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Two-photon bunching inside a quantum memory cell
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We demonstrate theoretically the effect of interference, similar to the Hong-Ou-Mandel effect, for two single-
photon pulses by writing them sequentially inside a quantum memory cell in a tripod configuration.
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I. INTRODUCTION

Synchronization of quantum single-photon pulses is a com-
plex issue motivated by the use of single-photon quantum
fields as a resource in problems of quantum communica-
tion and quantum computing [1–4]. Progress in the creation
of pure single-photon quantum states achieved in recent
years [5–13] has been accompanied by new challenges:
Single-photon fields should be fully time controlled for their
successful application in the protocols of quantum repeaters
[14] or quantum computing networks [1]. The randomness of
the photon creation process is a fundamental obstacle to the
scalability of quantum networks.

Quantum memory cells became one of the natural pro-
posals for synchronizing the processes of single-photon
generation [1,15]. As devices enabling one to write, store,
and read out a quantum signal on demand, such cells are
the desired control element that allows one to overcome the
random nature of the photon generation process.

One of the first successful experiments on the synchro-
nization of single-photon pulses was performed by the group
of Furusawa [16]. However, these experiments were based
on resonant photon delay lines and not on-demand quantum
memory cells. Note that on-demand memory cells are de-
vices operating on the principle of transferring the quantum
state of the field to the long-lived collective coherence of the
medium and then, after the storage, back to the field. The
resonant delay line works differently; it assumes nonlinear
conversion and creation of a photon pair inside each of the
devices, so one photon from the pair serves as a herald of the
other [17].

Experimental research on two-photon interference of the
weak coherent laser pulses stored in two spatially separated
solid-state memory cells in the atomic frequency comb (AFC)
scheme was carried out in Ref. [18]. Similar studies, but
using cells with rubidium vapor in the electromagnetically
induced transparency (EIT) mode at room temperature, were
performed in Ref. [19].

It should be noted that memory cells turned out to be very
sensitive even to small differences in the properties of ensem-
bles and conditions for their interaction with quantum fields
[20]. So the creation of the two identical cells for synchro-

nizing single-photon fields required an adroit experimental
technique.

In the works cited above, the photon bunching effect
and the Hong-Ou-Mandel state [21] were considered only
as verification methods, which served as an indicator of
good synchronization of the wave trains. At the same time,
two-photon states obtained as a result of Hong-Ou-Mandel
interference are of independent interest. They can be con-
sidered as NOON states [22], and in this way, a sufficiently
reliable scheme for obtaining such states can be useful in
quantum metrology or in sensitivity enhancement problems,
where NOON states are usually used.

In our article, we propose a decision for a partial case of
the synchronization of two single-photon fields—their bunch-
ing, requiring one memory cell only in a tripod configuration
[23–27], which can significantly simplify the technical side of
the experiment.

We consider the scheme when the synchronization (and de-
structive interference) of photons occurs not after the memory
cells, but directly inside the cell. In fact, since the Hamiltonian
of the interaction of light and matter in the memory cell is
similar to the Hamiltonian of the beam splitter [24,25], one
can expect to see an analog of the beam-splitter effect for
two single-photon fields that are sequentially sent to the cell
inputs.

Here, we discuss the conditions for observing the Hong-
Ou-Mandel effect when two single-photon pulses are written
sequentially in a quantum memory cell in a tripod configu-
ration. We indicate the conditions for controlling the process
of writing and readout by the classical fields that provide the
interaction of a beam-splitter type and observing the effect of
photon bunching at the output of a memory cell.

II. HONG-OU-MANDEL EFFECT AT THE OUTPUT
OF THE BROADBAND TRIPOD MEMORY

A. Mixing of single-photon pulses inside
a two-channel memory cell

As is known, the Hong-Ou-Mandel (HOM) effect occurs
when two identical statistically independent single-photon
pulses are mixed on a symmetric beam splitter, so that at the
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output of the beam splitter the photon bunching effect arises
and the output state takes the form

|out〉 = 1√
2

(|2〉1|0〉2 − |0〉1|2〉2), (1)

where the indices 1, 2 number the beam-splitter channels.
That means that at the output both photons are localized in
the same pulse, although at the input both pulses were single-
photon pulses.

To observe this effect, it is crucial to achieve a coordinated
(simultaneous) arrival of both initial pulses to the beam split-
ter. Thus, it is an excellent test for the strict synchronization
of two single-photon pulses. In practice, it is impossible to
synchronize two independent pulses without special efforts,
since the initial pulse creation is usually of a statistical nature.
Therefore, we can only talk about the probability of a photon
arriving at a beam splitter at a given time.

As we know, quantum memory cells and beam splitters
quite often “work” similarly [25]. Here, we consider the case
where a beam splitter is replaced by a tripod (two-channel)
memory cell [24]. The thought experiment in this case is as
follows. We assume that the input signal pulses â1(t, z) and
â2(t, z) are created in two statistically independent processes
and each goes into the memory cell via its own channel (tripod
configuration of the medium). Let the first single-photon pulse
appear at the input of the memory cell. We will write it in one
of the two free channels. For this purpose, a strong classical
pulse of the driving field goes onto the cell simultaneously
with this signal. The simultaneous interaction of two fields
with the medium leads to scattering of the field from the
signal to the driving, with the simultaneous generation of
coherence—a spin wave between the levels |1〉 and |3〉. Then,
we wait for the arrival of the second single-photon pulse and
write it in the other free channel. This process is very similar
to the one described above: The quantum signal field â2(t, z)
interacts resonantly with the medium at the same transition
|3〉-|4〉 in the presence of a classical driving with the Rabi
frequency �2. This process forms coherence between levels
|3〉 and |2〉. Both coherences formed in this way are long
lived and bear the imprint of the statistical characteristics of
the quantum fields that participated in their generation. This
allows us to talk about the process as a quantum memory. As
a result, both spin waves of the tripod memory are excited. It
can be verified that the generated spin waves are statistically
independent. Usually, a readout procedure is used to receive
back the quantum fields, when driving fields go at the input
of a memory cell at the same transitions as they were dur-
ing the writing. However, in addition to a direct readout of
signals, it is possible to implement their transformation using
the superposition of the driving fields. Below we will show
that during the readout from both channels of the quantum
memory, photon bunching will occur, so that both photons will
be read together into one of the channels, and the radiation
wave function at the output of the cell takes the form of
Eq. (1) (so it appears to be in the HOM state). This means
that inside the cell the quantum states of the fields interfere
and we observe the Hong-Ou-Mandel effect.

Two classical rectangular-shaped driving pulses with Rabi
frequencies �1 and �2 participate in the writing and readout
processes, acting resonantly on the transitions |1〉-|4〉 and

FIG. 1. Tripod configuration of the atomic levels and transitions:
�1, �2 are the Rabi frequencies of the driving fields, g is the coupling
constant, â is the quantized amplitude of the signal field, γ is the
relaxation rate from the excited state |4〉, and TW , TR are the writing
and readout times. Transitions between the three lower levels are
dipole forbidden. Initially only the third level is populated.

|2〉-|4〉, respectively. Two quantum signal pulses are sequen-
tially written in the memory cell accompanied by the driving
pulses. Both quantum pulses interact with the ensemble res-
onantly at the transition |3〉-|4〉. Durations of the written and
read pulses are equal to the writing time and reading time,
correspondingly.

In this work, we use the high-speed quantum memory
protocol [28]. That means that the writing time TW and reading
time TR are much less than the lifetime of atoms in the excited
state |4〉: TW , TR � γ −1, where γ is the atomic relaxation rate
of the atoms from the upper state |4〉 to any of the lower ones
(Fig. 1). Here and throughout we assume TR = TW .

It can seem that with such a ratio of parameters, most of
the broadband pulse turns out to be out of resonance with
the atomic transition and does not interact with the medium.
However, this is not the case, since collective processes are
extremely important for the quantum memory, and the spectral
band of interaction is determined not by the γ parameter, but
by the value of Nγ , where N is a linear concentration with
dimension cm−1, that is, a number of atoms per unit length.

Note that the effect under discussion is not limited only by
this memory protocol which we have chosen as an example to
be able to perform some specific calculation and demonstrate
the effect. This protocol allows us to demonstrate the desired
effect, but it is not the only one that allows us to do it. We can
also use other ones if it turns out that in a particular case they
are easier to implement in a real experiment.

Writing to the memory cell and the readout from it are
carried out by choosing the driving fields. We have two driving
fields. One, with Rabi frequency �1, acts in resonance with
the atomic transition |4〉-|1〉. Another with frequency �2 acts
on the transition |4〉-|2〉. With the joint action of the driving
and signal, the signal fields (or some parts of them) are written
into the memory cell. In our consideration, the spin wave with
the Heisenberg amplitude b̂1(z) is excited first in the mode
�1 = �, �2 = 0. Then, in the mode �2 = �, �1 = 0, a spin
wave with an amplitude b̂2(z) is excited.

We will assume that readout is also performed in two steps.
At the first stage, which is determined by the pair �1 = �2 =
�, there is a partial readout from both spin channels. As a
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result, at the output of the memory cell, at the point z = L, a
field with the amplitude â+(t, z = L) will appear, which we
denote below as â+(t ). According to Ref. [25],

â+(t ) = 1√
2

∫ TW

0
dt ′ G(TW − t, TW − t ′)

× [â1(t ′) + â2(t ′)] + v̂+(t ), â1,2(t ) = â1,2(t, z = 0).

(2)

Here, G(t, t ′) is the Green’s function determining the evolu-
tion of field operators in the time frame from the time t to the
time t ′, where t ∈ [0, TW ] (time frame of the writing process)
and t ′ ∈ [0, TR] (time frame of the readout).

At the end of the first stage of the readout, we proceed to
the second stage determined by the pair of driving fields �1 =
−�2 = �:

â−(t ) = 1√
2

∫ TW

0
dt ′ G(TW − t, TW − t ′)

×[â1(t ′) − â2(t ′)] + v̂−(t ), â−(t ) = â−(t, z = L).

(3)

From here on, the amplitude is expressed in terms of the
dimensionless coordinate z and dimensionless time t , which
are introduced according to the relations

�t → t, �TW → TW , 2g2Nz/� → z, 2g2NL/� →L,

where g is the coupling constant in the interaction of quantum
fields with the medium and N is the linear concentration of
atoms with dimension cm−1.

As a result of two readout steps, two pulses appear at the
output of the memory cell at the point z = L. As we will
see later, these pulses are in the Hong-Ou-Mandel state, in
contrast to the input fields at the point z = 0, where each of
the two fields was in a single-photon state.

The amplitudes v̂± are related to the vacuum components
of the field. They are introduced in order to ensure preserva-
tion of the commutation relations for the field amplitudes, and
their commutation relations can be written as

[
v̂±(t ), v̂†

±(t ′)
] = δ(t − t ′) −

∫ TW

0
dt1 G(t, t1)G(t ′, t1). (4)

In the case of the ideal quantum memory, where the kernel
G(t, t ′) is represented as δ(t − t ′), we can get

â±(t ) = [â1(t ) ± â2(t )]/
√

2 (5)

instead of Eqs. (2) and (3). Note that the role of vac-
uum components in this case turns out to be zero, since
[v̂±(t ), v̂†

±(t ′)] = 0 according to Eq. (4).

B. Hong-Ou-Mandel effect via the two-channel memory

Equalities (2) and (3) depend on the kernel G(t, t ′), which
directly connects the signal amplitudes at the output of the
memory cell â±(t ) with the amplitudes at the input â1,2(t ).
According to Refs. [24,29], for broadband resonant memory
G(t, t ′) = G(t ′, t ). Therefore we can write the Schmidt de-

composition as

G(t, t ′) =
∞∑

i=1

√
λi ψ

∗
i (t )ψi(t

′). (6)

Here, λi is the set of eigenvalues of the matrix G(t, t ′) and
ψi(t ) is the complete orthonormal set of the eigenfunctions.
The amplitudes can be decomposed using this set,

â1,2(t ) =
∞∑

i=1

ψi(t )ê1,2;i, â±(t ) =
∞∑

i=1

ψi(t )ê±,i. (7)

Here, êi are discrete canonical operators for which the follow-
ing hold,

êi =
∫ TW

0
dt ψ∗

i (t )â(t ), [êi, ê†
j ] = δi j . (8)

The conditions of orthonormality and completeness for eigen-
functions are as follows,

∫ TW

0
dt ψ�

i (t )ψ j (t ) = δi j,

∞∑
i=1

ψ�
i (t )ψi(t

′) = δ(t − t ′).

(9)
Taking into account the Schmidt decomposition (6) and (7),
we obtain the following equalities,

ê±,i =
√

λi
1√
2

(ê1,i ± ê2,i ) +
√

1 − λi êvac,i, (10)

instead of Eqs. (2) and (3).
For the ideal memory considered above, all the eigenvalues

λi are equal to one, so Eq. (10) takes the form

ê±,i = (ê1,i ± ê2,i )/
√

2. (11)

Now we can write the wave functions of the field at the input
and at the output of the memory cell,

|in〉 = ∏
i |in〉i, |in〉i = ê†

1,i ê
†
2,i|0〉i,

|out〉 = ∏
i |out〉i, |out〉i = ê†

+,iê
†
−,i|0〉i. (12)

Hence we obtain that the two pulses of light at the output of
the quantum memory turn out to be in the Hong-Ou-Mandel
state:

|out〉i = (|2〉1i|0〉2i − |0〉1i|2〉2i )/
√

2. (13)

The result is the analog of the Hong-Ou-Mandel effect. This
predicts that when two single-photon pulses are mixed in the
memory cell, the output photons definitely will be in one of
the two read pulses.

In Ref. [25], we discussed a memory process, where only
one eigenvalue λ1 was noticeably different from zero: λ1 ≈
1 and λi>1 � 1. Then, according to Eq. (10), only one field
component with i = 1 will be in the Hong-Ou-Mandel state.

III. CONCLUSION

We demonstrated the two-photon interference inside a
quantum memory cell when two single-photon pulses are
written sequentially to it. Due to the availability of two driving
fields with the Rabi frequencies �1 and �2 (Fig. 1), the
operating principle of the tripod scheme is similar to the
two lambda schemes combined into one cell. In this case,
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additional possibilities arise that allow one to mix the written
fields as it could be done via a beam splitter. Vapors of alkali
metals, such as rubidium or cesium, are usually considered as
possible material systems to implement a tripod configuration
interaction. However, it should be noted that rare-earth-doped
crystals or nitrogen-vacancy centers in diamond are more
time-appropriate systems for implementing the resonant high-
speed memory protocol.

The construction in the language of the Schmidt mode
given in the previous section allows us to state that in a multi-
mode quantum memory the photon bunching effect, similar to
the Hong-Ou-Mandel effect, appears only for the eigenmodes
of the cell corresponding to eigenvalues close to unity. It is
these modes that are converted during the storage such as
mixing on a beam splitter.

It is interesting to note that photon interference is observed
despite the fact that the readouts of the pulses are carried out

at different points in time. That is, the temporal separation
of pulses using a memory cell is similar to the spatial one
using a beam splitter. In this sense, the resulting NOON state
is similar to a temporally separated and spatially bunched
(TSSB) state [30]. In this work, by mixing two single-photon
pulses, we got the NOON state with the photon number equal
to two. However, by scaling this procedure, one can increase
the value of the occupation number using several memory
cells.
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