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We study the quantum capacity of a continuous-variable dephasing channel, which is a notable example of a
non-Gaussian quantum channel. We prove that a single-letter formula applies. The optimal input state is found
to be diagonal in the Fock basis and with a distribution that is a discrete version of a Gaussian. We discuss how
its mean and variance are related to the dephasing rate and input energy. We then show that by increasing the
input energy, the capacity saturates to a finite value. We also show that it decays exponentially for large values
of dephasing rates.
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I. INTRODUCTION

Any physical process can be regarded as a quantum chan-
nel, i.e., a stochastic map on the space of states that causes
a state change. As such it can be characterized by its ability
to convey information. A notable example is provided by the
quantum capacity of a channel, which shows its ability to
transfer unaltered the entanglement of the input system with a
reference system [1].

Finding the quantum capacity of a channel is challenging
because not only the optimization of an entropic functional
(coherent information) over input states is required, but
also its regularization [2–4]. This task becomes even harder
when dealing with infinite-dimensional (so-called continuous-
variable) systems. That is why till now, in this framework,
attention has been confined to Gaussian channels, i.e., maps
that transform Gaussian states into Gaussian states [5,6]. For
instance, the coherent information of the lossy channel (a
special case of Gaussian channels) is known to be additive,
and hence its quantum capacity is computed [7] (see Ref. [8]
for the general formalism of energy-constrained quantum ca-
pacity). For more general Gaussian channels, an upper bound
of quantum capacity can be obtained by evaluating one-shot
coherent information of the channel [9].

Nevertheless, there is increasing pressure to go beyond the
Gaussian channels paradigm [10,11]. Heading in this direc-
tion, we investigate here the quantum capacity of one of the
most physically relevant non-Gaussian channels, namely, the
dephasing channel (see, e.g., Ref. [12]). It causes the reduction
of the off-diagonal terms in the Fock basis, thus washing out
coherence properties of the state. This happens, for instance,
with uncertainty path length in optical fibers [13].

Here we prove that for a dephasing channel the single-letter
formula applies for the quantum capacity. The optimal input
state is found to be a non-Gaussian state, which is diagonal in
the Fock basis and with a distribution that is a discrete version
of a continuous Gaussian distribution. In fact, we show that

the optimal probability distribution is a symmetric unimodal
probability distribution. Then we take a discrete Gaussian
probability distribution as an ansatz and show that by proper
selection of mean value and variance, it becomes a perfect fit
for optimal probability distribution. We discuss how its mean
and variance are related to the dephasing rate and input energy.
Finally, we show that by increasing input energy, the quantum
capacity saturates to a finite value which depends on the noise
parameter of the channel. We also show that, for a large value
of dephasing rate, the quantum capacity decays exponentially
with dephasing rate.

The structure of the paper is as follows: In Sec. II we set our
notation and explain the terms we need for our next purposes.
Section III is for a short review of the quantum dephasing
channel and its different representations that we are going to
use in following sections. Section IV is devoted to the quan-
tum capacity of the dephasing channel, containing analytical
results for proving that a single-letter formula applies and
showing the structure of the optimal input state. In Sec. V we
introduce our approach for using the replica method to nu-
merically evaluate quantum capacity. Its asymptotic behavior
is then discussed in Sec. VI. Finally, Sec. VII concludes with
a summary and discussion of the results.

II. NOTATION AND PRELIMINARIES

In this section we set our notation and review relevant con-
cepts and terms used in the following sections for deriving the
quantum capacity of a bosonic dephasing channel. Here states
of the initial system and environment, respectively, belong to
Hilbert spaces denoted by HS and HE . Similarly, the Hilbert
space of the final system and environment are, respectively,
denoted by HS′ and HE ′ . Density operators on Hilbert space
H belong to T (H), the set of linear positive operators on H
with trace one.

Due to the unavoidable interaction between system and
environment, described by an isometry U :HS ⊗ HE →
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HS′ ⊗ HE ′ , there are noise effects on the system. The most
general form of a system evolution is then given by a com-
pletely positive trace-preserving (CPTP) map or a quantum
channel N :T (HS ) → T (HS′ ) described by tracing over envi-
ronment degrees of freedom of the final state

N (ρ) = TrE ′ (U (ρ ⊗ |0〉 〈0|)U †). (1)

Here ρ ∈ T (HS ) is any initial state of the system and |0〉 ∈
HE a fixed initial state of the environment. For each chan-
nel N , its complementary channel N c is a CPTP map
N c:T (HS ) → T (HE ′ ) given by

N c(ρ) = TrS′ (U (ρ ⊗ |0〉 〈0|)U †). (2)

Two important properties of quantum channels which we use
here are degradablity and entanglement breaking. A channel
N :T (HS ) → T (HS′ ) is degradable if there exists a channel
M:T (HS′ ) → T (HE ′ ) such that

M ◦ N = N c, (3)

where ◦ denotes composition of maps [14]. To recall the def-
inition of entanglementbreaking channel, first we denote the
Hilbert space of a reference state by HR and the identity opera-
tor on it by 1R. Then a quantum channel N :T (HS ) → T (HS′ )
is entanglement breaking if the map 1R ⊗ N :T (HR ⊗ HS ) →
T (HR ⊗ HS′ ) maps every density operator to a separable state
[15,16]. Actually it is known that if 1R ⊗ N maps a maxi-
mally entangled state to a separable state, N is entanglement
breaking [15,16].

The quantum capacity of a channel N is the highest rate of
reliable quantum information transmission through the chan-
nel. It can be expressed in terms of the coherent information
of the channel’s output state. The latter quantity is defined as

J (ρ,N ) ≡ S(N (ρ)) − S(N c(ρ)), (4)

with S(ρ) = −Tr(ρ log ρ) the von Neumann entropy of ρ

(throughout the paper we use logarithm to base 2). Then the
quantum capacity of the N results as the regularized maxi-
mum coherent information of the output of infinitely many
channels’ uses [1],

Q(N ) = lim
n→∞

1

n
[max

ρ (n)
J (ρ (n),N⊗n)], (5)

with maximization over all density operators ρ (n) ∈ T (H⊗n
S ).

For channels with additive coherent information, maximizing
the coherent information of single-channel use over density
operators on HS is sufficient for computing the quantum
capacity. Hence the formula (5) can be simplified to a single-
letter expression [14]:

Q(N ) = max
ρ

J (ρ,N ). (6)

For degradable channels, the coherent information is additive
[14]. Furthermore, a channel N is degradable if and only
if its complementary channel N c is entanglement breaking
[17]. Therefore, the quantum capacity of degradable channels,
or channels with entanglement-breaking complementary, is
given by the single-letter formula in Eq. (6).

III. QUANTUM DEPHASING CHANNEL

In this section we describe the quantum dephasing chan-
nel by giving various representations for it. Furthermore, we
explain how such a channel is related to a Markovian process
and forms a semigroup.

The continuous-variable quantum dephasing effect (see,
e.g., Ref. [12]) provides a notable example of a non-Gaussian
channel. The channel Nγ :T (HS ) → T (HS ) (note that here
HS and HS′ are isomorphic) can be dilated into a single-mode
environment with the following unitary:

U = e−i
√

γ (a†a)(b+b† )

= e−i
√

γ (a†a)b†
e−i

√
γ (a†a)be− 1

2 γ (a†a)2
. (7)

Here a and a† are bosonic ladder operators acting on system
Hilbert space HS , b, b† are bosonic ladder operators on the
environment Hilbert space HE ′ (isomorphic to HE and HS),
and γ ∈ [0,+∞) is a parameter that determines the dephasing
rate. The unitary evolution by Eq. (7) can be represented
as a controlled displacement gate in a quantum circuit. The
system acts as a controlled mode prepared in the Fock basis
and target—environment—mode experiences a displacement
proportional to

√
γ .

For the system evolution, by tracing over environment de-
grees of freedom, we get

ρ �→ Nγ (ρ) = TrE [U (ρ ⊗ |0〉〈0|)U †] (8)

with |0〉, the vacuum of the environment. If we expand the
input state in the Fock basis ρ = ∑∞

m,n=0 ρm,n|m〉〈n| the effect
of Nγ reads

ρ �→ Nγ (ρ) =
∞∑

m,n

e− 1
2 γ (m−n)2

ρm,n|m〉〈n|, (9)

which clearly shows that the diagonal elements of the input are
preserved, while the off-diagonal ones tend to be washed out.
The channel’s output as given in Eq. (9) is also the solution of
the following Markov master equation:

ρ̇(t ) = L[ρ(t )], (10)

with

L[•] ≡ 2(a†a) • (a†a) − [(a†a)2•] − [•(a†a)2], (11)

where • is any operator in T (HS ) and t ≡ γ . Hence, the
set of dephasing channels {Nγ } forms a semigroup under
composition: Nγ ◦ Nγ ′ = Nγ+γ ′ .

Kraus representation of the channel is given by

ρ �→ Nγ (ρ) =
∞∑
j=0

KjρK†
j , (12)

where Kraus operators Kj = 〈 j|U |0〉, with | j〉 ∈ HE being
the number state in environment and unitary evolution U as
given in Eq. (7), have the following explicit form:

Kj = e− 1
2 γ (a†a)2 (−i

√
γ a†a) j

√
j!

. (13)

The channel’s action can also be written as

ρ �→ Nγ (ρ) =
∫ +∞

−∞
e−ia†aφρeia†aφ p(φ) dφ, (14)
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with

p(φ) =
√

γ

2π
e− 1

2 γφ2
. (15)

This means a randomization of the phase φ according to the
probability distribution (15). Note that φ as a random variable
must be defined on the sample space R, not [0, 2π ].

IV. QUANTUM CAPACITY

In this section we derive the explicit form of the comple-
mentary channel of a bosonic dephasing channel [(8) and (9)].
We show that the quantum capacity of the latter is given by the
single-letter formula (6). Based on this we derive the structure
of the optimal input state.

For the channel Nγ in Eq. (8), the complementary channel
(2) N c

γ :T (HS ) → T (HE ) is given by

ρ �→ N c
γ (ρ) = TrS[U (ρ ⊗ |0〉 〈0|)U †]

= TrS

[∑
m,n

ρm,n |m〉 〈n| ⊗ |−i
√

γ m〉 〈−i
√

γ n|
]

=
∑

m

ρm,m |−i
√

γ m〉 〈−i
√

γ m|

= e− iπ
2 a†a

(∑
m

ρm,m|√γ m〉〈√γ m|
)

ei π
2 a†a,

(16)

where U is defined in Eq. (7) and |√γ m〉 is a coherent state
of real amplitude

√
γ m,

|√γ m〉 = e−γ m2/2
∞∑

k=0

(
√

γ m)k

√
k!

|k〉. (17)

The complementary channel is a mixture of coherent state.
In fact, the input state with m photon number is projected
into a coherent state with an amplitude proportional to m.
The ultimate output state of the complementary channel is
a mixture of these coherent states, with the weight given by
the probability of having m photons in the input [16]. The
complementary channel N c

γ (16) is entanglement breaking. To
show this we consider a two-mode squeezed vacuum state

|�〉RS =
∞∑

n=0

λn|n〉R|n〉S, 0 � λ � 1, (18)

where R is a reference system isomorphic to S and λ

the squeezing parameter. Using Eq. (16), we immediately
arrive at(

1R ⊗ N c
γ

)|�〉RS〈�|
=

∑
m

λ2m |m〉R 〈m| ⊗ |−i
√

γ m〉E 〈−i
√

γ m| , (19)

which is a mixture of product states and hence is a separable
state for any value of λ, where N c

γ is entanglement breaking
and Nγ is degradable. Therefore, according to Sec. II, the
quantum capacity of bosonic dephasing channel is given by

the single-letter Eq. (6):

Q(Nγ ) = max
ρ

J (ρ,Nγ ). (20)

Next we use the phase-covariance property of Nγ and the
concavity of the coherent information to restrict the set of den-
sity operators over which the maximization in Eq. (20) should
be performed. A similar argument is used in the context of
bosonic pure-loss channels [18].

Proposition 1. The optimal input state to Nγ for the quan-
tum capacity (20) is diagonal in the Fock basis.

Proof. From Eq. (14) it follows that the quantum dephas-
ing channel is phase-covariant; that is, for Uθ = e−ia†aθ with
θ ∈ [0, 2π ) we have

Nγ (UθρU †
θ ) = UθNγ (ρ)U †

θ . (21)

Similarly, from Eq. (16), we conclude that the complementary
channel N c

γ is also phase-covariant:

N c
γ (UθρU †

θ ) = UθN c
γ (ρ)U †

θ . (22)

As the von Neumann entropy is invariant under unitary conju-
gate, from Eqs. (21) and (22) we conclude that

J (ρθ ,Nγ ) = J (ρ,Nγ ), (23)

with ρθ ≡ UθρUθ
†. On the other hand, for degradable chan-

nels, the coherent information is a concave function of its
input state,∫ 2π

0
J (ρθ ,Nγ )p(θ ) dθ � J

[∫ 2π

0
ρθ p(θ ) dθ,Nγ

]
, (24)

for any probability distribution p(θ ). Thus from Eq. (23) and
(24) it is straightforward to see that

J (ρ,Nγ ) � J

[∫ 2π

0
ρθ p(θ ) dθ,Nγ

]
. (25)

Then, choosing p(θ ) as a flat distribution, we find∫ 2π

0
ρθ p(θ ) dθ = 1

2π

∞∑
m,n

∫ 2π

0
ρm,n|m〉〈n|eiθ (m−n) dθ

=
∞∑
n

ρn,n|n〉〈n|. (26)

Finally, inserting this into the r.h.s. of (25) gives

J (ρ,Nγ ) � J

( ∞∑
n=0

ρn,n|n〉〈n|,Nγ

)
, (27)

i.e., the desired result. �
The fact that the optimal input state is diagonal in the Fock

basis can be interpreted more intuitively by noting that the
steady states, or the state that remains invariant under the
Markov process generated by L in Eq. (11), is not unique. In
fact, all Fock states are invariant under the dynamics generated
by L in Eq. (11). Hence every mixture of invariant states,
which is a state diagonal in the Fock basis, is invariant under
this evolution. Of course, in the subset of steady states of
Markovian dynamics generated by L in Eq. (11) we should
find the one that can carry the largest amount of quantum
information through the channel.
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As a consequence of Proposition 1, the maximization in
Eq. (20) reduces to the maximization over classical probabil-
ity distribution:

Q(Nγ ) = max
pm

[
S

( ∞∑
m=0

pm|m〉〈m|
)

− S

( ∞∑
m=0

pm|√γ m〉〈√γ m|
)]

, (28)

where we have used the last equality in Eq. (16) and the invari-
ance of entropy under unitary conjugation. A lower bound to
(28) can be found by considering an input state to be diagonal
in the Fock basis and containing only two elements with equal
weight,

	 j = 1
2 (|n〉 〈n| + |n + j〉 〈n + j|), (29)

where n, j are arbitrary non-negative integers. In such a case
it is easy to see that

∑
m pm|√γ m〉〈√γ m| is diagonalized in

the following basis:

1√
2 + 2e−γ j2/2

[|√γ n〉 + |√γ (n + j)〉], (30)

1√
2 − 2e−γ j2/2

[|√γ n〉 − |√γ (n + j)〉], (31)

with eigenvalues

q±( j) ≡ 1
2

(
1 ± e−γ j2/2

)
. (32)

Thus we have

J (	 j,N ) = 1 − H2(q+( j), q−( j)), (33)

with H2 the binary entropy.
We note that the eigenvalues of N c

γ (	 j ) in Eq. (32)
do not depend on n. Furthermore, by increasing j, the
distance between q+( j) and q−( j) decreases, and as a conse-
quence H2(q+( j), q−( j)) decreases too. Therefore, J (	 j,N )
in Eq. (33) is maximized for j = 1 and a a lower bound for
quantum capacity is given by J (	1,Nγ ), which is obtained
for input state 	1 with arbitrary n.

In order to obtain the quantum capacity, it is necessary to
go beyond the input state (29) by considering more terms in
the sum and nontrivial probability distributions. The task is
complicated because computing the second term of Eq. (28)
requires the diagonalization of a mixture of infinite number
of coherent states. Hence, in the next section we will use
numerical tools.

V. NUMERICAL ANALYSIS

In this section we resort to numerical techniques to eval-
uate the quantum capacity. First, we truncate the space HS

to dimension N + 1. According to Proposition 1, the optimal
input state is diagonal in the Fock basis, and in a truncated
Hilbert space it takes the form

ρ =
N∑

m=0

pm |m〉 〈m| . (34)

The mean energy of this state is given by
∑N

m=0 mpm,
with maximum value N . Therefore the truncation of

FIG. 1. Top: optimal probability distribution for N = 1 versus γ .
Bottom: Q2(Nγ ) versus γ .

Hilbert space can be regarded as constraining the input
average energy.1 Then we find the following maximum
numerically:

QN+1(Nγ ) = max
pm

[
S

(
N∑

m=0

pm|m〉〈m|
)

− S

(
N∑

m=0

pm|√γ m〉〈√γ m|
)]

, (35)

and by analyzing its behavior by increasing N , we obtain the
quantum capacity in Eq. (28).

For N = 1, maximizing the right-hand side of Eq. (35)
yields the optimal probability distribution to be uniform, that
is, p0 = p1 = 1

2 , as shown in Fig. 1 together with Q2. This
implies that for N = 1 the probability distribution in Eq. (29)
is optimal. It is worth noting that even by truncating the sum
in Eq. (28), the numerical analysis is lengthy. The root of that
goes back to the fact that by increasing N not only the num-
ber of involved coherent states (17) increases, but also their

1On the other hand, if we constrain the input average energy as∑∞
m=0 mpm = E < +∞, we know that ∀ε > 0, ∃Nε :| ∑N

m=0 mpm −
E | < ε for N > Nε . This can be regarded as truncating the Hilbert
space to the dimension Nε (within an accuracy ε).
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amplitudes increase. In fact, by increasing m, the number of
required terms at the r.h.s. of (17) to be considered increases,
which is equivalent to a longer time for the numerical task. In
the next section, we explain an algorithm which mitigates this
problem.

A. Replica method

We now explain our approach for numerical calculation
of QN+1 in Eq. (35). Obviously, computing the first term is
straightforward. For computing the second term, we will make
use of the replica method [19–21].

It is known that the von Neumann entropy of a density
matrix 	 can be written as [19]

S(	) = −Tr(	 log 	) = −∂nTr(	n)|n=1, (36)

with ∂n denoting derivative with respect to n. Therefore,
instead of diagonalizing 	, one can compute the entropy
through the trace of 	n. For our purpose, we denote the
density matrix appearing in the second term of QN+1(Nγ ) in
Eq. (35), which is a unitary conjugate of the complementary
channel’s output, by

	 ≡
N∑

m=0

pm |m√
γ 〉 〈m√

γ | , (37)

and for arbitrary n, express 	n in terms of coherent states as

	n =
N∑

i, j=1

C(n)
i j |√γ i〉 〈√γ j| , (38)

with C(1)
i j = piδi, j . It then follows that

Tr(	n) =
N∑

i, j=1

C(n)
i j e− γ

2 (i− j)2
. (39)

By considering that 	n = 	n−1	 and taking into account
Eqs. (37) and (38), the following recurrence relation can be
derived:

C(n) = C(n−1)A, (40)

with

Ai j = e− γ

2 (i− j)2
p j, i, j = 1, . . . , N. (41)

Thus using Eq. (40) in Eq. (39) we conclude that

Tr(	n) = Tr(An) =
N∑

i=1

an
i , (42)

with {ai}i the eigenvalues of the matrix A. Finally, from
Eqs. (36) and (42), we have

S(	) = −∂nTr(An)|n=1 = −
N∑

i=1

ai log ai, (43)

which implies that the numerical computation of S(	) can be
done through the N × N matrix A without any need to involve
coherent states.

By using Eq. (43) we compute the second term of Eq. (35)
numerically and optimize the whole expression over the

FIG. 2. Optimal value of pm for m = 0, 1, . . . , N versus γ . From
top to bottom N = 2, 3, 4, 5.

probability distribution, pms. We find optimal values of pm,
as shown in Fig. 2 for N = 2, 3, 4, 5. Proceeding up to N = 8,
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FIG. 3. QN+1(Nγ ), as defined in Eq. (35), versus γ for N =
1, . . . , 8.

we observed the following relation between the optimal values
of pms:

pm < pm+1, for 0 � m �
⌊

N

2

⌋
, (44)

pm = pN−m, for

⌊
N

2

⌋
< m � N. (45)

For the obtained optimal probability distributions, QN+1(Nγ )
is shown in Fig. 3 versus γ for N = 1, . . . , 8. As expected
QN+1(Nγ ) monotonically decreases versus the noise parame-
ter γ .

For probability distribution with the pattern given in (44)
and (45) it is straightforward to see that the mean energy of
the optimal input state is N

2 , which is linearly increasing by N .
In the next subsection we try to determine the probability

distribution that fits well with properties in Eqs. (44) and (45).

B. Optimal probability distribution

We discuss here the actual form of the optimal probability
distribution. From Eqs. (44) and (45), it is concluded that the
optimal probability distribution cannot have more than one
peak, hence bimodal probability distributions are not optimal
distributions. Furthermore, Eqs. (44) and (45) imply that the
optimal probability distribution is symmetric around its peak
at m = �N

2 �. Therefore, a nonsymmetric unimodal probability
distribution, such as the thermal distribution, is not an ac-
ceptable candidate for an optimal probability distribution in
computing QN+1.

A candidate for discrete probability distributions satisfying
these properties is the discrete Gaussian probability distribu-
tion

pm(μ, σ (N, γ )) = 1

M(μ, σ )
e
− (m−μ)2

2σ2 (N,γ ) , (46)

with m ∈ {0, 1, . . . , N}. It is centered around μ = N
2 and has

a width controlled by σ . Furthermore, M(μ, σ ) is the normal-
ization factor

M(μ, σ (N, γ )) =
N∑

m=0

e
− (m−μ)2

2σ2 (N,γ ) . (47)

FIG. 4. QN+1(Nγ ) as defined in Eq. (35) versus N . From top to
bottom γ = 0.25, 0.5, 0.75, 1, 2.

From Eqs. (44) and (45) we know that for all values of γ , pm

attains the maximum value for m = �N
2 �. Therefore, we set

μ = N
2 and vary σ to find the best fit to the optimal probability

distribution obtained numerically in Sec. V A. It is worth
mentioning that for odd N , the maximum value of probability
distribution does not pass any pm, but still pm with m = �N

2 �
and m = �N

2 � + 1 are equal and have maximum values.
By varying σ we can fit discrete Gaussian distribution to

the optimal probability distribution obtained in Sec. V A for
N = 1, . . . , 5. We observe that σ is linear in N :

σ (γ , N ) ≈ a(γ )N + b(γ ), (48)

and for γ > 0.2 the coefficients a(γ ) and b(γ ) are almost
constant, that is, σ ≈ 0.2N + 0.6.

By taking pms in Eq. (35) from discrete Gaussian probabil-
ity distribution as in Eq. (46) with μ = N/2 and numerically
maximizing it over σ , we calculate QN+1(Nγ ). The obtained
quantities for N = 1, . . . , 5 exactly coincide with the cor-
responding curves in Fig. 3. Additionally, with the same
procedure we obtained the behavior of QN+1(Nγ ) for N =
6, 7, and 8 as depicted in Fig. 3.

As can be seen in Fig. 3, by increasing N , the curves
become closer and closer, especially at large values of γ . This
implies that for large values of N , Fig. 3 shows a very close
approximation to the quantum capacity Q(Nγ ) in Eq. (28)
versus noise parameter γ . This is also reminiscent of the fact
that whenever the coherent information of a one-mode Gaus-
sian channel is nonzero, its supremum is achieved for input
power going to infinity [22]. Figure 4 shows the behavior of
QN+1(Nγ ) versus N for some fixed values of noise parameter
γ . Actually, it shows that QN+1(Nγ ) saturates after a finite
value of N , and the larger the noise parameter is, the smaller
is the value of N at which the saturation happens.

VI. ASYMPTOTIC BEHAVIOR OF QUANTUM CAPACITY

In this section we discuss the asymptotic behavior of
the quantum capacity of the dephasing channel in terms of
the dephasing rate or noise parameter. As seen in Sec. IV,
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the dephasing channel is degradable, hence its quantum capac-
ity is equal to its private classical capacity [23]. On the other
hand, the private classical capacity is always non-negative
[24,25]. Therefore, Q(Nγ ) is always non-negative. However,
the decreasing behavior of QN+1(Nγ ) suggests that QN+1(Nγ )
and hence Q(Nγ ) asymptotically approaches zero from above
for γ → ∞. Actually in what follows we show that for large
values of γ , QN+1(Nγ ) and hence the quantum capacity de-
crease exponentially.

While so far we have used the replica method to ease
the numerical analysis of the second term of QN+1(Nγ ) in
Eq. (35), here we use this technique to derive the behavior of
QN+1(Nγ ) and quantum capacity Q(Nγ ) for large values of γ .
Elements of matrix A as defined in Eq. (41) are all nonzero.
We define ε ≡ e− γ

2 , which is small for large values of γ . The
matrix A up to order O(ε) is given by

Ai, j = p jδi, j + ε p j (δi, j+1 + δi+1, j ) + O(ε2). (49)

Therefore, by straightforward calculation, we obtain

Tr(An) =
N∑

m=0

pn
m + O(ε2), (50)

which by considering the first equality in Eq. (43) leads to
S(	) = −∑N

m=0 pm log pm, and therefore QN+1(Nγ ) as de-
fined in Eq. (35) vanishes if we keep terms up to order ε,
because

QN+1(Nγ ) ≈ O(ε2). (51)

Hence to see the asymptotic behavior of QN+1(Nγ ) for large
values of γ , we write the matrix A up to order O(ε2):

Ai, j = p jδi, j + εp j (δi, j+1 + δi+1, j )

+ ε2 p j (δi, j+2 + δi+2, j ) + O(ε3). (52)

Straightforward calculations give

Tr(An) =
N∑

m=0

pn
m + nε2

N−1∑
m=0

pn
m pm+1 − pm pn

m+1

pm − pm+1
, (53)

which, using Eq. (43) and replacing ε2 by e−γ , leads to

QN+1(Nγ ) = e−γ

N−1∑
m=0

pm pm+1

pm − pm+1
log

(
pm

pm+1

)
+ O(ε3).

(54)

As discussed in Sec. V B for large values of γ , the mean value
and variance of optimal probability distribution in Eq. (46) do
not depend on γ . Thus, the summation in Eq. (54) does not de-
pend on γ . Therefore Eq. (54) implies that, for large values of
γ , QN+1(Nγ ) and hence Q(Nγ ) approach zero exponentially.

VII. CONCLUSION

Summarizing, we have studied the capability of the bosonic
dephasing channel for transmitting quantum information. We
have analytically proved that for such a channel, coherent in-
formation is additive and the optimal input state is diagonal in

the Fock basis, which is invariant under the noise action. Then,
by using the replica method which makes numerical analysis
technically feasible, we showed that the optimal probability
distribution for the mixture of Fock states is unimodal and
symmetric around its maximum. Among possible choices sat-
isfying these two constraints, we took a discrete Gaussian
distribution as an ansatz, and by varying its average and vari-
ance we showed that it fits the optimal probability distribution
Interestingly, this distribution is almost independent of the
noise parameter γ , but the quantum capacity varies with γ ,
as the output of the complementary channel depends on the
noise parameter. We found it useful to truncate the dimension
of Hilbert space, which is equivalent to restrict the input
energy, and define QN+1(Nγ ) as the maximum of coherent in-
formation in truncated space. Then we numerically evaluated
the quantum capacity by finding the asymptotic behavior of
QN+1(Nγ ) when enlarging the dimension of truncated Hilbert
space, as it saturates to a finite value (see Figs. 3 and 4).
Our results show that the optimal input state for transmitting
quantum information through a continuous-variable quantum
dephasing channel is a mixture of number states with discrete
Gaussian distribution, which is clearly not a Gaussian state.
We also discussed that quantum capacity approaches zero
from above when the noise parameter increases. For large
values of dephasing rate, this decay is exponential.

It is worth observing that bosonic dephasing channel re-
sults in a Hadamard channel as a consequence of having
proved that its complementary channel is entanglement break-
ing. This property implies that the triple trade-off capacity
regions are single-letter, as shown in Ref. [26]. It could be
the subject of a future investigation to determine the whole
triple-trade-off region, and the replica method might be useful
there as well (the only other known example of a bosonic
channel of physical interest that is Hadamard, and for which it
is known the full triple-trade-off region is the quantum-limited
amplifier channel [27]).

Not only we are confident that this work can pave the
way for studying quantum communication with continuous-
variable quantum channels beyond the usual restriction of
Gaussianity, but it can already be useful in the context of
optical communications where dephasing effects are relevant
[13]. In particular, the achieved result sets an upper bound
to the private communication rate, which is a key aspect for
technological developments.
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