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Nonstabilizer eigenstates of Clifford operators are natural candidates for endpoints of magic-state distillation
routines. We provide an explicit bestiary of all inequivalent nonstabilizer Clifford eigenstates for qutrits and
ququints. For qutrits, there are four nondegenerate eigenstates and two families of degenerate eigenstates. For
ququints, there are eight nondegenerate eigenstates and three families of degenerate eigenstates. Of these states,
a simultaneous eigenvector of all Clifford symplectic rotations known as the qutrit strange state is distinguished
as both the most magic qutrit state and the most symmetric qutrit state. We show that no analog of the qutrit
strange state (i.e., no simultaneous eigenvector of all symplectic rotations) exists for qudits of any odd-prime
dimension d > 3.
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I. INTRODUCTION

Magic-state distillation, first presented in [1,2], is an ap-
proach to fault-tolerant quantum computing [3] that relies on
ancilla qudits in nonstabilizer states known as magic states to
promote the Clifford group to universal quantum computation.
Magic-state distillation for qubits is a rich and well-studied
subject (see, e.g., [1,2,4–13]). However, magic-state distilla-
tion for qudits of other dimensions is less well studied, but has
attracted some interest [14–17] in the past few years. These
works focus particularly on qudits of odd-prime dimension.

There are several reasons to study magic-state distillation
with qudits of odd-prime dimension. There may be practical
advantages to using qudits for magic-state distillation instead
of qubits, as shown, e.g., in [16]. There are also important
theoretical motivations to study qudit magic-state distillation.
In particular, qudit magic-state distillation has been used to
identify contextuality as a necessary and possibly sufficient
resource for universal quantum computation in [18,19]. More-
over, as shown in [20–24], the existence of discrete Wigner
functions offers new possibilities for defining a resource the-
ory of nonstabilizer states not available for qubits (or, more
generally, quantum systems of even dimension). Given these
motivations, we feel it is worthwhile to explore the state
space of qudits of the smallest odd dimensions, i.e., qutrits
and ququints. These dimensions also happen to be prime,
which simplifies our analysis. We also remark that a variety
of experimental realizations of qutrits do exist (e.g., [25–27]).

Both of the qubit magic states identified in [1], |H〉 and
|T 〉, are eigenstates of Clifford operators. Their symmetry
properties under Clifford transformations can easily be vi-
sualized using the stabilizer octahedron inscribed within the
Bloch sphere. For example, |H〉 states lie directly above edges
of the stabilizer octahedron, and hence there are 12 in total.
|T 〉 states lie directly above faces of the stabilizer octahedron,
and hence there are 8 in total. |T 〉 states are farther from the
stabilizer octahedron than |H〉 states, so they may, in principle,

be distilled with higher threshold to noise. In contrast, qudit
state space is substantially more abstract; see, e.g., [28–34]
for a detailed discussion of qudit and qutrit state space in
particular. Many basic features about qudit states therefore
remain relatively opaque. To overcome this difficulty, we per-
form some elementary but hopefully useful calculations with
a view towards facilitating future work on qudit magic-state
distillation.

In particular, to identify states that may be candidates for
endpoints of magic-state distillation routines, we explicitly
enumerate the eigenstates of single-qutrit and single-ququint
Clifford operators, and study their symmetries under Clifford
transformations.1 We consider candidate magic states to be
equivalent if they are related to each other by a single-qudit
Clifford unitary.

For qutrits, we find that there are four inequivalent
nondegenerate nonstabilizer Clifford eigenstates, and two
inequivalent one-complex-parameter families of degenerate
qutrit Clifford eigenstates. For ququints, we find that there are
eight inequivalent nondegenerate nonstabilizer Clifford eigen-
states, three inequivalent one-complex-parameter families
of degenerate Clifford eigenstates, and one two-complex-
parameter family of degenerate Clifford eigenstates. For
qutrits, most of these states have been previously identified
in the papers [14,15,17,20,23], in the context of qutrit magic-
state distillation, though one of the degenerate families of
states has not been previously discussed in the literature. For
ququints, most of these states appear unstudied, but some dis-

1It is not necessary, in principle, for magic states to be eigen-
states of Clifford operators. For example, the qubit state |π/3〉 =

1√
2
(|0〉 + eiπ/3 |1〉) is the endpoint of a distillation routine given in

[17], and can be used for state injection, though it is not an eigen-
state of a Clifford operator. However, it appears easier to construct
distillation schemes for Clifford eigenstates.
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cussion of the equatorial magic state (the state |XVŜ〉 defined
below) appears in [16,35,36] and also in [20].

The mana of a state, introduced in [23], is a calculable
measure of its usefulness as a magic state. The mana is only
defined for qudits of odd dimension. We are able to provide an
alternative characterization of the four nondegenerate qutrit
magic states as local maxima of the mana. The qutrit states
with maximal mana are the strange state |S〉 and the Norell
state |N〉, defined in Sec. III. The most magic ququint state is
|B,−e2π i/3〉, defined in Sec. IV. We numerically verified that
this state maximizes the mana over all pure ququint states.

The size of the orbit of each state under the Clifford group
is a measure of how “symmetric” a state is, under Clifford
transformations, with smaller orbits corresponding to more
symmetric states. We compute this quantity for each of the
nondegenerate eigenstates and find that the strange state is
the most symmetric qutrit Clifford eigenstate, while the state
|B,−1〉 defined in Sec. IV is the most symmetric ququint
Clifford eigenstate.

In Sec. V, we show how to use these results to construct
twirling schemes that can be used prior to magic-state dis-
tillation for each of the candidate magic states. Some qutrit
magic-state distillation routines were presented in [14,15,17].
Distillation routines with the state |S〉 were not known until
the recent work [37].

The qutrit strange state is distinguished as not only the
most magic state, but also the most symmetric qutrit Clifford
eigenstate. The size of its orbit under the Clifford group is 9
because it is a simultaneous eigenvector of the set of symplec-
tic rotations. In Sec. VI, we show that the existence of such a
state is unique to d = 3—there is no simultaneous eigenvector
of symplectic rotations for any higher odd prime. The qutrit
strange state is, therefore, particularly special among all qudit
Clifford eigenstates.

Related work, in the context of symmetric, information-
ally complete, positive operator-valued measures, appears in
[32,38–42]. Alternative approaches to magic states as eigen-
states of permutation operators appear in [43–45].

II. PRELIMINARIES

In this section, we very briefly review some basic facts
associated with fault-tolerant quantum computing using qu-
dits of odd-prime dimension, and establish the conventions
and notations used throughout the paper. The facts that we
summarize here have been widely used in the literature: see,
e.g., [18,21,23,35,37,46] for similar summaries.

Henceforth, we will use the word qudit to refer to a quan-
tum system of odd-prime dimension p. Let ωp = e2π i/p and
i, j, k, n ∈ Zp. In this paper, we will focus exclusively on
single-qudit operators and states.

Definition 1. The higher-dimensional generalization of the
single-qubit Pauli group, denoted as Pp, known as the single-
qudit Heisenberg-Weyl displacement group, is the group
generated by the operators

X |n〉 = |n + 1〉 , Z |n〉 = ωn
p |n〉 , (2.1)

which satisfy ZX = ωpXZ .
There are p2 linearly independent Heisenberg-Weyl dis-

placement operators, which can be parameterized using a

symplectic vector χ = (u, v), where u, v ∈ Zp. These are
conventionally defined as follows:

Dχ = ωuv2−1

p X uZv. (2.2)

Each Heisenberg-Weyl displacement operator (other than
the identity) has p orthogonal eigenstates, with eigenvalues
ωk

p:

Dχ |χ ; k〉 = ωk
p |χ ; k〉 . (2.3)

Eigenstates of Heisenberg-Weyl displacement operators are
known as stabilizer states. We denote the set of stabilizer
states as S . Note that both Dχ and Dn

χ = Dnχ have the same
eigenvectors. To count the total number of stabilizer states in
p dimensions, we observe that there are p + 1 linearly inde-
pendent symplectic vectors: (1,0), (0,1), (0,2), . . . , (0, p − 1).
Therefore, there are p(p + 1) distinct single-qudit stabilizer
states, as reviewed in, e.g., [46].

A. The single-qudit Clifford group and SL(2,Zp)

Definition 2. The single-qudit Clifford group C is defined as
the set of all unitary operators that map qudit Pauli operators
to qudit Pauli operators,

C = {C ∈ U (p)|CPpC
† = Pp}. (2.4)

Note that as a consequence of this definition, Clifford trans-
formations map stabilizer states onto stabilizer states. While it
is not difficult to generalize this definition to multiple qudits,
in this paper we will focus our attention exclusively on the
single-qudit Clifford group. Since we are concerned with the
action of the Clifford group on qudit density matrices, we will
often ignore unphysical overall phases in the discussion that
follows.

A crucial property of single-qudit Clifford operators that
we will use extensively in this paper is that single-qudit
Clifford operators act on Heisenberg-Weyl displacement op-
erators as SL(2,Zp) transformations. As shown in [38], one
way of stating this fact is that the single-qudit Clifford group
is isomorphic to the semidirect product Z2

p � SL(2,Zp). We
summarize this result as the following theorem, which we
state without proof:

Theorem 1. Up to an overall phase, any single-qudit Clif-
ford operator C can be expressed as

C = DχVF̂ , (2.5)

where χ ∈ Z2
p, F̂ = (a b

c d) ∈ SL(2,Zp), and VF̂ is given by

VF̂ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1√
p

p−1∑
j,k=0

ω2−1b−1(ak2−2 jk+d j2 )
p | j〉 〈k| , b �= 0

p−1∑
k=0

ω2−1ack2

p |ak〉 〈k| , b = 0.

(2.6)

Note that a, b, c, and d ∈ Zp, and satisfy ad − bc = 1. Also,
2−1 denotes the inverse of 2 in the finite field Zp.

This is an isomorphism, in that the following relation is
obeyed (up to an overall phase):

Dχ1VF̂1
Dχ2VF̂2

= Dχ1+F̂1χ1
VF̂1F̂2

. (2.7)
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It is usually much more convenient to specify Clifford
operators as elements of Z2

p � SL(2,Zp), rather than as p×p
matrices in U (p).

Notation. We will exclusively use capital letters with over-
hats, i.e., F̂ , to denote elements of SL(2,Zp), i.e., 2×2
matrices. Capital letters without overhats denote elements of
U (p), i.e., p×p matrices.

The group SL(2,Zp) can be generated by two elements,

Ĥ =
( 0 1
−1 0

)
and Ŝ =

(1 0
1 1

)
. (2.8)

The complete single-qudit Clifford group is generated by the
operators H = VĤ and S = D(2−1,0)VŜ , which are explicitly
given by

H |k〉 = 1√
p

∑
j

ω jk
p | j〉 , VŜ |k〉 = ω2−1k2

p |k〉 . (2.9)

Notation. As is common in the mathematics literature, we
will use the notation 〈a, b, c, . . .〉 to denote the group gen-
erated by a, b, c, . . ., using a multiplication rule that is clear
from context. We can therefore write SL(2,Zp) = 〈Ĥ , Ŝ〉 or
C = 〈H, S〉. We will also use this notation to specify sub-
groups of either SL(2,Zp) or the single-qudit Clifford group.
For example, 〈H〉 denotes the subgroup of SL(2,Zp) consist-
ing of the four elements {1, Ĥ , Ĥ2, Ĥ3} isomorphic to Z4.

B. Discrete phase space

Wigner first observed in [47] that quantum states can be
represented as quasiprobability distributions over phase space,
known as Wigner functions. Discrete Wigner functions, de-
fined in [48,49], are the analog of Wigner’s construction for
finite-dimensional quantum systems of prime dimension for
which phase space is Zp ⊗ Zp. In particular, the following
construction of a discrete Wigner function, discussed ex-
tensively in [39,46,50], is particularly useful and has been
employed in [18,21].

Note that qubit Pauli operators are not only unitary, but
also Hermitian, and can therefore be used as a basis for
expressing single-qubit density matrices. However, the single-
qudit Heisenberg-Weyl operators defined in Eq. (2.2) (for
odd-prime dimensions p) are unitary but not Hermitian. To
construct a manifestly Hermitian basis for single-qudit density
operators, we define the discrete phase point operators as
follows:

A(0,0) = 1

p

p−1∑
u=0

p−1∑
v=0

D(u,v), (2.10)

Aχ = DχA(0,0)D
†
χ . (2.11)

The discrete Wigner function for a state ρ is defined in
terms of the phase point operators as

Wχ (ρ) = 1

p
tr (ρAχ ). (2.12)

The entries of the discrete Wigner function are p2 real num-
bers that completely characterize the quantum state ρ. For
normalized density matrices, only p2 − 1 of these numbers

are independent, and the following relation is satisfied:∑
χ

Wχ = 1. (2.13)

When the Wigner function is non-negative, it can be inter-
preted as a probability distribution on phase space [46,48].
The discrete Wigner function is a convenient way to visualize
higher-dimensional qudit states.

Clifford operators act as translations and symplectic rota-
tions on the phase point operators,

(DχVF̂ )Aψ (DχVF̂ )† = AF̂ψ+χ . (2.14)

We refer to the subgroup of the Clifford group consisting
of operators of the form VF̂ as the set of symplectic rota-
tions, and the set of Heisenberg-Weyl displacement operators
as symplectic translations. These operations can therefore be
efficiently simulated acting on states with a non-negative dis-
crete Wigner function, as explained in [21].

The set of states with a non-negative discrete Wigner func-
tion is a convex set known as the Wigner polytope. Perhaps
surprisingly, as observed in [21], the Wigner polytope con-
tains the stabilizer polytope, which is the set of mixtures of
stabilizer states, as a proper subset. Because Clifford opera-
tions on states within the Wigner polytope can be efficiently
simulated, the ability to prepare ancillas outside of the Wigner
polytope is a necessary condition for magic-state distillation.
In [18], it was also shown that negativity of the Wigner func-
tion is equivalent to contextuality with respect to stabilizer
measurements. It was also recently shown in [51] that no
finite magic-state distillation routine can distill states tight to
the boundary of any facet of the Wigner polytope [52], gen-
eralizing the well-known result for qubits presented in [53].
(See, also, [19,50,54,55] for related work.)

C. Measures of magic

In the magic-state model of quantum computation, ancilla
qudits in nonstabilizer states serve as a resource for achieving
universal quantum computation. This idea is made precise
in [23], who formulate a resource theory for nonstabilizer
states that is inspired by the analogous resource theory of
entanglement. In [23], a magic state is defined to be any pure
quantum state that is not a stabilizer state. The amount of
magic a state possesses can be quantified via the regularized
entropy of magic. Let us denote the relative entropy between
two states ρ and σ as

D(ρ; σ ) = tr [ρ(ln ρ − ln σ )]. (2.15)

Definition 3. The regularized entropy of magic, for a state
ρ, is defined to be 1/n times the minimum relative entropy
between ρ⊗n and any n-qudit stabilizer state σ , in the limit
n → ∞:

RM (ρ) = lim
n→∞

1

n
min
σ∈S

D(ρ⊗n; σ ). (2.16)

The regularized entropy of magic has several attractive
properties that justify treating it as a resource, as explained
in [23].

Unfortunately, the regularized entropy of magic is not
possible to compute. Thanks to the existence of the discrete
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Wigner function in odd dimensions, a powerful computable
alternative to regularized entropy of magic exists, which is the
mana, defined in [23].

Definition 4. The mana, M(ρ), of a state ρ is defined as

M(ρ) = ln

[∑
p,q

|W(p,q)(ρ)|
]
. (2.17)

To better understand the physical interpretation of mana,
it is convenient to define the sum negativity, sn(ρ), as the
absolute value of the sum of negative entries in the discrete
Wigner function of ρ:

sn(ρ) =
∑

χ : Wχ (ρ)<0

|Wχ (ρ)|. (2.18)

For states which are normalized, the mana can also be ex-
pressed in terms of sn(ρ) as

M(ρ) = ln[2sn(ρ) + 1]. (2.19)

Because negative entries act as an obstacle to classical sim-
ulation, it is satisfying that the sum negativity can also be used
to define a resource for quantum computation via Eq. (2.19).
In fact, it was shown in [23] that mana is the only meaningful
resource that can be defined from negativity of the Wigner
function. In particular, the most-negative entry of the discrete
Wigner function of a magic state is not a meaningful resource,
although it does determine the best theoretical threshold of a
magic-state distillation scheme that distills the given state, as
shown in [20].

Another computable measure of magic, known as thauma,
was defined recently in [24,56]. We remark that it would be
interesting to combine the above measures of magic with the
graph theoretic formalism of [57,58]. Our discussion focused
on qudits of odd-prime dimension; some related work for
qubits appears in [59,60].

III. EIGENSTATES OF QUTRIT CLIFFORD OPERATORS

Any pure quantum state that is not a stabilizer state could
be considered a magic state, as per the definition of magic,
given in [23]. Indeed, one generically expects that it is possi-
ble to use any such state to implement non-Clifford gates via
state injection. However, in qubit magic-state distillation, the
authors of [1] reserve the term magic state for two particular
single-qubit nonstabilizer states: |H〉 and |T 〉. These two states
are considered magic because not only can they be used for
state injection, but they can also be distilled via a magic-state
distillation protocol. A magic-state distillation protocol takes
many low-fidelity copies of the magic state as input and pro-
duces a single higher-fidelity magic state, using only Clifford
unitaries and stabilizer measurements. Here we ask, what are
the higher-dimensional analogues of Bravyi and Kitaev’s |T 〉
and |H〉 states?

An important property of |T 〉 and |H〉 states is that they
are eigenvectors of single-qubit Clifford operators. In partic-
ular, |H〉 is an eigenstate of the single-qubit Hadamard gate,
and |T 〉 is an eigenstate of the single-qubit Clifford operator
eiπ/4√

2
(1 1

i −i). This is manifestly apparent from their positions
in the Bloch sphere, directly above the faces (or edge) of the
stabilizer octahedron. It is clear from the analysis in [1], and

elsewhere, that this property plays an important role in facili-
tating the construction and analysis of distillation protocols.

Motivated by this observation, we give the following defi-
nition.

Definition 5. Define a single-qudit state |ψ〉 to be a qudit
magic state, if |ψ〉 is an eigenstate of a single-qudit Clifford
unitary and |ψ〉 is not a stabilizer state.

Strictly speaking, some of these states should be consid-
ered candidate magic states because distillation protocols for
these states have not yet been constructed.

Using the above definition for qubits, we find that there are
a total of 20 magic states. However, by applying single-qubit
Clifford transformation, 12 of these states (those lying above
the edges of the stabilizer octahedron) can be mapped to |H〉
and the remaining 8 states (those lying directly above the faces
of the stabilizer octahedron) can be mapped to |T 〉.

By analogy, we define the following natural notion of
equivalence.

Definition 6. We define two candidate magic states to be
Clifford equivalent, or simply equivalent, if they are related
by a single-qudit Clifford operation:

|m1〉 ∼ |m2〉 , if there exists a C ∈ C, such that

|m1〉 = C |m2〉 . (3.1)

If this is not the case, we say the two states are Clifford
inequivalent.

Let us emphasize that our definition of Clifford equiva-
lence is deliberately restricted to equivalence via single-qudit
Clifford unitaries for operational simplicity. Any magic-state
distillation protocol or state injection scheme for a magic state
|m〉 can be trivially adapted to also work for C |m〉. There-
fore, if any two magic states are related to each other by a
single-qudit Clifford transformation, then they should clearly
be regarded as equivalent under any reasonable definition of
equivalence.

However, if one allows for multiqudit operations, then
more general notions of equivalence may be possible. Given
a sufficient number of copies, Nm, of a magic state |m〉, it
may be possible to obtain Nψ copies of another quantum state
|ψ〉, using multiqudit Clifford unitaries and stabilizer mea-
surements (via, e.g., state injection). An interesting question
is then, what is the best possible asymptotic rate of conver-
sion, R(|ψ〉 , |m〉) = Nψ/Nm, that is attainable, and for which
states |ψ〉 is this rate equal to one? A necessary condition for
R(|ψ〉 , |m〉) = 1 is that |ψ〉 and |m〉 have an identical relative
entropy of magic [23]. This is guaranteed to be the case if
|ψ〉 = C |m〉 for some Clifford unitary C, but it is, in principle,
possible that there are other single-qudit states |φ〉 not related
to |ψ〉 by a single-qudit Clifford unitary that also possess the
same relative entropy of magic. We do not pursue this more
general notion of equivalence here, but we note that some
interesting bounds on interconversion of qutrit states appear
in [24]. (It turns out that all the nondegenerate magic states
identified in this paper have unequal mana or thauma, and
hence they must be inequivalent even in this more general
sense.)

Below we will identify all Clifford-inequivalent magic
states for qutrits and ququints, and compute some of their
basic properties.
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Before we proceed, let us observe that we could have
instead chosen to define a magic state as any single-qudit state
which is a local maximum of the relative entropy of magic.
This would perhaps be a more meaningful definition, but,
unfortunately, the relative entropy of magic for an arbitrary
single-qutrit state is not feasible to compute, as far as we
know. However, in the Appendix, we analytically determine
all qutrit states which locally maximize the mana and we find
that these states coincide with the nondegenerate single-qutrit
Clifford eigenstates identified in this section.

A. Conjugacy classes of the single-qutrit Clifford group

The process of identifying all Clifford-inequivalent qudit
magic states is facilitated greatly by computing the conjugacy
classes of the single-qudit Clifford group. Recall that two
elements, g1 and g2, of a group G are said to be in the same
conjugacy class, denoted as [g1] or [g2], if there exists an
h ∈ G such that hg1h−1 = g2.

Suppose two Clifford operators C1 and C2 are in the same
conjugacy class [C1] of the Clifford group; then it is easy to
see that the eigenvectors of C1 are related to the eigenvectors
of C2 by a Clifford transformation. Hence, to enumerate all
Clifford-inequivalent magic states, we only need to compute
eigenvectors of one representative of each conjugacy class of
the Clifford group.

Note that if C ∈ C, the conjugacy class [C] and [C−1] may
be different, but both C and C−1 have identical eigenspaces.
To simplify the subsequent analysis, we define an additional
equivalence for elements of the Clifford group.

Definition 7. We say that two different elements of the
single-qudit Clifford group, C1 and C2, are eigenspace equiv-
alent if there exists a single-qudit Clifford unitary C that acts
as a bijection from the eigenspace of C1 to the eigenspace of
C2. We define the equivalence classes of Clifford operators
with respect to this equivalence relation as the set of reduced
conjugacy classes.

We denote the reduced conjugacy classes as [[C]]. Note
that if C1 and C2 belong to the same conjugacy class of the
single-qudit Clifford group, they automatically belong to the
same reduced conjugacy class.

To enumerate all inequivalent qudit magic states, we must
enumerate the eigenvectors of one representative of each
reduced conjugacy class of the single-qudit Clifford group.
In a slight abuse of terminology, we may use the phrase
“eigenvectors of a conjugacy class” to mean the eigenvec-
tors of a representative operator of that reduced conjugacy
class.

1. Conjugacy classes of SL(2,Z3)

As reviewed in Sec. II, single-qutrit Clifford unitaries are
(up to an overall phase) in one-to-one correspondence with
Z2

3 � SL(2,Z3). The easiest way to explicitly compute the
conjugacy classes of the single-qutrit Clifford group is to
first compute the conjugacy classes of SL(2,Z3). The conju-
gacy classes of SL(2,Z3) are well known (see, e.g., [39,61])
and can also be computed directly using a computer algebra
system without difficulty. We find they are given by the fol-
lowing:

[Î] =
{(1 0

0 1

)}
, (3.2)

[−Î] =
{(−1 0

0 −1

)}
, (3.3)

[Ĥ ] =
{(0 1

2 0

)
,
(0 2

1 0

)
,
(1 1

1 2

)
,
(1 2

2 2

)
,
(2 1

1 1

)
,
(2 2

2 1

)}
, (3.4)

[Ŝ] =
{(1 0

1 1

)
,
(1 2

0 1

)
,
(2 2

1 0

)
,
(0 2

1 2

)}
, (3.5)

[Ŝ2] =
{(1 0

2 1

)
,
(1 1

0 1

)
,
(2 1

2 0

)
,
(0 1

2 2

)}
, (3.6)

[N̂] =
{(2 0

2 2

)
,
(2 1

0 2

)
,
(1 1

2 0

)
,
(0 1

2 1

)}
, (3.7)

[N̂−1] =
{(2 0

1 2

)
,
(2 2

0 2

)
,
(1 2

1 0

)
,
(0 2

1 1

)}
. (3.8)

Here, we have defined N̂ = ŜĤ2.
Let us also list the subgroups of SL(2,Z3) for future use. There are 14 proper subgroups of SL(2,Z3), which can be divided

into 6 conjugacy classes. Apart the trivial subgroup consisting of only the identity, these are as follows:
(i) One subgroup of size 8 isomorphic to the quaternion group, generated by Ĥ and Ĥ ′ = (2 2

2 1).

(ii) Four subgroups of size 6 isomorphic to Z6, each generated by one of the elements of [N̂].
(iii) Three subgroups of size 4 isomorphic to Z4, which are the three groups generated by Ĥ , Ĥ ′, and Ĥ ′′ = ĤĤ ′.
(iv) Four subgroups of size 3 isomorphic to Z3, each generated by one of the elements of [Ŝ].
(v) One subgroup of size 2 isomorphic to Z2, generated by 2̂.
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2. Conjugacy classes of Z2
3 � SL(2,Z3)

We now turn our attention to conjugacy classes of the single-qutrit Clifford group, which is isomorphic to Z2
3 � SL(2,Z3).

By direct computation, we find four of the conjugacy classes of SL(2,Z3) directly translate into the following conjugacy classes
of the Clifford group:

[H] = {
D �χVF̂ | χ ∈ Z2

3, F̂ ∈ [Ĥ]
}
, (3.9)

[N] = {
D �χVF̂ | χ ∈ Z2

3, F̂ ∈ [N̂]
}
, (3.10)

[N−1] = {
D �χVF̂ | χ ∈ Z2

3, F̂ ∈ [N̂−1]
}
, (3.11)

[V−Î] = {
D �χVF̂ | χ ∈ Z2

3, F̂ ∈ [−Î]
}
, (3.12)

where we defined N = VN̂ .
The conjugacy class of the identity in SL(2,Z3) splits into two different conjugacy classes in Z2

3 � SL(2,Z3),

[I] = {I}, (3.13)

[Pauli] = {
D �χ | χ ∈ Z2

3, χ �= (0, 0)
}
. (3.14)

The conjugacy classes [S] and [S2] [both of which contain an element of the form (1 0
γ 1)], also both split into two different

conjugacy classes,

[VS2 ] =
{

D(0,v)V(1 0
2 1

), D(u,0)V(1 1
0 1

), D(u,−u)V(2 1
2 0

), D(u,u)V(0 1
2 2

)
}

, (3.15)

[XVS2 ] =
{

D(u∗,v)V(1 0
2 1

), D(u,v∗ )V(1 1
0 1

), D(u,−u+v∗ )V(2 1
2 0

), D(u,u+v∗ )V(0 1
2 2

)
}

, (3.16)

[VŜ] =
{

D(0,v)V(1 0
1 1

), D(u,0)V(1 2
0 1

), D(u,−u)V(0 2
1 2

), D(u,u)V(2 2
1 0

)
}

, (3.17)

[XVŜ] =
{

D(u∗,v)V(1 0
1 1

), D(u,v∗ )V(1 2
0 1

), D(u,−u+v∗ )V(0 2
1 2

), D(u,u+v∗ )V(2 2
1 0

)
}

. (3.18)

In the above expressions, u and v denote any element of
Z3; and u∗ and v∗ denote any nonzero element of Z3.

In summary, we find that there are a total of 10 conjugacy
classes for the single-qutrit Clifford group.

3. Eigenvectors of Clifford conjugacy classes

Let us now calculate the eigenvectors of a representative
operator for each conjugacy class. In what follows, we denote
the eigenvector of an operator A with eigenvalue a as |A, a〉.
If the eigenspace of A is degenerate, we write the state as
|A, a; x, y, . . .〉, where x, y, . . . parametrize the degenerate
eigenspace.

The reduced conjugacy class [I] is trivial and the eigen-
vectors of [Pauli] are stabilizer states. The eigenvectors of the
remaining conjugacy classes are as follows.

4. Eigenvectors of [V−Î]

The eigenvectors of V−Î include the two-dimensional fam-
ily of degenerate eigenvectors,

|V−Î, 1; a, b〉 = a |0〉 + b(|1〉 + |2〉), (3.19)

and the nondegenerate eigenvector,

|V−Î,−1〉 = (|1〉 − |2〉)/
√

2. (3.20)

Note that V−Î = H2 coincides with the phase point operator
A(0,0) and commutes with H , N , and N−1. The eigenvectors of
H , N , and N−1 are also eigenvectors of V−Î .

5. Eigenvectors of [VŜ] and [V −1
Ŝ

]

Both VŜ and V −1
Ŝ

have the same eigenvectors and thus
belong to the same reduced conjugacy class. The eigenvectors
of VŜ are the stabilizer state, |VŜ, 1〉 = |0〉 and

∣∣VŜ, ω
2
3; γ , δ

〉 = γ |1〉 + δ |2〉 . (3.21)

6. Eigenvectors of [N] and [N−1]

N and N−1 belong to different conjugacy classes, but have
the same eigenvectors; so they both belong to the same re-
duced conjugacy class. The eigenvectors of N are

|N, 1〉 = |N−1, 1〉 = |0〉 , (3.22)

∣∣N, ω2
3

〉 = |N−1, ω3〉 = 1√
2

(|1〉 + |2〉) ≡ |N+〉 , (3.23)

∣∣N,−ω2
3

〉 = |N−1,−ω3〉 = 1√
2

(|1〉 − |2〉). (3.24)
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The states |N,−eiπ/3〉 and |N, eiπ/3〉 are not related to each
other by any Clifford operator; both are also eigenvectors of
V−Î .

The set of convex mixtures of these states forms a planar
slice of qutrit phase space. This is shown in Fig. 7.

7. Eigenvectors of [H]

The eigenvectors of H are

|H, i〉 = 1√
2

(|1〉 − |2〉) ≡ |S〉 , (3.25)

|H, 1〉 = cos θ |0〉 + 1√
2

sin θ (|1〉 + |2〉) ≡ |H+〉 , (3.26)

|H,−1〉 = sin θ |0〉 − 1√
2

cos θ (|1〉 + |2〉) ≡ |H−〉 , (3.27)

where θ = 1
2 arctan

√
2. The eigenvectors |H, 1〉 and |H,−1〉

are related to each other by the Clifford transformation |H1〉 =
V

(
1 1
1 2)

|H−1〉.
The planar region of the qutrit state space spanned by con-

vex mixtures of the eigenvectors of H is shown in Fig. 7. Note
that H−1 has eigenvalues −i, 1,−1. (It is only because we
are ignoring overall phases in our definition of the single-qudit
Clifford group that H−1 is in the same conjugacy class as H .)

8. Eigenvectors of [XVŜ] and [XV −1
Ŝ

]

XVŜ and (XVŜ )−1 belong to different conjugacy classes, but
have the same eigenvectors. The eigenvectors for XVŜ and its
inverse were already studied in [35], and distillation routines
for these states were studied in [15]. In terms of ξ = e2π i/9,
these can be written as

|XVŜ, ξ
7〉 = ξ 8 |0〉 + ξ |1〉 + |2〉 , (3.28)

|XVŜ, ξ
4〉 = ξ 2 |0〉 + ξ 7 |1〉 + |2〉 , (3.29)

|XVŜ, ξ 〉 = ξ 5 |0〉 + ξ 4 |1〉 + |2〉 . (3.30)

One can check that the different eigenvectors are related to
each other by multiplication by Z . So there is one inequivalent
magic state, which we take to be

|XVŜ〉 = ξ 5 |0〉 + ξ 4 |1〉 + |2〉 . (3.31)

B. Qutrit Clifford eigenstates

In summary, we find that there are four Clifford-
inequivalent nondegenerate qutrit Clifford eigenstates,

|S〉 , |H, 1〉 , |N+〉 , and |XVŜ〉 . (3.32)

FIG. 1. This diagram illustrates all inequivalent qutrit Clifford
eigenstates, depicted as points, and their corresponding reduced
conjugacy classes, depicted as colored regions. One-parameter de-
generate families of eigenstates are represented by curves.

In addition, there are two Clifford-inequivalent families of
degenerate Clifford eigenspaces,

|V−Î, 1; α, β〉 = α |0〉 + β(|1〉 + |2〉), (3.33)

|VŜ, ω
2; γ , δ〉 = γ |1〉 + δ |2〉 . (3.34)

The two degenerate eigenspaces |V−Î, 1; α, β〉 and
|VŜ, ω

2; γ , δ〉 only intersect at points that are Clifford
equivalent to |0〉 and |N+〉.

The generalized “hypergraph” in Fig. 1 provides a crude
graphical summary of these magic states and their properties.
(This is reminiscent of the hypergraph construction of [62].)
The figure consists of several points and lines, contained
within intersecting colored regions. In this figure, each (re-
duced) conjugacy class of the Clifford group is represented by
a colored region. Each nondegenerate, inequivalent eigenstate
is depicted as a point, and each degenerate family of eigen-
states is depicted as a line. An eigenstate of an operator A
belonging to [[A]] is contained within the region correspond-
ing to [[A]]. Some magic states, such as |S〉, are contained in
more than one region because they are simultaneous eigenvec-
tors of operators belonging to different conjugacy classes.

In the next sections, we discuss each of the candidate magic
states in detail. This discussion is summarized in Table I.
An alternate derivation of these states as qutrit states that
maximize the mana is presented in the Appendix.

1. The strange state |S〉
The state |H, i〉 is also known as the strange state |S〉, and

was identified as one of the two states that maximize the
mana in [23]. As illustrated from Fig. 1, the strange state is
a simultaneous eigenstate of Clifford unitaries belonging to
several different reduced conjugacy classes, with the follow-
ing eigenvalues:

V−Î |S〉 = −1 |S〉 , (3.35)

N |S〉 = eπ i/3 |S〉 , (3.36)

VH |S〉 = i |S〉 , (3.37)

VŜ |S〉 = ω2 |S〉 . (3.38)
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TABLE I. List of nondegenerate qutrit Clifford eigenstates. This table provides a list of non-degenerate qutrit magic states. The first column
presents the name of the state. The second column lists the operators of which the state is an eigenvector. The third column lists the mana of
the state. The fourth column lists the most negative entry in the state’s discrete Wigner function denoted as Min[Wχ (ρ )]. The last column lists
the number of single-qudit Clifford eigenstates that are Clifford equivalent to the given magic state, denoted as |Orbit|.

State Eigenvector of Mana Min[Wχ (ρ )] |Orbit|
|S〉 H , VŜ , V−Î , N ln 5

3 ≈ 0.51 −0.33 9
|H, 1〉 H , V−Î ln ( 1

3 + 2√
3

) ≈ 0.40 −0.06 54
|N+〉 VŜ , V−Î , N ln ( 5

3 ) ≈ 0.51 −0.17 36
|XVŜ〉 XVŜ ln{ 1

3 [1 + 4 cos ( π

9 )]} ≈ 0.46 −0.10 72

The discrete Wigner function representation of |S〉 is par-
ticularly simple:

W(u,v)(|S〉 〈S|) =
{−1/3, (u, v) = (0, 0)

1/6, (u, v) �= (0, 0). (3.39)

It is depicted in Fig. 2.
From this Wigner function, we see that the state |S〉

lies directly above the “center” of one facet of the Wigner
polytope, and also maximally violates the contextuality in-
equality of [18]. Distillation of the |S〉 state, therefore, has
the theoretical potential to have the highest threshold to
noise of all qutrit magic states [20], although, as argued
in [52], the limit is unattainable by any finite distillation
routine. In this sense, it is analogous to |T 〉 states for
qubits [1,51].

The orbit of |S〉 under the full Clifford group contains nine
states and its orbit under symplectic rotations is of size 1.

Using Eq. (2.17) and the discrete Wigner function (3.39),
one can directly calculate that the mana of this state is ln 5

3 .
This was numerically shown to be maximal in [23]; we present
an analytical proof in the Appendix. However, [23] also ob-
served that the Norell state |N+〉 has the same maximal value
of the mana, leaving open the question of which of these

FIG. 2. Discrete Wigner functions for each of the four nondegen-
erate qutrit magic states.

two qutrit states is most magic. Recently, this question was
settled when [24] showed that the strange state has larger
thauma than the Norell state. So, from the perspective of
magic as a resource, the strange state is the most magic qutrit
state.

For some time, no magic-state distillation routine that dis-
tills the strange state was known. However, recently it was
shown that a CSS code based on the ternary GOLAY code can
be used to distill the strange state in [37].

2. The state |H, 1〉
The state |H, 1〉 is an eigenstate of the following operators:

V−Î |H, 1〉 = 1 |H, 1〉 , (3.40)

VH |H, 1〉 = |H, 1〉 . (3.41)

Its discrete Wigner function is given by

W(u,v)(|H, 1〉 〈H, 1|)

=
(W(2,0) W(2,1) W(2,2)

W(1,0) W(1,1) W(1,2)

W(0,0) W(0,1) W(0,2)

)

=

⎛
⎜⎝

1
12 (1 + √

3) 1
−6−6

√
3

1
−6−6

√
3

1
12 (1 + √

3) 1
−6−6

√
3

1
−6−6

√
3

1
3

1
12 (1 + √

3) 1
12 (1 + √

3)

⎞
⎟⎠, (3.42)

and is depicted in Fig. 2.
The orbit of |H, 1〉 under the full Clifford group contains

54 states, and its orbit under symplectic rotations contains
6 states. Its orbit under the quaternion subgroup of sym-
plectic rotations contains 2 states; its orbit under two of the
three Z4 subgroups that do not contain H each contain 2
states. Its orbit under the Z3 and Z6 subgroups each contain
3 states.

The mana of |H, 1〉 is ln ( 1
3 + 2√

3
). The only known distil-

lation routine for |H, 1〉 states is presented in [14] and is based
on the five-qutrit code. It achieves only a linear reduction in
noise.

3. The Norell state |N+〉
The state |N+〉 is an eigenvector of the following Clifford

operators:

V−Î |N+〉 = 1 |N+〉 , (3.43)

VN |N+〉 = −eiπ/3 |N+〉 . (3.44)
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Its discrete Wigner function is

W(u,v)(|N+〉 〈N+|) =

⎛
⎜⎜⎝

− 1
6

1
6

1
6

− 1
6

1
6

1
6

1
3

1
6

1
6

⎞
⎟⎟⎠. (3.45)

This is plotted in Fig. 2.
The orbit of this state under the Clifford group contains 36

states, and its orbit under the set of symplectic rotations con-
tains 4 states. Its orbit under the quaternion subgroup contains
4 states, and its orbit under each of the Z4 subgroups contains

2 states. Its orbit under the three (of four) Z6 subgroups that
do not contain N each contain 3 states. Its orbit under the three
(of four) Z3 subgroups that do not contain VŜ each also contain
3 states.

Its mana is ln ( 5
3 ), which is maximal. It was identified as a

Norell state in [23]. However, as shown in [24], its thauma is
less than that of the strange state, so it is not the most magic
qutrit state.

A distillation routine with linear reduction in noise for the
Norell state was found in [17]. A substantially better distilla-
tion routine was recently discovered, using the ternary GOLAY

code, in [37].

4. The state |XVŜ〉
Its discrete Wigner function is

W(u,v)(|XVŜ〉 〈XVŜ|) = 1

9

⎛
⎜⎝

1 − 2 cos
(

π
9

)
1 − 2 cos

(
π
9

)
1 + 2 cos

(
2π
9

)
1 + 2 sin

(
π
18

)
1 + 2 sin

(
π
18

)
1 − 2 cos

(
π
9

)
1 + 2 cos

(
2π
9

)
1 + 2 cos

(
2π
9

)
1 + 2 sin

(
π
18

)
⎞
⎟⎠. (3.46)

This is plotted in Fig. 2.
The orbit of |XVŜ〉 under the Clifford group contains 72 states, and its orbit under the group of symplectic rotations contains

24 states. Its mana is ln { 1
3 [1 + 4 cos ( π

9 )]}.
Distillation and state-injection schemes for this state were given in [15]. It is worth noting that the |XVŜ〉 state is equatorial,

as defined in [15], and a single pure copy of this state can be used to implement the qutrit version of the π/8 gate (defined and
studied in [35,63,64]) without any chance of error via state injection.

5. Degenerate eigenstates of V−Î

Let us parametrize the family of states |V−Î, 1; a, b〉 via a = cos θ and b = eiφ sin θ . In terms of these variables, its mana is

ln

[
1

6

(
2

{
| sin θ (2

√
2 cos θ cos φ + sin θ )| +

∣∣∣∣ sin θ

[
sin θ − 2

√
2 cos θ sin

(
π

6
− φ

)]∣∣∣∣
+
∣∣∣∣ sin θ

[
sin θ − 2

√
2 cos θ sin

(
φ + π

6

)]∣∣∣∣+ 1

}
+ |3 cos 2θ + 1|

)]
. (3.47)

This is plotted in Fig. 3. All states of the form |V−Î, 1; a, b〉 that maximize the mana are Clifford equivalent to |N+〉,
which has mana ln 5

3 . There are also local maxima at states that are Clifford equivalent to |H, 1〉 and the state given by
θ = arctan(−√

2)/2 + π/2, and φ = π/3.
Some distillation schemes for the first family of states |V−Î, 1; a, b〉 were studied in [17].

6. Degenerate eigenstates of VŜ

Let us parametrize the family of states |VŜ, ω
2
3; γ , δ〉 via

γ = cos ψ and δ = eiχ sin ψ . In terms of these real variables,
its discrete Wigner function is

1

3

⎛
⎝− sin 2ψ cos(χ − π/3) cos2 ψ sin2 ψ

− sin 2ψ cos(χ + π/3) cos2 ψ sin2 ψ

sin 2ψ cos χ cos2 ψ sin2 ψ

⎞
⎠. (3.48)

Its mana is

ln

{
1

3

[∣∣∣∣ sin

(
π

6
− χ

)
sin(2ψ )

∣∣∣∣+
∣∣∣∣ sin

(
χ + π

6

)
sin(2ψ )

∣∣∣∣
+ | cos χ sin(2ψ )| + 3

]}
. (3.49)

This is plotted in Fig. 3. The states in the family |VŜ, ω
2
3; γ , δ〉

that maximize the mana are Clifford equivalent to either |S〉 =
1√
2
(|1〉 − |2〉) or |N+〉 = 1√

2
(|1〉 + |2〉).

IV. EIGENSTATES OF QUQUINT CLIFFORD OPERATORS

We now turn to ququint magic states. We use similar nota-
tion as in the previous section, such as H and VŜ , for ququint
Clifford operators and states. We hope that it is clear from the
context that all operators and states in this section are ququint
operators and states.

A. Conjugacy classes of the single-ququint Clifford group

Repeating the same computations we carried out for
the single-qutrit Clifford group, we find that there are 14
conjugacy classes of the single-ququint Clifford group. These
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FIG. 3. The mana of the two degenerate families of qutrit states, plotted as a function of the angular variables given in the text.

can be grouped into the following eight reduced conjugacy
classes:

[[I]] = {[I]}, (4.1)

[[Pauli] = {[Pauli]}, (4.2)

[[V−Î]] = {[V−Î]}, (4.3)

[[VŜ]] = {
[VŜ],

[
V −1

Ŝ

]}
, (4.4)

[[H]] = {[H]}, (4.5)

[[A]] = {
[VŜH2],

[
V 2

Ŝ H2
]}

, (4.6)

[[B]] = {[HVŜ], [(HVŜ )−1]}, (4.7)

[[XVŜ]] = {
[XVŜ], [X 2VŜ],

[
XV −1

Ŝ

]
,
[
X 2V −1

Ŝ

]}
. (4.8)

For notational convenience, we defined the ququint Clifford
operators A = VŜH2 and B = HVŜ in the above list.

The size of each conjugacy class is as follows: [I]] has
1 element, [Pauli] has 24 elements, [V−Î] has 25 elements,
[VŜ] has 60 elements, [H] has 750 elements, [VŜH2] has 300
elements, [HVŜ] has 500 elements, and [XVŜ] has 120 ele-
ments. All conjugacy classes belonging to the same reduced
conjugacy class contain the same number of elements.

Diagonalizing these operators, we find a total of eight
inequivalent nondegenerate eigenstates, two one-parameter
families of degenerate eigenstates, and one two-parameter
family of degenerate eigenstates. We describe each of these
below.

1. Eigenstates of [[V−Î]]

V (5)
−1 has two degenerate families of eigenstates,∣∣V (5)
−1 , 1; α, β, γ

〉 = γ |0〉 + α(|1〉 + |4〉) + β(|2〉 + |3〉),

(4.9)∣∣V (5)
1 , 1; α, β

〉 = α(|1〉 − |4〉) + β(|2〉 − |3〉). (4.10)

2. Eigenstates of [[VŜ]]

The eigenstates of VŜ are

|VŜ, 1〉 = |0〉 , (4.11)∣∣VŜ, ω
2
5; α, β

〉 = α |2〉 + β |3〉 , (4.12)∣∣VŜ, ω
3
5; α, β

〉 = α |1〉 + β |4〉 . (4.13)

The families |VŜ, ω
2
5〉 and |VŜ, ω

3
5〉 are related to each other by

a Clifford transformation.

3. Eigenstates of [[H]]

The eigenstates of H are

|H,−1〉 = (10 − 2
√

5)−1/2[(1 −
√

5) |0〉
+ |1〉 + |2〉 + |3〉 + |4〉], (4.14)

|H,±i〉 = 1
2 [
√

1 ∓ χ (|1〉 − |4〉) +
√

1 ± χ (|2〉 − |3〉)],

(4.15)

|H, 1; α, β〉 = (1 +
√

5)/2(α − β ) |0〉 + α(|1〉 + |4〉)

+β(|2〉 + |3〉), (4.16)

where χ =
√

1
10 (5 + √

5). |H,±i〉 are related to each other
via a Clifford transformation. |H,−1〉 can be mapped to a
member of |H, 1〉 via a Clifford transformation.

4. Eigenstates of [[A]]

The eigenstates of A = VŜH2 are

|A, 1〉 = |0〉 , (4.17)

∣∣A,±ω2
5

〉 = 1√
2

(|2〉 ± |3〉), (4.18)

∣∣A,±ω3
5

〉 = 1√
2

(|1〉 ± |4〉). (4.19)
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TABLE II. List of nondegenerate ququint Clifford eigenstates. This table provides a list of nondegenerate ququint magic states. The first
column presents the name of the state. The second column lists the operators of which the state is an eigenvector. The third column lists the
mana of the state. The fourth column lists the most negative entry in the state’s discrete Wigner function denoted as Min[Wχ (ρ )]. The last
column lists the number of single-qudit Clifford eigenstates that are Clifford equivalent to the given magic state, denoted as |Orbit|.

State Eigenvector of Mana Min[Wχ (ρ )] |Orbit|

|H, i〉 H , V−Î ln 1
5 (2
√

5 + 2
√

5 + 3) ≈ 0.605 −0.20 750

|H, −1〉 H , V−Î ln 9
5 ≈ 0.588 −0.05 375

|B,−1〉 B, H , V−Î ln ( 1
5 + 4√

5
) ≈ 0.688 −0.04 250

|B,−e
2π i

3 〉 B, V−Î sinh−1 (3 + √
5) − ln(5) ≈ 0.748 −0.09 500

|B, e
2π i

3 〉 B, V−Î ln
√

15+6
√

5+4
5 ≈ 0.624 −0.20 500

|A,−ω2
5〉 A, VŜ , V−Î ln ( 6

5 + 1√
5

) ≈ 0.499 −0.20 300

|A, ω2
5〉 A, VŜ , V−Î ln ( 6

5 + 1√
5

) ≈ 0.499 −0.16 300

|XVŜ, 1〉 XVŜ ln (1 + 2√
5

) ≈ 0.634 −0.09 600

|A+〉 ≡ |A, ω2
5〉 and |A, ω3

5〉 are related to each other by a
Clifford transformation. |A−〉 ≡ |A,−ω2

5〉 and |A,−ω3
5〉 are

also related to each other by a Clifford transformation.

5. Eigenstates of [[B]]

The reduced conjugacy class of B = HVŜ also contains the
operator B′ = KBK−1, where K = XV

(
1 2
2 0)

. The unnormal-

ized eigenvectors of B′, which are all real and simpler to write
than the eigenvectors of B, can be presented as

|B′,−1〉 = 1
2 (3 +

√
5) |0〉 + |1〉 + |2〉 + |3〉 + |4〉 ,

(4.20)

|B′, e
±2π i

3 〉 = 1
4η±(|1〉 − |4〉) + |2〉 − |3〉 , (4.21)

|B′,−e
±2π i

3 〉 = κ± |0〉 − κ2
±/4(|1〉 + |4〉) + |2〉 + |3〉 ,

(4.22)

where η± = (∓
√

30 − 6
√

5 + √
5 − 3) and κ± =

1
2 [±

√
6(5 + √

5) − √
5 − 3]. Of these states, |B′,−e

±2π i
3 〉

are equivalent to each other by a Clifford transformation,
and |B′, e

±2π i
3 〉 are equivalent to each other by a Clifford

transformation.
In Fig. 5, we plot Wigner functions for the eigenvectors of

B not B′ because the symmetry of B is easier to visualize in
discrete phase space.

6. Eigenstates of [[XVŜ]]

The reduced conjugacy class [[XVŜ]] includes the con-
jugacy classes [XVŜ], [X 2VŜ], [XV −1

Ŝ
], and [X 2V −1

Ŝ
]. Its

eigenstates (which were first found in [16,35]) are

|XVŜ, 1〉 = |0〉 + |1〉 + ω3
5 |2〉 + |3〉 + ω2

5 |4〉 , (4.23)∣∣XVŜ, ω
n
5

〉 = (Z†)n |XVŜ, 1〉 for n = 1, . . . , 4. (4.24)

All of these eigenstates are related to each other by a Clifford
transformation.

B. Ququint Clifford eigenstates

In summary, we have nine inequivalent nondegenerate
eigenstates (including |0〉), three one-parameter families of
degenerate states, and one two-parameter family of degenerate
states. These are shown in Fig. 4. Colored regions correspond
to reduced conjugacy classes, and eigenstates of conjugacy
classes are contained in their corresponding regions, as in
Fig. 1. Degenerate families of eigenstates are shown as lines.

The only intersections of |VŜ, ω
2
5〉 and |H, 1〉 are Clif-

ford equivalent to |0〉. The only intersections of |VŜ, ω
2
5〉 and

|V−Î, ω
2
5〉 are Clifford equivalent to |A2〉. |H, 1〉 and |V−Î〉 have

no intersections.
We plot the discrete Wigner function of the eight nonde-

generate nonstabilizer states in Fig. 5. For each nondegenerate
state, in Table II, we list the reduced conjugacy classes of
which it is an eigenvector, the mana, and the size of its orbit
under the Clifford group. We plot the mana for each of the
one-parameter families of degenerate eigenstates in Fig. 6.

Based on a numerical search, we find that the maximal
mana for any ququint state is

M5 = sinh−1(3 +
√

5) − ln(5), (4.25)

FIG. 4. This diagram illustrates all inequivalent ququint Clif-
ford eigenstates, depicted as points, and their corresponding reduced
conjugacy classes, depicted as colored regions. One-parameter de-
generate families of eigenstates are represented by curves. The
two-parameter degenerate family of states |V−Î, 1〉 is not pictured.
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FIG. 5. Discrete Wigner functions for each of the eight nondegenerate ququint Clifford eigenstates.

which is attained by the states that are Clifford equivalent
to |B′,−e

2π i
3 〉. We are not sure if there are any other states

which have the same mana. Therefore, we conjecture that
|B′,−e

±2π i
3 〉 is the most magic ququint state. The most sym-

metric Clifford eigenstate, which we define as that eigenstate
with the smallest orbit under the Clifford group, is |B,−1〉.
Unlike the qutrit case, the most magic state is not the most
symmetric. Also, as can be seen from this figure, there is no
ququint Clifford eigenstate with exactly one negative entry in
the Wigner function.

Magic-state distillation routines for the state |XVŜ, 1〉 were
constructed in [15,16]. To our knowledge, magic-state distil-
lation routines for the other ququint magic states have not yet
been constructed.

V. TWIRLING SCHEMES

A generic p-dimensional qudit density matrix is described
by p2 − 1 real parameters. To avoid reducing the number of
parameters describing noisy magic states, it is convenient to
“twirl” the undistilled resource state into a density matrix of a
simpler form prior to distillation by randomly applying one or
more Clifford operators that have the target magic state as an
eigenvector, as described in [1].

For example, suppose C is a single-qudit Clifford unitary
such that Cm = 1, with p nondegenerate eigenvectors: |Ci〉
for i = 0, . . . , p − 1. Then, twirling with respect to C is a
procedure that consists of randomly applying an element of
〈C〉, and results in the following:

ρ → ρ ′ = 1

m

m−1∑
n=0

Cnρ(C†)n =
p−1∑
i=0

αi |Ci〉 〈Ci| , (5.1)

where αi = 〈Ci| ρ |Ci〉.
For qubits, via twirling, it was possible to restrict all forms

of noise to depolarizing noise in [1]. This is not usually true
for qudits, where, instead, we generically expect twirling to
reduce the number of parameters specifying the input qudit
density matrices from p2 − 1 to p − 1, as demonstrated in
Eq. (5.1). If a Clifford unitary has degenerate eigenvectors,
then, after twirling, we may be left with a density matrix
whose description requires more than p − 1 parameters.

If we wish to distill a magic state which is an eigenstate
of multiple Clifford operators, we may be able to reduce
the number of parameters to fewer than p − 1 by twirling
multiple times. The diagram in Fig. 1 can be used to determine
the inequivalent twirling schemes that may be applied before
distilling any given magic state.

042409-12



QUTRIT AND QUQUINT MAGIC STATES PHYSICAL REVIEW A 102, 042409 (2020)

FIG. 6. The mana of each of the one-complex-parameter degenerate families of ququint Clifford eigenstates, with α = cos θ

2 and
β = eiφ sin θ

2 . θ is the horizontal axis and φ is the vertical axis.

The most general twirling procedure can be defined using
any subgroup G of the Clifford group, and is the following:

ρ → ρ ′ = 1

|G|
∑
G∈G

GρG†. (5.2)

Define the stabilizing subgroup of the Clifford group for state
|M〉 as the set of elements of the Clifford group for which
|M〉 is an eigenvector. (Here, we say C “stabilizes” |M〉 when
C |M〉 = λ |M〉, for any λ.) The stabilizing subgroup of the
Clifford group of |m〉 provides a natural scheme for twirling
noisy |m〉 states.

A. Qutrits

We present the largest stabilizing subgroup of the Clifford
group for each state in Table III. We illustrate the twirling
schemes for each state in detail below, which are also pictured
in Fig. 7.

1. Twirling schemes for eigenstates of H

To distill eigenstates of H , one can randomly apply the
Clifford operator H , which will restrict our input state to the
plane defined by |S〉 〈S|, |H, 1〉 〈H, 1|, and |H,−1〉 〈H,−1|
given in Fig. 7,

ρH (ε1, ε2) = (1 − ε1 − ε2) |S〉 〈S| + ε1 |H, 1〉 〈H, 1|
+ ε2 |H,−1〉 〈H,−1| . (5.3)
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TABLE III. The stabilizing subgroup of the Clifford group for
each qutrit magic state. We list the largest subgroup of the Clifford
group that stabilizes each magic state. The columns specify the list
of generators, order of the group, and name of the group.

State Generators Order Group

|S〉 〈H,VŜ〉 24 SL(2,Z3)
|H, 1〉 〈H〉 4 C4

|N+〉 〈N〉 6 C6

|XVŜ〉 〈XVŜ〉 3 C3

If we want to distill the |H, 1〉 magic state, there is no further
twirling possible.

If we wish to distill |S〉 magic states, we can further twirl to
restrict density matrices to lie within a one-parameter family.
To do this, we note that the states |H, 1〉 and |H,−1〉 are
interchanged by the symplectic rotation, V−Ĥ ′ , corresponding

to the SL(2,Z3) transformation −Ĥ ′ = (1 1
1 2). Because it is

a symplectic rotation, V−Ĥ ′ preserves |S〉. We can further twirl
by choosing randomly whether or not to apply this Clifford
operator.

Input states are then restricted to the line which joins |S〉 〈S|
to the maximally mixed state, shown as a dashed line in Fig. 7,
and can be parameterized as follows:

ρS (ε/2, ε/2) = (1 − ε) |S〉 〈S|
+ ε

(|H, 1〉 〈H, 1| + |H,−1〉 〈H,−1|)
2

= (1 − δ) |S〉 〈S| + δ
1
3
, (5.4)

where δ = 3
2ε is the depolarizing noise rate.

The final result, given by Eq. (5.4), can also be obtained by
simply applying a random symplectic rotation VF̂ ,

ρ → ρ ′ =
∑

F̂∈SL(2,Z3 )

VF̂ ρV †
F̂
. (5.5)

For all other magic states, it appears that twirling can only
restrict the input state to lie in a plane. So the scheme given
above is unique to |S〉.

2. Twirling schemes for eigenstates of N

An alternative twirling scheme is to randomly apply the N
operator so that states are restricted to the plane defined by its

eigenvectors given in Fig. 7. This can be used to distill |S〉 or
|N+〉 states. A density matrix in this plane can be expressed as

ρN (ε1, ε2)= (1 − ε1 − ε2) |N+〉 〈N+| +ε1 |0〉 〈0| + ε2 |S〉 〈S| .
(5.6)

For stabilizer codes used with this twirling scheme, N
should be a transversal operator.

3. Twirling schemes for eigenstates of XVŜ

A third twirling scheme is to randomly apply the XVŜ
operator so that states are restricted to the plane defined by
its eigenvectors given in Fig. 7, which is useful for distilling
|XVŜ〉 states. A density matrix in this plane can be expressed
as

ρXVŜ
(ε1, ε2) = (1 − ε1 − ε2) |XVŜ〉 〈XVŜ| + ε1 |XV ′

Ŝ〉 〈XV ′
Ŝ |

+ ε2 |XV ′′
Ŝ 〉 〈XV ′′

Ŝ | , (5.7)

where |XV ′
Ŝ
〉 and |XV ′′

Ŝ
〉 are the other eigenstates of XVŜ .

For stabilizer codes used with this twirling scheme, XVŜ
should be a transversal operator.

4. Twirling schemes for degenerate families of states

For the degenerate families of states |VŜ, ω
2
3〉, we can apply

VŜ a random number of times. The resulting space of density
matrices will be four dimensional: three real parameters for
the “Bloch sphere” of degenerate |VŜ, ω

2
3〉 states, and one

additional parameter for the state |0〉. Similar comments apply
for distilling the states |V−Î, 1〉.

Explicitly, after randomly applying VŜ , any density matrix
can be put in the form

ρ(x, y, z, ε) = (1 − ε) 1
2 (|1〉 〈1| + |2〉 〈2| + x�1

+ y�2 + z�3) + ε |0〉 〈0| , (5.8)

where

�1 = |1〉 〈2| + |2〉 〈1| , �2 = −i |1〉 〈2| + i |2〉 〈1| ,
�3 = |1〉 〈1| − |2〉 〈2| . (5.9)

After randomly applying V−Î , any density matrix can be
put in the form

ρ̃(x, y, z, ε) = (1 − ε) 1
2 (|0〉 〈0| + |N+〉 〈N+| + x�̃1

+ y�̃2 + z�̃3) + ε |S〉 〈S| , (5.10)

FIG. 7. Noisy qutrit magic states can be twirled to lie in the planar slice of qutrit state space formed by the nondegenerate eigenvectors of
each Clifford conjugacy class. Noisy strange states can be further twirled to lie on the dashed line. The Wigner polytope is pictured as a blue
region, which contains the stabilizer polytope as a dark-gray region. The center of each equilateral triangle is the maximally mixed state.
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TABLE IV. The stabilizing subgroup of the Clifford group for
each nondegenerate ququint magic state. We list the largest subgroup
of the Clifford group that stabilizes each ququint magic state. The
columns specify the list of generators, order of the group, and name
of the group.

State Generators Order Group

|Hi〉 〈H〉 4 C4

|H, −1〉 〈H, H ′〉 8 Quaternion

|B,−1〉 〈B, H ′〉 12 Dicyclic3

|B,−ω2
3〉 〈B〉 6 C6

|B,+ω2
3〉 〈B〉 6 C6

|A,−ω2
5〉 〈A〉 10 C10

|A, ω2
5〉 〈A〉 10 C10

|C〉 〈XVŜ〉 5 C5

where

�̃1 = |0〉 〈N+| + |N+〉 〈0| , �̃2 = −i |0〉 〈N+| + i |N+〉 〈0| ,
�̃3 = |0〉 〈0| − |N+〉 〈N+| . (5.11)

B. Ququints

We present the largest stabilizing subgroup of the Clifford
group for each ququint magic state in Table IV. These trans-
late into twirling schemes in a straightforward way. Most of
the schemes result in spaces with four or more parameters.
However, the two cases of |H,−1〉 and |B′,−1〉 give rise to
smaller spaces after twirling, as we discuss below.

1. Twirling scheme for the state |H, −1〉
We first randomly apply H to restrict ourselves to mixtures

of |H,±i〉, |H,−1〉, and |H, 1; α, β〉. This is a six-parameter
space.

The operator

H ′ = V(0 2
2 0

) (5.12)

is in the same conjugacy class as [[H]]. Together, H and H ′
generate a non-Abelian group of eight elements, isomorphic
to the quaternion group,

Quaternion = 〈H, H ′|H4 = 1, H ′2 = H2, HH ′H = H ′〉.
(5.13)

The state |H,−1〉 is also an eigenstate of H ′ with eigen-
value −1. H ′ acts on the other eigenstates of H as follows:

H ′ |H,+i〉 = |H,−i〉 , H ′ |H, 1; 1, 1〉 = |H, 1; 1, 1〉 ,

H ′ |H, 1; 1,−1〉 = − |H, 1; 1,−1〉 . (5.14)

Thus, by randomly applying H then H ′, we obtain the
three-parameter family of density matrices,

ρ = (1 − ε1 − ε2 − ε3) |H,−1〉 〈H,−1| + ε1 |H, 1; 1, 1〉
× 〈H, 1; 1, 1| + ε2 |H, 1; 1,−1〉 〈H, 1; 1,−1| + ε3ρi, (5.15)

where

ρi = 1
2 (|H,+i〉 〈H,+i| + |H,−i〉 〈H, i|). (5.16)

This region is shown in Fig. 8.

FIG. 8. Noisy ququint |H, −1〉 states can be twirled to lie in the
three-dimensional convex mixture of states defined by Eq. (5.15),
depicted as a light-blue tetrahedron. The gray polytope inside is the
Wigner polytope. The stabilizer polytope is not pictured.

2. Twirling scheme for the state |B′, −1〉
The state |B,−1〉 is an eigenvector of both B and H ′. To-

gether, B and H ′ generate a non-Abelian group of 12 elements
known as the dicyclic group of order 12, sometimes written as
Dicyclic3. It can be presented as

Dicyclic3 = 〈B, H ′ | B6 = 1, H ′2 = B3, H ′−1BH ′ = B−1〉.
(5.17)

H ′ acts on the other eigenstates of B |B,±ω2
3〉 and |B,±ω3

3〉,
as follows:

H ′ |B,+ω3〉 = |B,+ω2〉 , H ′ |B,−ω3〉 = |B,−ω2〉 . (5.18)

By randomly applying B, we are left with the four-
parameter family of convex combinations of |B,−1〉,
|B,±ω2

3〉, and |B,±ω3
3〉. We then apply H ′ randomly to

restrict our space to the two-parameter family of density ma-
trices given by

ρB,−1(ε+, ε−) = (1 − ε+ − ε−) |B,−1〉 〈B,−1|
+ ε+ 1

2ρ+ + ε−ρ−. (5.19)

Here, ρ± = 1
2 (|B,±ω2

3〉 〈B,±ω2
3| + |B,±ω3

3〉 〈B,±ω3
3|). This

is shown in Fig. 9.

VI. UNIQUENESS OF THE QUTRIT STRANGE STATE

Of the qutrit and ququint magic states presented in the
previous sections, the qutrit strange state |S〉 stands out, as
it has several interesting properties. The qutrit strange state
is identified as the most magic qutrit state, by virtue of its
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FIG. 9. Noisy ququint |B, −1〉 states can be twirled to lie in a
convex region defined by Eq. (5.19), depicted as a light-gray triangle.
The dark-blue region inside the triangle is the Wigner polytope and
the dark-gray region is the stabilizer polytope.

maximal mana and thauma [23,24]. The qutrit strange state is
also, in principle, maximally robust to polarizing noise [55].
From the point of view of Clifford symmetries, the strange
state is also distinguished as the simultaneous eigenvector
of all symplectic rotations. As such, it has a particularly
simple discrete Wigner function, from which we see that it
lies directly above the center of a single facet of the Wigner
polytope.

Does an analog of the qutrit strange state exist for qudits of
higher p that simultaneously possesses all these properties? In
any dimension, one can determine which states maximize the
mana and also determine which states are maximally robust to
depolarizing noise; however, we saw that for p = 5, the states
that maximize the mana are not equivalent to the states that
are maximally robust to depolarizing noise.

We can also ask, does there exist a simultaneous eigen-
vector of all symplectic rotations for qudits of any other
odd-prime dimension d?

Theorem 2. There is no pure state that is a simultaneous
eigenvector of all symplectic rotation for qudits of odd-prime
dimension d > 3.

Proof. A (nonstabilizer) eigenvector of all symplectic rota-
tions must be an eigenvector of the generators of symplectic
rotations H and VŜ . It is easy to see that there is no simultane-
ous eigenvector of VŜ and H for odd-prime p > 3.

VŜ is diagonal in the computational basis. Its eigenvalues

are λi = ω
2−1qi
p , where q is any quadratic residue mod p, i.e.,

any element of Zp such that q ≡ t2 mod p for some t . There
are (p + 1)/2 such quadratic residues, including 0. The eigen-
vector corresponding to q = 0 is |0〉 which is nondegenerate.
The remaining (p − 1)/2 quadratic residues each have two-
dimensional degenerate eigenspaces of the form∣∣VŜ, ω

2−1q
p = α, β

〉 = α |t〉 + β |−t〉 , (6.1)

where t and −t are the two solutions to the equation t2 ≡ q
mod p.

If a simultaneous eigenvector of H and VŜ exists, then

|VŜ, ω
2−1q
p ; α, β〉 must be an eigenvector of H for some q �= 0

and some choice of α and β. Let us see that this cannot be the

case,

H
∣∣VŜ, ω

2−1q
p ; α, β

〉 = ∑
j

(
αω jt

p + βω− jt
p

) | j〉 . (6.2)

For |VŜ, ω
2−1q
p ; α, β〉 to be an eigenvector of H , the coefficient

of |0〉 must vanish in the above expression. This means that
α = −β. If d > 3, then there exists another k �= 0, ±t , such
that the coefficient of |k〉 must also vanish in Eq. (6.2). This
implies that α(ωkt

p − ω−kt
p ) = 2iα sin(2πkt/p) = 0, which

means α = 0 and no simultaneous eigenvector of H and VŜ
exists. �

Our interpretation of this result is that the qutrit strange
state is distinguished not only as both the most symmetric and
magic qutrit state, but also the most symmetric of all qudit
magic states.

Note that there are mixed states, other than the maximally
mixed state, which are preserved by all symplectic rotations.
Let ρS be an equal mixture of all stabilizer states without
support on the phase-space point A0,0. (This excludes one
basis vector from each of the d + 1 mutually unbiased bases.)
ρS has a discrete Wigner function given by

W(u,v)(ρ) =
{

0, (u, v) = (0, 0)
1

p2−1 , (u, v) �= (0, 0). (6.3)

Clearly, this Wigner function is preserved by all symplectic
rotations.

Since the space of pure qudit density matrices is 2p − 2
dimensional and the space of all qutrit density matrices is
p2 − 1 dimensional, most points at the boundary of qudit state
space are not pure density matrices. Hence, there is no reason
to expect the state directly above the center of a face of the
Wigner polytope to be a pure state, and the above argument
shows that for p > 3, it is not a pure state.

The absence of a state directly above a facet of the
Wigner polytope does not mean that there are no states
which maximally violate the contextuality inequality of [18].
There is always a conjugacy class [[V−Î]], corresponding to

(−1 0
0 −1) ∈ SL(2,Zp). V−Î can be written as

V−Î =
p−1∑
k=0

|−k〉 〈k| . (6.4)

Its eigenvalues are 1, which has degeneracy (p + 1)/2, and
−1, which has degeneracy (p − 1)/2. The corresponding
eigenvectors were studied in [20],

|V1, 1; αi〉 = α0 |0〉 +
(p−1)/2∑

j=1

α j√
2

(| j〉 + |− j〉),

|V1,−1; βi〉 =
(p−1)/2∑

j=1

β j√
2

(| j〉 − |− j〉).

From the results of [18], the minimum entry of the (normal-
ized) discrete Wigner function is −1/p. Since A00 = V−Î , this
shows that there are always Clifford eigenstates that attain this
minimum value, i.e., that maximally violate the contextual-
ity inequality. As emphasized in [20], these states have the
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potential to be distilled with the largest threshold to depolar-
izing noise.
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APPENDIX: MAXIMIZING MANA FOR QUTRITS

In this Appendix, we determine the qutrit states which
locally and globally maximize the mana. While this was done
numerically in [21], here we proceed analytically. This pro-
vides an alternative characterization of qutrit magic states as
local maxima of the mana.

The most general qutrit state can be written as

| f (θ, φ,ψ1, ψ2)〉 = cos θ |0〉 + sin θ (eiψ1 cos φ |1〉
+ eiψ2 sin φ |2〉). (A1)

The range of these variables is θ ∈ [0, π/2], φ ∈ [0, π/2], and
ψi ∈ [0, 2π ]. We define ψ− = ψ1 − ψ2.

The discrete Wigner function of | f (θ, φ,ψ1, ψ2)〉 is

W(0,0) = 1
3 [cos2 θ + sin2 θ sin(2φ) cos ψ−], (A2)

W(0,1) = 1
3 [cos2 θ + sin2 θ sin(2φ) sin(ψ− − π/6)], (A3)

W(0,2) = 1
3 [cos2 θ − sin2 θ sin(2φ) sin(ψ− + π/6)], (A4)

W(1,0) = 1
3 [sin2 θ cos2 φ + sin(2θ ) sin φ cos ψ2], (A5)

W(1,1) = 1
3 [sin2 θ cos2 φ + sin(2θ ) sin φ sin(ψ2 − π/6)],

(A6)

W(1,2) = 1
3 [sin2 θ cos2 φ − sin(2θ ) sin φ sin(ψ2 + π/6)],

(A7)

W(2,0) = 1
3 [sin2 θ sin2 φ + sin(2θ ) cos φ cos ψ1], (A8)

W(2,1) = 1
3 [sin2 θ sin2 φ − sin(2θ ) cos φ sin(ψ1 + π/6)],

(A9)

W(2,2) = 1
3 [sin2 θ sin2 φ + sin(2θ ) cos φ sin(ψ1 − π/6)].

(A10)

Without loss of generality, we can also restrict the range of
ψi to be [0, 2π/3], which implies that the range of ψ− is
[−2π/3, 2π/3]. (States with other values of ψi can be ob-
tained from states in the above range by applying the Clifford
operators Z and S.)

Maximizing the mana is equivalent to maximizing the sum
negativity of the Wigner function. Recall that the sum nega-
tivity is the absolute value of the sum of negative entries in
the discrete Wigner function. Each of the above entries are

negative when the following conditions are met:

W(0,0) < 0 → sin(2φ) > cot2 θ, 3π/2 > |ψ−| > π/2,

(A11)

W(0,1) < 0 → sin(2φ) > cot2 θ, π < ψ− − π/6 < 2π,

(A12)

W(0,2) < 0 → sin(2φ) > cot2 θ, 0 < ψ− + π/6 < π,

(A13)

W(1,0) < 0 → 2 tan φ sec φ > tan θ, 3π/2 > |ψ2| > π/2,

(A14)

W(1,1) < 0 → 2 tan φ sec φ > tan θ, π < ψ2 − π/6 < 2π,

(A15)

W(1,2) < 0 → 2 tan φ sec φ > tan θ, 0 < ψ2 + π/6 < π,

(A16)

W(2,0) < 0 → 2 cot φ csc φ > tan θ, 3π/2 > |ψ1| > π/2,

(A17)

W(2,1) < 0 → 2 cot φ csc φ > tan θ, 0 < ψ1 + π/6 < π,

(A18)

W(2,2) < 0 → 2 cot φ csc φ > tan θ, π < ψ1 − π/6 < 2π.

(A19)

We now proceed with a case analysis based on the number
of negative entries in this discrete Wigner function.

Case 1. For the state to have nonzero mana, it must
have at least one negative entry in its discrete Wigner func-
tion. Wherever it is located, it can be shifted to (0,0) by a
Heisenberg-Weyl displacement. To find the state with maxi-
mum mana, we must minimize

W(0,0) = 1
3 [cos2 θ + sin2 θ sin(2φ) cos ψ−], (A20)

subject to the constraint that all other entries W(i, j) � 0. We
find W(0,0) is minimized when cos θ = 0, sin(2φ) = 1 and
cos ψ− = −1; this corresponds to a sum negativity of 1/3.
This state is the strange state.

Case 2. If the Wigner function has two negative entries,
they can be moved to (0,0) and (0,1) by first applying a
Heisenberg-Weyl translation and then symplectic rotations. To
find the state of this form with maximum sum negativity, we
must minimize

W(0,0) + W(0,1) = 1
3 {2 cos2 θ + sin2 θ sin(2φ)

× [cos ψ− + sin(ψ− − π/6)]}, (A21)

subject to the constraint that both W(0,0) and W(0,1) are
negative, and all other entries of the Wigner function are
non-negative. We find W(0,0) is minimized when cos θ = 0,
sin(2φ) = 1, and ψ− = 4π/3; this also corresponds to a sum
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negativity of 1/3. This state is Clifford equivalent to the Norell
state.

Case 3. If the discrete Wigner function has three negative
entries, then the first two negative entries can be taken to be
located at (0,0) and (0,1). There are two Clifford-inequivalent
possibilities for the third negative entry: (0,2) and (1,0). It is
easy to see that it is impossible for W(0,0), W(0,1), and W(0,2) to
all simultaneously be negative; so we take the third negative
entry to be W(1,0). We now minimize

W0,0 + W0,1 + W1,0

= 1
3 {2 cos2 θ + sin2 θ sin(2φ)[cos ψ− + sin(ψ− − π/6)]

+ sin2 θ cos2 φ + sin(2θ ) sin φ cos ψ2}, (A22)

subject to the constraint that W(0,0), W(0,1), and W(1,0) are all
negative, and all other entries of the discrete Wigner function
are non-negative. We find that the sum negativity comes out
to be 1

3 [−1 + 2 cos ( π
9 )] and the state is Clifford equivalent to

the equatorial magic state |XVŜ〉.
Case 4. We now consider the case where four entries of

the discrete Wigner function are negative. By the discussion
above, we take the first three negative entries to be at (0,0),
(0,1), and (1,0). Notice that it is impossible for the Wigner
function to be negative at three collinear points. Therefore, the
only possibilities for the fourth point are (1,1), (2,1), and (1,2).
It turns out that all of these choices are related to each other by
a Clifford transformation, so we can assume the fourth point

is located at (1,1). We thus have to minimize:

W(0,0) + W(0,1) + W(1,0) + W(1,1)

= 1
3 {2 cos2 θ + sin2 θ sin(2φ)[cos ψ− + sin(ψ− − π/6)]

+ sin2 θ cos2 φ + sin(2θ )

× sin φ[cos ψ2 + sin(ψ2 − π/6)]}, (A23)

subject to the constraint that W(0,0), W(0,1), W(1,0), and W(1,1)

are negative, and the remaining entries of the discrete Wigner
function are non-negative. We find the maximal sum negativ-
ity is 1

3 (
√

3 − 1), and the state is Clifford equivalent to |H±〉.
Case 5. One can check that it is impossible for five or more

entries of the discrete Wigner function to be negative. We have
thus exhausted all possibilities.

Let us summarize the above discussion. We consider the
discrete Wigner function of an arbitrary pure qutrit state. We
find that the discrete Wigner function can have, at most, four
negative entries. By maximizing the sum negativity in each of
these cases, we are able to recover the magic states identified
in the previous sections. Of these, the states with the maximal
mana are the strange state and the Norell state.

It would be interesting to repeat this analysis for ququints
but, because a pure ququint state depends on eight real vari-
ables and the ququint discrete Wigner function has 25 entries,
this is not feasible.
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