
we plot the absolute relative error in Fig. 15. We find that
the error is less for higher frequency qubits as they are better
approximated by the Kerr theory.
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