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Significant nonclassical paths with atoms and cavities in the double-slit experiment
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In the the double-slit experiment, nonclassical paths are Feynman paths that go through both slits. Prior
work with atom cavities as which-way detectors in the double-slit experiment has shown these paths to be
experimentally inaccessible. In this paper, we show how such a setup can indeed detect nonclassical paths with
1% probability if one considers a different type of nonclassical path than previously investigated. We also show
how this setup can be used to erase and restore the coherence of the nonclassical paths. Finally, we also show how
atom cavities may be used to implement a exact measure of Born-rule violation [Quach, Which-way double-slit
experiments and Born-rule violation, Phys. Rev. A 95, 042129 (2017)], which up until now has only been a
formal construct.
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I. INTRODUCTION

Quantum mechanics is undoubtedly one of the most suc-
cessful theories of the last century. Recent phenomenological
developments have led to a plethora of applications in high-
precision and sensing tasks [1,2]. However, to continue
increasing the sensitivity of precision measurements requires
a better understanding of the fundamental aspects of quantum
theory [3]. Interference and coherence effects are some of
the most useful measures in studying quantum mechanical
effects. In this work, we will investigate the contributions
of nonclassical paths [4–7] in the precise measurement of
interference effects.

The double-slit experiment is the foundation of studies
in interference effects [8–10], as well as revealing the wave
nature of matter [11–14]. Typically the nodes (or antinodes)
are calculated as the result of the path difference arising
out of the distance from the slits to the detection screen.
This, however, is only an approximation, as first pointed out
by Yabuki [4]. In the Feynman path integral formulation of
quantum mechanics [15], all possible paths between points
contribute to the wave function. The direct paths from the slits
to the detection screen are just one set of an infinite number
of possible paths. Higher-order or nonclassical paths include
paths which enter both slits before reaching the detector, as
shown in Fig. 1. Typically, these nonclassical paths are much
less probable than the direct or classical paths; nevertheless, it
has been shown that in regimes where the wavelength is large
compared to the split spacing, these nonclassical paths can
be significant [16]. The nonclassical path contributions to the
interference pattern are not uniquely a quantum mechanical
effect. Such contributions to the interference pattern arise also
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out of Maxwell’s equations, as shown with finite-difference
time-domain simulations [17–19].

In the double-slit experiment, the particle nature of mat-
ter is revealed if one knows which slit the particle went
through [20]. In 1991, Scully et al. [21] introduced cavities
into the slits as a means to mark which slit the particle went
through, thereby acting as which-way detectors. They showed
how the setup could implement the delayed-choice quantum
erasure experiment using the atomic transition due to atom-
light interaction [22–27]. In this setup energy is necessarily
exchanged to reveal which-way information. Of note is an
alternative setup proposed by Pavičić which uses monolithic
total-internal-reflection resonators to perform efficient which-
way detection without energy exchange [28].

More recently, de Oliveira et al. [29] showed how the
setup proposed by Scully can be used to isolate nonclassical
paths. Their work consisted of modeling looped trajectories of
rubidium Rydberg atoms in the double-slit experiment, with
the result that the probability of detection of these nonclassical
paths was too small to be feasible.

The Born rule states that if a quantum object is represented
by a wave function ψ (r, t ), than the probability density of
detecting it at position r and time t is given by the absolute
square of the wave function [30],

P(r, t ) = ψ∗(r, t )ψ (r, t ) = |ψ (r, t )|2. (1)

Despite being a cornerstone of quantum mechanics, a di-
rect test of the Born rule was not attempted until 2010 by
Sinha et al. [31]. The test was a measure of the Sorkin pa-
rameter [32], which quantifies nonpairwise interference, in a
triple-slit experiment [33]. Since the exponent of the Born
rule allows only for pairwise interference, a nonzero Sorkin
parameter would suggest violation of the Born rule. Shortly
after this experiment, it was pointed out that a nonzero Sorkin
parameter would not necessarily indicate Born-rule violation
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FIG. 1. A schematic of the double-slit experiment. The blue-
dashed line depicts one of the many possible classical paths. The red
solid and green dotted-dashed lines depict two types of nonclassical
paths.

[34]; instead it could be a signature of nonclassical paths.
Most recently, Quach [35] proposed an alternative parameter,
using the double-slit experiment with which-way detectors,
as a more accurate measure of Born-rule violation. How-
ever, Quach’s parameter up until now has only been a formal
construct.

The goals of this paper are to propose a practical setup
to detect nonclassical paths and test the validity of the Born
rule. In the first part of this paper (Secs. II and III), we show
how a double-slit experiment with an atom-cavity setup can
detect nonclassical paths with 1% probability. Further, we
show the delayed-choice quantum erasure in the context of
nonclassical paths. In the last part of the paper (Sec. IV),
we extend the setup to show its applicability in implementing
Quach’s parameter.

II. CLASSICAL AND NONCLASSICAL PATHS

Let us consider the double-slit experiment as depicted in
Fig. 1. We make the usual assumption that the slits run in-
finitely in the y direction (perpendicular to the figure plane),
and the slit plane extends infinitely in the x direction. This
allows us to reduce the system to a one-dimensional problem
in the x direction. The source is an atom described by the wave
packet

ψ0(x, t = 0) = 1√
σ0

√
π

exp

[ −x2

2σ0
2

]
, (2)

where σ0 is the effective width of the atomic wave packet. The
atom wave function at a later time is the weighted sum of all
possible paths,

ψ (x f , t f , ti ) =
∫

xi

K (x f , t f ; xi, ti )ψ0(xi, ti ), (3)

where K (x f , t f ; xi, ti ) is the free propagator for a particle with
mass m > 0 from point (xi, ti ) to (x f , t f ):

K (x f , t f ; xi, ti ) =
√

m

2π ih̄(t f − ti )
exp

[
im(x f − xi )2

2h̄(t f − ti )

]
. (4)

The presence of the slit plane reduces the number of
possible paths between the source and the detection screen.
Following the literature we categorize the two types of al-
lowed paths: classical paths that go through only one slit, and
nonclassical paths that go through both slits [34]. Classical
and nonclassical paths are also known as nonexotic and exotic
[29] or higher-order paths [35].

A. Classical paths

The classical paths incorporate all possible paths con-
necting the source and the detection screen, whenever a
single slit, A or B, is open. The wave function resulting
from the summation of all paths that go through slit A
only is

ψA(x, t ) =
∫

x′,x0

K (x, t ; x′, t ′)T (x′ + d/2)

× K (x′, t ′; x0, 0)ψ0(x0), (5)

where

T (x) = exp

[−(x)2

2β2

]
. (6)

In Eq. (5), K (x′, t ′; x0, 0) is the free propagator from the
source to the slit plane, and K (x, t ; x′, t ′) is the free propa-
gator from the slit plane to the detection screen. T (x′) is the
slit transmission function, which we take to be a Gaussian
function of slit width β [29,36,37]. Performing the integral
and taking the limits of integration to infinity yields the
following form:

ψA(x) = �c exp [c2x2 + c1x + c0], (7)

where the explicit expression for the constants (�c, c2, c1, c0)
is given in Appendix A. The wave function resulting from the
summation of classical paths that go through slit B is similarly
calculated:

ψB(x, t ) =
∫

x′,x0

K (x, t ; x′, t ′)T (x′ − d/2)K (x′, t ′; x0, 0)ψ0(x0)

= �c exp [c2x2 − c1x + c0].
(8)

In the next subsection, we will use this formalism to cal-
culate the nonclassical path that goes through two slits before
reaching the detection screen.

B. Nonclassical paths

There are an infinite number of nonclassical paths that
enter both slits. Nonclassical paths that loop through both slits
have been considered in the literature [4,29]. An example of
such a path is depicted by the green dotted line in Fig. 1: the
particle enters slit A, then slit B, then slit A again, before
traveling to the detection screen. In this paper, we will focus
on nonclassical paths entering each slit only once. An example
of such a path is depicted by the red solid line in Fig. 1: the
particle enters slit A, then slit B, then travels to the detection
screen. The wave function resulting from the summation of
such nonclassical paths is
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ψAB(x, t, τ ) =
∫

x′
1,x

′
2,x0

K (x, t̃ + τ ; x′
2, t̃ )T

(
x′

2 − d

2

)
K (x′

2, t + ε; x′
1, t )

T
(

x′
1 + d

2

)
K (x′

1, t ; x0, 0)ψ0(x0)

= �nc exp [c′
2x2 + c′

1x + c′
0], (9)

with the constants given in Appendix A. Similarly, the wave function resulting from the summation of nonclassical paths that go
through slit B and then A is

ψBA(x, t, τ ) =
∫

x′
1,x

′
2,x0

K (x, t̃ + τ ; x′
2, t̃ )T

(
x′

2 + d

2

)
K (x′

2, t + ε; x′
1, t )

T
(

x′
1 − d

2

)
K (x′

1, t ; x0, 0)ψ0(x0)

= �nc exp [c′
2x2 − c′

1x + c′
0], (10)

The difference between ψAB(x, t, τ ) and ψBA(x, t, τ ) lies in the sign of ±c′
1.

Using the same formalism, other nonclassical paths can also be calculated. For example, the looped trajectory (green dotted
line in Fig. 1) requires an additional transmission through the slits and therefore has the wave function

ψBAB(x, t, τ ) =
∫

x′
1,x

′
2,x

′
3,x0

K (x, t ′ + τ ; x′
3, t ′)T

(
x′

3 − d

2

)
K (x′

3, t̃ + ε; x′
2, t̃ )T

(
x′

2 + d

2

)

K (x′
2, t + ε; x′

1, t )T
(

x′
1 − d

2

)
K (x′

1, t ; x0, 0)ψ0(x0). (11)

In general, each additional slit transmission attenuates the
wave function, such that |ψ (x, t )|2 ≈ |amψ0(x, 0)|2, where a
is the attenuation factor and m is the number of times the
atom traverses a slit. For classical paths m = 1, minimal non-
classical paths m = 2, and single looped paths m = 3. For the
values shown in Appendix A, a ≈ 0.1; as such, the probability
of detecting minimal nonclassical paths is 1% and loop paths
is 0.01%, relative to the classical paths. We will use these facts
in the next section to show that one may indeed detect minimal
nonclassical paths.

III. CAVITY WHICH-WAY DETECTORS

Our setup consists of placing a cavity into each of the
slits as depicted in Fig. 2. The source is a two-level Rydberg
atom with ground and excited states |g〉 or |e〉. The transition
frequency between the two states is resonant with the cavity
mode 	. The initial configuration is such that the atom is
in the excited state, and there is one photon in each of the
cavities,

|ψ0〉 = |e〉|1〉A|1〉B. (12)

The speed of the atom is tuned so that the interaction time
with the cavity is

τ = π√
n + 1	

, (13)

where n + 1 is the number of excitation in the cavity. This
interaction time affects a π pulse on the atom [38]. Here we
are interested in the case where n = 1 to ensure that the tran-
sition between |e〉|1〉i and |g〉|2〉i (i = A, B) occurs with unit
probability. Therefore our interaction time is set to τ = π√

2	
.

A. Atom-cavity interaction

Initially the atom is in the excited state and there is a single
photon in each cavity. If the atom follows the classical path, it
enters a single cavity once; in this case the transition |e〉|1〉i →
|g〉|2〉i will occur. If the atom follows the nonclassical path, it

FIG. 2. Scheme of atom and double slit with photonic cavities in
each slit. The blue and green box between the double slit contains the
shutters and photodetection scheme. The inset (bottom right) shows
a magnified view of the process of photodetection; it describes in
detail one possible implementation to detect the cavity photons. In
this example, with the opening of the shutters, the cavity photons go
through a 50:50 beam splitter before their detection.
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will enter both cavities. Upon leaving the first cavity the atom
emits a photon |e〉|1〉i → |g〉|2〉i, and on leaving the second
cavity, the atom absorbs a photon |g〉|1〉i′ → |e〉|0〉i′ (i �= i′).
As such, the system state just before the detection screen is

|ψ〉 = 1√
N2

[|g〉(|2〉A|1〉B|ψA〉 + |1〉A|2〉B|ψB〉)

+|e〉(|2〉A|0〉B|ψAB〉 + |0〉A|2〉B|ψBA〉)],

(14)

where Ni is the overall normalization factor, which in general
will be dependent on the number of slits (i) present. The first
term represents the state of the system when the atom’s (clas-
sical) path traverses though slit A only: here the atom emits a
photon into cavity A. Similarly, the second term represents the
state of the system when the atom’s (classical) path traverses
through slit B only. The third term represents the state of
the system when the atom’s (nonclassical) path traverses first
through slit A and then slit B: here the atom emits a photon
into cavity A and absorbs a photon in cavity B. Similarly,
the fourth term represents the state of the system when the
atom’s (nonclassical) path traverses first through slit B and
then slit A.

Defining the following symmetric and antisymmetric basis
states:

|ψ±
c 〉 = 1√

2
(|ψA〉 ± |ψB〉), (15)

|ψ±
nc〉 = 1√

2
(|ψAB〉 ± |ψBA〉), (16)

|μ±〉 = 1√
2

(|2〉A|1〉B ± |1〉A|2〉B), (17)

|ν±〉 = 1√
2

(|2〉A|0〉B ± |0〉A|2〉B), (18)

we can rewrite the state of the system before the detection
screen [Eq. (14)] as

|ψ ′
f 〉 = 1√

N2
[|g〉(|ψ+

c 〉|μ+〉 + |ψ−
c 〉|μ−〉)

+|e〉(|ψ+
nc〉|ν+〉 + |ψ−

nc〉|ν−〉)]. (19)

Equation (19) shows that by measuring the state of the
atom, we can isolate the classical and nonclassical paths.
Keeping count only when an excited atom is detected gives
the probability distribution of the nonclassical paths:

Pe(x) = 1

N2
(|ψ+

nc(x)|2 + |ψ−
nc(x)|2)

= 1

N2
(|ψAB(x)|2 + |ψBA(x)|2).

(20)

Conversely, keeping count only when a grounded atom is de-
tected gives the probability distribution of the classical paths:

Pg(x) = 1

N2
(|ψ+

c (x)|2 + |ψ−
c (x)|2)

= 1

N2
(|ψA(x)|2 + |ψB(x)|2).

(21)

From Eqs. (20) and (21) and the wave functions calcu-
lated in previous section, we plot in Fig. 3 the nonclassical
path probability distribution, normalized to the central maxi-
mum of the double-slit classical probability distribution, i.e.,
Pe(x)/Pg(0).

Figure 3 shows the spatial distribution of the atoms in the
detection screen; the nonclassical paths account for about 1%
of the classical paths detection events. The absence of an inter-
ference pattern is the result of the distinguishable cavity Fock
states that mark the atoms paths. Specifically, from Eq. (14)
we see that the presence of two photons in cavity A reveals
that the atom went through slit A and then B; conversely,
when two photons are in cavity B, the atom went through slit
B and then A. In the next subsection we will show how this
which-way information can be erased by introducing shutters
and intracavity photodetectors. We will show that erasing
this information will retrieve the interference pattern between
nonclassical paths.

B. Erasing which-way information with cavity photodetection

An interesting feature of the atom-cavity implementation
of the which-way detectors is that one can partially erase
the which-way information and restore coherent interference,
even after the atom has been detected. To partially erase the
which-way information, we add a beam splitter and pho-
todetectors between the two cavities (Fig. 2). Shutters are
positioned in each cavity. When the shutters are open, the
photons are mixed in a beam splitter device and photodetec-
tors are placed at each output port; the photodetectors act as a
reservoir, and in the limit of long detection time, all photons
present in the cavities are absorbed. This procedure allows us
to mix the photons from both cavities losing the which-slit
information and retrieving interference.

The shutters opening and photon detection occur after the
passage of each single atom. The statistics is obtained in the
limit of infinite repetitions of this procedure. The beam splitter
action on the intracavity photons corresponds to the following
transformation of the A, B input modes:

â†
±|0〉 = (aA ± aB)†

√
2

|0〉; (22)

for example, in the new basis, the state |ν−〉 = |1〉+|1〉−.
At each output port +,−, there is a photodetector, and we
shall refer to their probability distributions as P+ and P−,
respectively.

We modeled the detection statistics following the Marko-
vian view of photon absorption [39]. This strategy predicts
photon counts of one, two, and three photons in a time inter-
val. The density matrix time evolution contains the detection
probabilities at each photon absorption. At time t = 0 the
density matrix is

ρ(0) := |ψ ′
f 〉〈ψ ′

f |; (23)

|ψ ′
f 〉 was defined in Eq. (19), with photon number in the

+/− basis [Eq. (22)]. The procedure to calculate ρ(t ) and
the probability distributions are described in Appendix B [40].
Here we will discuss the most relevant results and analyze the
probabilities in the limits of zero and infinite detection time.
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FIG. 3. Probability of detecting nonclassical paths normal-
ized by the classical paths. The parameters are defined in
Appendix A.

At zero interaction time, no photons are absorbed, and the
statistics recover the results of Sec. III A. Moreover, for infi-
nite detection time, all photons are absorbed, and the number
of photons in the cavities is conditioned to the atomic state,
as we can see in Eq. (19). If the atom is detected in the
ground state, there are three photons in the cavities, whereas
if detected in the excited state, only two photons are in the
cavities.

The probability of measuring the atom in the excited state
with two photon counts in the same output photodetector,
P(kk)

e , or one photon in each output, P(k j)
e , k = +/−, j = +/−

with k �= j. In the regime of long detection time one gets

P(kk/k j)
e (x) = 1

2N2
(|ψ (+/−)

nc (x)|2). (24)

It represents the retrieval of interference, between nonclassical
paths AB and BA, due to detection of the cavity photons.
This is implemented keeping count of the excited atoms only
when two photons trigger the same (P(kk)) or different (P(k j))
detectors.

Similarly, the probability of measuring the atom in the
ground state and detecting three photons in the same detector,
P(kkk), and two photons in one detector and one in the other,
P(k jk) (over all permutations of k jk), in the regime of long
detection time is

P(kkk)
g (x) = 1

N2

(3

4

)(|ψ (k)
c (x)|2), (25)

P(k jk)
g (x) = 1

N2

( 1

12

)(|ψ ( j)
c (x)|2). (26)

The total probability of atoms in the ground state given by

Pg(x) =
∑

k, j = +, − k �= j

P(kkk)
g (x) + 3P(k jk)

g (x). (27)

This result recovers Eq. (20), as expected. This is imple-
mented keeping count of the grounded atoms only when three
photons trigger the same or different detectors, respectively.

The magnitude of the nonclassical paths is presented in
Fig. 4; the interference pattern is recovered, due to the opening
of the shutters, which allows for the photons’ interference
and detection. The red solid curve illustrates the nonclassical
paths fringes pattern, showing it contributes with up to 1% of
the total probability distribution; it is the total probability of

interfering and measuring in a single detector the intracavity
photons, P(kk)

e (x). The blue dashed curve shows the antifringes
pattern; it indicates the probability distribution of interfering
and measuring one photon in each detector, P(k j)

e (x).
Intriguingly, at the time at which the atoms were detected,

the decision to open or keep closed the photodetector shut-
ter actually had not been made. Whether the atom exhibited
coherent interference or not was determined the time af-
ter its detection; we therefore have a manifestation of the
delayed-choice quantum erasure experiment. Only when the
which-way information is erased by opening the shutters is
the atomic inference pattern retrieved.

In the next subsection, we will discuss how cavities for
which-way detectors can be used to implement Quach’s pa-
rameter and test the Born rule.

IV. QUACH’S PARAMETER

The Sorkin parameter for the triple-slit experiment is de-
fined as

IABC ≡ PABC − PAB − PAC − PBC + PA + PB + PC, (28)

FIG. 4. Probability of detecting nonclassical paths in comparison
with the classical paths. The red solid curve illustrates the nonclas-
sical paths fringes pattern; it is the total probability of interfering
and measuring in a single detector the intracavity photons after mea-
suring the atom in the excited state, P(kk)

e (x). The blue dashed curve
shows the antifringes pattern; it indicates the probability distribution
of interfering and measuring the photons in both detectors, P(k j)

e (x)
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where PABC is the probability of detection when all three slits
(A, B, C) are open, PAB is the probability of detection when
two slits (A, B) are open, and so on. If one assumes that
the probabilities are simply given by the linear superposition
of the individual wave functions of the constituent single-slit
setups (PABC = |ψA + ψB + ψC |2, PAB = |ψA + ψB|2, and so
on), then by rewriting probabilities in Eq. (28) in terms of
wave functions, it can be shown that IABC = 0 if the Born rule
is correct. The Sorkin parameter can be generalized to systems
with three and more slits, but not two slits. The reason for this
is that IAB ≡ PAB − PA − PB �= 0.

If one accounts for nonclassical paths, the probability
of detection must be corrected to PABC = |ψA + ψB + ψC +
ψABC |2, where ψABC is the wave function made up of nonclas-
sical paths when slits A, B, and C are open, which are not
accounted for by single-slit wave functions ψA, ψB, ψC . The
inclusion of these corrections means that IABC �= 0. To over-
come these shortcomings, Quach [35] proposed an alternative
parameter using which-way detectors in a double-slit setup:

IAB ≡ PAB − PDA − PDB − PDAB + 2PDADB , (29)

where

PDA (x) = |ψA(x) + ψAB(x) + ψBA(x)|2 + |ψB(x)|2, (30)

PDB (x) = |ψA(x)|2 + |ψAB(x) + ψBA(x) + ψB(x)|2, (31)

PDAB (x) = |ψA(x) + ψB(x)|2 + |ψAB(x) + ψBA(x)|2, (32)

PDADB (x) = |ψA(x)|2 + |ψB(x)|2 + |ψAB(x) + ψBA(x)|2.
(33)

PDA (x) and PDB (x) are the probability distributions when
there is a which-way detector in slit A or B, respectively.
PDADB (x) and PDAB (x) are the probability distributions of
distinguishable and indistinguishable which-way detectors in
both slits, respectively. Distinguishable which-way detectors
identify whether a particle went through slit A or B; indis-
tinguishable which-way detectors know that a particle went
through the slits but do not know which one. ψAB(x) consists
of Feynman paths that go through slit A first and then slit B,
and vice versa for ψBA(x).

Quach’s parameter has the advantage that IAB = 0 if the
Born is rule is not violated, even in the presence of high-order
paths, and it applies to the double-slit setup. However, up until
now Quach’s parameter has only been a formal construct.
Here we propose how Quach’s parameter could be imple-
mented using atom cavities.

Implementation of Quach’s parameter

To implement Quach’s parameter we follow the reasoning
of Sec. III, using the cavity as which-way detectors. We also
write the parameter in terms of the normalized probability
distributions (Pi), as this is what is actually measured:

IAB = N0PAB − N1(PDA + PDB ) − N2(PDAB − 2PDADB ), (34)

where Ni are normalization factors that satisfy
∫ ∞
−∞

1
N0

PAB(x) dx = 1
N1

∫ ∞
−∞ PDA (x) dx = 1

N2

∫ ∞
−∞ PDAB (x) = 1.

To calculate each of these probabilities a different initial
setup is required, as is summarized in Table I.

TABLE I. Initial setup of the system to obtain the respective
probability distributions. The atom is either initialized in the ground
|g〉 or excited |e〉 state. |1〉 represents a slit-cavity initialized with a
single photon.

Setup

Probability distribution Atom Slit A Slit B

PAB – –
PDA |g〉 |1〉 –
PDB – |1〉
PDAB |e〉 |1〉 |1〉
PDADB

To implement the single-slit which-way detector, a cavity
is placed in one slit only, leaving the remaining slit empty. To
obtain, for example, PDA (x) the setup has a cavity in slit A
only, and the atom is initially in the ground state |g〉|1〉A|0〉B.
The evolved state of the system before the detection screen is

|ψDA〉 = 1√
N1

[|g〉|1〉A|0〉B|ψB〉 + |e〉|0〉A|0〉B(|ψA〉

+|ψAB〉 + |ψBA〉)]. (35)

The first term represents the state of the system when the
atom traverses slit B only. The second term represents the
state of the system whenever the atom traversed slit A. In
all three cases, the atom absorbed the intracavity photon and
transitioned to the excited atomic state |e〉.

Tracing out the cavity states (Trc) and projecting on to the
position basis, one can retrieve PDA (x):

PDA (x) =〈x|Trc[(|e〉〈e| + |g〉〈g|)|ψDA〉〈ψDA |]|x〉

= 1

N1
[|ψA(x) + ψAB(x) + ψBA(x)|2 + |ψB(x)|2].

(36)

In other words, selecting the atoms in the ground and
excited states at the detection screen allows one to obtain
the probability of adding a which-way detector in a single
slit PDA (x). PDB (x) is similarly obtained with the initial state
|g〉|0〉A|1〉B. We plot PDA (x) in Fig. 5(c) using the wave func-
tions analytically calculated in Sec. II. PDB (x) has a similar
pattern.

To obtain PDAB (x) and PDADB (x) we use the analysis de-
veloped in Sec. III; i.e., the system is initially |e〉|1〉A|1〉B,
with the cavity photodetector shutters open. The proba-
bility distribution of distinguishable which-way detectors,
PDADB (x), is

PDADB (x) = Pg + 2P(kk)
e

= 1

N2
[|ψA(x)|2 + |ψB(x)|2 + |ψAB(x) + ψBA(x)|2].

(37)

where P(kk)
e is defined in Eq. (24); the factor of 2 accounts

for k = +, and k = −. Pg is the sum defined in Eq. (27).
We count all atoms in the ground state, while the ones in the

excited state are kept only when two photons trigger the same
cavity photodetector. The grounded atoms at each x position
give the first term, and the excited atoms give the second term
of the probability distribution. We plot PDADB (x) in Fig. 5(b).
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FIG. 5. Probability distributions for the different configurations
of which-way detectors: (a) absence of which-way detectors; (b) dis-
tinguishable which-way detectors in both slits; (c) which-way
detector in slit A; (d) indistinguishable which-way detectors in both
slits. Summing the probabilities according to Quach’s parameter, we
obtain exactly zero.

To calculate the probability distribution of indistinguish-
able which-way detectors, PDAB (x), we first review Appendix
B, based on which we can define the required detection strat-
egy. The implementation requires us to keep count of the
atoms in the ground state whenever three photons arrive in
detector “P+” and when one photon arrives in “P+” and two
in “P−.” It also requires one to keep count of atoms in the
excited state only when two photons reach the same detector,

PDAB (x) = P+++
g + P+−−

g + P−+−
g + P−−+

g + P++
e + P−−

e

= 1

N2

{3

4
|ψ+

c (x)|2 + 3
[ 1

12
|ψ+

c (x)|2
]

+ |ψ+
nc(x)|2

}

= 1

N2
[|ψA(x) + ψB(x)|2 + |ψAB(x) + ψBA(x)|2].

(38)
We plot PDAB (x) in Fig. 5(d).

With all these probabilities in hand, we calculate IAB(x) =
0. Obviously, as our theoretical description assumed the Born
rule, this result is expected. However, we propose a detailed
practical description to test Quach’s parameter. In an experi-
ment, IAB(x) �= 0, would implicate a Born-rule violation.

V. CONCLUSIONS

In this paper, we have shown using Feynman path integrals
a class of of nonclassical paths that can be detected with 1%
probability. We used an atomic double-slit setup with cavities
in each slit to achieve this. Our proposal operates in the mi-
crowave regime, where the nonclassical paths are significant,
as the wavelength is large compared to the slits’ spacing.
We also show how our setup may be used to implement a
delayed-choice quantum eraser for the nonclassical paths.

As this setup explicitly utilizes quantum mechanical be-
havior to isolate and detect the nonclassical paths, it offers
a possible implementation of Quach’s parameter. This is in
contrast to other nonclassical path proposals which utilize
only the classical nature of light [19,31,34].

As a future prospect one could use the include the non-
classical paths in studying the Aharonov-Bohm effect [41] in
the double slit [42]. Considering the solenoid is strong enough
to move the electrons between the slits could be a method to
isolate the nonclassical paths.
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APPENDIX A: NONCLASSICAL PATHS WAVE FUNCTION

In this Appendix we define the constants used in
Eq. (7)–(10):

�c = − imβ

π1/4
√

−imσ0 + t h̄
σ0

× 1√
−im2β2σ 2

0 +m[tβ2+(β2+σ 2
0 )τ ]h̄+itτ h̄2

mσ 2
0 +it h̄

, (A1)

c0 = − m
[
d2mσ 2

0 + id2(t + τ )h̄
]

8m2β2σ 2
0 + 8im

[
tβ2 + (

β2 + σ 2
0

)
τ
]
h̄ − 8tτ h̄2 ,

(A2)

c1 = m
(
4dmσ 2

0 + 4idt h̄
)

8m2β2σ 2
0 + 8im

[
tβ2 + (

β2 + σ 2
0

)
τ
]
h̄ − 8tτ h̄2 ,

(A3)

c2 = − m
[
4m

(
β2 + σ 2

0

) + 4it h̄
]

8m2β2σ 2
0 + 8im

[
tβ2 + (

β2 + σ 2
0

)
τ
]
h̄ − 8tτ h̄2 ,

(A4)

�nc = −m3/2β2
(− 1

π

)1/4

√
−imσ0 + t h̄

σ0

1√
−im2β2σ 2

0 +m[tβ2+ε(β2+σ 2
0 )]h̄+itε h̄2

mσ 2
0 +it h̄

1√
−im3β4σ 2

0 +m2β2[tβ2+β2(ε+τ )+σ 2
0 (ε+2τ )]h̄+im[ε(β2+σ 2

0 )τ+tβ2(ε+2τ )]h̄2−tετ h̄3

m2β2σ 2
0 +im[tβ2+ε(β2+σ 2

0 )]h̄−tε h̄2

,

(A5)
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c′
0 = − m{2d2m2β2σ 2

0 + id2m
[
2tβ2 + 2β2(ε + τ ) + σ 2

0 (ε + 4τ )
]
h̄ − d2[ετ + t (ε + 4τ )]h̄2}

8{m3β4σ 2
0 + im2β2[tβ2 + β2(ε + τ ) + σ 2

0 (ε + 2τ )]h̄ − m[ε(β2 + σ 2
0 )τ + tβ2(ε + 2τ )]h̄2 − itετ h̄3} , (A6)

c′
1 = − m

[
4idmε

(
β2 + σ 2

0

)
h̄ − 4dtε h̄2

]
8{m3β4σ 2

0 + im2β2
[
tβ2 + β2(ε + τ ) + σ 2

0 (ε + 2τ )
]
h̄ − m

[
ε(β2 + σ 2

0 )τ + tβ2(ε + 2τ )
]
h̄2 − itετ h̄3} , (A7)

c′
2 = −

m
{
4m2β2

(
β2 + 2σ 2

0

) + 4im

[
2tβ2 + ε

(
β2 + σ 2

0

)]
h̄ − 4tε h̄2

}
8
{
m3β4σ 2

0 + im2β2
[
tβ2 + β2(ε + τ ) + σ 2

0 (ε + 2τ )
]
h̄ − m

[
ε(β2 + σ 2

0 )τ + tβ2(ε + 2τ )
]
h̄2 − itετ h̄3

} . (A8)

The parameter constants used in this paper are m = 1.44 × 10−25 kg, d = 5 μm, σ0 = β = 0.3 μm, t = τ = 5 ms, and
ε = 2.9 ms.

APPENDIX B: CONDITIONAL PROBABILITY DISTRIBUTION INCLUDING INTRACAVITY PHOTODETECTION

The time evolution of the density matrix [state in Eq. (19)], setup with cavities in both slits including the beam splitter and
intracavity photodetectors P+ and P−, where the photodetection occurs at individual time intervals, such that the density matrix
is calculated solving:

ρ(t ) = e−�Ntρ(0)e−�Nt + 2�
∑

s=−,+

∫ t

0
dt ′e−�N (t−t ′ )ase

−�Nt ′
ρ(0)e−�Nt ′

a†
s e−�N (t−t ′ )

+ (2�)2
∑

s,s′=−,+

∫ t

0
dt ′

∫ t ′

0
dt ′′e−�N (t−t ′ )ase

−�N (t ′−t ′′ )as′e−�Nt ′′
ρ(0)e−�Nt ′′

a†
s′e−�N (t ′−t ′′ )a†

s e−�N (t−t ′ )

+ (2�)3
∑

s,s′,s′′=−,+

∫ t

0
dt ′

∫ t ′

0
dt ′′

∫ t ′′

0
dt ′′′e−�N (t−t ′ )ase

−�N (t ′−t ′′ )as′e−�N (t ′′−t ′′′ )as′′e−�N (t ′′′ )ρ(0)e−�Nt ′′′
a†

s′′e−�N (t ′′−t ′′′ )a†
s′

× e−�N (t ′−t ′′ )a†
s e−�N (t−t ′ ), (B1)

where N is the number of photons operator and � is
the cavity width. Equation (B1) is obtained under the
assumption photodetection is a stochastic jump process
[1,43,44]. The first term corresponds to the probability
of zero-photon absorption, the second term corresponds

to the probability of a single-photon absorption, the third
is the two-photon absorption, and the last is three-photon
absorption.

In the limit of long interaction time, �t → ∞, both
1
6 (e2�t − 1)3 and 1

2 (e2�t − 1)2 tend to 1.

TABLE II. Probability distribution at each single photodetection; the order of + and − signs correspond to the temporal order of the
photodetection.

Number of photons Photodetector Atom-ground state (× 1
N2

e−6�t ) Atom-excited state (× 1
N2

e−4�t )

0 — (|ψ+
c |2 + |ψ−

c |2) (|ψ+
nc|2 + |ψ−

nc|2)

1
+
−

(e2�t − 1)( 5
2 |ψ+

c |2 + 1
2 |ψ−

c |2)

(e2�t − 1)( 1
2 |ψ+

c |2 + 5
2 |ψ−

c |2)

(e2�t − 1)(|ψ+
nc|2 + |ψ−

nc|2)

(e2�t − 1)(|ψ+
nc|2 + |ψ−

nc|2)

2

++
−−

+ − or − +

1
2 (e2�t − 1)2( 9

2 |ψ+
c |2 + 1

2 |ψ−
c |2)

1
2 (e2�t − 1)2( 1

2 |ψ+
c |2 + 9

2 |ψ−
c |2)

1
2 (e2�t − 1)2( 1

2 |ψ+
c |2 + 1

2 |ψ−
c |2)

1
2 (e2�t − 1)2(|ψ+

nc|2)
1
2 (e2�t − 1)2(|ψ+

nc|2)
1
2 (e2�t − 1)2(|ψ−

nc|2)

3

+ + +
− − −

+ − −or − + − or − −+
+ + −or − + + or + −+

1
6 (e2�t − 1)3( 9

2 |ψ+
c |2)

1
6 (e2�t − 1)3( 9

2 |ψ−
c |2)

1
6 (e2�t − 1)3( 1

2 |ψ+
c |2)

1
6 (e2�t − 1)3( 1

2 |ψ−
c |2)

—
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