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The Griffiths-McCoy singularity is a phenomenon characteristic of low-dimensional disordered quantum spin
systems, in which the magnetic susceptibility shows singular behavior as a function of the external field even
within the paramagnetic phase. We study whether this phenomenon is observed in the transverse-field Ising
model with disordered ferromagnetic interactions on the quasi-two-dimensional diluted Chimera graph both
by quantum Monte Carlo simulations and by extensive experiments on the D-Wave quantum annealer used
as a quantum simulator. From quantum Monte Carlo simulations, evidence is found for the existence of the
Griffiths-McCoy singularity in the paramagnetic phase. The experimental approach on the quantum hardware
produces results that are less clear cut due to the intrinsic noise and errors in the analog quantum device but
can nonetheless be interpreted to be consistent with the existence of the Griffiths-McCoy singularity as in the
Monte Carlo case. This is the first experimental approach based on an analog quantum simulator to study the
subtle phenomenon of Griffiths-McCoy singularities in a disordered quantum spin system, through which we
have clarified the capabilities and limitations of the D-Wave quantum annealer as a quantum simulator.
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I. INTRODUCTION

Spin systems with disorder exhibit a number of unusual
properties, a most notable example of which is the spin-glass
state with randomly frozen spin configurations caused by dis-
order and frustration [1]. Even in the absence of frustration,
disorder alone can lead to unexpected behaviors, and the Grif-
fiths singularity is one of the most prominent examples [2].
It was shown by Griffiths [3] that the magnetic susceptibility
of a randomly diluted ferromagnetic system shows singular-
ities as a function of the external magnetic field within the
paramagnetic phase. This singularity originates in the exis-
tence of rare but extremely large ferromagnetic clusters, which
behave almost like a pure ferromagnetic system responding
strongly to the external field if the temperature is below
the transition temperature of the nondiluted ferromagnetic
system. The Griffiths singularity in the susceptibility is, how-
ever, a very weak essential singularity and is hard to observe
experimentally.
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Quantum effects significantly enhance the strength of
this singularity, leading to divergences of the linear and
nonlinear susceptibilities [2], a phenomenon known as the
Griffiths-McCoy singularity [4,5]. Numerical, theoretical, and
experimental investigations have been conducted on this
subject, particularly in low-dimensional systems where the
singular behavior of physical quantities is expected to appear
most prominently [2,6–13].

In the present paper we study this problem in the
ferromagnetic transverse-field Ising model on the diluted
quasi-two-dimensional Chimera graph with disordered inter-
actions by quantum Monte Carlo simulation on a classical
computer and by quantum hardware simulations on the D-
Wave quantum annealer. There are several reasons to motivate
this direction of investigation. First, there exist few numeri-
cal or theoretical studies on the Griffiths-McCoy singularity
for (quasi-)two-dimensional disordered ferromagnets without
frustration [11] although spin-glass systems have been in-
vestigated relatively extensively [6–10,12]. One expects that
the disordered ferromagnet and spin glasses would behave
qualitatively in the same way as far as the Griffiths-McCoy
singularity is concerned because only disorder is relevant
to this phenomenon, not the existence of frustration, but it
nevertheless makes sense to confirm this conjecture explic-
itly numerically and experimentally by an additional concrete
example. Second, it is an interesting exercise to compare the
results of numerical simulations with data from the analog
quantum simulator, the latter of which can be regarded as
an experimental apparatus because real physical phenomena
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corresponding to the theory are expected to take place on the
chip of the device if the latter operates as designed.

We find that the Griffiths-McCoy singularity exists in the
present problem from numerical simulations. In contrast, data
from the D-Wave device include a good amount of uncertain-
ties due to noise, systematic bias, and other imperfections,
but the results can be understood to be compatible with the
existence of Griffiths-McCoy singularity, providing an exper-
imental test of the existence of this subtle singularity on the
analog quantum simulator.

This paper is organized as follows. We summarize basic
facts about the Griffiths-McCoy singularity and list two quan-
tities to be measured, linear and nonlinear susceptibilities,
by numerical and experimental approaches in Sec. II. Meth-
ods and results of numerical simulations by quantum Monte
Carlo are described in Sec. III. Experiments on the D-Wave
device are discussed, and results are compared with those
from numerical simulations in Sec. IV. Section V discusses
the results. Additional details are described in Appendixes.

II. GRIFFITHS-MCCOY SINGULARITY

In this section, we first explain the basic idea of the
original Griffiths singularity for the classical ferromagnetic
Ising model on a randomly diluted lattice, and then discuss
the quantum version, the Griffiths-McCoy singularity for the
transverse-field Ising model.

Let us consider the classical ferromagnetic Ising model
on a regular lattice, e.g., the two-dimensional square lattice,
with a finite transition temperature between the paramagnetic
and ferromagnetic phases. Suppose that we remove each bond
(interaction) randomly with probability 1 − p and keep the
bond with probability p. The ferromagnetic phase becomes
gradually unstable as p decreases from 1 and the transition
temperature Tc(p) decreases as p decreases. At the percolation
threshold pc for the given lattice, e.g., pc = 1/2 for the square
lattice, the transition temperature reaches zero, Tc(pc) = 0.

Griffiths [3] proved that, in the temperature range within
the paramagnetic phase but below the transition temperature
at p = 1, Tc(p) < T < Tc(1), the magnetic susceptibility χ (h)
as a function of the external field h is singular at h = 0. This
behavior exists for any 0 < p < 1 both above and below the
percolation threshold pc. The intuitive reason is that there
exist very large clusters of almost ferromagnetically ordered
spins even for p < pc and they respond strongly to the exter-
nal field if T < Tc(1) because, in the infinitely large system,
the spontaneous magnetization is positive for h > 0 and is
negative for h < 0, i.e., a discontinuity at h = 0 (an infinite
susceptibility). Since the probability of the existence of very
large clusters is exponentially small as a function of their size,
the resulting Griffiths singularity in the susceptibility is very
weak, an essential singularity, and is therefore hard to detect
experimentally.

Introduction of quantum effects significantly enhances the
strength of the singularity, known as the Griffiths-McCoy
singularity [2,4,5]. Let us formulate the statistical mechanics
of the transverse-field Ising model

H =
∑
〈i, j〉

Ji j σ̂
z
i σ̂ z

j − �
∑

i

σ̂ x
i (1)

in terms of the Suzuki-Trotter decomposition [14]. This is
a standard method for classical simulation (quantum Monte
Carlo) of the transverse-field Ising model, in which the quan-
tum problem is mapped to a collection of classical paths, as in
the Feynman path integral, along discretized imaginary time
steps. In this classical representation of the transverse-field
Ising model, Ising spins along the Trotter (imaginary time)
axis are coupled strongly by ferromagnetic interactions for
moderate and weak values of the transverse field �. This
strong ferromagnetic coupling along the Trotter direction
causes the ferromagnetically coupled clusters extended in the
Trotter direction, greatly enhancing the response to the exter-
nal field. Indeed, at zero temperature, the linear and nonlinear
susceptibilities χ and χnl are known to behave as [2]

χ � hd/z′−1, (2)

χnl � hd/z′−3, (3)

where d is the spatial dimension of the lattice and z′ is ef-
fective (running) dynamical exponent dependent on the value
of �. Equations (2) and (3) indicate that χ and χnl diverge
at h = 0 if d/z′ < 1 and d/z′ < 3, respectively. The former
inequality is indeed satisfied on the two-dimensional square
lattice with the interaction and the transverse field chosen uni-
formly randomly, and the exponent z′ diverges at the transition
point [11]. In one dimension, the singularity is stronger with z′
being divergent for any � larger than the transition point [15].
In three dimensions, if the singularity exists, it is weak [12].
These properties hold for other types of disorder in the inter-
actions, not just simple dilution of ferromagnetic interactions,
including the Ising spin-glass model under a transverse field,
because only the existence of randomness is relevant in the
sense of renormalization group and frustration does not play
an essential role in the Griffiths-McCoy singularity.

In order to measure d/z′ to determine whether or not the
linear and nonlinear susceptibilities diverge, it is useful to plot
the histogram of measured values of local linear and nonlinear
susceptibilities, which are known to behave as [7,8,10]

ln P(χloc) � −
(

d

z′ + 1

)
ln χloc, (4)

ln P(χnlloc) � −
(

d

3z′ + 1

)
ln χnlloc, (5)

which holds for large values of the variables. The slope of
the plot gives the exponent. The local susceptibility χloc is
defined as

χloc = χii = ∂mi

∂hi

∣∣∣∣
hi=0

, (6)

where mi is the local magnetization computed from the
quantum-mechanical expectation value of the spins and hi is
the local longitudinal field applied only to site i. The local
susceptibility χii depends on the site index i, and we collect
the statistics of this quantity over i and random samples to
generate the histogram P(χloc). The local nonlinear suscepti-
bility χnlloc is defined similarly as the third derivative of mi

with respect to hi. In the paramagnetic phase, the correlation
length is short and the ordinary (global) linear and nonlinear
susceptibilities are expected to follow the same formulas as
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FIG. 1. Connectivity in the diluted Chimera graph. The original
Chimera graph has much more interactions. For example, the site on
the top left corner has interactions with all four sites within the unit
cell of 4 + 4 sites but only two of them remain here.

Eqs. (4) and (5). The local quantities are used often in nu-
merical simulations because a larger number of samples can
be generated than for the global quantities, leading to better
statistics.

III. QUANTUM MONTE CARLO SIMULATION

In this section we describe the methods and results of
quantum Monte Carlo simulations of the Griffiths-McCoy sin-
gularity on the diluted Chimera graph as depicted in Fig. 1, in
which some of the interactions on the original Chimera graph
are removed. This dilution of the Chimera graph is expected
to help us enhance the parameter range of the Griffiths-McCoy
singularity since lower-dimensional systems with less degree
of connectivity tend to show stronger effects of this singular-
ity [12]. The Chimera graph is chosen because the topology
is directly realized on the D-Wave chip without the necessity
of embedding. The above dilution of the Chimera graph is not
random, and it has no effect on the Griffiths-McCoy singular-
ity except for the enhancement of parameter range as written
above.

Randomness causing the singularity is in the choice
of the interaction strength at the bonds remaining on the
graph of Fig. 1,

P(Ji j ) = 1

6

5∑
k=0

δ(Ji j + 0.2k), (7)

meaning that the Ji j are uniformly chosen from the set
{0,−0.2,−0.4,−0.6,−0.8,−1.0}. This problem on the
quasi-two-dimensional diluted Chimera graph has not been
studied so far, and it is interesting to investigate it both by clas-
sical simulation, i.e., quantum Monte Carlo, and by a direct
quantum simulation on the D-Wave quantum annealer, which
may be regarded as an experiment on the analog quantum
simulator. The present section concerns the former classical
simulation.

A. Method

We perform quantum Monte Carlo simulations based on
the Suzuki-Trotter decomposition with parameters listed in
Table I. The total number of spins we deal with for each
Monte Carlo step is L × L × 8 × M × Nβ × N� . See Table I
for the definition of each symbol. For each random instance,
we store the following physical variables: the absolute total
magnetization, the squared total magnetization, the fourth
moment of the total magnetization, the squared local magne-
tization, and the fourth moment of the local magnetization,

(i) 〈|m|〉 = 〈| 1
NM

∑N
i=1

∑M
t=1 σi(t )|〉,

(ii) 〈m2〉 = 〈( 1
NM

∑N
i=1

∑M
t=1 σi(t ))

2〉,
(iii) 〈m4〉 = 〈( 1

NM

∑N
i=1

∑M
t=1 σi(t ))

4〉,
(iv) 〈m2

i 〉 = 〈( 1
M

∑M
t=1 σi(t ))

2〉,
(v) 〈m4

i 〉 = 〈( 1
M

∑M
t=1 σi(t ))

4〉,
where the brackets 〈...〉 denote the statistical-mechanical av-
erage (i.e., the Monte Carlo average), which is expected
to reduce to the quantum-mechanical average in the low-
temperature limit, and m stands for the sum of spin values
over all spatial sites and along the Trotter direction,

m = 1

NM

N∑
i=1

M∑
t=1

σi(t ). (8)

The quantity mi is the spin of local site averaged over the
Trotter direction,

mi = 1

M

M∑
t=1

σi(t ). (9)

We employ a GPU-based algorithm to accelerate the Monte
Carlo simulations.

We apply finite-size scaling to the analysis of the critical
point and critical exponents through the Binder ratio g [16]:

g =
[

1

2

(
3 − 〈m〉4

〈m2〉2

)]
, (10)

TABLE I. Parameters for the quantum Monte Carlo simulation. Nrand is the number of random instances, M is the number of Trotter slices,
L is the square root of the number of Chimera units (N = 8L2 is the total number of sites), Nstep is the number of Monte Carlo steps, βmax and
βmin are, respectively, the maximum and minimum values of the inverse temperature, Nβ is the number of inverse temperatures, �min and �max

are, respectively, the minimum and maximum values of the transverse field, and N� is the number of transverse field values.

Nrand M L Nstep βmax βmin Nβ �min �max N�

200 150 6,8,10,12 220 50 2.5 10 1.4 2.135 50
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1.4 1.6 1.8 2.0
Γ

10−3

10−2

10−1

100

− 
ln

(1
 −

g)

L = 6
L = 8
L = 10
L = 12

(a)

−0.4 −0.2 0.0 0.2 0.4
0.00

0.02

0.04

0.06

0.08

0.10

− 
ln

(1
 −

g)

L = 6
L = 8
L = 10
L = 12

(b)

FIG. 2. (a) The Binder ratio g in the scale − ln(1 − g) for dif-
ferent system sizes L = 6, 8, 10, 12 with the inverse temperature
β = 20. Curves cross at � � 1.7. (b) Finite-size scaling analysis of
the Binder ratio with �c = 1.75(4) and ν = 1.4(2).

the global susceptibility χ ,

χ = βN[〈m2〉], (11)

and the magnetization [〈|m|〉], where [· · · ] denotes the aver-
age over instances of randomness in interactions.

As for the exponent d/z′, we generate the histograms
P(χloc) and P(χnlloc) of the local susceptibility χloc and the
nonlinear local susceptibility χnlloc,

χloc = 〈
m2

i

〉
, (12)

χnlloc = −( 〈
m4

i

〉 − 3
〈
m2

i

〉2 )
. (13)

These quantities are expected to show the behavior described
in Eqs. (4) and (5). Each histogram is generated from N ×
Nrand samples, where N = 8L2 is the number of sites.

We also plot similar histograms for the global linear and
nonlinear susceptibilities,

χ = 〈m2〉 , (14)

χnl = −(〈m4〉 − 3 〈m2〉2
), (15)

to compare their behavior with the corresponding data
for local susceptibilities. Each histogram is generated
from Nrand samples. We use the PYTHON module
“scipy.optimize.curve_fit” in SCIPY [17] for the data fittings.

0.0 0.1 0.2 0.3 0.4
T

1.6

1.7

1.8

Γ
c

(a)

0.0 0.1 0.2 0.3 0.4
T

1.0

1.2

1.4

1.6

1.8

2.0

ν

(b)

FIG. 3. (a) Critical point �c and (b) the critical exponent ν as
functions of the temperature T . Black dashed lines represent the
linear fitting of the data. Extrapolation shows that �c � 1.78 and
ν � 1.5 in the zero-temperature limit.

B. Results

We first determine the transition point between the para-
magnetic and ferromagnetic phases and then move on to the
Griffiths-McCoy singularity within the paramagnetic phase.

1. Transition point

Figure 2(a) shows the Binder ratio as a function of �

with the inverse temperature β = 20. We employ − ln(1 − g)
instead of the naive Binder ratio g in order to obtain a good
resolution near the critical point [18]. The figure indicates that
the phase transition point is located around � � 1.7.

Figure 2(b) shows the result of a finite-size scaling analysis
of the same data. It is observed that the data with different
sizes collapse onto the same curve for �c = 1.75(4) and ν =
1.4(2).

We apply the same finite-size scaling to each temperature,
and the results for the transition point and the critical exponent
are summarized in Fig. 3. From Fig. 3(a), we observe that �c

grows linearly as the temperature T approaches zero. Linear
fitting shows that �c can be determined to be about 1.78 in
the limit of zero temperature. We also see that the critical
exponent ν does not clearly depend on the temperature and
can be estimated as ν � 1.5. One may notice that the error
bars are relatively large near zero temperature. This large
uncertainty comes from the fact that the data collapse in
Fig. 2(b) does not depend very much on the values of �c and
ν: the data collapse is robust against the change of the values
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2 × 10−2 3 × 10−2 4 × 10−2
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10−1

P
(χ
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c
)

L = 6
L = 8
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L = 12

FIG. 4. Log-log plot of the histogram of the local susceptibil-
ity P(χloc ) for different sizes at inverse temperature β = 50 and
transverse field � = 1.895. The black solid line shows a fit to the
data whose slope is −13.83 ± 0.15, which indicates that d/z′ �
12.83 ± 0.15.

of �c and ν, especially the latter. We think it reasonable to
assume �c = 1.78(2) based on the data in the temperature
range T > 0.1 where the data are relatively stable. Estimation
of ν and other critical exponents such as β and γ involves
large uncertainties as was the case in three-dimensional spin
glasses [19], as detailed in Appendix A. At least, the esti-
mated transition point �c = 1.78 gives consistent results in
finite-size scaling of other physical quantities such as the
susceptibility and magnetization, see Appendix A.

2. Histograms of susceptibilities

In this section we estimate the exponent d/z′, which is
critical to determine the existence of the Griffiths-McCoy
singularity, from the data of local and global susceptibilities.

a. Local susceptibility. Figure 4 shows the histogram of
the local susceptibility P(χloc) in a paramagnetic region far
from the critical point (� = 1.895). In this region, the size
dependence of the data is weak except for the tail of the
distribution where the probability is small due to insufficient
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10−5

10−4

10−3

10−2

10−1

P
(χ

lo
c
)

L = 6
L = 8
L = 10
L = 12

FIG. 5. Log-log plot of the histogram of the local susceptibility
P(χloc ) for different sizes at inverse temperature β = 50 and trans-
verse field � = 1.79. The slope clearly depends on the system size
compared to Fig. 4. The black solid line shows a fit to the data with
the largest system size L = 12 whose slope is −5.40 ± 0.33, which
indicates that d/z′ is at least smaller than about 4.40 ± 0.33.
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)

L = 6
L = 8
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FIG. 6. Log-log plot of the histogram of the local susceptibil-
ity P(χloc ) for different sizes at inverse temperature β = 50 and
transverse field � = 1.4 (ferromagnetic phase). P(χloc ) grows mono-
tonically as the susceptibility χloc increases especially for the largest
system size L = 12.

10−5 10−4
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10−5

10−4

10−3

10−2

10−1
P

( χ
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c
)

L = 6
L = 8
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FIG. 7. Log-log plot of the histogram of the nonlinear local sus-
ceptibility P(χnlloc ) for different sizes at inverse temperature β = 50
and transverse field � = 1.895. The black solid line shows the fitting
to the data whose slope is −4.02 ± 0.06, which indicates that d/3z′

is around 3.02 ± 0.06.
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FIG. 8. Log-log plot of the histogram of the nonlinear local
susceptibility P(χnlloc ) for different sizes at inverse temperature
β = 50 and transverse field � = 1.79. The black solid line shows
the fitting to the data with the largest system size L = 12 whose
slope is −1.29 ± 0.08, which indicates that d/3z′ is smaller than
0.29 ± 0.08.
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Γ
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d
/
z
′

d/z′ = 3
Γc

χloc

χnlloc

FIG. 9. The exponent d/z′ as a function of � measured at the
inverse temperature β = 50. The data in circles and crosses are taken
from χloc and χnlloc, respectively. The vertical dashed line shows the
critical point in the zero temperature limit �c = 1.78. The critical
point corresponding to this finite-temperature (β = 50) data would
be smaller than �c = 1.78 for the zero-temperature value. The hori-
zontal dotted line is for d/z′ = 3, where the nonlinear susceptibility
starts to diverge. Notice that the present data for d/z′ from finite-size
simulations give upper bounds.
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Lφχnl
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n
l)
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FIG. 10. Histogram of the global susceptibility at � = 1.925 (far
from the critical point). The black solid line shows the fitting to the
data with slope −8.42 ± 1.8, indicating that d/z′ is about 7.42 ± 1.8.

10−2

Lφχ
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10−2

10−1

P
(χ

)

L = 6
L = 8
L = 10
L = 12

FIG. 11. Histogram of the global susceptibility at � = 1.79
(close to the critical point). The black solid line is the fitting to the
data with slope −2.5 ± 0.22, or d/z′ being around 1.5 ± 0.22.
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FIG. 12. Histogram of the global nonlinear susceptibility at � =
1.91. The black solid line is the fitting to the data with slope −2.5 ±
0.25, meaning that d/3z′ is around 1.5 ± 0.25.

statistics. Since Eq. (4) is valid for large χloc, we have to
carefully choose the range to fit the data to Eq. (4). Using
the data in the range between slightly below the peak and
P(χloc) � 10−4, d/z′ is estimated to be around 12.83. Ac-
cording to the discussion in Sec. II, we conclude that both
linear and nonlinear susceptibilities exhibit no divergence at
this value � = 1.895 since d/z′ > 3.

Figure 5 is for � = 1.79, closer to the critical point �c =
1.78. We observe that the slope clearly depends on the sys-
tem size due to the finite-size effect and the slope tends to
be shallower as the system size increases. To extract the in-
formation on d/z′, we use the data for the largest size L = 12
since this is expected to give a lower bound of the slope in
the large-size limit. We thus conclude that the exponent d/z′
is smaller than about 4.4.

The histogram P(χloc) for data in the ferromagnetic phase
�c = 1.4 is in Fig. 6. We find the behavior is quite differ-
ent from previous cases for the paramagnetic phase. In the
ferromagnetic phase, P(χloc) a slightly increasing function
especially for the large system size.

We analyze the nonlinear local susceptibility χnlloc simi-
larly. The results for � = 1.895 (far from the critical point)
and � = 1.79 (near the critical point) are shown in Figs. 7
and 8, respectively. The histograms exhibit similar behavior
to that of the linear local susceptibility, where the plot has no

1.75 1.80 1.85 1.90 1.95
0

2

4

6

8

z
′

d/z′ = 3
Γc

χ

FIG. 13. Similar plot to Fig. 9 but for the exponent extracted
from the global linear susceptibility.
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10−1

100

P
(χ
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L = 8
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FIG. 14. P(χnl ), which is similar to Fig. 7 but for the global
nonlinear susceptibility at � = 1.865. The black solid line shows a
fit to the data whose slope is −1.616 ± 0.25, which indicates that
d/3z′ is around 0.616 ± 0.25 or d/z′ � 1.85 ± 0.75, which seems to
be quite small compared to the data from global linear susceptibility
in Fig. 13.

size dependence for the transverse field � far from the critical
point �c and has clear size dependence for � near �c.

Extracted values of the exponent are plotted in Fig. 9.
Although there exist uncertainties in these values, it is useful
to take into account the fact that the plotted values of the expo-
nent d/z′ give upper bounds. We then observe the plausibility
that d/z′ becomes smaller than the threshold d/z′ = 3 before
the critical point is reached, suggesting that the nonlinear
susceptibility diverges within the paramagnetic phase. This
behavior is consistent with the previous study for the case
of continuous distributions of random ferromagnetic interac-
tions and random transverse field for a system on the square
lattice [11]. More subtle is the divergence of the linear suscep-
tibility since it is difficult to determine from the data whether
or not d/z′ becomes smaller than 1 in the paramagnetic phase
� > �c.

b. Global susceptibility. We next verify if the data for the
global susceptibility are consistent with those for the local
susceptibility. Figures 10–12 show the histogram of the global
linear and nonlinear susceptibilities. It is to be noticed that
we have less data points than in the case of the local sus-
ceptibilities. The resulting value of d/z′ is plotted in Fig. 13.
From these results we confirm that the data for the global
susceptibilities exhibit similar behavior to those for the local
susceptibilities both in the histograms and the exponent z′.
This is important because the experimental data from the D-
Wave device are available only for the global susceptibilities.

FIG. 15. The annealing schedules A(s) and B(s) on the D-Wave
2000Q.

Lastly, we point out that the data for the global nonlinear
susceptibility at � = 1.865 as shown in Fig. 14 gives the
value of the exponent d/z′ � 1.3 much smaller than the value
indicated in Fig. 13, around 4. It may be due partly to insuffi-
cient statistics but further investigation is needed.

IV. EXPERIMENT ON THE D-WAVE QUANTUM
ANNEALER

We next carry out experiments of the Griffiths-McCoy sin-
gularity on the D-Wave Systems Inc. 2000Q at NASA Ames
Research Center.

A. Method of experiment

We follow the convention to write the Hamiltonian used in
the D-Wave experiment as

H (s) = −A(s)

2

(∑
i

σ̂ x
i

)
+ B(s)

2

(∑
〈i, j〉

Ji j σ̂
z
i σ̂ z

j

)
, (16)

where s is the time parameter running from 0 to 1, and the
time dependence of A(s) and B(s) is depicted in Fig. 15.
To generate a state as close as possible to a quantum ther-
mal equilibrium state on the D-Wave machine, we employ
the anneal-pause-quench protocol where we first perform an
anneal up to value s = s∗, pause at this point for a while,
then quench to s = 1 as rapidly as possible [20–22]. By ap-
plying this protocol, the D-Wave device may return the spin
configuration σ sampled from a distribution not far from the
canonical ensemble with the Hamiltonian H (s∗) of Eq. (16).
The accuracy of this procedure nevertheless needs careful
scrutiny as discussed below and in Refs. [20–24].

TABLE II. Parameters for experiments on the D-Wave machine. Nrand is the number of random instances, N ′
rand is the number of random

instances for the histogram of susceptibility, Nrep is the number of annealing repetitions, L is the square root of the number of Chimera units
(8L2 is the total number of sites to be denoted as N), s∗min is the minimum value of annealing schedule, s∗max is the maximum value of the
annealing schedule, N� is the number of transverse field values, t1 is the anneal time in the anneal-pause-quench protocol, t2 − t1 is the pause
time, t f − t2 is the quench time.

Nrand N ′
rand Nrep L s∗min s∗max N� t1 t2 − t1 t f − t2

255 438 100 8, 12, 16 0.36 0.41 50 1000s∗ μs 100μs (1 − s∗) μs
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FIG. 16. (Left column) Histograms (heat map) of magnetization with system sizes (a) L = 8, (c) L = 12, and (e) L = 16. The horizontal
axis s∗ denotes the pause point during the anneal-pause-quench protocol, corresponding to a finite � of the transverse field. The vertical axis
is for the magnetization. Up to a certain point s∗ � 0.39, the magnetization tends to be distributed around zero, which implies that the system
is in the paramagnetic phase. In the region with s∗ larger than 0.39, the magnetization tends to have values of saturation ±1, and the system is
in the ferromagnetic phase. Note that the color code is in logarithmic scale. (Right column) Cross sections of the heat map on the left column
with (b) L = 8, (d) L = 12, and (f) L = 16, respectively, at select values of s∗, 0.365 (in the presumed paramagnetic phase) and 0.405 (in the
presumed ferromagnetic phase).

We use the same diluted Chimera graph as in Sec. III for the
experiment on the D-Wave machine. We choose the amplitude
of interactions according to the probability distribution

P(Ji j ) = 1

6

5∑
k=0

δ(Ji j + 0.1k). (17)

The unit of Ji j here follows the convention of the D-Wave
machine such that the maximum possible value is |Ji j | = 1.
To keep the largest |Ji j | to be 0.5 in the above distribution

function Eq. (17) is expected to reduce the effect of the noise
in the D-Wave machine since a large amplitude of interactions
tends to amplify analog errors on the machine [25]. Notice that
the fact that the values of |Ji j | in this Eq. (17) are half of those
for the QMC in Eq. (7) is unimportant due to the difference
in energy units used in both approaches. The parameters used
throughout the experiments are listed in Table II.

First we describe how to measure the magnetization. For
each annealing process, we obtain a set of classical val-
ues of spins {σ1, σ2, · · · } following the anneal-pause-quench

042403-8
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FIG. 17. (a) The Binder ratio for three linear sizes from the D-
Wave experiment. (b) Averaged magnetization for three linear sizes
obtained from the D-Wave experiment.

protocol with longitudinal field switched off and store the
magnetization,

ma = 1

N

N∑
i=1

σi. (18)

This annealing process is repeated Nrep times to obtain a set
of magnetization values ma (1 � a � Nrep). Given enough
interval time (200 μs) between consecutive annealing pro-
cesses, we can assume that samples of the magnetization ma

are uncorrelated with each other. The nth moment of the
magnetization is calculated from these as

〈mn〉 = 1

Nrep

Nrep∑
a=1

mn
a. (19)

Various physical quantities such as the Binder ratio are de-
rived from the above nth moment of magnetization.

To estimate the linear and nonlinear susceptibilities χ and
χnl, we measure the magnetization as a function of the longitu-
dinal field h. Linear and nonlinear susceptibilities are obtained

0.36 0.37 0.38 0.39 0.40 0.41 0.42
s∗

1.4

1.6

1.8

2.0

2.2

2.4

χ

L = 8
L = 12
L = 16

(a)

FIG. 18. (a) D-Wave data for the global linear susceptibility for
system sizes L = 8, 12, and 16. (b) Position of peaks as a function of
the inverse system size 1/L. The red dashed line shows a linear fit.

by applying a polynomial fit to the magnetization curve,

m � χh − χnlh
3 + · · · , (20)

for each given instance of random interactions.
Due the analog nature of the D-Wave device, naive ex-

periments without noise mitigation produce data with very
limited reliability, in particular in the present case of the
detection of a delicate phenomenon. We therefore apply two
kinds of techniques, calibration of individual flux bias and the
standard gauge averaging, to reduce noise for more reliable
results. A technical description of the former method is given
in Appendix B.

B. Results

We first analyze the data to determine the transition point
and then estimate the exponent d/z′.

1. Transition point

Let us start with the distribution of the magnetization.
Figure 16 shows the histogram of the magnetization as a func-
tion of the pause point s∗ for linear system sizes L = 8, 12, and
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FIG. 19. (a) D-Wave data for the global nonlinear susceptibility.
The aspect ratio of this graph is the same as in Fig. 18 for direct
comparison. (b) Peak position of the nonlinear susceptibility as a
function of the inverse system size 1/L.
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FIG. 20. Log-log plot of the D-Wave data for P(χ ) of the global
linear susceptibility χ at the pause point s∗ = 0.365 (far from the
critical point). The black solid line is a fit to a line of slope −14.7 ±
1.74, implying that d/z′ � 13.7 ± 1.7.
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FIG. 21. Log-log plot of the D-Wave data for the histogram P(χ )
of the global linear susceptibility χ with the pause point s∗ = 0.369.
The black solid line shows a fit to data whose slope is −12.3 ± 2.0,
which indicates that the exponent d/z′ is around 11.3 ± 2.0.

16. This figure, especially for the largest system with L = 16,
shows that the magnetization is distributed around zero below
a certain value of s∗ close to 0.39 and tend to have a peak
near ±1 above this threshold point. This change of the shape
of the histogram suggests the existence of a phase transition
at around s∗c � 0.39. Also, especially for the small system
size, we observe that some samples have large values close to
±1 even in the region supposed to be the paramagnetic phase.
One of the possible reasons for this unexpected behavior is
a systematic error coming from the quench process during
the anneal-pause-quench protocol [20,23]: At the end of the
protocol, the annealing parameter s is changed from s∗ to 1 as
quickly as possible, which corresponds to a “switching off”
of the transverse field. Although this quenching process is
supposed to be performed quickly, the elapsed time in this
process (� 1μs) may still be long enough to affect the final
state of the system, leading to a broad distribution of the
magnetization in the presumed paramagnetic phase, which
should not be the case in theory. The data for the small size
L = 6 in the paramagnetic phase are strongly affected by this
imperfection and we should take sufficient care in the analysis.

1.3 1.4 1.5 1.6 1.7
Lφχ

10−2

0.1

P
(χ

)

L = 8
L = 12
L = 16

FIG. 22. Log-log plot of the D-Wave data for the histogram P(χ )
of the global linear susceptibility χ with the pause point s∗ = 0.375.
The black solid line shows a fit to data whose slope is −9.7 ± 2.1,
which indicates that the exponent d/z′ is around 8.7 ± 2.1.
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FIG. 23. Log-log plot of the D-Wave data for the histogram P(χ )
of the global linear susceptibility χ with the pause point s∗ = 0.394
(above the critical point). No power-law decay behavior is observed
on this figure and P(χ ) roughly grows monotonically as the global
linear susceptibility increases.

a. Binder ratio and averaged magnetization. The results of
the Binder ratio and the averaged magnetization mav = [〈|m|〉]
are shown in Fig. 17. We usually expect the Binder ratio
with different system sizes to cross at the transition point as in
Fig. 2. However, in the present case, we find no crossing point
in Fig. 17, and both the Binder ratio and the averaged mag-
netization have finite values even in the paramagnetic region,
most prominently for the small system size. This behavior can
be understood in the same way as in the case of the histogram
of the magnetization: The relatively slow quenching process
in the anneal-pause-quench protocol may allow the system to
follow the decrease of the transverse field, driving the system
toward ferromagnetic ordering. The large values of the Binder
ratio and magnetization at small s∗, especially for L = 6,
should reflect the broad distribution of magnetization seen in
Fig. 16. Nevertheless, we at least find that the magnetization
for the largest system L = 16 is likely to have an inflection
point around s∗ � 0.39, remotely suggesting the existence of
a phase transition point around this value.

b. Global linear and nonlinear susceptibilities. Figure 18(a)
shows the global linear susceptibility χ for three system

10.5 0.6 0.7 0.8 0.9
Lφχnl
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(χ

n
l)
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L = 16

FIG. 24. Log-log plot of the D-Wave data for the global non-
linear susceptibility χnl at the pause point s∗ = 0.365 (far from
the critical point). The black solid line is a fit to data with slope
−8.0 ± 1.1, i.e., d/3z′ is around 7.0 ± 1.1.

10.6
Lφχnl
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l)

L = 8
L = 12
L = 16

FIG. 25. Log-log plot of the D-Wave data for P(χnl ) of the global
nonlinear susceptibility obtained at the pause point s∗ = 0.369 (far
from the critical point). The black solid line shows a fit to data
whose slope is −5.8 ± 0.9, which indicates that the exponent d/3z′

is around 4.8 ± 0.9.

sizes. We find that there are peaks at around s∗ � 0.39 and
the position becomes smaller as the system size increases.
Extrapolation to the infinite-size limit as shown in Fig. 18
gives sc = 0.386 ± 0.002, which is consistent with the data
of the histogram of the magnetization in Fig. 16. Since the
data, especially for the smallest size L = 8, are not necessarily
very reliable, we choose not to go beyond the estimate of the
approximate value of the transition point and avoid finite-size
scaling analysis for critical exponents.

We also measured the global nonlinear susceptibility as
shown in Fig. 19(a), where the aspect ratio is the same as in
Fig. 18, for convenience of comparison. Although the peak is
a little bit narrower compared to the global linear susceptibil-
ity, the peak position is almost the same as in the global linear
susceptibility, leading to the same critical point sc = 0.386 ±
0.002 in the infinite system size limit as shown in Fig. 19(b).

0.360 0.365 0.370 0.375 0.380 0.385 0.390
s∗

10

20

30

d
/z

′

d/z′ = 3
sc

χ
χnl

FIG. 26. The exponent d/z′ as a function of the pause point s∗
estimated from the linear and nonlinear susceptibilities. The vertical
dashed line represents the critical point sc � 0.386 and the horizontal
dotted line is for d/z′ = 3, where the nonlinear susceptibility starts
to diverge.
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FIG. 27. The relation between the pause point s∗ and the pa-
rameters (a) β and (b) �. The black dashed line shows the point
s∗ = sc = 0.386 at which β = 2.49 and � = 1.37.

2. Estimation of the exponent

We now analyze the histogram of susceptibilities to esti-
mate the exponent d/z′. Figure 20 shows the histogram of the
global linear susceptibility with the pause point s∗ = 0.365,
which is far from the critical point and is expected to be in
the paramagnetic phase. Notice that when applying a linear
fit to estimate d/z′, we exclude the data with P(χ ) � 10−2

partly because these data may not be reliable due to insuffi-
cient statistics. Another reason is given below. We find that
a linear fit to the data does not seem too bad in the region
of large susceptibility, especially for the largest system size.
We also observe a long tail of small susceptibilities at the left
part of the graph, notably for the small size. This tail may
be understood by considering the feature of the histogram of
the magnetization in Fig. 16, where samples with values near
saturation �1 exist even in the paramagnetic region. These
samples may have small susceptibilities because the system
does not respond to the field when the magnetization is close
to saturation, resulting in the long tail of small susceptibility at
the left part of Fig. 20. Samples with large negative magneti-
zation close to −1 would respond very strongly to the positive
field h > 0, flipping the state from m � −1 to m � 1, and the
tail of the distribution for very large χ would correspond to
such cases. We therefore drop the data in the rightmost tail
of distribution from the analysis. In contrast, samples with
small magnetization in the paramagnetic phase are likely to
have reasonable properties, which would yield the moder-
ately large susceptibility compared to the case with saturated
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FIG. 28. (a) Global susceptibility χ with different system sizes
L = 6, 8, 10, 12 with the inverse temperature β = 20. (b) Finite-size
scaling analysis of the global susceptibility with γ = 0.96(6).

magnetization. It therefore seems reasonable to consider that
analyses of data with moderately large susceptibilities would
give relatively reliable results. We then apply a linear fit to the
data with large, but not too large, values of the susceptibility.
We find that d/z′ is around 13.7 for the present pause point
s∗ = 0.365.

The distributions P(χ ) at the pause points s∗ = 0.369 and
0.375, which are closer to the critical point but still in the para-
magnetic phase, are shown in Figs. 21 and 22, respectively.
The resulting exponents are d/z′ � 11.3 ± 2.0 and 8.7 ± 2.1
for s∗ = 0.369 and 0.375, respectively. In contrast, the data
for larger s∗ are difficult to analyze to extract the exponent
reliably. The data for the region above the critical point, s∗ =
0.394, is shown on Fig. 23. No simple power-law decay is
observed here. We find that P(χ ) monotonically increases as
χ increases. The same behavior is observed for the local linear
susceptibility obtained by quantum Monte Carlo as shown in
Fig. 6.

Similar behavior is observed in the global nonlinear sus-
ceptibility. Figure 24 shows the histogram P(χnl ) for s∗ =
0.365. The histogram of the global nonlinear susceptibility
with the pause point s∗ = 0.369 is shown in Fig. 25. We
observe that d/3z′ decreases monotonically as in the global
linear susceptibility, about 7.0 ± 1.1 (s∗ = 0.365) and 4.8 ±
0.9 (s∗ = 0.369).
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FIG. 29. (a) Magnetization |m| with different system sizes L =
6, 8, 10, 12 with the inverse temperature β = 20. (b) Finite-size scal-
ing analysis of the global susceptibility with the critical exponent
β = 0.95(6) for magnetization, which is not to be confused with the
inverse temperature.

The relation between the exponent d/z′ and the pause point
s∗ is shown in Fig. 26. Although data points for s∗ beyond
0.375 are excluded because of low reliability of the estimation
of the slope of the histogram, the tendency seems consistent
with the assumption that the inequality d/z′ < 3 for the di-
vergence of the nonlinear susceptibility is satisfied within the
paramagnetic phase.

C. Comparison of transition points from quantum
Monte Carlo and D-Wave experiment

To confirm that the transition point estimated in Figs. 18
and 19 is consistent with the result of the quantum Monte
Carlo simulation, we relate the pause point s∗ and the pair
of the inverse temperature and the transverse field (β, �) by
comparing the exponents of the Boltzmann factors as

exp [−βphysH (s)] � exp [−βH], (21)

where βphys � 12 mK is the physical temperature of the D-
Wave chip and H (s) and H denote the Hamiltonian of the
D-Wave device and the quantum Monte Carlo in Eqs. (16)
and (1), respectively. Assuming that the two exponentials in
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FIG. 30. Critical exponents of the global susceptibility γ in
(a) and the magnetization |m| in (b) as functions of the temperature
T . Black dashed lines represent linear fitting of the data.

Eq. (21) coincide, we obtain the relations between s∗ and
(β, �) as follows:

β = βphysB(s∗)

4
, (22)

� = 2A(s∗)

B(s∗)
, (23)

or with physical units written explicitly,

β = 1

kB J · K−1 × 12 mK

B(s∗) GHz × h J · s

4
, (24)

� = 2A(s∗) GHz × h J · s

B(s∗) GHz × h J · s
, (25)

where h and kB denote the Planck constant and the Boltzmann
constant, respectively, the former not to be confused with
the external field. Figure 27 shows the relations in Eqs. (24)
and (25). From this figure we read that the critical point s∗ =
0.386 corresponds to the parameter β = 2.49 and � = 1.37
in the quantum Monte Carlo method, which is not far from
� � 1.6 with the temperature β = 2.49 (T = 1/β � 0.4)
according to Fig. 3(a). Although perfect quantitative agree-
ment has not been expected, we have reached a reasonable
degree of agreement.

V. DISCUSSION

We have carried out quantum Monte Carlo simulations
and experiments on the D-Wave quantum annealer in order
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FIG. 31. Binder ratio g with different sizes as a function of β/Lz

at the critical point. The dynamical critical exponent z is set to
(a) z = 0.5, (b) z = 1.0, (c) z = 1.25, and (d) z = 1.5. The plots use
logarithmic scales on both horizontal and vertical axes.

to investigate if the Griffiths-McCoy singularity is observed
in the transverse-field Ising model with random ferromag-
netic interactions on the diluted Chimera graph. The results
of quantum Monte Carlo indicate it to be very likely that
there exists a parameter range within the paramagnetic phase
where the local and global nonlinear susceptibilities diverge,
implying the existence of the Griffiths-McCoy singularity. It is
difficult to determine with confidence from our data whether
or not the local and global linear susceptibilities diverge in
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0.0012

M
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FIG. 32. Mean-square error (MSE) as a function of the dynam-
ical exponent z. This figure shows that MSE is minimum at around
z � 1.

the paramagnetic phase although it can well be the case
if the present model belongs to the same universality class
as the transverse-field Ising model on the square lattice with
uniformly random ferromagnetic interactions and uniformly
random transverse field [11].

The data from the D-Wave device include a larger amount
of uncertainties than those of quantum Monte Carlo due to
the systematic bias in flux qubits and other sources of errors
that are intrinsic to the analog quantum device. In particular,
the distribution of magnetization has a significant amount
of data points near saturation ±1 within the paramagnetic
phase even after careful calibrations to cancel the ferromag-
netic bias. Nevertheless, the moderately-large-value part of
the distribution of linear and nonlinear susceptibilities can be
considered fairly robust against the bias and errors because a
state with saturated magnetization �1 has no room of further
change toward larger values of magnetization and therefore
will respond only weakly to the external field, contributing
very little to the large-value part of the distribution of suscep-
tibility. The very-large-value tail of the distribution may also
be discarded for a similar reason and for insufficient statistics.
With this observation in mind, we suppose that the exponent
d/z′ estimated from the part of moderately large values of

FIG. 33. Average spin configuration for each site over 100 runs
of annealing. Purple dots (denoted by “+”) show the result without
applying error mitigation and green dots (denoted by “×”) shows the
one with error mitigation.
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susceptibility is relatively reliable. In this way, we may con-
clude that the data can be interpreted to be consistent with the
statement that d/z′ < 3 is satisfied in the paramagnetic phase,
meaning the existence of the Griffiths-McCoy singularity. If
this is indeed the case, the present study is the first case in
which this very subtle phenomenon involving rare regions
of ferromagnetic clusters, enhanced by quantum effects, has
been observed in an analog quantum simulator. Further devel-
opments in device technologies and tools of data analyses will
lead to improved reliability, and possibly promoting research
activities toward quantum simulation of complex many-body
systems by analog quantum simulators.
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APPENDIX A: CRITICAL EXPONENTS

This Appendix discusses the estimation of critical ex-
ponents β, γ , and z at the transition point between the
ferromagnetic and paramagnetic phases from the data of quan-
tum Monte Carlo.

We have carried out finite-size scaling analyses of the
global susceptibility χ and the magnetization |m| as in

Figs. 28 and 29. Estimated values of the exponent ν and the
transition point �c described in Sec. III B give a reasonable
collapse of the data. The finite-temperature values of the ex-
ponents γ and β are extrapolated to zero temperature as in
Fig. 30. Although the extrapolation suggests γ to be close to
0.94 and β to 1.0, these figures show large uncertainties in
these estimates.

We next try to estimate the dynamical exponent z. The
finite-size scaling of the Binder ratio is given by

g � f̃ (L1/ν (� − �c), β/Lz ). (A1)

Figure 31 shows this plot. From these figures it is appar-
ently difficult to determine z without large ambiguities, and
therefore we instead employ the following mean-square error
criteria. Figure 31 suggests that the function f̃ (β/Lz ) can be
approximated by a quadratic form,

ln g = a

(
ln

(
β

Lz

))2

+ b ln

(
β

Lz

)
+ c, (A2)

where a < 0 as seen in Fig. 31. By fitting the parameters
a, b and c to minimize the mean-square error between the
quadratic function and the actual data, we estimate the optimal
parameters a, b, and c and the corresponding mean-square
error. The mean-square error is depicted in Fig. 32, which
shows z � 1 is the best estimate, consistently with a previous
study [26].

APPENDIX B: CALIBRATION OF INDIVIDUAL FLUX BIAS

We describe the method of calibration of qubits in the
D-Wave device and its consequences (see also Ref. [20]).
Without any calibrations, as shown in Fig. 33, some of the
flux qubits tend to have the spin-up direction while others tend
to have the spin-down direction even without interactions and
longitudinal field. This intrinsic bias can be modeled as an
effective longitudinal local field, and we try to eliminate its
effect by calibration. On the D-Wave device, this effective
local field can be canceled to some extent through the flux-
biases option, and the task is to search the optimal flux bias
for each flux qubit such that the average of a single isolated
spin becomes zero. The binary search algorithm can be used
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FIG. 34. (a) Histogram (heat map) of magnetization without calibration as a function of the pause point. The notation is the same as
in Fig. 16. (b) Histogram of the magnetization without calibration with the pause point s∗ is fixed to 0.21 (paramagnetic phase) and 0.41
(ferromagnetic phase).
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Algorithm 1. Binary search algorithm for finding the optimal flux bias for individual qubit

to find the optimal flux bias for each qubit. An example is
listed in Algorithm I.

1. Zero interactions

We next show how these error mitigation techniques affect
the data from the D-Wave device. In the case of no interactions
between qubits, we first prepare the Hamiltonian with all
interactions Ji j set to zero. We next measure the spin configu-
ration for each qubit averaged over 100 runs of annealing,

mi =
100∑
a=1

σ a
i , (B1)

which is expected to take the value near zero. Figure 33 shows
mi for each site before and after applying the error mitigation
techniques. Purple dots and green dots show the result before
and after applying calibration, respectively. We observe that
mi of the data without error calibration tend to have values far
from zero even if the interactions are set to zero. After error
calibration, mi has much smaller deviations and the values are
closer to zero than the case without calibration.

2. Diluted Chimera graph

Next we apply the above technique to the diluted Chimera
graph and see how the result changes by calibration. Figure 34

042403-16
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FIG. 35. (a) Histogram (heat map) of magnetization after calibration. (b) Histogram of the magnetization after calibration with the pause
point s∗ fixed to 0.21 (paramagnetic phase) and 0.41 (ferromagnetic phase). These figures are the same as Fig. 16.

shows the histogram of the magnetization without calibration.
We see that there are unphysical multiple peaks in the fer-
romagnetic region, where the magnetization is expected to
have peaks close to ±1. Although we see a symptom of phase
transition around s∗ = 0.35, it is quite hard to reliably extract
information from this set of data.

Figure 35 shows the data after calibration. We clearly
observe peaks only at ±1 in the ferromagnetic region, as
they should. From these data we confirm that the calibration
process is effective and indispensable for reliable quantum
simulations on the D-Wave device.
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