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One-body entanglement as a quantum resource in fermionic systems
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We show that one-body entanglement, which is a measure of the deviation of a pure fermionic state from
a Slater determinant (SD) and is determined by the mixedness of the single-particle density matrix (SPDM),
can be considered as a quantum resource. The associated theory has SDs and their convex hull as free states,
and number conserving fermion linear optics operations (FLO), which include one-body unitary transformations
and measurements of the occupancy of single-particle modes, as the basic free operations. We first provide
a bipartitelike formulation of one-body entanglement, based on a Schmidt-like decomposition of a pure N-
fermion state, from which the SPDM [together with the (N − 1)-body density matrix] can be derived. It is then
proved that under FLO operations the initial and postmeasurement SPDMs always satisfy a majorization relation,
which ensures that these operations cannot increase, on average, the one-body entanglement. It is finally shown
that this resource is consistent with a model of fermionic quantum computation which requires correlations
beyond antisymmetrization. More general free measurements and the relation with mode entanglement are also
discussed.
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I. INTRODUCTION

Quantum entanglement and identical particles are two fun-
damental concepts in quantum mechanics. Entanglement in
systems of distinguishable components is particularly valu-
able in the field of quantum information theory [1] because
it can be considered as a resource within the local opera-
tions and classical communication (LOCC) paradigm [1,2].
Extending the notion of entanglement to the realm of indis-
tinguishable particles is, however, not straightforward because
the constituents of the system cannot be individually accessed.
Different approaches have been considered, like mode en-
tanglement [3–5], where subsystems correspond to a set of
single-particle (SP) states in a given basis; extensions based on
correlations between observables [6–10]; and entanglement
beyond symmetrization [11–21], which is independent of the
choice of SP basis. Several studies on the relation between
these types of entanglement [5,16,20,22–28] and on whether
exchange correlations can be associated with entanglement
[29–33] have been recently made. There is also a growing
interest in quantum chemistry simulations based on optical
lattices [34,35], which would benefit from a detailed charac-
terization of fermionic correlations. In this paper we will focus
on entanglement beyond antisymmetrization in fermionic sys-
tems and analyze its consideration as a quantum resource.

Quantum resource theories [36,37] have recently become a
topic of great interest since they essentially describe quantum
information processing under a restricted set of operations.
Standard entanglement theory in systems of distinguishable
components is just one of these theories, amongst which we
may include others like quantum thermodynamics [38,39], co-
herence [40,41], nonlocality [42], and non-Gaussianity [43].

In the usual entanglement theory a multipartite quantum
system shared by distant parties is considered. These parties
can operate each on their own subsystem and are allowed to
communicate via classical channels [2]. From these restric-
tions the LOCC set arises naturally as the set of free operations
of the resource theory, and the set of free (separable) states is
then derived. In our case ignoring antisymmetrization correla-
tions defines Slater determinants (SDs) and their convex hull
as the set of “free” states S and we are looking for a set of free
operations O consistent with this set.

With this aim, we first define a partial order relation on
the Fock space F of the system, based on the mixedness of
the corresponding single-particle density matrix (SPDM) ρ (1)

[also denoted as the one-particle or one-body density matrix
(DM)], which determines whether a given pure fermionic state
can be considered more entangled than another state. A bipar-
titelike formulation for this one-body entanglement, involving
ρ (1) and the (N − 1)-body density matrix (isospectral for pure
states of N fermions), is also provided. Next we define a class
of operations consistent with S and the previous partial order,
through a majorization relation to be fulfilled by the initial
and final SPDMs, which ensures that one-body entanglement
will not be increased by such operations. We then show that
number conserving Fermion linear optics (FLO) operations
[44–46], which include one-body unitary transformations and
measurement of the occupancy of a SP state, are indeed within
this class. One-body entanglement then plays the role of a
resource in a theory where S is the convex hull of SDs and
O is that of FLO operations. Possible extensions of the set
of free operations and connection of this resource with a
quantum computation model and with mode entanglement are
also discussed.
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II. FORMALISM

A. One-body entanglement

We consider a SP space H of finite dimension n and a
set of fermion creation and annihilation operators c†

k and ck

associated with an orthogonal basis of H, satisfying the an-
ticommutation relations {ck, c†

k′ } = δkk′ , {ck, ck′ } = {c†
k , c†

k′ } =
0. The elements of the SPDM ρ (1) in a general fermionic state
ρ are given by

ρ
(1)
kk′ = 〈c†

k′ck〉 = Tr ρ c†
k′ck . (1)

They form a Hermitian matrix with eigenvalues λν = 〈c†
νcν〉 ∈

[0, 1], where c†
ν = ∑

k Ukνc†
k creates a fermion in one of the

“natural” SP orbitals diagonalizing ρ (1) (〈c†
ν ′cν〉 = λνδνν ′). For

pure states ρ = |�〉〈�|, the “mixedness” of ρ (1) then reflects
the deviation of |�〉 from a SD [

∏
ν (c†

ν )nν ]|0〉, since for the
latter λν = nν = 0 or 1∀ ν and hence (ρ (1) )2 = ρ (1).

Such mixedness can be rigorously characterized through
majorization [47–50]. For states |�〉 and |�〉 with the same
fermion number N = Tr ρ

(1)
� = Tr ρ

(1)
� , we will say that |�〉

is not less one-body entangled than |�〉 if ρ
(1)
� is more

(or equally) mixed than ρ
(1)
� , i.e., if their eigenvalues λ =

(λ1, . . . , λn), sorted in decreasing order, satisfy the majoriza-
tion relation

λ
(
ρ

(1)
�

) ≺ λ
(
ρ

(1)
�

)
, (2)

which means
m∑

ν=1

λν

(
ρ

(1)
�

)
�

m∑
ν=1

λν

(
ρ

(1)
�

)
(3)

for m = 1, . . . , n − 1, with identity for m = n. Thus SDs are
the least one-body entangled states, as their SPDM majorizes
any other ρ (1) with the same trace. Relation (2) is analogous
to that imposed by LOCC operations on reduced states of
systems of distinguishable components, which in the bipartite
case lead to the celebrated Nielsen’s theorem: |�AB〉 can be
converted by LOCC to |�AB〉 (and hence is not less entan-
gled than |�AB〉) if and only if their reduced states satisfy
λ(ρA(B)

� ) ≺ λ(ρA(B)
� ) [48,51]. Local measurements reduce the

ignorance about the state of the measured subsystem, de-
creasing the mixedness of reduced states and hence bipartite
entanglement. Similarly, we will show that one-body entan-
glement will decrease under operations which reduce the
ignorance about the SPDM.

1. The associated Schmidt decomposition

We first remark that one-body entanglement also admits
a bipartitelike formulation: A pure state |�〉 of N fermions
(
∑

k c†
kck|�〉 = N |�〉) can be expanded as

|�〉 = 1

N

∑
k,l

�kl c
†
kC†

l |0〉 (4)

where C†
l = c†

l1
. . . c†

lN−1
, with l = 1, . . . , ( n

N−1), are operators
creating N − 1 fermions in specific SP states labeled by l ,
satisfying 〈0|ClC

†
l ′ |0〉 = δll ′ , while the coefficients �kl form

an n × ( n
N−1) matrix � satisfying Tr ��† = N . Thus, each

term in the sum (4) is a SD which is repeated N times,

such that

ck|�〉 =
∑

l

�klC
†
l |0〉 (5)

is the (un-normalized) state of remaining fermions when SP
state k is occupied, while

Cl |�〉 = (−1)N−1
∑

k

�kl c
†
k |0〉 (6)

is that of remaining fermion when the N − 1 SP states l
are occupied. In this way, 〈�|�〉 = 1

N Tr ��† = 1. Moreover,
Eqs. (5) and (6) allow us to express the elements of both the
SPDM ρ (1) and the (N − 1)-body DM ρ (N−1) in terms of � as

ρ
(1)
kk′ = 〈�|c†

k′ck|�〉 = (��†)kk′ , (7)

ρ
(N−1)
ll ′ = 〈�|C†

l ′Cl |�〉 = (�T �∗)ll ′ . (8)

Equations (7) and (8) are analogous to those for the
reduced states ρA(B) of distinguishable subsystems in a
standard pure bipartite state |�AB〉 = ∑

i, j Ci j |iA, jB〉, where
ρA

ii′ = 〈|i′A〉〈iA|〉 = (CC†)ii′ , ρB
j j′ = 〈| j′B〉〈 jB|〉 = (CT C∗) j j′ [1].

The only difference is that Tr ρA(B) = Tr CC† = 1 whereas
Tr ρ (1) = Tr ρ (N−1) = N .

Equations (7) and (8) imply that ρ (1) and ρ (N−1) have the
same nonzero eigenvalues λν , which are just the square of
the singular values of �. Moreover, by means of the sin-
gular value decomposition � = UDV †, with Dνν ′ = √

λνδνν ′

and U and V unitary matrices [of n × n and ( n
N−1) × ( n

N−1),
respectively], we may now obtain from (4) the 1–(N − 1)
Schmidt-like decomposition of the N-fermion state:

|�〉 = 1

N

∑
ν

√
λνc†

νC†
ν |0〉, (9)

where

c†
ν =

∑
k

Ukνc†
k , C†

ν =
∑

l

V ∗
lνC†

l (10)

are the “natural” one- and (N − 1)-fermion creation operators
satisfying

〈0|cνc†
ν ′ |0〉 = δνν ′ = 〈0|CνC†

ν ′ |0〉, (11)

〈�|c†
νcν ′ |�〉 = λνδνν ′ = 〈�|C†

νCν ′ |�〉. (12)

Thus,

cν |�〉 =
√

λνC†
ν |0〉, Cν |�〉 = (−1)N−1

√
λνc†

ν |0〉, (13)

i.e., the orthogonal natural (N − 1)-fermion states C†
ν |0〉 are

those of remaining fermions when the natural SP orbital ν is
occupied, while c†

ν |0〉 are the orthogonal states of the remain-
ing fermion when the natural (N − 1)-fermion state C†

ν |0〉
(which in general is no longer a SD) is occupied. Therefore, in
an N-fermion state one-body entanglement is actually the 1–
(N − 1)-body entanglement, associated with the correlations
between one- and (N − 1)-body observables.

In the case of a SD |�〉 = (
∏N

ν=1 c†
ν )|0〉, λν = 1 (0) for

ν � N (>N ), with C†
ν ∝ ∏N

ν ′ �=ν c†
ν ′ such that c†

νC†
ν |0〉 = |�〉

for ν � N . On the other hand, for N = 2 Eq. (9) becomes the
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Slater decomposition of a two-fermion state [11–13]:

|�〉 =
∑

ν

√
λνc†

νc†
ν̄ |0〉 = 1

2

∑
ν

√
λν (cνC†

ν + cν̄C†
ν̄ )|0〉 (14)

where C†
ν = c†

ν̄ , C†
ν̄ = −c†

ν . In this case one-body entangle-
ment is directly related to that between the set of normal ν and
ν̄ modes, which contain each just one fermion (see Sec. II C).

2. One-body entanglement entropies

We may now define a general one-body entanglement en-
tropy E (|�〉) ≡ E (1)(|�〉) as

E (|�〉) = S
(
ρ

(1)
�

) = S
(
ρ

(N−1)
�

)
, (15)

where S(ρ (1) ) is a Schur-concave function [49,50] of ρ (1).
These entropies will all satisfy

E (|�〉) � E (|�〉), (16)

whenever the majorization relation of Eq. (2) is fulfilled. For
instance, trace-form entropies

S(ρ (1) ) = Tr f (ρ (1) ) =
∑

ν

f (λν ) (17)

where f : [0, 1] → R is concave and satisfies f (0) = f (1) =
0 [52], will fulfill (16), with E (|�〉) � 0 ∀ |�〉 and E (|�〉) =
0 if and only if |�〉 is a SD. Such E (|�〉) will then be
one-body entanglement monotones. Examples are the von
Neumann entropy of ρ (1), S(ρ (1) ) = −∑

ν λν log2 λν , a quan-
tity of interest in various fields [53–57], and the one-body
entropy [20,25]

S1(ρ (1) ) = −
∑

ν

λν log2 λν + (1 − λν ) log2(1 − λν ), (18)

which represents, for |�〉 of definite fermion number N ,
the minimum relative entropy (in the grand canonical
ensemble) between ρ = |�〉〈�| and any fermionic Gaus-
sian state ρg: S1(ρ (1)

� ) = Minρg S(ρ||ρg) [25], for S(ρ||ρ ′) =
−Trρ(log2 ρ ′ − log2 ρ) and ρg ∝ exp(−∑

k,k′ αkk′c†
kck′ ) (pair

creation and annihilation terms in ρg are not required for
such |�〉 [25]). It is also the minimum over all SP bases
of the sum of all single mode entropies [20] −pk log2 pk −
(1 − pk ) log2(1 − pk ), where pk = 〈c†

kck〉. We remark that the
SPDM and hence any measure (15) are in principle experi-
mentally accessible. Measurement of the fermionic SPDM in
optical lattices has been recently reported [58].

All measures (15) can be extended to mixed states

ρ =
∑

α

pα|�α〉〈�α| (19)

of definite N through their convex roof extension E (ρ) =
min

∑
α pαE (|�α〉), where the minimum is over all repre-

sentations {pα � 0, |�α〉} of ρ [20]. Such E (ρ) represents a
one-body entanglement of formation, vanishing if and only if
ρ is a convex mixture of SDs.

B. One-body entanglement nongenerating operations

1. Definition and basic properties

We now define a class of operations which do not generate
one-body entanglement, i.e., which do not increase, on aver-
age, the mixedness of the SPDM.

Definition 1. Let ε(ρ) = ∑
j K jρK†

j be a quantum opera-

tion on a fermion state ρ, with {K j,
∑

j K
†
jK j = 1} a set of

Kraus operators, assumed number conserving. Let ρ (1) and
ρ

(1)
j be the SPDMs determined by ρ and ρ j = K jρK†

j/p j ,

with p j = Tr[ρK†
jK j]. We say that ε is one-body entan-

glement nongenerating (ONG) if it admits a set of Kraus
operators {K j} satisfying ∀ ρ the relation

λ(ρ (1) ) ≺
∑

j

p j λ
(
ρ

(1)
j

)
, (20)

where eigenvalues λ(ρ (1)
j ) are sorted in decreasing order.

This majorization relation is analogous to that satisfied by
reduced local states under local operations in the standard
entanglement theory [48] and implies

S(ρ (1) ) � S

[∑
j

p jλ
(
ρ

(1)
j

)]
�

∑
j

p jS
(
ρ

(1)
j

)
, (21)

for any concave entropy S(ρ (1) ), such as those of Eq. (17). For
pure states ρ = |�〉〈�|, ρ j = |� j〉〈� j | is also pure ∀ j, with
|� j〉 ∝ K j |�〉, and Eqs. (15) and (21) imply

E (|�〉) �
∑

j

p jE (|� j〉) � E (ε(|�〉〈�|)), (22)

showing that any one-body entanglement monotone (15) will
not increase, on average, after ONG operations. In particular,
if |�〉 is a SD, E (|�〉) = 0 and Eq. (22) implies that all states
|� j〉 ∝ K j |�〉 must be SDs or zero, i.e., all Kraus operators
fulfilling (20) should map free states onto free states. And
for the one-body entanglement of formation of general mixed
states ρ Eq. (22) implies

E (ρ) � E (ε(ρ)) (23)

since by using the minimizing representation E (ρ) =∑
α pαE (|�α〉) � ∑

α, j pα pα jE (|�α j〉) � E (ε(ρ)).
It also follows from (20) that the set of ONG opera-

tions is convex and closed under composition, i.e., λ(ρ (1) ) ≺∑
i, j pi jλ(ρ (1)

i j ) for Ki j = Kb
i Ka

j and ε(ρ) = εb[εa(ρ)]. This
property ensures that ONG operations can be applied any
number of times in any order.

Proposition 1. The conversion of a pure state |�〉 ∈ F into
another pure state |�〉 ∈ F by means of ONG operations is
possible only if the majorization relation (2) is satisfied by the
corresponding SPDMs.

Proof. The state conversion will consist in some sequence
of ONG operations, which can be resumed in just one ONG
operation due to the closedness under composition. Let {K j}
be a set of associated Kraus operators satisfying (20). Af-
ter this operation is performed, we should have K j |�〉 =√

p j |�〉 ∀ j, with p j = 〈�|K†
jK j |�〉, implying ρ

(1)
j = ρ

(1)
� ∀ j

and hence Eq. (2) when (20) is fulfilled. �
Then, maximally one-body entangled states are those pure

states whose SPDM is majorized by that of any other state.
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Due to Eq. (16) they will also maximize E (|�〉) for any choice
of S. At fixed fermion number N � 2 and n = mN they are
states leading to

ρ (1) = 1n/m, (24)

for which any SP basis is natural. For an m integer such
ρ (1) emerges, for instance, from Greenberger-Horne-Zeilinger
(GHZ)-like states involving superpositions of SDs in orthog-
onal subspaces:

|�〉 = 1√
m

m−1∑
l=0

c†
Nl+1 . . . c†

Nl+N |0〉 = 1

N
√

m

n∑
ν=1

c†
νC†

ν |0〉,

(25)

which lead to 〈c†
νcν ′ 〉 = δνν ′/m.

2. Fermion linear optics operations as ONG

We now show that number conserving FLO operations
[44–46], which include one-body unitary transformations and
measurement of the occupancy of a SP mode, are included in
the ONG set. First, any number conserving one-body unitary
transformation

U = exp

(
−i

∑
k,k′

Hk′kc†
k′ck

)
, (26)

with U†U = 1 (H† = H), is obviously ONG: Since Uc†
kU† =∑

k′ Uk′kc†
k′ , with U = e−iH , it will map the SPDM as ρ (1) →

U †ρ (1)U , leaving its eigenvalues unchanged (and hence trans-
forming SDs into SDs). It can be implemented through
composition of phase shifting and beamsplitter unitaries
[44–46] Up(φ) = e−iϕ c†

k ck , Ub(θ ) = e−iθ (c†
k ck′+c†

k′ ck ), which are
the basic unitary elements of the FLO set.

FLO operations also include measurements of the occu-
pancy of single-particle modes, described by projectors

Pk = c†
kck, Pk̄ = ckc†

k , (27)

which satisfy Pk + Pk̄ = 1. We now show explicitly the fol-
lowing fundamental result.

Theorem 1. The measurement of the occupancy of a single-
particle state |k〉 = c†

k |0〉 ∈ H, described by the operators
(27), is a ONG operation.

Proof. Consider a general pure fermionic state |�〉 with
SPDM ρ (1). Let ρ

(1)
k and ρ

(1)
k̄

be the SPDMs after SP mode |k〉
is found to be occupied or empty, respectively, determined by
the states

|�k〉 = Pk|�〉/√pk, |�k̄〉 = Pk̄|�〉/√pk̄, (28)

with pk = 〈�|Pk|�〉 = 1 − pk̄ . Then

|�〉 = √
pk|�k〉 + √

pk̄|�k̄〉. (29)

We will prove relation (20), i.e. (Fig. 1),

λ(ρ (1) ) ≺ pkλ
(
ρ

(1)
k

) + pk̄λ
(
ρ

(1)
k̄

)
. (30)

If the measured state |k〉 is a natural orbital, such that 〈c†
kck′ 〉 =

pkδkk′ with pk = λk an eigenvalue of ρ (1), Eq. (30) is straight-
forward: In this case (29) leads to

ρ (1) = pkρ
(1)
k + pk̄ρ

(1)
k̄

, (31)

FIG. 1. Measurement of the occupancy of a single fermion mode
k. It reduces (or does not increase), on average, the mixedness of
the SP density matrix ρ (1) (λ denotes its spectrum) and hence the
one-body entanglement.

as 〈�k|c†
k′′ck′ |�k̄〉 = δk′′k (1 − δk′k )〈c†

kck′ 〉 = 0 ∀ k′, k′′.
Equation (31) implies (30) since λ(A + B) ≺ λ(A) + λ(B)
for any two Hermitian n × n matrices A and B [48] (this case
includes the trivial situation pk = 1 or 0, where |�〉 = |�k〉
or |�k̄〉; in the following we consider pk ∈ (0, 1)).

Otherwise Eq. (31) no longer holds. Nevertheless, since
〈�k|c†

k′′ck′ |�k̄〉 = 0 for any two SP states |k′〉 and |k′′〉 orthog-
onal to |k〉, Eq. (29) implies, for any SP subspace S⊥ ⊂ H
orthogonal to the measured state |k〉,

ρ
(1)
S⊥ = pkρ

(1)
kS⊥ + pk̄ρ

(1)
k̄S⊥

, (32)

where ρ
(1)
S⊥ = PS⊥ρ (1)PS⊥ and ρ

(1)
k(k̄)S⊥

are the restrictions of

ρ (1) and ρ
(1)
k(k̄)

to S⊥, and PS⊥ is the associated projector.
This result is expected since the measurement is “external”
to S⊥ [if [K j, O] = 0 ∀ j ⇒ Tr [ρO] = Tr

∑
j K jρK†

j O =∑
j p jTr[ρ jO]; for K j = Pk(k̄) and O = c†

k′′ck′ with k′ and k′′
orthogonal to k, this result implies Eq. (32)]. And for any
S ⊂ H containing the state |k〉 we have, as 〈�k|c†

k′ck′ |�k̄〉 = 0
for k′ = k or k′ orthogonal to k,

Tr ρ
(1)
S = Tr

[
pkρ

(1)
kS + pk̄ρ

(1)
k̄S

]
. (33)

We can now prove the mth inequality in (30):

m∑
ν=1

λν (ρ (1) ) �
m∑

ν=1

[
pkλν

(
ρ

(1)
k

) + pk̄λν

(
ρ

(1)
k̄

)]
. (34)

Let Sm ⊂ H be the subspace spanned by the first m eigenstates
of ρ (1), such that λν (ρ (1)

Sm
) = λν (ρ (1) ) for ν � m and hence

Tr ρ
(1)
Sm

= ∑m
ν=1 λν (ρ (1) ). If Sm is either orthogonal to |k〉 or

fully contains |k〉, Eq. (32) or Eq. (33) holds for S = Sm,
implying (34) since Tr ρ

(1)
k(k̄)Sm

� ∑m
ν=1 λν (ρ (1)

k(k̄)
) by the Ky

Fan maximum principle [48] (the m largest eigenvalues λν of
a Hermitian matrix O satisfy

∑m
ν=1 λν � TrP′

mO = ∑m
ν=1 λ′

ν

for any rank m orthogonal projector P′
m, with λ′

ν the sorted
eigenvalues of P′

mOP′
m).

Otherwise we add to Sm the component |k⊥〉 of |k〉 orthog-
onal to Sm, obtaining an m + 1 dimensional SP subspace S ′

m

where Eq. (33) holds and still λν (ρ (1)
S ′

m
) = λν (ρ (1) ) for ν � m.

It is proved in Appendix A that the remaining smallest eigen-
value satisfies

λm+1
(
ρ

(1)
S ′

m

)
� pkλm+1

(
ρ

(1)
kS ′

m

) + pk̄λm+1
(
ρ

(1)
k̄S ′

m

)
. (35)

Hence
∑m

ν=1 λν (ρ (1) ) � ∑m
ν=1 pkλν (ρ (1)

kS ′
m

) + pk̄λν (ρ (1)
k̄S ′

m
)

due to the trace conservation (33) for S = S ′
m, which implies

Eq. (34) due to previous Ky Fan inequality. This completes
the proof for pure states. It is easily verified (see Appendix B)
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that these measurements map SDs onto SDs, as implied by
Eq. (30).

The previous proof actually shows the general relation

λ
(
ρ

(1)
S

) ≺ pkλ
(
ρ

(1)
kS

) + pk̄λ
(
ρ

(1)
k̄S

)
, (36)

valid for the restriction of ρ (1) to any subspace S ⊂ H ei-
ther containing or orthogonal to the measured state |k〉 ([PS ,

|k〉〈k|] = 0). Moreover ρ
(1)
S will be determined by a mixed

reduced state ρS = TrS⊥|�〉〈�| satisfying 〈�|OS |�〉 =
Tr ρS OS for any operator OS involving just creation and
annihilation of SP states ∈ S (see Appendix A). Equation (36)
then shows that (30) holds for general mixed fermionic states ρ

(assumed to commute with the fermion number N̂ = ∑
k c†

kck

or the number parity eiπN̂ ) since they can be purified and seen
as a reduced state ρS of a pure fermionic state |�〉 in an
enlarged SP space [Eq. (A5) in Appendix A]. �

3. More general ONG measurements and operations

By composing the basic measurements (27), more com-
plex operations satisfying (20) are obtained. In particular, a
measurement in a basis of SDs, which is obviously ONG,
results from the composition of all measurements {Pk, Pk̄} in a
given SP basis. Extension of the set of free operations beyond
the standard FLO set can also be considered. The proof of
Theorem 1 can be extended to more general single-mode
measurements.

Corollary 1. A general measurement on single-particle
mode k described by the operators

Mk = αPk + β Pk̄, Mk̄ = γ Pk + δPk̄, (37)

where M†
kMk + M†

k̄
Mk̄ = 1 (|α|2 + |γ |2 =|β|2 + |δ|2 =1),

is also a ONG operation. The proof is given in Appendix A
and implies that Eq. (30) will be satisfied for ρ

(1)
k(k̄)

, the
SPDMs obtained from |� ′

k(k̄)
〉 ∝ Mk(k̄)|�〉 and pk → p′

k =
〈�|M†

kMk|�〉 = 1 − p′̄
k
. This result entails that any pair of

Kraus operators Mk and Mk̄ for the occupation measurement
operation

ε(ρ) = PkρPk + Pk̄ρPk̄ = MkρM†
k + Mk̄ρM†

k̄
(38)

will also be ONG operations, since they are a special case of
(37) [αβ∗ + γ δ∗ = 0, i.e., (α β

γ δ ) unitary].
It is also possible to consider in the present context oper-

ations which do not conserve the fermion number N but still
generate states with definite particle number when applied to
such states. In this case it becomes necessary to extend the
partial order (2) to states with different particle number. We
then notice that Eq. (2) implies a similar majorization relation
(see Appendix C)

λ
(
D(1)

�

) ≺ λ
(
D(1)

�

)
(39)

for the sorted eigenvalues of the extended 2n×2n SPDM,

D(1) = ρ (1) ⊕ (1 − ρ (1) T ) =
(

ρ (1) 0
0 1 − ρ (1) T

)
, (40)

with spectrum (λ(ρ (1) ), 1 − λ(ρ (1) )) and elements 〈c†
k′ck〉

and 〈ck′c†
k〉, the trace Tr D(1) = n of which is fixed by the SP

space dimension and is N independent. For general states
we then say that |�〉 is not less one-body entangled than

|�〉 if Eq. (39) holds. Note that all SDs lead to the same
sorted spectrum λ(D(1) ) regardless of N , all being then least
entangled states, with (D(1) )2 = D(1) if and only if |�〉 is a SD.
Similarly, Eq. (20) for number conserving ONG operations
implies

λ(D(1) ) ≺
∑

j

p jλ
(
D(1)

j

)
(41)

for the extended densities. We then say that an operation not
conserving fermion number is ONG if it admits a set of Kraus
operators K j such that (41) is satisfied. Proposition 1 remains
then valid for general ONG operations replacing (2) by (39).
All previous properties satisfied by the entropies (15) extend
to entropies

E (|�〉) = S(D(1) ), (42)

with Tr f (D(1) ) = Tr f (ρ (1) ) + Tr f (1 − ρ (1) ). In particular,
Eq. (18) becomes just the von Neumann entropy of
D(1). Maximally one-body entangled states are now those
leading to

D(1) = 12n/2, (43)

which will maximize all entropies (42). Examples are pre-
vious GHZ-like states (25) in half-filled SP spaces (m = 2,
N = n/2 � 1).

Theorem 1 then implies the following result for the basic
measurement having ck and c†

k as operators.
Corollary 2. A measurement on single-particle mode k

described by the operators ck and c†
k , which satisfy c†

kck +
ckc†

k = 1, is a ONG operation:

λ(D(1) ) ≺ pkλ
(
D(1)

k

) + pk̄λ
(
D(1)

k̄

)
. (44)

Here pk = 〈c†
kck〉 = 1 − pk̄ , and D(1) and D(1)

k(k̄)
are the

extended SPDMs determined by ρ, ρk = ckρc†
k/pk and ρk̄ =

c†
kρck/pk̄ . Since these extended densities D(1)

k(k̄)
have clearly

the same spectrum as those obtained from PkρPk/pk and
Pk̄ρPk̄/pk̄ , Eq. (44) directly follows from Theorem 1 and
Eq. (C1). On the other hand, previous basic occupation mea-
surement (27) is just the composition of this measurement
with itself (see Appendix C).

This extension then enables us to consider the addition of
free ancillas (SDs of arbitrary N) as a free operation, as it
will not alter the spectrum of the extended SPDM D(1) in
the full SP space. We remark, however, that general “active”
FLO operations which do not conserve the fermion number
(for instance, a Bogoliubov transformation) may increase the
one-body entanglement determined by ρ (1). While we will not
discuss these operations here, we mention that if they are also
regarded as free one should consider instead the generalized
one-body entanglement, determined by the mixedness of the
full quasiparticle DM [20], as the associated resource (see also
Appendix C).

C. One-body entanglement as a resource

The identification of number conserving FLO operations
as ONG implies that they map SDs onto SDs, as verified in
Appendix B. It has been noted [59,60] that this fact ultimately
explains why the pure state FLO computation model can be
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efficiently simulated classically, as matrix elements of free
unitaries and outcome probabilities of free measurements can
be reduced to overlaps 〈�|�〉 between SDs, which can be
computed in polynomial time through a determinant [44].

In contrast, the simultaneous measurement of the occu-
pancy of two SP modes k and k′, described by operators
{M0 = Pk̄Pk̄′ ,M1 = Pk̄Pk′ + PkPk̄′ ,M2 = PkPk′ }, is not
free since M1 can map a SD onto a state with Slater number 2
[59], i.e., a one-body entangled state. A similar measurement
with m such outcomes may return a state with an exponen-
tially large (2m) Slater number [59], the expectation values
of which would be hard to evaluate classically. In [61] this
operation is identified with a charge detection measurement in
a system of free electrons, showing that it is possible to build
a controlled-NOT gate with just beamsplitters, spin rotations,
and charge detectors. The extended set of FLO plus charge
detection operations then enables quantum computation. If
the computational power of this model is to be linked to the
presence of a quantum resource, the ensuing free states and
operations would be S and O, respectively, and the results
derived here entail that one-body entanglement would be an
associated resource.

One-body entanglement can also be considered as a
resource for mode entanglement. In particular, mode entangle-
ment with definite particle number N or definite number parity
eiπN at each component requires one-body entanglement. A
first example was seen with the normal form (14) for a general
two-fermion state [11–13], where the entanglement between
the modes k (A) and k̄ (B), containing each one fermion, is
directly linked to one-body entanglement: The entanglement
entropy E (A, B) = S(ρA) = S(ρB) of this partition is just

E (A, B) =
∑

ν

f (λν ) = 1

2
E (|�〉) (45)

for any entropy S(ρ) = Tr f (ρ), where E (|�〉) = S(ρ (1) ) is
the corresponding one-body entanglement entropy (15) (as
〈c†

νcν ′ 〉 = 〈c†
ν̄cν̄ ′ 〉 = λνδνν ′ , 〈c†

νcν̄ ′ 〉 = 0). In particular any one-
body entangled state of two fermions in a SP space of
dimension 4 can be seen as an entangled state of two distin-
guishable qubits, allowing then the realization of tasks like
quantum teleportation [23]. In this case the one-body entan-
glement entropy also provides a lower bound to any bipartite
mode entanglement entropy [23].

For a general pure fermionic state |�〉 (with definite par-
ticle number or number parity) we now show that one-body
entanglement is always required in order to have bipartite
mode entanglement entropy E (A, B) > 0 with definite particle
number, or in general definite number parity, at each side
A and B: In such a case, and assuming sides A and B corre-
spond to orthogonal subspaces HA and HB of the SP space
H = HA ⊕ HB, the ensuing SPDM takes the block-diagonal
form ρ (1) = ρ

(1)
A ⊕ ρ

(1)
B , i.e.,

ρ (1) =
(

ρ
(1)
A 0

0 ρ
(1)
B

)
(46)

since for any kA ∈ HA, kB ∈ HB, c†
kA

ckB connects states with

different number parity at each side and hence 〈c†
kA

ckB〉 = 0 in
such a state. Then, if |�〉 is a SD, (ρ (1) )2 = ρ (1), implying

(ρ (1)
A(B) )

2 = ρ
(1)
A(B), i.e., the state at each side must be a SD

(a pure state) and no A-B entanglement is directly present.
For instance, a single fermion state 1√

2
(c†

kA
+ c†

kB
)|0〉 implies

entanglement between A and B but at the expense of involving
zero and one fermion at each side, i.e., no definite local num-
ber parity. In contrast, |�〉 = 1√

2
(c†

kA
c†

kB
+ c†

k′
A
c†

k′
B
)|0〉 leads to

entanglement between A and B with definite fermion number
(and hence number parity) at each side, but it is not a SD, i.e.,
it has nonzero one-body entanglement.

Expanding the state in a SD basis as |�〉 =∑
μ,ν CμνA†

μB†
ν |0〉, where A†

μ = ∏
k (c†

kA
)nkμ and B†

ν =∏
k (c†

kB
)nkν involve creation operators just on HA and

HB, respectively (with nkμ(ν) = 0, 1 and μ and ν labeling
all possible sets of occupation numbers, such that
〈0|AμA†

μ′ |0〉 = δμμ′ , 〈0|BνB†
ν ′ |0〉 = δνν ′ ), states with definite

number parity at each side correspond to (−1)
∑

k nkμ and
(−1)

∑
k nkν fixed for all μ and ν with Cμν �= 0. The reduced

DM of side A is ρA = ∑
μ,μ′ (CC†)μμ′A†

μ|0〉〈0|Aμ′ (and
similarly for ρB; see Appendix A), and there is entanglement
between A and B whenever ρA has rank �2, i.e., rank (C) � 2.
In such a case, previous argument shows that such |�〉 cannot
be a SD if the fermion number or number parity is fixed at
each side, i.e., NA or eiπNA fixed.

Due to the fermionic number parity superselection rule
[5,62], fixed number parity at each side is required in order to
be able to form arbitrary superpositions, i.e., arbitrary unitary
transformations of the local states, and hence to have entan-
glement fully equivalent to the distinguishable case. Fixed
particle number at each side may be also required if the
particle number or charge superselection rule applies for the
fermions considered.

The extension to multipartite mode entanglement is
straightforward: For a decomposition H = ⊕

i Hi of the SP
space into orthogonal subspaces Hi, and for component i
associated to subspace Hi, all elements of ρ (1) connecting
different components i and j will vanish if each component
is to have definite fermion number or number parity in a state
|�〉: 〈c†

ki
ck j 〉 = 0 ∀ ki, k j if i �= j. Thus,

ρ (1) =
⊕

i

ρ
(1)
i . (47)

If |�〉 were a SD, each ρ
(1)
i should then satisfy (ρ (1)

i )2 = ρ
(1)
i

and hence each subsystem would be in a pure SD state, im-
plying no entanglement between them. A one-body entangled
state is then required.

And when all previous subsystems contain just one
fermion, one-body entanglement is directly linked to stan-
dard multipartite entanglement. Consider an N-partite system
with Hilbert space L = ⊗N

i=1 Li, where Li is the Hilbert
space of the ith (distinguishable) constituent. Consider also
an N-fermion system with SP space H = ⊕N

i=1 Hi, such that
dim Hi = dim Li. This enables the definition of an isomor-
phism �i : Li → Hi between these two spaces: Any pure
separable state in L, |S〉L = ⊗N

i=1 |φi〉, with |φi〉 ∈ Li, can be
mapped to a SD:

|�〉 =
[

N∏
i=1

c†
i,φ

]
|0〉,= �(|S〉L), (48)

where c†
i,φ creates a fermion in the state �i(|φi〉) ∈ Hi.
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The map � : L → F is an isomorphism between L and
the subspace of F determined by the fermion states having
occupation number Ni = 1 in Hi ⊂ H. Hence any pure state
|�〉L of the multipartite system is mapped to a state |�〉 =
�(|�〉L) in F . Since there is a fixed fermion number (1)
in each constituent, the SPDM ρ (1) determined by |�〉 will
satisfy Eq. (47), implying here

ρ (1) =
⊕

i

ρi, (49)

where the elements of the matrix ρi are those of the
reduced state of the ith subsystem associated to |�〉L.
Thus, one-body entanglement monotones become E (|�〉) =
Tr f (ρ (1) ) = ∑

i Tr f (ρi ), being then equivalent to the multi-
partite version of the linear entropy of entanglement [6,63–65]
and constituting monotones for the multipartite entanglement
of the tensor product representation.

This link between one-body entanglement and multipartite
entanglement is not a surprise if we recall that performing
local operations on the multipartite system cannot increase,
on average, the mixedness of the local eigenvalues. Relation
(49) then implies that these operations cannot increase the
mixedness of the SPDM associated to the fermionic repre-
sentation, in agreement with Eq. (2). And any local unitary
in the tensor product representation can be implemented as a
one-body unitary in the fermion system, while local projective
measurements can be performed as occupation measurements,
both FLO operations which are one-body entanglement non-
generating. The overlap between one-body entanglement and
multipartite entanglement described here reinforces the idea
that the first could be the resource behind the computational
power of the quantum computation model described in [61],
since it consists of a mapping from qubits to fermions just like
the map � defined above.

III. CONCLUSIONS

We have shown that one-body entanglement, a measure of
the deviation of a pure fermionic state from a SD determined
by the mixedness of the SPDM ρ (1), can be considered as a
quantum resource. We have first provided a basis-independent
bipartitelike formulation of one-body entanglement in general
N-fermion states, which relates it with the correlation between
one and (N − 1)-body observables and is analogous to that
of systems of distinguishable components. Such formulation
leads to a Schmidt-like decomposition of the state, which con-
tains the common eigenvalues of the one and (N − 1)-body
DMs.

We have then identified the class of one-body entanglement
nongenerating operations through the rigorous majorization
relation (20). And we have shown in Theorem 1 that single
mode occupation measurements satisfy indeed this relation,
implying they will not increase, on average, the one-body
entanglement here defined. The ensuing theory then has SDs
as free states and number conserving FLO operations as free
operations. We have also considered in corollary 1 and 2
more general occupation measurements, showing they are also
ONG. Connections with mode entanglement and multipartite
entanglement have also been discussed, showing in particular
that one-body entanglement is required for entanglement with

fixed fermion number or number parity at each subsystem.
Present results provide the basis for a consistent resource
theory associated to quantum correlations beyond antisym-
metrization in fermionic systems, which should play a fun-
damental role in fermionic protocols beyond the FLO model.
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APPENDIX A: PROOF OF INEQUALITY (35)
AND COROLLARY 1

Proof. We first prove Eq. (35) for the lowest eigenvalue
of ρ

(1)
S ′

m
, where S ′

m is the subspace containing the measured SP

state |k〉 and the first m eigenstates of ρ (1). We write the lowest
eigenstate of ρ

(1)
S ′

m
as α|k〉 + β|k′〉, with |k′〉 ∈ S ′

m orthogonal to

|k〉, such that λm+1(ρ (1)
S ′

m
) is the smallest eigenvalue λ− of the

2×2 matrix

ρ
(1)
kk′ =

(〈c†
kck〉 〈c†

k′ck〉
〈c†

kck′ 〉 〈c†
k′ck′ 〉

)
. (A1)

Setting 〈c†
kck〉 = pk , its eigenvalues are

λ± = pk+pk′
2 ±

√
(pk−pk′ )2

4 + |〈c†
k′ck〉|2. (A2)

Writing again Pk = c†
kck , Pk̄ = ckc†

k = 1 − Pk , a general
state |�〉 can be expanded as

|�〉 =
∑
μ,μ′

PμPμ′ |�〉 =
∑
μ,μ′

√
pμμ′ |�μμ′ 〉, (A3)

where μ = k, k̄; μ′ = k′, k̄′ (so that
∑

μ,μ′ PμPμ′ = 1); and
|�μμ′ 〉 = PμPμ′ |�〉/√pμμ′ , with pμμ′ = 〈�|PμPμ′ |�〉, are
states with definite occupation of SP states |k〉 and |k′〉. We
then have pk = pkk′ + pkk̄′ , pk′ = pkk′ + pk̄k′ , and 〈c†

k′ck〉 =
r
√

pk̄k′ pkk̄′ , with |r| � 1. Thus, |〈c†
k′ck〉|2 � pk̄k′ pkk̄′ , and (A2)

implies λ− � pk+pk′
2 − pkk̄′ +pk̄k′

2 , i.e.,

λ− � pkk′ � pkλm+1
(
ρ

(1)
kS ′

m

) + pk̄λm+1
(
ρ

(1)
k̄S ′

m

)
, (A4)

since pkλm+1(ρ (1)
kS ′

m
) � pkk′ and λm+1(ρ (1)

k̄S ′
m

) = 0 (as the state

k is empty in ρ
(1)
k̄S ′

m
). This implies Eq. (35) since λm+1(ρ (1)

S ′
m

) =
λ−. �

We also mention that by considering the largest eigenvalue
λ+ in (A2) of a similar 2×2 block, such that the first eigenstate
(largest eigenvalue) of ρ (1) is spanned by |k〉 and |k′〉, it is ver-
ified, using again |〈c†

k′ck〉|2 � pk̄k′ pkk̄′ , that λ1(ρ (1) ) = λ+ �
pk + pk̄k′ � pkλ1(ρ (1)

k ) + pk̄λ1(ρ (1)
k̄

), since λ1(ρ (1)
k ) = 1 and

pk̄k′ � pk̄λ1(ρ (1)
k̄

), which is the first (m = 1) inequality in Eq.
(34).

The present proof of Theorem 1 also holds for general
mixed fermionic states ρ (assumed to commute with the
fermion number N̂ = ∑

k c†
kck or in general the number parity

eiπN̂ ) since they can always be purified, i.e., considered as
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reduced states ρS of a pure fermionic state

|�〉 =
∑
μ,ν

CμνA†
μB†

ν |0〉, (A5)

of definite number parity. Here A†
μ and B†

ν contain cre-
ation operators in S and in an orthogonal SP space S⊥,
respectively, satisfying 〈0|Aμ′A†

μ|0〉 = δμμ′ , 〈0|Bν ′B†
ν |0〉 =

δνν ′ , 〈0|Bν ′A†
ν |0〉 = 0. We may assume, for instance, that

{A†
μB†

ν |0〉} is a complete set of orthogonal SDs. Then ρS =
TrS⊥|�〉〈�| = ∑

μ,μ′ (CC†)μμ′ |μ〉〈μ′|, with |μ〉 = A†
μ|0〉 a

SD in S , satisfies 〈�|OS|�〉 = TrρSOS ∀ operators OS con-
taining creation and annihilation operators of SP states ∈ S .
Given then an arbitrary mixed fermionic state ρS Eq. (A5) is
a purification of ρS for any matrix C satisfying (CC†)μμ′ =
〈μ|ρS |μ′〉 (requires dimS⊥ � dimS).

Let us now prove Corollary 1, i.e., the extension of Theo-
rem 1 to the more general occupancy measurement operators
of Eq. (37). In terms of the states (28), the ensuing postmea-
surement states |� ′

k(k̄)
〉 ∝ Mk(k̄)|�〉 are

|� ′
k〉 = (α

√
pk |�k〉 + β

√
pk̄ |�k̄〉)/

√
p′

k, (A6)

|� ′̄
k〉 = (γ

√
pk |�k〉 + δ

√
pk̄ |�k̄〉)/

√
p′̄

k
, (A7)

where |α|2 + |γ |2 = 1, |β|2 + |δ|2 = 1, and

p′
k = pk|α|2 + pk̄|β|2, p′̄

k = pk|γ |2 + pk̄|δ|2, (A8)

with p′
k + p′̄

k
= 1. We have to prove

λ(ρ (1) ) ≺ p′
kλ

(
ρ ′(1)

k

) + p′̄
kλ

(
ρ ′(1)

k̄

)
, (A9)

where ρ ′(1)
k(k̄)

are now the SPDMs determined by the states (A6)
and (A7). The generalization of Eq. (33),

Tr ρ
(1)
S = Tr

[
p′

kρ
′(1)
kS + p′̄

kρ
′(1)
k̄S

]
, (A10)

still holds for any subspace S either orthogonal to or contain-
ing the SP state |k〉, as [Mk(k̄), c†

k′ck′ ] = 0 for both k′ = k or k′
orthogonal to k [see comment below Eq. (32)]. Proceeding
in the same way and using previous notation, we see that
p′

kλm+1(ρ ′(1)
kS ′

m
) is less than or equal to the smallest eigenvalue

λk− of the 2×2 matrix( |α|2 pk αβ∗〈c†
k′ck〉

α∗β〈c†
kck′ 〉 |α|2 pkk′ + |β|2 pk̄k′

)
, (A11)

while p′̄
k
λm+1(ρ ′(1)

k̄S ′
m

) is less than or equal to the smallest
eigenvalue λk̄− of a similar matrix with α → γ , β → δ. It
is then straightforward to prove, using Eq. (A2) for λ−, that
λm+1(ρ (1)

S ′
m

) = λ− � λk− + λk̄−, since

λ− − λk− − λk̄− =
√

(|α|2 pkk̄′ −|β|2 pk̄k′ )2

4 + |αβ〈c†
k′ck〉|2

+
√

(|γ |2 pkk̄′ −|δ|2 pk̄k′ )2

4 + |γ δ〈c†
k′ck〉|2

−
√

(pkk̄′ −pk̄k′ )2

4 + |〈c†
k′ck〉|2

� 0, (A12)

with equality for |r| = 1 (|〈c†
k′ck〉| = √

pk̄k′ pkk̄′ ) or |α| = |β|.
Then the mth inequality in (A9),

m∑
ν=1

λν (ρ (1) ) �
m∑

ν=1

p′
kλν

(
ρ ′(1)

k

) + p′̄
kλν

(
ρ ′(1)

k̄

)
, (A13)

follows due to (A10) and the previously used Ky Fan in-
equality. Equation (A9) also holds within any subspace S
containing (or orthogonal to) the SP state |k〉. �

APPENDIX B: OCCUPATION MEASUREMENTS
ON FREE STATES

For a one-body entanglement nongenerating operation,
Eq. (20) implies that the Kraus operators K j satisfying it
should convert free states onto free states, i.e., SDs onto SDs.
For the occupation measurements of Eq. (27) (Theorem 1),
Eq. (37) (Corollary 1), and Corollary 2, this property can be
easily verified. Let

|�〉 =
( N∏

ν=1

c†
ν

)
|0〉, (B1)

be a general SD for N fermions, with {cν, c†
ν ′ } = δνν ′ . A gen-

eral fermion creation operator c†
k = ∑n

ν=1 ανc†
ν , with αν =

{cν, c†
k} and {ck, c†

k} = ∑
ν |αν |2 = 1, can be written as

c†
k = √

pkc†
k‖ + √

pk̄c†
k⊥ , (B2)

where
√

pkc†
k‖ = ∑

ν�N ανc†
ν is the component in the sub-

space occupied in |�〉, with pk = ∑
ν�N |αν |2 = 〈�|c†

kck|�〉
the occupation probability of SP state k and c†

k‖ |�〉 = 0,

while
√

pk̄c†
k⊥ = ∑

ν>N ανc†
ν is the orthogonal complement,

with pk̄ = ∑
ν>N |αν |2 = 1 − pk and ck⊥|�〉 = 0. If pk > 0,

through a unitary transformation of the c†
ν for ν � N , they can

be chosen such that c†
k‖ = c†

ν=N . Hence, for the measurement
operators of Corollary 2, we see that

ck|�〉 = √
pkck‖ |�〉, c†

k |�〉 = √
pk̄c†

k⊥|�〉 (B3)

are clearly orthogonal SDs. For the measurement operators of
Theorem 1, Eq. (B3) implies

c†
kck|�〉 = √

pkc†
kck‖ |�〉, (B4)

ckc†
k |�〉 = √

pk̄ckc†
k⊥|�〉 = √

pk̄c†
k′ck‖ |�〉, (B5)

where c†
k′ = √

pk̄c†
k‖ − √

pkc†
k⊥ , which are also orthogonal

SDs ({ck, c†
k′ } = 0). And in the case of the generalized mea-

surement based on the operators (37), we see from (B4) and
(B5) that

Mk|�〉 = (α
√

pkc†
k + β

√
pk̄c†

k′ )ck‖ |�〉, (B6)

Mk̄|�〉 = (γ
√

pkc†
k + δ

√
pk̄c†

k′ )ck‖ |�〉 (B7)

are as well SDs, not necessarily orthogonal.
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APPENDIX C: COMPARING ONE-BODY
ENTANGLEMENT OF STATES WITH

DIFFERENT PARTICLE NUMBER

Given two pure fermionic states |�〉 and |�〉 with the same
fermion number N , such that their associated SPDMs have the
same trace Tr ρ

(1)
� = Tr ρ

(1)
� = N , |�〉 is considered not less

entangled than |�〉 if Eq. (2) [λ(ρ (1)
� ) ≺ λ(ρ (1)

� )] is satisfied.
Here λ(ρ (1) ) denotes the spectrum of ρ (1) sorted in decreasing
order. It can be shown that

λ
(
ρ

(1)
�

) ≺ λ
(
ρ

(1)
�

) �⇒ λ
(
D(1)

�

) ≺ λ
(
D(1)

�

)
, (C1)

for the extended DM defined in Eq. (40), the spectrum of
which is (λ, 1 − λ). Equation (C1) follows from the straight-
forward properties (see, for instance, [49,50]) (i) λ ≺ λ′ �⇒
1 − λ ≺ 1 − λ′ and (ii) λ ≺ λ′ and μ ≺ μ′ �⇒ (λ,μ) ≺
(λ′,μ′), where λ,λ′,μ,μ′ ∈ Rn are sorted in decreasing or-
der and (λ,μ) ∈ R2n denotes the sorted vector resulting from
the union of λ and μ. The converse relation in (C1) does
not hold. These properties also entail that the majorization
relation (20) implies

λ(D(1) ) ≺
∑

j

p jλ
(
D(1)

j

)
, (C2)

for the corresponding extended densities.
The advantage of Eqs. (C1) and (C2) is that within a

fixed SP space the extended vectors can always be com-
pared through majorization, regardless of the particle number
N , since Tr D(1) = n = dim H is fixed by the SP space di-
mension. For two states |�〉 and |�〉 with definite but not
necessarily coincident fermion number, we then say that |�〉
is not less entangled than |�〉 if Eq. (C1) holds. In particular,
it is clear that—up to a permutation—the same eigenvalue
vector λ(D(1) ) is assigned to all SD states in the Fock space
of the system, irrespective of N , so that they are all least
entangled states.

The extension of Definition 1 to general ONG opera-
tions, not necessarily conserving the particle number, is now
straightforward: a quantum operation is ONG if it admits a
set of Kraus operators {K j} satisfying Eq. (C2) ∀ ρ, with
D(1) and D(1)

j the extended SPDMs determined by ρ and

ρ j , respectively. This extension allows us to consider oper-
ations such as that of Corollary 2, with Kraus operators ck

and c†
k . The extended SPDMs D(1) of the postmeasurement

states 1√
pk

ck|�〉 and 1√
pk̄

c†
k |�〉 have clearly the same spec-

trum as those obtained from 1√
pk

c†
kck|�〉 and 1√

pk̄
ckc†

k |�〉—up
to a permutation—with the same probabilities, such that
Theorem 1 directly implies Corollary 2. In fact, the number
conserving occupation measurement is just a composition of
the former with itself, as (ck, c†

k ) ◦ (ck, c†
k ) = (ckc†

k , c†
kck ).

We can therefore embed the fermion number preserving
resource theory within a more general theory in which the
set of free states is the convex hull of SD states—of all
possible particle numbers—and where the free operations
are one-body unitaries and operations based on the {ck, c†

k}
measurement mapping SDs onto SDs. Any SD and hence
any free state can be prepared from an arbitrary state ρ by
means of free operations only, i.e., by applying one-body
unitaries and successive {ck, c†

k} measurements with postse-
lection. Since the starting state is arbitrary, any free state in
this theory can be converted into any other free state by free
operations. Allowing the particle number to vary implies that
appending free states is also a free operation, since this will
not alter the spectrum of the associated D(1) in the full SP
space.

We have here considered pure states |�〉 with definite
fermion number and operators K j which produce states K j |�〉
with definite fermion number when applied to such states,
suitable for systems where a particle number superselec-
tion rule applies. The extension to the case where general
fermionic Gaussian states (with no fixed particle number
but definite number parity) and active FLO operations are
also considered free is straightforward. It requires the con-
sideration of the full extended 2n×2n quasiparticle density
matrix containing in addition the pair creation and annihila-
tion contractions 〈c†

kc†
k′ 〉 and 〈ck′ck〉, the eigenvalues of which

remain invariant under general Bogoliubov transformations.
Its mixedness determines a generalized one-body entangle-
ment [20] which vanishes if and only if the state is a SD or a
quasiparticle vacuum, i.e., a general pure fermionic Gaussian
state.
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