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Stabilizing entanglement in two-mode Gaussian states
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We analyze the stabilizability of entangled two-mode Gaussian states in three benchmark dissipative models:
local damping, dissipators engineered to preserve two-mode squeezed states, and cascaded oscillators. In the
first two models, we determine principal upper bounds on the stabilizable entanglement, while in the last
model arbitrary amounts of entanglement can be stabilized. All three models exhibit a tradeoff between state
entanglement and purity in the entanglement maximizing limit. Our results are derived from the Hamiltonian-
independent stabilizability conditions for Gaussian systems. Here, we sharpen these conditions with respect to
their applicability.
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I. INTRODUCTION

Among the various nonclassical aspects of quantum me-
chanics, the radically unintuitive way in which systems can
become correlated, a consequence of quantum entanglement,
had been a subject of ongoing controversy. Today, a century
after its discovery, quantum entanglement has emerged as
one of the most prolific resources of quantum mechanics and
it continues to broaden our understanding of nature, with
ideas as speculative as time emerging as an entanglement
phenomenon being subject to experimental testing [1]. More
than that, however, quantum entanglement has the potential to
revolutionize not just the way we think about the world, but
the world itself. In close relation to quantum coherence, it is
the core property underlying technologies such as superdense
coding [2], quantum teleportation [3], measurement precision
beyond the classical limit [4], and others [5,6].

What often hinders us from harnessing entanglement is
decoherence, i.e., the loss of quantum coherence, which tends
to rapidly deteriorate the aforementioned quantum benefits
in systems subject to even the mildest forms of interaction
with an environment—which in practice is usually inevitable.
In the theory of quantum open systems, the influence of the
environment on a system is often modeled by a Lindblad
master equation [7–9]:

d ρ̂

dt
= − i

h̄
[Ĥ , ρ̂] + D̂(ρ̂), (1)

where Ĥ is the system Hamiltonian and the dissipator D̂(ρ̂)
encodes the effects of interaction with the environment (the
detailed structure of the dissipator is explained below).

Over the years, a variety of methods has been developed
to deal with the presence of an environment. For example,
the dissipative part of the dynamics can be employed to
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strengthen the desired features of the system [10–12]. For a
fixed dissipator, the Hamiltonian remains as the only resource
for stabilizing desired system states [13,14]. The task is then
to look for an appropriate control Hamiltonian Ĥ , such that,
for a given environment D̂(ρ̂), a desired state ρ̂ becomes
stationary, that is, it is a solution to the Lindblad equation
with a vanishing left-hand side.

A more general, geometric perspective has recently been
taken in Refs. [15,16]. Instead of on stationary states, here the
focus lies on stabilizable states, i.e., states for which, given
an environmental effect D̂(ρ̂), there exists an (unspecified)
Hamiltonian Ĥ , such that the aforementioned equation holds
(in other words, stabilizable states may be regarded as families
of potentially stationary states).

Here, we apply the theory of stabilizability to two-mode
Gaussian states, that is, bipartite continuous-variable states
with normally distributed Wigner functions. Gaussian states
are among the most generic, yet most useful states both in
theoretical and in experimental quantum optics [17], as well
as quantum information [12,18–20]. They include, among
others, coherent, squeezed, and thermal states [21]. In par-
ticular, with regard to the importance of entanglement as a
resource, we investigate which entangled states can be sta-
bilized and what is the maximum amount of entanglement
admitted within the set of stabilizable states.

We focus here on two-mode Gaussian states, due to their
fundamental importance in many quantum information pro-
tocols. The entanglement properties of two-mode Gaussian
states and their experimental feasibility are thoroughly studied
and well understood [20,22–24]. While the formalism of sta-
bilizable states is readily applicable to more than two modes
[16], in general, multipartite scenarios do not admit a unified
treatment of their entanglement properties [25–27].

We consider the stabilizability of entangled Gaussian states
within three paradigmatic dissipative models of two-mode
systems: two modes subject to local damping, dissipators en-
gineered to preserve two-mode squeezed thermal states, and
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cascaded oscillators coupled to the vacuum [16,28]. All three
models have found use in the context of quantum technolo-
gies, ranging from quantum cryptography and computation
[22,29] to experimental generation of entanglement [30–32]
to spectroscopy [33], among others. Moreover, these models
have been the focus of recent theoretical investigations (see,
e.g., Refs. [12,28]). Finally, which is not without importance
for our purposes, the models can, to a large extent, be treated
analytically, giving deeper insights into the mechanism in
question.

In the case of local damping, where the dissipator clearly
acts adversarial to entanglement, our findings give evidence
that the amount of entanglement achievable within the set
of stabilizable states is upper bounded by ln 2, as quantified
by logarithmic negativity. Surprisingly, we find that a similar
upper bound also exists for dissipators engineered to preserve
two-mode squeezed thermal states, i.e., dissipators which are
fundamentally nonlocal. On the other hand, we prove that it
is possible to stabilize states that are more entangled than the
two-mode squeezed states underlying the engineered dissipa-
tor. In the remaining model of the cascaded oscillators, we
show that, in principle, arbitrary amount of entanglement can
be stabilized. In all three cases we observe that the stabilizable
states characterized by the maximum amount of entanglement
are close to be maximally mixed, suggesting an asymptotic
tradeoff relation between entanglement and purity within the
stabilizable states. This is reminiscent of previous findings
[15] regarding two qubits.

This work is organized as follows: In Sec. II we briefly
summarize the main characteristics of (two-mode) Gaussian
states, along with our chosen measures of entanglement and
mixedness. In Sec. III we rigorously introduce the notion of
stabilizability and prove Theorem 1, in which we sharpen the
necessary conditions for stabilizability of general Gaussian
states derived previously [16], showing that half of these
conditions are always automatically fulfilled. Section IV is
dedicated to our main results: stabilizability of two-mode en-
tangled states in the three considered environmental models.
Finally, in Sec. V, we discuss our results and their limitations,
as well as possible generalizations, and give an outlook for
future research.

II. GAUSSIAN STATES

Let us consider an N-mode Hilbert space, H = ⊗N
i=1 Hi,

described by the vector of N pairs of position and momentum
operators,

�̂ξ := (x̂1, p̂1, . . . , x̂N , p̂N )T . (2)

The canonical commutation relations,

[x̂ j, p̂k] = ih̄δ jk, [x̂ j, x̂k] = [ p̂ j, p̂k] = 0, (3)

can be concisely encoded in the so-called symplectic form

Jjk := − i

h̄
[ξ̂ j, ξ̂k], (4)

which explicitly reads

J =
N⊕

k=1

[ 0 1
−1 0

]
. (5)

Following standard terminology we call Gaussian states
all the states with normal (Gaussian) characteristic functions
and quasiprobability distributions [11,16,23,34,35]. It follows
from this definition that Gaussian states are fully characterized

by the first and second moments of the vector �̂ξ . The first
moments can be adjusted to have an arbitrary value with local
operations, which do not affect global properties of the state
such as entanglement or mixedness, and can thus be set to 0.
Therefore, from the point of view of this work, any Gaussian
state is fully described by the set of second moments of the

vector �̂ξ , conveniently encoded in the covariance matrix

Vkl = Vlk := 1
2 〈{ξ̂k, ξ̂l}〉, (6)

where {·, ·} denotes the anticommutator.
In the particular case of two-mode Gaussian states, N = 2,

any valid covariance matrix possesses a simple, unique form,
called the standard form [23,35]:

Vsf =

⎡
⎢⎣

a 0 c+ 0
0 a 0 c−

c+ 0 b 0
0 c− 0 b

⎤
⎥⎦, (7)

where the parameters a, b > 0 are proportional to the average
number of particles or excitations in the two modes and the
coefficients c± ∈ R contain the information about the corre-
lations between the modes. Any two-mode covariance matrix
can be brought into its standard form by means of local sym-
plectic operations, which, similarly to local unitary operations
for density matrices, do not change global properties of the
state. For this reason, unless stated otherwise, from now on
we assume V to be in its standard form.

Note that not all matrices (7) constitute valid covariance
matrices of two-mode Gaussian states. For this to be the case,
they need to additionally fulfill the Heisenberg uncertainty
principle: √〈

x̂2
k

〉 − 〈x̂k〉2
√〈

p̂2
k

〉 − 〈p̂k〉2 � h̄/2, (8)

where k ∈ {1, 2}, equivalent to [23]

2 � 4�(V ) � 1 + 16 det V, (9)

with �(V ) := a2 + b2 + 2c+c− and

det V = (ab − c2
+)(ab − c2

−), ab − c2
± � 0. (10)

Since it will become relevant below, we remark that the
parametrization of the standard form (7) in terms of (a, b, c±)
is not the only valid choice. Of particular significance is also
the description in terms of the symplectic eigenvalues of V :

1/2 � ν− � ν+. (11)

The symplectic eigenvalues are the eigenvalues of the matrix
product JV and read explicitly

ν±(V ) =
√

1

2
(�(V ) ±

√
�2(V ) − 4 det V ). (12)

An important subclass of two-mode Gaussian states, which
is most easily described in terms of symplectic eigenvalues,
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consists of nonsymmetric two-mode squeezed thermal states

ρ̂sq(ν±, r) = Ŝ(r)ρ̂th(ν±)Ŝ†(r), (13)

which arise from applying the two-mode squeezing operator

Ŝ(r) = e
r
2 (â1â2−â†

1 â†
2 ), (14)

where âk is the annihilation operator of the kth mode and
r is the squeezing parameter, to the two-mode thermal state
ρ̂th(ν±). Most importantly, squeezed states of light are used in
quantum metrology as a means of enhancing the measurement
precision [4]. For a detailed review, see Ref. [36].

It can be shown that the standard form of the covariance
matrix for such states reads as follows [35]:

a(ν±, r) = ν− cosh2 r + ν+ sinh2 r,

b(ν±, r) = ν− sinh2 r + ν+ cosh2 r,

c±(ν±, r) = ±ν− + ν+
2

sinh 2r, (15)

which we refer to as the squeezed-state parametrization in
the remainder. In fact, every state that fulfills c+ = −c− and
a, b � 1/2 can be parametrized using the above recipe. The
former requirement is obvious, while the latter arises from the
fact that

a(ν±, r) � ν−(cosh2 r + sinh2 r) � ν− � 1/2, (16)

and analogously for b. It is easy to show that any two-mode
squeezed state is physical, that is, fulfills the Heisenberg un-
certainty relation (9).

A. Entanglement measure

Since we are interested in stabilizing entangled states, we
need a way to certify entanglement. For two-mode Gaussian
states, a necessary and sufficient separability criterion is given
by the extension of the positive partial transpose (PPT) crite-
rion [37] to continuous variable systems [38]. This criterion
states that, if the partial transposition of the state with respect
to a given bipartition is not positive semidefinite, then the state
is entangled with respect to this bipartition.

For two-mode Gaussian states in the covariance matrix
representation, partial transposition with respect to the second
mode corresponds to a mirror reflection of the second momen-
tum: p2 → −p2. This changes the symplectic eigenvalues of
the state from Eq. (12) to

ν̃±(V ) =
√

1

2
(�̃(V ) ±

√
�̃2(V ) − 4 det V ), (17)

where �̃(V ) := a2 + b2 − 2c+c−. The PPT criterion thus
reads [23]

ν̃−(V ) � 1/2, (18)

since ν̃−(V ) < 1/2 would result in an invalid covariance ma-
trix [see Eq. (11)]. We stress that, in the case of two-mode
Gaussian states, the PPT criterion is both necessary and suffi-
cient [38].

We now have a simple way of certifying the presence of
entanglement in Gaussian states. However, we still need a

way to quantify it. Several different measures of entanglement
of two-mode Gaussian states have been proposed, includ-
ing entanglement of formation, Bures distance, and Gaussian
measures of entanglement [39,40]. In this work, we deploy the
logarithmic negativity, defined as

EN (ρ̂) := ln tr|ρ̂T2 |, (19)

where ρ̂T2 is the partially transposed state. The logarithmic
negativity constitutes an upper bound to the distillable en-
tanglement in the state, and it is continuous, convex, and
monotone under local operations and classical communication
as long as the considered state has a finite mean energy. In
other words, it is a proper measure of entanglement.

In the case of two-mode Gaussian states, the logarithmic
negativity takes a particularly simple form [23]:

EN (V ) := max {0,− ln [2ν̃−(V )]}. (20)

B. Measures of mixedness

As shown below, the amount of entanglement in stabiliz-
able states is related to their purity. In order to verify this, in
addition to the degree of entanglement of stabilizable states,
we also need to characterize their degree of purity. It is known
that any pure state’s covariance matrix fulfills a = b, and
c+ = −c− =

√
a2 − 1/4. However, to cover the general case

we also need to select measures of mixedness.
The purity of the state is defined as μ(ρ̂) := trρ̂2. For

our purposes, it is more convenient to consider the degree
of mixedness being the state’s lack of purity. One of the
most often used measures of mixedness is given by the linear
entropy

SL(ρ̂) := 1 − μ(ρ̂ ), (21)

which is essentially a linearized version of the von Neumann
entropy SV (ρ̂) := −trρ̂ ln ρ̂. Both entropies are just special
cases of the Tsallis [41] and Rényi [42] entropies.

For two-mode Gaussian states [35] we can calculate

trρ̂ p = gp(2ν+)gp(2ν−),

gp(x) := 2p[(x + 1)p − (x − 1)p]−1. (22)

In particular, the linear entropy (21) reduces to the simple
expression

SL(V ) = 1 − [4ν+(V )ν−(V )]−1. (23)

Due to its relative simplicity, throughout the rest of this work,
the linear entropy is our choice for the measure of mixedness.
However, we numerically obtain qualitatively similar results
for some of the other measures mentioned above.

III. STABILIZABILITY

We complete our toolbox by introducing the conditions for
stabilizability. Let us start with general states ρ̂ evolving under
the Gorini-Kossakowsi-Sudarshan-Lindblad (or Lindblad in
short) equation (1). The dissipator has the form

D̂(ρ̂) :=
∑

k

(
L̂k ρ̂L̂†

k − 1

2
{L̂†

k L̂k, ρ̂}
)
, (24)
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where L̂k are the so-called Lindblad operators.
In Ref. [16], the following two definitions were distin-

guished.
Definition 1. A state ρ̂ is a stationary state of the Lindblad

equation (1), if d ρ̂/dt = 0.
Definition 2. A state ρ̂ is a stabilizable state with respect to

the dissipator D̂(ρ̂), if there exists a Hamiltonian Ĥ such that
ρ̂ is the stationary state of the Lindblad equation (1) with this
specific Hamiltonian as an input.

Both definitions are concerned with robustness of the sys-
tem against the action of the environment. However, while
stationarity is formulated with respect to both the Hamilto-
nian and the dissipator, stabilizability refers only to the latter.
Consequently, it follows [15] that the set of stabilizable states
with respect to the dissipator D̂(ρ̂ ),

SD̂ :=
{
ρ̂ : ∃Ĥ 0 = − i

h̄
[Ĥ, ρ̂] + D̂(ρ̂)

}
, (25)

is independent of the Hamiltonian.
We note in passing that, by definition, any stationary state

is necessarily stabilizable. Thus, by considering stabilizabil-
ity, we can make meaningful statements about whether a given
state has the potential to be a stationary solution to the Lind-
blad equation without the need to specify a Hamiltonian.

In Ref. [15], the following necessary conditions for sta-
bilizability of general (finite-dimensional) quantum systems
were derived: a state ρ̂ is stabilizable, if

0 = tr[ρ̂kD̂(ρ̂)], (26)

for k ∈ {1, . . . , d − 1}, where d denotes the dimension of the
Hilbert space. These conditions are based on the insight that,
at stationarity, the Hamiltonian must be able to neutralize the
effect of the dissipator, which implies that the dissipator must
not affect the moments of the state, such as the purity.

Stabilizability of Gaussian states

In the context of continuous variable systems, including
Gaussian states, the general stabilizability conditions (26)
cannot be applied directly, since one must in general check
infinitely many conditions. More importantly, however, the
general conditions (26) leave the Hamiltonian unconstrained.
While this allows for considerations of the most general na-
ture, in many situations natural constraints limit the range
of accessible Hamiltonians. This is especially the case in
experiments, which are often, due to technical limitations,
restricted to quadratic Hamiltonians that are at most quadratic
in the creation and annihilation operators. In particular, the
structure-preserving evolution of Gaussian states is driven by
such quadratic Hamiltonians.

For this reason, a different methodology, incorporating this
constraint, has recently been developed [16]. In the case of
quadratic Hamiltonians, i.e., Hamiltonians of the form

Ĥ = �̂ξT G�̂ξ, (27)

where G is a 2N × 2N , real, symmetric matrix and �̂ξ is the
vector of mode quadratures defined by Eq. (2), the Lind-
blad evolution of the covariance matrix (of any state, not

necessarily Gaussian) can be concisely written as [10,11]

d

dt
V = AV + VAT + J (ReC†C)JT . (28)

The matrix A := J[G + (ImC†C)] is not symmetric in general,
while

Ckl := (�ck )l (29)

is a 2N × 2N matrix resulting from writing the Lindblad

operators as L̂k = �ck · �̂ξ with �ck ∈ C2N . It is assumed that the
Lindblad operators are linear in x̂k and p̂k in order to guarantee
consistency with the quadratic nature of the time evolution.

It has been shown [16] that the necessary conditions for
stabilizability of the covariance matrix read

0 = 2tr(ICJṼ k ) + tr(RCJṼ k−1), (30)

where k ∈ {1, . . . , 2N}, and we have introduced the short-
hand notation IC := ImC†C, RC := ReC†C, and Ṽ := JV .

We now prove that, for all odd k, the conditions (30) are
automatically satisfied. This will considerably simplify our
analysis of two-mode Gaussian states below.

Theorem 1. Let l ∈ N. Then for all V , C as in (30)

2tr[ICJṼ 2l+1] + tr[RCJṼ 2l ] = 0. (31)

Proof. Let us denote the first trace by X . Since transposition
does not change the value of the trace, we have

X = tr[ICJṼ 2l+1]T = tr
[
(V T JT )2l+1JT IT

C

]
. (32)

The matrices J and C satisfy JT = −J , J2 = −12N , RT
C = RC ,

and IT
C = −IC [16]. Performing all the transpositions accord-

ingly produces an extra minus sign:

X = −tr[(V J )2l+1JIC]. (33)

We can now use the fact that J2 = −12N to cancel out the last
two J matrices. At the same time, we can insert 12N = −J2 in
front of the trace. Obviously, this produces no overall change
in sign:

X = −tr[J (JV )2l+1IC] = −tr[ICJṼ 2l+1] = −X, (34)

where we have used the cyclic property of the trace. There-
fore, we have shown that the first term in (31) equals its
negative and thus vanishes for all l . The second term vanishes
in an analogous way. �

Theorem I states that all the odd (k ∈ {1, 3, . . .}) stabiliz-
ability conditions (30) are always fulfilled. Thus, in order to
investigate the stabilizability of an N-mode covariance matrix,
one needs to solve only N rather than 2N equations.

IV. STABILIZABILITY OF ENTANGLED TWO-MODE
GAUSSIAN STATES

The reduced number of stabilizability conditions (apply-
ing Theorem 1) allows us to investigate the stabilizability
of two-mode entangled states analytically. If we denote by
�z := (a, b, c+, c−) the set of variables parametrizing the state
V , and by �t the additional parameters that come from the
dissipator (24) [and thus parametrize the matrix C in Eq. (30)],
then the desired covariance matrices V (�z) describe states
that are
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(i) entangled—that is, are characterized by positive loga-
rithmic negativity:

EN (�z) > 0, (35a)

(ii) physical—that is, satisfy the Heisenberg uncertainty
principle (9):

h1(�z) := 4�(�z) − 16 det V (�z) − 1 � 0,

h2(�z) := −4�(�z) + 2 � 0,
(35b)

(iii) stabilizable—that is, satisfy the conditions (30) for
k = 2 and k = 4:

g1(�z, �t ) := 2tr[IC (�t )JṼ 2(�z)] + tr[RC (�t )JṼ (�z)] = 0,

g2(�z, �t ) := 2tr[IC (�t )JṼ 4(�z)] + tr[RC (�t )JṼ 3(�z)] = 0. (35c)

The existence and specific form of the solutions to the
equation system (i)–(iii) depend on the dissipative model at
hand. We emphasize that, while bath engineering may intro-
duce some flexibility on the side of the dissipator [10–12],
we focus here on fixed dissipators (due to an uncontrolled
bath and/or due to an engineered, but fixed, environment).
This implies that, in our considerations, we generally treat the
parameters �t as fixed, while manipulating the vector �z.

Interestingly, while the stabilizability conditions (30) are
in general only necessary, one can, for all cases discussed
below, determine the corresponding stabilizing Hamiltonians
by solving Eq. (28) with a vanishing left-hand side. Thus, in
all the cases discussed below, we can consider states satisfying
the constraints (35c) to be stabilizable.

A. Two modes with local damping

In the case of local damping, the two modes interact with
independent environments, resulting in uncorrelated loss of
particles or excitations in the modes [28]. This situation de-
scribes a generic challenge faced by technologies employing
entanglement of two-mode Gaussian states, such as teleporta-
tion, quantum cryptography, and quantum computation [22].
Clearly, the local dissipators act adversarial to nonlocal re-
sources such as entanglement. Therefore, it is relevant to
analyze the amount of entanglement that can be upheld by
the appropriate choice of the control Hamiltonian.

The Lindblad operators have the form [16]

L̂k :=
√

γk

2

(
x̂k

x0
+ ix0 p̂k

)
, (36)

where in the adopted notation the rates γk � 0, k ∈ {1, 2},
are responsible for the strength of dissipation in each mode,
and x0 ∈ R+. Note that, if x0 = 1, the operators (36) are pro-
portional to the annihilation operators âk := (x̂k + i p̂k )/

√
2

of the respective modes. In general, x0 can be interpreted as
the system’s characteristic length scale, which, in the case
of the standard harmonic oscillator, is determined by the
Hamiltonian [16]. Recall that, in our geometric approach, the
Hamiltonian is a priori unknown; however, in principle it can
always be determined [15].

We stress that, because the two modes interact with
independent environments, in the absence of a control Hamil-
tonian, the steady state of the system (if it exists) is separable
[this can be explicitly seen by setting G = dV/dt = 0 in

Eq. (28)]. This reconfirms that the family of dissipators at
hand is adversarial to entanglement.

The choice (36) implies

�c1(�t ) =
√

γ1

2

(
x−1

0 , ix0, 0, 0
)T

,

�c2(�t ) =
√

γ2

2

(
0, 0, x−1

0 , ix0
)T

, (37)

where the parameters are �t = (x0, γ1, γ2). Substituting the
resulting C into (30) [with V taken in the standard form (7)]
then yields the following:

0 = g1(�z, �t ) = γ1

2

[(
x−2

0 + x2
0

)
a − 4a2

]
+ γ2

2

[(
x−2

0 + x2
0

)
b − 4b2

] − 2(γ1 + γ2)c+c−,

0 = g2(�z, �t ) = −2(γ1 + γ2)(ab − c2
+)(ab − c2

−)

+ 1

2
(γ2a + γ1b)

[(
x−2

0 + x2
0

)
ab − (

x−2
0 c2

+ + x2
0c2

−
)]

,

(38)

where we have simplified g2(�z, �t ) assuming g1(�z, �t ) = 0.
The above system can be solved, for example, by extracting

c+(a, b, c−, �t ) from the first equation, substituting it into the
second equation, and then solving the second equation for
(c2

−)k (a, b, �t ), k ∈ {1, 2}. The solution can then be inserted
into the constraints (35a) and (35b), yielding a rather complex
set of inequalities (see the Appendix for details).

While this set of inequalities can still be solved numer-
ically, we focus here on two special classes of states, for
which we give exact solutions. Based on these solutions, we
then argue about the expected results in the general case. The
respective special cases concern states with the standard form
c+ = −c− ≡ c,1 and states with the standard form a = b.

We emphasize that both restrictions are natural, with the
former in particular being fulfilled by all squeezed thermal
states. In both cases, we show that the maximum value of log-
arithmic negativity cannot exceed EN ,max = ln 2 and that this
value is obtained only, or most easily (as explained below), if
γ1 = γ2 and x0 = 1. We then argue that these conditions are
optimal for all states, and we prove that, under this assump-
tion, the value EN ,max = ln 2 is maximal for all states and all
environments described by the operators (36).

Case of c+ = −c− ≡ c. In order for the dissipator to be
nontrivial, at least one of the rates γk must be strictly greater
than 0. Due to the symmetry between the modes, we can
choose, with no loss of generality, γ1 > 0. Equations (38) with
c+ = −c− ≡ c are thus equivalent to

0 = g1(�z, �t )

γ1
= (χa − 2a2) + γ (χb − 2b2) + 2(1 + γ )c2,

0 = g2(�z, �t )

γ1
= [(γ a + b)χ − 2(1 + γ )(ab − c2)](ab − c2),

(39)

1Note that it is necessary for an entangled state to have c+ and c−
with opposite signs. This can be shown by manipulating Eq. (35a)
and taking into account the first of the constraints (35b).
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where χ := (x−2
0 + x2

0 )/2 � 1 and γ := γ2/γ1 ∈ [0, 1] (be-
cause, again, with no loss of generality we can assume γ2 �
γ1).

Assuming a � b, it follows from the Heisenberg constraint
h2(�z) � 0 that

2 � 4(a2 + b2 + 2c−c+) = 4a2 + 4b2 − 8c2 � 8a2, (40)

and thus a � 1/2. Analogously, if a < b, one obtains b � 1/2.
Hence, a, b � 1/2 are necessary conditions for the system of
Eqs. (35a) and (35b) to be solvable. We therefore can, without
loss of generality, use the squeezed-state parametrization (15).

Once again solving the stabilizability conditions (39), this
time for ν±, we obtain

ν−(r, χ, γ ) = χ
cosh2 r + γ sinh2 r

1 + γ + (1 − γ ) cosh 2r
,

ν+(r, χ, γ ) = χ
γ cosh2 r + sinh2 r

1 + γ − (1 − γ ) cosh 2r
. (41)

Since any two-mode squeezed state fulfills the Heisenberg
uncertainty relation (35b), the system of Eqs. (35a) and (35b)
is now reduced to

EN (r, χ, γ ) > 0 and 1/2 � ν−(r, χ, γ ) � ν+(r, χ, γ ).
(42)

Solving this system we find that EN (r, χ, γ ) is maximized
(only) in the limit γ → 1.

Using this, we now study the system with γ = 1. The
stabilizable state then becomes symmetric:

ν±(r, χ, 1) = χ

2
cosh 2r. (43)

Obviously, this state is always physical, as ν±(r, χ, 1) � 1/2
for all r and χ . The entanglement condition, on the other
hand, leads to the following solution in terms of the squeezing
parameter:

2r > artanh(χ − 1), (44)

where χ � 2. As long as this simple criterion is fulfilled, the
logarithmic negativity (20) is positive and reads

EN (r, χ, 1) = ln(2/χ ) − ln(1 + e−4r ). (45)

Evidently, for a fixed dissipator (fixed value of the character-
istic length parameter χ ), the maximum is attained in the limit
of infinite squeezing,

lim
r→∞ EN (r, χ, 1) = ln(2/χ ), (46)

which, as we anticipated, is upper bounded by EN ,max = ln 2
(for χ = 1).

Regarding purity, we find that, despite the symmetry be-
tween the two modes, a = b and c+ = −c−, the state is highly
mixed—in the sense that its entropy is near-maximal.2 Indeed,

2Some readers may be familiar with the fact that in finite-
dimensional systems all states that are sufficiently close to the
maximally mixed state are separable [43]. We stress that this fact
does not extend to continuous variable systems, and so there is no
inconsistency with our findings connecting the amount of entangle-
ment to the amount of mixedness in stabilizable states.

the linear entropy (23) takes the form

SL(r, χ, 1) = 1 − (χ cosh 2r)−2. (47)

Clearly, SL(r, χ, 1) rapidly approaches its maximal value 1 as
a function of r, regardless of the value of the characteristic
length parameter χ . This implies that, independent from the
length scale of the system, the only stabilizable entangled
states are (highly) mixed. We note that similar results are
obtained when considering the Tsallis and Rényi entropies.

EN (r, χ, 1) and SL(r, χ, 1) are plotted in Figs. 1(a) and
1(b) as functions of r for four different values of χ . We find
that the logarithmic negativity assumes a finite, positive value
in the limit r → ∞. Notably, regardless of the value of χ , all
stabilizable entangled states are characterized by a nonzero
degree of mixedness (the only stabilizable pure state is the
vacuum state, r = 0).

Case of a = b. In this case, the stabilizability conditions
(38) become effectively independent of the rates γk . Solving
them for c±, as described at the beginning of this section, we
obtain two solutions: (c±)k (a, χ ), k ∈ {1, 2}. The first of these
solutions features c+ = −c−. This is just a special case of the
problem solved previously.

The second solution takes the following explicit form:

c+(a, χ ) =
√

a(2a − χ )[1 + 2(2a − χ )(qχ + χ )]

8a(qχ + χ ) − 2
, (48)

where qχ :=
√

χ2 − 1, with the corresponding c−(a, χ ) =
a(χ − 2a)/[2c+(a, χ )]. The solution can then be substituted
into the system of Eqs. (35a) and (35b), yielding the following
constraint:

8a > (9χ + 4
√

3qχ +
√

129χ2 + 72
√

3χqχ − 80). (49)

The logarithmic negativity and linear entropy read as follows:

EN (a, χ ) = − ln
√

2a(4a − χ ) − 2pχ (a)
√

2a(2a − χ ),

SL(a, χ ) = 1 − 1/pχ (a), (50)

where pχ (a) := 2a|4a − χ |/
√

16a2 − 8χa + 1. Both quanti-
ties are monotonically increasing functions of the parameter a.
As before, the logarithmic negativity is bounded by EN ,max =
ln 2, which is reached in the limit of extreme covariance
matrices, a → ∞ (this time for all χ ). These results are il-
lustrated in Figs. 1(c) and 1(d), where EN (a, χ ) and SL(a, χ )
are plotted as functions of a for four different values of χ .

Our findings for the two cases, c+ = −c− and a = b, sug-
gest that, among all the environments described by Lindblad
operators of the form (36), the preservation of entangled states
is the most efficient when χ = x0 = 1 and γ = γ1/γ2 = 1.
More precisely, we conjecture that the logarithmic negativity
of any state (i.e., for fixed �z) takes its maximum for the
dissipator given by χ = γ = 1.

We now solve the system once again, this time for a general
state [no assumptions about (a, b, c±)], but for the specific
dissipator χ = γ = 1. We show that the logarithmic negativ-
ity is then again bounded from above by EN ,max = ln 2. This
supports our conjecture that this value is maximal for all states
and all environments described by the operators (36).
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(a) (b)

(c) (d)

FIG. 1. Stabilizable entanglement in the presence of local damping. In the top row, the logarithmic negativity EN (r, χ, 1) (a) and the linear
entropy SL (r, χ, 1) (b) are plotted as functions of r, for the case c+ = c−, and with four different values of χ ∈ {1.0, 1.2, 1.6, 1.9}—solid line
(black), dashed line (red), dot-dashed line (green), and dotted line (blue), respectively. In the bottom row, the logarithmic negativity EN (a, χ )
(c) and the linear entropy SL (a, χ ) (d) are plotted as functions of a, for the case a = b, and with four different values of χ ∈ {1, 2, 4, 8}—solid
line (black), dashed line (red), dot-dashed line (green), and dotted line (blue), respectively. In both cases we find that, while the dissipator acts
adversarial to the entanglement, logarithmic negativities assume positive values, which are bounded from above by ln 2 ≈ 0.69. Moreover, as
the logarithmic negativities grow, so do the corresponding linear entropies, indicating a (asymptotic) tradeoff relation between the entanglement
and the purity of stabilizable states.

Case of χ = γ = 1. Solving Eq. (38) for (c±)k (a, b), k ∈
{1, 2}, and substituting into the system of Eqs. (35a) and
(35b), we obtain the solution a � 1/2, a = b. This is a special
case of the problem solved above. Thus, we conclude that,
under the assumption that, for a given state, the logarithmic
negativity is maximal when χ = γ = 1, the value EN ,max =
ln 2 is maximal for all states subject to dissipators described
by the operators (36).

An example Hamiltonian, which stabilizes states charac-
terized by EN = EN ,max = ln 2, is given by

Ĥsq = −ih̄ω(â1â2 − â†
1â†

2), (51)

where ω is a positive constant defining the energy levels
of the system. The resulting unitary evolution is governed
by the squeezing operator (14). In other words, our analysis
shows that, in the model of local damping, no other quadratic
Hamiltonian can outperform the squeezing Hamiltonian (51)
in stabilizing entanglement.

B. Dissipative squeezed-state preparation

We now discuss dissipators, which are designed to pro-
duce two-mode squeezed states, arising from applying the
squeezing operator (14) with r = α to the two-mode vaccuum
state [11]. In other words, these dissipators are specifically
engineered to preserve two-mode squeezed states with r = α.

Such models have been discussed in the context of the exper-
imental generation of entanglement [31,32].

By construction, the dissipator stabilizes the two-mode
squeezed state characterized by r = α. Consequently, the lat-
ter describes the steady state of the system in the absence of
a Hamiltonian. However, the model also admits other stabiliz-
able states, possibly characterized by higher entanglement. In
this section, we demonstrate that this is indeed the case.

In principle, one could consider only single-mode squeez-
ing (see, e.g., Ref. [11]). Here, we focus on full two-mode
squeezing, induced by the two Lindblad operators

L̂1 := cosh α â1 − sinh α â†
2,

L̂2 := cosh α â2 − sinh α â†
1, (52)

where α � 0. The resulting dissipator consists of two chan-
nels, each creating a superposition of states in which one of
the modes gains a particle and the other loses a particle, with
the rate of the losses and gains controlled by the parameter α.

As mentioned above, our objective is to show that there
exist stabilizable states that are more entangled than the dis-
sipator’s dedicated squeezed thermal states. To this end, it is
sufficient to consider the special case c+ = −c− ≡ c, which
includes the aforementioned squeezed states. As discussed
in the previous subsection, we can then use the squeezed
thermal state parametrization (15) with no loss of generality.
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(a) (b)

FIG. 2. Stabilizable entanglement for dissipators engineered to preserve two-mode squeezed thermal states. Shown are the logarithmic
negativity EN (r, α) (a) and the linear entropy SL (r, α) (b) as functions of r, for three different values of α ∈ {0, 1, 2}—solid line (black), dashed
line (red), and dotted line (green), respectively. We find that, irrespective of the nonlocal character of the dissipator, the amount of stabilizable
entanglement is finite and bounded from above by 2α + ln 2, a value ln 2 greater than the amount of entanglement in the dissipator’s dedicated
two-mode squeezed state. The states achieving this optimal value are close to maximally mixed, while the linear entropies assume their minima
at their respective dedicated two-mode squeezed states.

The conditions (30) assume the following forms:

0 = g1(ν±, r, α) = 2(ν2
− + ν2

+) − (ν− + ν+) cosh 2(r − α),

0 = g2(ν±, r, α) = ν−ν+[4ν−ν+ − (ν− + ν+) cosh 2(r − α)],
(53)

where, just as in the case of two modes with local damping, we
simplified g2(�z) using g1(�z) = 0. Comparing the cosh 2(r −
α) terms in the two equations, one can easily see that they can
be simultaneously fulfilled if and only if ν− = ν+ ≡ ν. This
immediately leads to the solution:

ν(r, α) = 1
2 cosh 2(r − α). (54)

The corresponding logarithmic negativity (20) is equal to

EN (r, α) := − ln[e−2r cosh 2(r − α)]. (55)

Clearly, the state is always physical, as ν(r, α) � 1/2 for all
r and α. As for the presence of entanglement, it follows from
the definition (20) that the state is entangled if and only if the
argument of the above logarithm is smaller than 1. This leads
to the following condition:

4r > 2α − ln(2 − e−2α ). (56)

For a fixed dissipator (fixed α), we have

0 � EN (r, α) � lim
r→∞ EN (r, α) = ln 2 + 2α, (57)

obtainable, e.g., with a Hamiltonian of the form (51).
We make the following observations: First, it is clear that,

despite the nonlocal character of the Lindblad operators (52),
arbitrarily high entanglement can only be obtained in the
limit α → ∞. Second, and perhaps more interestingly, the
value (57) is ln 2 higher than the logarithmic negativity of
the two-mode squeezed state with r = α, which the dissipator
is engineered to produce by default. In other words, there
exist states stabilizable with respect to the dissipator that are
more entangled than the dedicated two-mode squeezed state.
Finally, we can see that, for α = 0, the maximum negativity
is equal to EN ,max = ln 2. In fact, one can easily check that,
when α = 0, the logarithmic negativity (55) is exactly equal

to that in Eq. (45) with χ = 1. This is what we should expect
based on the discussion in the previous subsection, as in
this case the operators (52) coincide with those in Eq. (36)
with x0 = γ2/γ1 = 1. Similar results hold for the entropies, in
particular the linear entropy

SL(r, α) := tanh2 2(r − α). (58)

The logarithmic negativity and the linear entropy are both
plotted in Fig. 2 as functions of r for four different values
of α. As in the previous models, the logarithmic negativity
rapidly approaches its maximum value, ln 2 + 2α. We stress
again that this maximum value is ln 2 ≈ 0.69 higher than the
logarithmic negativity of the two-mode squeezed state with
r = α.

The behavior of the linear entropy deviates from the previ-
ous models. We find that, in the neighbourhood of the point
r = α, there exist highly entangled states that are (nearly)
pure. This is simply a consequence of the fact that the dis-
sipator (52) is designed to preserve pure two-mode squeezed
states with r = α. Irrespectively, we find that for a fixed
environment (fixed α), stabilizable states which maximize
entanglement are close to maximally mixed.

Local perturbation. We complement our analysis by con-
sidering local perturbations of the dissipator (52). As argued
above, the presence of some local dissipation is usually un-
avoidable in realistic scenarios. Depending on the strength of
the local noise, we must expect that our results regarding the
stabilizability of entangled states are adjusted.

To account for this fact, we modify our model by adding
two Lindblad operators for local damping (36), with γ1 =
γ2 ≡ η responsible for the relative strength of the local dis-
sipation, and x0 = 1 for simplicity. The resulting logarithmic
negativity reads

EN (r, α, η) = EN (r, α) − ln
1 + η cosh 2r cosh−1 2(r − α)

1 + η
,

(59)
where EN (r, α) refers to the logarithmic negativity of the
unmodified model (55). Clearly, regardless of the parameter
α of the dissipator, for a fixed state (fixed r), the logarithmic
negativity is lowered by the presence of local noise. This is in
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line with our intuition that local dissipation should reduce the
stabilizable entanglement.

C. Cascaded oscillators

We finally discuss the case of cascaded oscillators cou-
pled to the vacuum [11]. The use of cascaded oscillators is
common in experimental setups, ranging from the production
of entangled states [30] to spectroscopy [33]. The particular
model under consideration has recently been discussed in the
context of entanglement distribution [29]. Moreover, this form
of mode coupling is leveraged in the coherent Ising machine
[44].

In this scheme, we have a single Lindblad operator,

L̂ := √
κ (â1 + â2), (60)

where κ > 0 is a parameter responsible for the strength of
the dissipation. The model is similar to the one discussed in
Sec. IV A with γ = x0 = 1, in the sense that the interaction
with the environment results in the loss of excitations in the
modes. However, while that dissipator consisted of two chan-
nels, each of which decreased the number of excitations in
one of the modes in a deterministic fashion, here the dissipator
consists of only one channel, whose action on the state creates
a superposition of two states, each with an excitation lost
in one of the modes. Interestingly, the steady state of the
system in the absence of a Hamiltonian, given by b = a and
c± = 1/2 − a, is separable.

In the model at hand, our main objective is to demonstrate
that, unlike in the previous models, it is possible to achieve
infinite logarithmic negativity. To this end, it is sufficient to
consider states characterized by a = b. The definition (60)
then gives rise to the following stabilizability conditions (30):

0 = g1(�z)

κ
= 4a2 + 2a(2c+ + 2c− − 1) + 4c+c− − c+ − c−,

0 = g2(�z)

κ
= −(a + c+)(a + c−)

g1(�z)

κ
. (61)

Note that the value of κ is irrelevant for stabilizability. This is
an immediate consequence of the fact that the conditions (30)
are linear in C†C. Physically, it corresponds to the fact that the
overall dissipation strength merely affects the transition time
to the steady state, not the steady state itself.

Clearly, the two equalities (61) are valid only if g1(�z) = 0.
Solving for c−, we obtain

c−(a, c+) = − a + (a + c+)/(4a + 4c+ − 1). (62)

The system of Eqs. (35a) and (35b) is then solved if and only
if a � 1/2 and

c+,min(a) < c+ � c+,max(a), (63)

where

c+,min(a) :=
√

(a − 1)a + 1/2 − 1/2,

c+,max(a) := a − 1/2 + √
2a(2a − 1)(4a − 1)(4a + 1)

8a − 1
.

(64)

The logarithmic negativity takes the form

EN (a, c+) := − ln

(
2

√
a2 − c2+

4a + 4c+ − 1

)
. (65)

Notably, it is a monotonically nondecreasing function of a,
with the rate of growth proportional to how close c+ is to
c+,max(a). In particular, EN [a, c+,min(a)] = 0 and

lim
a→∞ EN [a, c+,max(a)] = ∞. (66)

In other words, in the limit a → ∞, it is possible to stabilize
states characterized by arbitrarily high entanglement. An ex-
emplary Hamiltonian stabilizing such states is given by

Ĥcas = (−ih̄ω/2)[(â1 + â2)2 − (â†
1 + â†

2)2], (67)

where ω is an arbitrary positive constant. One easily checks
that, in the limit a → ∞, the functions c+,max(a) and
c−,max(a) practically coincide. By virtue of Eq. (15), we can
thus interpret this limit as infinite two-mode squeezing.

For the sake of completeness, we also analyze the case of
c+ = −c− ≡ c, as in the case of local damping. As it turns
out, such an assumption leads to a = b, effectively reducing
it to a special case of the above model, with c+,mid(a) :=√

a(a − 1/2). In the limit of infinite squeezing this yields

lim
a→∞ EN [a, c+,mid(a)] = ln 2, (68)

a reiteration of the result (46) for local damping.
In all cases, the state is at least partially mixed. The linear

entropy (23) is equal to

SL(a, c+) = 1 − 4a + 4c+ − 1

4(a + c+)
√

(a − c+)o(a, c+)
, (69)

where o(a, c+) := c+(8a − 1) + a(8a − 3). As is evident
from (63), c+ is at least linear in a. The negative term thus
eventually decays to 0 as a grows. The Tsallis and Rényi
entropies yield similar results.

Figure 3(a) shows a comparison of the logarithmic nega-
tivities EN (a, c+) with c+,max(a) and c+,mid(a) as input. We
find that the former grows indefinitely, while the latter rapidly
reaches its maximal value, EN ,max = ln 2. In Fig. 3(b), we
provide an analogous comparison for the corresponding en-
tropies.

The presence of additional local noise can be taken into ac-
count in a similar way as in the case discussed in the previous
subsection.

V. CONCLUDING REMARKS

We studied the stabilizability of entangled two-mode Gaus-
sian states in three physically motivated dissipative scenarios.
Based on a Hamiltonian-independent treatment, we find ex-
plicit parametrizations of the stabilizable states in all three
models, allowing us to quantify their entanglement and
mixedness.

In the case of two modes with local damping, where
the dissipator acts adversarial to entanglement, we provide
strong evidence that the logarithmic negativity does not ex-
ceed ln 2 for all stabilizable states. Perhaps counterintuitively,
we obtain a similar result in the case of nonlocal dissipators
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(a) (b)

FIG. 3. Stabilizable entanglement for two cascaded oscillators coupled to the vacuum. The logarithmic negativity EN (a, c+) (a) and the
linear entropy SL (a, c+) (b) are plotted as functions of a, with c+ = c+,max(a) and c+ = c+,mid(a)—solid line (black) and dashed line (red),
respectively. Reflecting the global character of the dissipator, we find that the amount of entanglement for the states characterized by c+(a) =
c+,max(a) grows unbounded as a → ∞. States characterized by maximum logarithmic negativity are close to the maximally mixed state.

engineered to preserve squeezed thermal states, where an
analogous upper bound is derived. For this class of dissipators,
we also showed that there exist stabilizable states with entan-
glement higher than that in the case of dedicated two-mode
squeezed states. In the case of cascaded oscillators coupled
to the vacuum, we find that arbitrarily high entanglement
can be stabilized. Generally, we observe that, regardless of
the model at hand, the stabilizable states which maximize
entanglement are close to maximally mixed, indicating an
asymptotic tradeoff relation between entanglement and purity
among stabilizable states.

Our findings suggest the following directions for future
research. First, we focused here on two-mode Gaussian states.
It would be interesting to see how the analysis can be extended
to other types of systems, for instance, N-mode Gaussian
states or non-Gaussian states. In the former case, Theorem I
significantly reduces the number of stabilizability conditions.
However, due to the lack of a standard form for N > 2, co-
variance matrices depend on large numbers of parameters,
rendering analytical treatments challenging. In the latter case,
a challenge may lie in finding viable parametrizations for
families of potentially stabilizable states. Irrespectively, let us
point out that, in a more precise sense, our work addresses
the stabilizability of covariance matrices, which can also be
attributed to non-Gaussian states. For Gaussian states, the
covariance matrices comprise the complete state information,
including their entanglement properties. When applied to non-
Gaussian states, our results still hold in a similar way, with
some conclusions weakened (e.g., entanglement criteria based
on the covariance matrix are only necessary for non-Gaussian
states [45]).

Second, our conjecture regarding the (absence of) purity
of maximally entangled stabilizable states relies on specific
models of environment. Is it possible to make this statement
more rigorous, e.g., by proving it for arbitrary dissipators
and systems? Moreover, the theory of stablizability itself may
be developed further. For example, the known conditions for
stabilizability [15,16] are necessary but not sufficient for all
quantum states. Necessary and sufficient conditions, on the
other hand, would allow us to draw more stringent conclu-
sions. Finally, in practical scenarios, where the dissipator is
at least partially controlled, it may be beneficial to adapt the

theory of stabilizability, e.g., by splitting the dissipator into a
controllable part and a noncontrollable part, and formulating
new conditions for stabilizability with respect to the latter.
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APPENDIX: DISCUSSION OF THE GENERAL PROBLEM
OF LOCAL DAMPING

Solving the stabilizability conditions (38) as described at
the beginning of Sec. IV A, we recover the solution as

c+ = γ1
( − 4a2x2

0 + x4
0 (a + b) + a

) + bγ2
(
1 − 4bx2

0

)
4c−(γ1 + γ2)x2

0

,

(c2
−)± = −B ± √

B2 − 4AC

2A
, (A1)

where

A = 1

2
γ1

[
x2

0 (a + b) − 4ab
] − 2abγ2,

B = γ 2
1 D + 2γ2γ1bE + γ 2

2 bF

8(γ1 + γ2)x4
0

,

C = G2H

32(γ1 + γ2)2x6
0

,

D = 2ax4
0 (8a3 + 8ab2 + a + b) − 4ax2

0 (2a2 + b2)

+ a2 + x8
0 (a + b)2 − 4ax6

0 (a + b)(2a + b),

E = x4
0 (32a2b + a + b) − 2x6

0 (a + b)(a + 2b)

− 6ax2
0 (a + b) + a,

F = (
4bx2

0 − 1
)[

4x2
0 (a2 + b2) − b

]
,

G = γ1
[ − 4a2x2

0 + x4
0 (a + b) + a

] + bγ2
(
1 − 4bx2

0

)
,

H = bγ1
(
4ax2

0 − 1
) + aγ2

(
4bx2

0 − 1
)
.
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The constraints (35a) and (35b), on the other hand, read ex-
plictly as follows:

0 > −4(a2 + b2 − 2c−c+) + 16(ab − c2
−)(ab − c2

+) + 1,

0 � 4(a2 + b2 + 2c−c+) − 16(ab − c2
−)(ab − c2

+) − 1,

0 � 2 − 4(a2 + b2 + 2c−c+).

Using the formulas (A1), we obtain a set of three inequalities
for two independent variables, a and b, and three parameters,
γ1, γ2, and x0 (two if γ = γ2/γ1 is used). Unless specific
values are assigned to these parameters, the solution has to
be attempted numerically.
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