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Neural-network quantum state tomography in a two-qubit experiment
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We study the performance of efficient quantum state tomography methods based on neural-network quantum
states using measured data from a two-photon experiment. Machine-learning-inspired variational methods
provide a promising route towards scalable state characterization for quantum simulators. While the power of
these methods has been demonstrated on synthetic data, applications to real experimental data remain scarce.
We benchmark and compare several such approaches by applying them to measured data from an experiment
producing two-qubit entangled states. We find that in the presence of experimental imperfections and noise,
confining the variational manifold to physical states, i.e., to positive semidefinite density matrices, greatly
improves the quality of the reconstructed states but renders the learning procedure more demanding. Including
additional, possibly unjustified, constraints, such as assuming pure states, facilitates learning, but also biases the
estimator.
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I. INTRODUCTION

Quantum simulation experiments allow the investigation
of quantum many-body problems beyond the regime acces-
sible with classical computers, with potential applications
in fundamental physics, quantum chemistry, and materials
science [1]. With quantum simulators reaching sizes of tens
and soon hundreds of qubits, the question arises how one
can validate such devices to confirm that they faithfully em-
ulate the targeted model. Using full state tomography for
characterizing the prepared quantum states is not practical
beyond the few-particle regime as the number of measure-
ments required scales exponentially with the system size.
Thus, efficient methods for state characterization are needed,
meaning that the required resources, namely the number of
experimental repetitions and the postprocessing time, should
scale economically, i.e., subexponentially, with the system’s
size. Several approaches have been proposed in recent years
to solve this problem, including permutationally invariant to-
mography [2,3], compressed sensing [4,5], and tomographic
schemes based on tensor network states [6–8]. The central
idea underlying these methods is to make a variational ansatz
for the prepared state and adjust the variational parameters
to best fit the measured data. To be efficient, the number
of variational parameters should scale polynomially in the
system size. Consequently, one searches the best fitting state
among a restricted set of quantum states. The justification for
imposing such constraints is usually given by a priori known
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physical properties, e.g., a small amount of entanglement in
the case of tensor network states.

A more flexible class of efficient tomography methods,
requiring less prior knowledge about the prepared state, uses
a data-driven approach inspired by rapid advances in ma-
chine learning. These techniques, known as neural-network
quantum state (NQS) tomography [9], use generative mod-
eling, a strategy for unsupervised learning, to reconstruct
unknown quantum states. NQS exploit the expressivity of
neural-network models for finding efficient representations
of quantum states. They were introduced by Carleo and
Troyer [10] and have subsequently been investigated in-
tensively (see Refs. [9,11,12] for recent reviews). When
employed for quantum state tomography, the model param-
eters of an NQS are adjusted, or learned, to best fit a
set of experimentally measured data. If one assumes that
the experimentally prepared state is pure, the original NQS
ansatz can be employed for this [13]. However, in any
experimentally realistic scenario noise and coupling to an
uncontrolled environment require the adoption of a mixed
state description. Thus, the density matrix of the state has to be
parameterized, which can be achieved either by the so-called
latent state purification ansatz [14] or by directly model-
ing the outcome probabilities of a tomographically complete
measurement [15]. These methods are facing a number of con-
ceptual and practical challenges, in particular when it comes
to applying them to real experimental data [16–18], where the
assumption of independent and identically distributed (i.i.d.)
experimental runs that underlies all quantum state tomography
methods may not be fulfilled. In particular, the measurement
itself is prone to errors and noise.

Here we compare different methods for NQS tomography
by applying them to real experimental data in the case of a
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two-qubit system. Specifically, we use a parametric down-
conversion source producing entangled photon pairs. In such
a small system the fitted NQS typically overparameterizes
the state, such that the finite representational power of the
employed variational ansatz does not limit the quality of the
reconstruction. Nevertheless, we find that the learning proce-
dure can be cumbersome. We benchmark the employed NQS
tomography methods with maximum likelihood estimation
(MLE) using the full density matrix and with direct measure-
ments of Bell correlations. We evaluate the performance of
these methods using measured as well as synthetic data, and
for different choices of tomographically complete measure-
ments. Our study will provide guidance when taking the next
steps towards applying NQS tomography methods in regimes
beyond the reach of traditional methods.

II. NQS TOMOGRAPHY METHODS

In this section we briefly review the quantum state tomog-
raphy methods that we employed. More details can be found
in the original publications [13–15].

The quantum state of a system is fully specified by its
density matrix ρ, which is a Hermitian positive semidefinite
matrix with unit trace. Without taking into account the trace
constraint, this matrix is specified by d2 real parameters,
where d is the dimension of the Hilbert space. To infer all
these parameters uniquely, a tomographically complete mea-
surement, i.e., a measurement with at least d2 outcomes needs
to be carried out. For a general measurement, each of the
outcomes corresponds to a positive operator Ma such that the
probability of outcome a is given by

P(a) = tr[ρMa]. (1)

The set of operators {Ma}a constitutes a so-called positive
operator valued measure (POVM) and fulfills

∑
a Ma = 1

[corresponding to the overall normalization
∑

a P(a) = 1].
The density matrix can be reconstructed uniquely from the
probabilities P(a) if the number of constraints imposed by the
measurements matches (or exceeds) the number of parameters
of the density matrix. This approach to reconstruct the state ρ

by inverting the linear system in Eq. (1) is typically referred
to as linear reconstruction [15]. In traditional quantum state
tomography, all outcome probabilities are measured and the
full density matrix is reconstructed. Linear reconstruction has
the drawback that for finite experimental statistics the recon-
structed ρ will in general not be positive semidefinite, i.e.,
it will not be a physical density matrix, which can lead to
unphysical results such as negative state probabilities or fi-
delities exceeding unity. To avoid this, one can parametrize the
density matrix in a way that ensures positivity and determine
the physical state that most closely resembles the measured
distribution by maximum likelihood estimation (MLE) [19].
The scaling issues of this method become obvious when we
consider, for example, the case of N spin 1/2 particles, where
the number of required measurements is d2 = 4N , thus scaling
exponentially in the system size. In efficient quantum state
tomography one tries to overcome this problem by finding a
variational ansatz for parametrizing either ρ or alternatively
the probability distribution P with a number of variational
parameters that scales polynomially in the system size. These

variational parameters are adapted to best match the observed
measurement outcomes. Specifically, NQS tomography uses
variational approaches that are inspired by generative models
used in machine learning.

Before describing the NQS variational approach in detail,
we need to specify what type of tomographically complete
measurements we use. We are concerned with qubit systems,
i.e., arrays of N two-level systems. In this case it is natural
to assume that each qubit is read out individually and thus
the POVM elements are product operators Ma = M (1)

a1
⊗ . . . ⊗

M (1)
aN

. If the single-qubit POVMs {M (1)
ai

}ai are tomographically
complete, then this is also the case for {Ma}a. We implemented
two different tomographically complete measurements cor-
responding to the following single-qubit POVMs. First, the
Pauli POVM, or Pauli-6 POVM, consists of the projectors

{
M (1)

a

}
a =

⋃
α=x,y,z

{
1

3
|↑α〉〈↑α|, 1

3
|↓α〉〈↓α|

}
, (2)

where |↑α〉 and |↓α〉 are the eigenstates of the Pauli operator
σα with eigenvalue ±1. By summarizing the −1 outcomes into
a single POVM element one obtains

M (1)
0 = 1

3 |↑x〉〈↑x| (3)

M (1)
1 = 1

3 |↑y〉〈↑y| (4)

M (1)
2 = 1

3 |↑z〉〈↑z| (5)

M (1)
3 = 1 − M0 − M1 − M2, (6)

which we call the Pauli-4 POVM. The second mea-
surement setting we consider is the so-called tetrahedral
POVM, which consists of the subnormalized projectors onto
states pointing into the corners of a regular tetrahedron
on the Bloch sphere, i.e., M (1)

a = (1 + sa · σ )/4, with s0 =
(0, 0, 1), s1 = (2

√
2/3, 0,−1/3), s2 = (−√

2/3,
√

2/3,−1/3), and
s3 = (−√

2/3,−√
2/3,−1/3) and σ the vector of Pauli opera-

tors. The Pauli-4 and tetrahedral POVM have the minimal
number of four possible outcomes for each qubit required
for being tomographically complete. In this case the overlap
matrix Taa′ = Tr[MaMa′] is invertible and density matrix can
be reconstructed as

ρ =
∑
{a}

P(a)Qa, (7)

where the operators Qa are given by Qa = ∑
{a′} T −1

aa′ Ma′ . As
the overlap matrix factorizes for product POVMs, the inver-
sion can be done on the single-spin level. Analogously to ρ,
any Hermitian operator, representing an observable, can be
decomposed into the complete set of operators {Ma}a, which
allows us to directly extract its expectation value from the
POVM probability distribution P(a).

The probability distribution P(a) resulting from a to-
mographically complete measurement, can be approximated
using generative modeling approaches from machine learn-
ing [15], which are known to be universal function approxima-
tors [20]. Once such a model has been trained to represent the
measured distribution P(a), expectation values of observables
can be calculated efficiently by drawing samples from the
model distribution. Here we focus on a restricted Boltzmann
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FIG. 1. Neural-network quantum state tomography scheme:
(a) Entangled photonic Bell pairs from an SPDC process are mea-
sured by coincidence count rates. Arbitrary single-qubit projectors
can be selected by adjusting the angles θA, ϕA, θB, ϕB in λ

4 -plates and
polarizers P. (b) This is repeated for all elements of the POVM {Ma}a

yielding a probability distribution P(a) describing the state. (c) This
forms the training data for different neural-network quantum state ar-
chitectures based on restricted Boltzmann machines (figure adapted
from Ref. [24]). (d) After training, the network-encoded states are
used to reconstruct the density matrix or to predict observables.

machine (RBM) ansatz, which is a rather veteran model in
machine learning but has proven large representational power
making it suitable for encoding large classes of quantum
many-body states [21]. The RBM ansatz function is

Q(a;W ) = 1

Z (W )

∑
{h}

exp[−E (a, h;W )], (8)

which is the marginal over all hidden states h =
(h1, . . . , hM ), h j ∈ {0, 1}, of the joint Boltzmann dis-
tribution exp[−E (a, h;W )]/Z (W ). The network energy
E (a, h;W ) = −∑

i, j aiWi, jh j − ∑
i aidi − ∑

j h jb j depends
on the weights Wi, j and biases b j and di [see Fig. 1(c)],
which are summarized as the set of variational parameters W .
Z (W ) = ∑

{a,h} exp[−E (a, h;W )] ensures normalization.
Here we consider specifically the tetrahedral and Pauli-4
POVMs, which have the minimal amount of four possible
measurement outcomes, so the multinomial visible units ai

can take four different values. We use a one-hot encoding of
their states [15]. The model distribution Q(a;W ) is fitted to
the measured distribution of outcomes, which follows P(a),
by contrastive divergence learning [22]. In this approach,
the Kullback-Leibler (KL) divergence from the model to the

target (data) distribution,

DKL(P‖Q) =
∑
{a}

P(a)ln

[
P(a)

Q(a;W )

]
, (9)

is considered. This divergence can be interpreted as a measure
for the distance between the two distributions and hence the
model distribution can be optimized to approximate the target
distribution by minimizing DKL(P‖Q). The optimization is
done by updating the model parameters via gradient descent,
following the negative gradient of the KL divergence.

For training we adopted the numerical routines provided
along with Ref. [15]. We refer to this method of direct fitting
of the POVM probability distribution as the POVM ansatz in
the following.

Positivity of the density matrix can be enforced by using
the latent space purification ansatz [14]. This ansatz exploits
the fact that any density matrix can be reexpressed as the
partial trace over a pure system with twice as many degrees
of freedom. Mathematically

ρσσ′ =
∑

α

�∗
σα�σ′α, (10)

where

|�〉 =
∑
σα

�σα|σ〉 ⊗ |α〉 (11)

is the pure state of system qubits σ = (σ1 . . . σN ) and ancillary
qubits α = (α1 . . . αN ). The coefficients of this wave func-
tion in the given reference basis (|σ〉 ⊗ |α〉 ∈ {|↑z〉, |↓z〉}⊗2N )
can again be parameterized by an RBM-inspired variational
ansatz. But note that the wave function coefficients are
complex, which requires the RBM ansatz to have complex
parameters. Alternatively, one can use one RBM for the en-
coding of the phase and one for encoding the modulus of
the wave function coefficients. We used the latter approach,
following Ref. [13]. Training of this ansatz is based on mea-
surements in different bases. In our example of the Pauli
POVM, we measured the state in all nine possible choices
of measuring each qubit in one of the three Pauli bases. The
training algorithm minimizes the sum of the KL divergences
between the measured probabilities and the corresponding
model prediction over all measured bases. We will refer to
this NQS tomography method as the purification ansatz in the
following.

If system and ancillary system are in a product state, the
density matrix defined as the trace over the ancillary system
will be pure. Thus, for restricting the variational manifold
to pure states, one can simply remove all interactions be-
tween system and ancillary qubits in the variational ansatz.
For learning the parameters of this pure-state ansatz, again,
measurements in different bases are needed [13], for which
we again use the Pauli POVM data.

Further assuming that the wave function |ψ〉 = ∑
σ ψσ |σ〉

of the state has real non-negative coefficients ψσ , one can
simply parametrize these coefficients by a real RBM [16]. In
this case a measurement in the computational basis {|σ〉}σ =
{|↑z〉, |↓z〉}⊗N is sufficient for training. We trained the pu-
rification ansatz and the pure state and positive-real wave
function ansatz using the open source library QuCumber [23].
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III. TWO-PHOTON EXPERIMENT

Our experimental test bed is a commercial photon
source [25] that produces polarization-entangled photon pairs
through type-1 SPDC in a nonlinear BBO crystal. A pump
laser of 404 nm impinges with a linear polarization in a 45◦
angle to the optical axes of the crystal, creating superpo-
sitions close to the maximally entangled Bell state |ψ〉 =
(|↑z↑z〉 + |↓z↓z〉)/

√
2, where |↑z〉 and |↓z〉 are represented by

vertical and horizontal polarization states of the photons. Pre-
and postcompensation crystals ensure the spatial and tempo-
ral indistinguishability of the nonlinear processes producing
|↑z↑z〉 and |↓z↓z〉.

The single-photon polarization states are subsequently an-
alyzed by a series of a quarter-wave plate (QWP), a polarizer
and a single-photon detector, respectively, as illustrated in
Fig. 1(a). By setting the angles of the QWP and the polarizer,
arbitrary outcomes ai can be selected for each photon. The ex-
pectation values of the projection operators Ma = Ma1 ⊗ Ma2

are obtained by measuring the rate of coincidental counts at
both detectors over a fixed period of time. This is repeated for
each of the 36 (16) elements in {Ma}a of the Pauli-6 (tetrahe-
dral) POVM. Assuming a constant production rate of photon
pairs, the numbers of coincidence counts for each polarizer
setting normalized by the total number of coincidence counts
provides the required probability distribution of outcomes
[Fig. 1(b)] from which the density matrix [Fig. 1(d)] can be
reconstructed. Measuring each bin of the distribution sepa-
rately in this fashion is obviously not scalable. In an equivalent
scalable scenario, one would beam split each photon into
different paths and select one of the single-photon POVM
elements in each path. In this setup, detecting coincidence
events and recording in which pair of the detectors the photons
were observed, is a way of sampling from the full distribution
of POVM outcomes in a single measurement setting.

We benchmark the reconstructed states on their predictions
of the famous CHSH Bell parameter S [26]. This observable
is measured in a Bell test to demonstrate correlations which
cannot be reproduced by classical local hidden variable the-
ories [27]. In such an experiment two particles (photons) are
distributed to two parties who independently perform one of
two possible measurements on their respective particle. The
two parties evaluate the correlation coefficients E = (N↑↑ +
N↓↓ − N↑↓ − N↓↑)/Ntot for different measurement settings pa-
rameterized by an angle θ . Genuine quantum correlations are
certified if the Bell parameter

S(θ ) = E (0, θ ) + E (0,−θ ) + E (2θ, θ ) − E (2θ,−θ ) (12)

exceeds the classical bound of |S| � 2. We compare the re-
sults obtained for this observable when predicting it from
the states obtained with the different tomography schemes to
direct measurements of S as a function of θ .

IV. NQS TOMOGRAPHY BENCHMARK

Our experimental results are summarized in Fig. 2.
Figures 2(a) and 2(b) show the results of the Pauli POVM
measurements and tetrahedral POVM measurements, respec-
tively. In both panels of Fig. 2, the results of the direct
measurement of the Bell parameter for various different val-

FIG. 2. Comparison of the predicted Bell parameter from the
different NQS tomography schemes to direct measurements and
maximum likelihood estimation. (a) Training with measurements in
the Pauli product bases applicable to all considered NQS tomography
schemes (b) Training with measurements of the tetrahedral POVM
applicable to the POVM ansatz only. Gray regions indicate results
forbidden by local realism, red regions denote results forbidden for
physical quantum states. Error regions for linear reconstruction and
MLE are the standard deviations after repeating the evaluation with
data resampled from the measured distribution.

ues of θ are shown as blue points. We counted photons
for tcount = 3 s for each measurements setting resulting in
25000 counts on average per point. For the tomographic
measurements, we independently measured the probability
distributions over the outcomes of the Pauli-6 (and thus also
Pauli-4) POVM and the tetrahedral POVM using a total of
60000 and 27000 coincidence counts, respectively. As a first
check we used these tomographically complete measurements
to perform a classical MLE of the density matrix. From the
resulting density matrix the Bell parameter can again be cal-
culated. The result, shown by the blue line, agrees well with
the Bell measurements (except for small deviations close to
the extremal points, see inset of Fig. 2(a), which may be due to
known shortcomings of MLE [28,29]). This confirms that the
experimental conditions were largely stable between different
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data sets. We also show the result of a direct linear reconstruc-
tion of ρ from the measured normalized count rates according
to Eq. (7), including the statistical error resulting from the
finite number of measurements (purple shadings in Fig. 2).
The Bell parameter obtained for the linearly reconstructed ρ

deviates from the directly measured data and even exceeds the
value of S = 2

√
2 maximally allowed quantum mechanically,

which indicates that the reconstruction yields an unphysi-
cal density matrix. Indeed one obtains negative eigenvalues
for the reconstructed ρ ({0.985, 0.078,−0.007,−0.055} for
the Pauli-4 POVM and {0.972, 0.11,−0.022,−0.056} for the
tetrahedral POVM).

Turning to NQS tomography, starting with the POVM
ansatz, we trained a multinomial RBM with three hidden
neurons to approximate both the measured Pauli-4 POVM
distribution [Fig. 2(a)] and the tetrahedral POVM distribution
[Fig. 2(b)]. In both cases the distribution was learned well by
the network. The KL divergence decreased to ∼10−4. This
is expected as the number of parameters in the network ex-
ceeds the number of bins in the probability distribution, thus
overparameterizing the state. The predicted Bell parameter
(solid green lines in Fig. 2) agrees with the result of the linear
reconstruction and clearly deviates from the directly measured
values. This shows that the linear reconstruction method on
which the POVM ansatz [15] is based can give unreliable pre-
dictions for observables under imperfect measurements and
noise, due to the absence of the positivity constraint on the
density matrix.

In the case of the Pauli measurement we can also use
the obtained data for training the purification ansatz, which
does include the positivity constraint. Here we used a net-
work architecture with two neurons for the latent and three
neurons in the hidden layer [14]. This yields a prediction of
comparable quality to the MLE, see dashed yellow line in
Fig. 2(a). This confirms that the constraint of positivity can
greatly improve the capabilities of tomography methods for
estimating physical observables.

We now restrict the ansatz to encode only pure states by
omitting couplings to the ancillary spins (pure-state ansatz).
Although the MLE density matrix has a purity of only 0.91 for
the Pauli and 0.87 for the tetrahedral POVM measurement this
gives a reasonable estimate of the Bell parameter, as indicated
by the dotted brown line in Fig. 2(a). However, we observe a
shift in θ of the predicted curve with respect to the directly
measured Bell correlations.

If we further simplify the ansatz by assuming real non-
negative wave function coefficients, the agreement between
prediction (dot-dashed red curve) and data is surprisingly
good. This has two reasons: First, the prepared state has small
complex phases of the coherences between the components
of the Bell state. Second, this reconstruction technique only
uses the information of the Pauli z-basis measurement, which
happens to yield better predictions for the Bell parameter than
methods using the full data set. Thus, the good agreement with
the directly measured Bell parameter is rather a coincidence
and may not hold for other observables as we further discuss
below. We also observed that the fidelity to a perfect Bell state
|ψ〉 = (|↑z↑z〉 + |↓z↓z〉)/

√
2 is highest for the state recon-

structed assuming a pure state with positive-real coefficients.
Given that the MLE reconstruction can be regarded as the
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FIG. 3. Bell parameter estimations when applying the NQS to-
mography schemes to synthetic data in the Pauli bases sampled from
the maximum likelihood density matrix from Fig. 2(a).

most reliable estimation of the density matrix, we conclude
that the pure state assumption leads to a crude overestimation
of the Bell-state fidelity. This shows that making unjustified
assumptions about the state can lead to false conclusions about
the quality of the prepared state.

We further test our hypothesis that the failure of the POVM
ansatz, i.e., the linear reconstruction method, is mainly caused
by imperfect measurements. For this, we generated a synthetic
data set by exact sampling from the outcome distribution
predicted by the reconstructed MLE density matrix. Figure 3
shows the results of this procedure for the Pauli measurement.
When learning on this synthetic data set all methods perform
well confirming that the failure of the linear reconstruction is
indeed due to noisy measurements, i.e., imprecise settings of
the chosen detection angles. The shift in θ , observed for the
pure-state ansatz with complex wave function coefficients per-
sists. This is understood by observing that during training, the
pure-state ansatz faces an impossible task: The MLE density
matrix exhibits considerable mixing, so the pure state will not
be able to adapt to the sampled training data distribution ar-
bitrarily well. The network instead tries to find a compromise
that distributes the inevitable error over all possible bases. The
Bell parameter is only sensitive to bases involving the z or x
direction, which for the complex wave function training show
a considerable error in an attempt to match the data in other
bases that are irrelevant to the Bell parameter. In contrast, in
the case of the positive-real state the training is only based on
z-basis data, which yields a much better agreement with the
independently measured Bell parameter.

Having benchmarked the quality of the different NQS
tomography methods by their ability to predict a specific
observable, namely the Bell parameter S(θ ), we now an-
alyze their ability to approximate the measured data as a
more generic performance measure. We study how well they
approximate the data in terms of the loss function that is
minimized during the training of the purification ansatz (and
of the pure-state and positive-real wave function ansatz),
i.e., the average KL divergence between measured and
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FIG. 4. Average KL divergence in the Pauli bases between mea-
surements and reconstructed states for all employed tomography
schemes. The complexity of the methods increases left to right,
expressing the scaling of computational resources consumed (see text
for details).

predicted outcome distributions of the Pauli-6 measurement,
see Fig. 4.

The quality of the pure-state and positive-real wave func-
tion ansatz is clearly worse in this measure than estimations of
the general density matrix. This is expected as the pure-state
assumption is not justified. In the case of the positive-real
wave function approach only part of the data, namely the
measurements in the z basis are used for training resulting in
a poor KL divergence to the full data set. This strengthens our
conclusion that the good results of the positive-real wave func-
tion approach in reproducing the measured Bell parameter are
restricted to this specific observable. The purification ansatz
yields results that are not quite as good as the linear recon-
struction Pauli-4 RBM and the MLE, cf. Fig 4. This shows that
the purification network does not achieve optimal training of
its cost function. This could either stem from difficulties of the
numerical optimization or from insufficient representational
power of the network. The POVM RBM learns the measured
Pauli-4 distribution to high accuracy as the learning is not
hampered by the positivity constraint. However, it does not
resolve some of the details of the full Pauli-6 distribution
as some Pauli-6 outcomes are summarized into one Pauli-4
outcome [Eq. (6)] causing a residual KL divergence to the
full data set. We emphasize that the good performance of the
POVM ansatz in this measure does not mean that it performs
well in predicting physical observables, as for this task the
positivity constraint on the density matrix can be crucial as
discussed above.

We sorted the different approaches according to their
complexity, referring to the computational resources required
for the optimization, or training procedure. The positive-real
wave function and POVM approaches involve only models
with real-valued parameters and require no unitary rotations
into different bases, which makes optimization easier. The
pure-state and the purification ansatz were more challeng-
ing to train due to the unconventional network architecture
required to encode the complex wave function coefficients.
This is in contrast to the POVM ansatz where the POVM
probability distribution can be learned using a standard RBM
architecture. This is the price one has to pay for including
the positivity constraint. The maximum likelihood estimate is
computationally easier to obtain in this regime of few qubits

but scales exponentially for larger systems, which is why we
classified it as the most complex method.

V. CONCLUSIONS

In summary, we have found that including the positivity of
the density matrix as a constraint of the variational ansatz in
efficient quantum state tomography methods greatly improves
the quality of the reconstructed quantum state in terms of
predicting physical observables. This may be expected as the
constraint results in a smaller set of variational states among
which the optimization is carried out. But interestingly, the
constraint is not as important for training on synthetically
generated data. From this we conclude that when applying
efficient NQS tomography methods to experimental data, im-
perfections in the measurements can lead to subtle issues,
which require a careful choice of the state parametrization.
On the other hand, the inclusion of the positivity constraint
renders the learning procedure more cumbersome as the pu-
rification ansatz imposes a complicated, rather nonstandard
network architecture. Making additional assumptions about
the state, which are not a priori fulfilled, can strongly bias
observables predicted from the reconstructed state.

Questions to be addressed in the future concern the scaling
properties of neural network state tomography approaches.
It has been shown that neural-network quantum states can
approximate large classes of states efficiently [10,21,30–34]
with favorable generalization properties [35,36]. Our work
shows that for real experimental data, there may be a tradeoff
between the complexity of the ansatz and the quality of the
learned state representations. This is in particular true for the
inclusion of the constraint of the positivity of the density
matrix, which, in general, leads to an exponential hardness
of the optimization problem [14] but also significantly im-
proves the quality of the tomographic reconstruction. It will
be crucial to understand whether these issues persist when
going to larger system sizes, where the measured distributions
are necessarily undersampled and cannot be approximated
precisely. In a regime where the generative model only needs
to capture the coarse features of the quantum state, intuition
from machine learning suggests that it may actually be ex-
pected to perform better. Furthermore, it has recently been
shown that, in a regime where the Hilbert space dimension
is much larger than the number of available measurements,
adding the positivity constraint can deteriorate the quality
of the reconstructed state [37,38]. Whether such effects also
appear in tomography procedures based on artificial neural
networks used in this work will be investigated when scal-
ing up system sizes. Regarding representational power and
learning performance, the choice of the RBM architecture
is certainly not without alternative and we will employ and
benchmark other generative models such as autoregressive
models, autoencoders, or generative adversarial networks in
the future.
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[19] M. Paris and J. Reháĉek, Quantum State Estimation, 1st ed.
(Springer, Berlin, 2004).

[20] N. Le Roux and Y. Bengio, Neural Comput. 20, 1631 (2008).
[21] R. G. Melko, G. Carleo, J. Carrasquilla, and J. I. Cirac,

Nat. Phys. 15, 887 (2019).
[22] G. E. Hinton, in Neural Networks: Tricks of the Trade: Second

Edition, edited by G. Montavon, G. B. Orr, and K.-R. Müller
(Springer, Berlin, 2012), pp. 599–619.

[23] M. J. S. Beach, I. D. Vlugt, A. Golubeva, P. Huembeli, B.
Kulchytskyy, X. Luo, R. G. Melko, E. Merali, and G. Torlai,
SciPost Phys. 7, 9 (2019).

[24] S. Czischek, Neural-Network Simulation of Strongly Correlated
Quantum Systems (Springer Nature, Berlin, 2020).

[25] qutools GmbH, quED Entanglement Demonstrator Manual,
1st ed., München, 2017, https://www.qutools.com/.

[26] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt,
Phys. Rev. Lett. 23, 880 (1969).

[27] J. S. Bell, Speakable and Unspeakable in Quantum Mechanics:
Collected Papers on Quantum Philosophy, 2nd ed. (Cambridge
University Press, Cambridge, 2004).

[28] C. Schwemmer, L. Knips, D. Richart, H. Weinfurter, T.
Moroder, M. Kleinmann, and O. Gühne, Phys. Rev. Lett. 114,
080403 (2015).

[29] C. Ferrie and R. Blume-Kohout, arXiv:1808.01072.
[30] D.-L. Deng, X. Li, and S. Das Sarma, Phys. Rev. X 7, 021021

(2017).
[31] X. Gao and L.-M. Duan, Nat. Commun. 8, 662 (2017).
[32] Z. Cai and J. Liu, Phys. Rev. B 97, 035116 (2018).
[33] G. Carleo, Y. Nomura, and M. Imada, Nat. Commun. 9, 5322

(2018).
[34] Y. Levine, O. Sharir, N. Cohen, and A. Shashua, Phys. Rev. Lett.

122, 065301 (2019).
[35] D. Sehayek, A. Golubeva, M. S. Albergo, B. Kulchytskyy, G.

Torlai, and R. G. Melko, Phys. Rev. B 100, 195125 (2019).
[36] T. Westerhout, N. Astrakhantsev, K. S. Tikhonov, M. I.

Katsnelson, and A. A. Bagrov, Nat. Commun. 11, 1593 (2020).
[37] H.-Y. Huang, R. Kueng, and J. Preskill, Nat. Phys. 16, 1050

(2020).
[38] G. I. Struchalin, Y. A. Zagorovskii, E. V. Kovlakov, S. S.

Straupe, and S. P. Kulik, arXiv:2008.05234.

042604-7

https://doi.org/10.1103/RevModPhys.86.153
https://doi.org/10.1103/PhysRevLett.105.250403
https://doi.org/10.1088/1367-2630/14/10/105001
https://doi.org/10.1103/PhysRevLett.105.150401
https://doi.org/10.1038/ncomms15305
https://doi.org/10.1038/ncomms1147
https://doi.org/10.1103/PhysRevLett.111.020401
https://doi.org/10.1038/nphys4244
https://doi.org/10.1146/annurev-conmatphys-031119-050651
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1080/23746149.2020.1797528
https://doi.org/10.1038/s41567-018-0048-5
https://doi.org/10.1103/PhysRevLett.120.240503
https://doi.org/10.1038/s42256-019-0028-1
https://doi.org/10.1103/PhysRevLett.123.230504
https://doi.org/10.1038/s41534-020-0248-6
http://arxiv.org/abs/arXiv:2006.12469
https://doi.org/10.1162/neco.2008.04-07-510
https://doi.org/10.1038/s41567-019-0545-1
https://doi.org/10.21468/SciPostPhys.7.1.009
https://www.qutools.com/
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1103/PhysRevLett.114.080403
http://arxiv.org/abs/arXiv:1808.01072
https://doi.org/10.1103/PhysRevX.7.021021
https://doi.org/10.1038/s41467-017-00705-2
https://doi.org/10.1103/PhysRevB.97.035116
https://doi.org/10.1038/s41467-018-07520-3
https://doi.org/10.1103/PhysRevLett.122.065301
https://doi.org/10.1103/PhysRevB.100.195125
https://doi.org/10.1038/s41467-020-15402-w
https://doi.org/10.1038/s41567-020-0932-7
http://arxiv.org/abs/arXiv:2008.05234

