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Semion formalism for spin and qubit systems: Non-Markovian treatment
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Using semion substitution for spin variables we perform an ab initio derivation of effective action for an open
quantum two-level system . For this purpose, we introduce, by using the Hubbard-Stratonovich transformation a
two-time complex quantum field which average value plays the role of the Green’s function for the spin variables.
The field thus introduced allows us to develop a diagram technique in a standard way. The proposed formalism is
used to study a spin embedded into an Ohmic reservoir as an example of the spin-boson model. Non-Markovian
effects in this system are analyzed.
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I. INTRODUCTION

Quantum two-level systems have been the focus of con-
siderable research interest. Recently, they have also attracted
attention as a platform for quantum computing. Besides, two-
level systems such as spin ensembles studied on the basis
of the Heisenberg, Hubbard, t-J models, etc., are essential,
especially in light of the rapid development of spintronics [1].

A new direction is analog quantum modeling, when a
fairly complex quantum system is modeled or the behavior
of a quantum model is studied with the help of a controlled
quantum system [2–4]. Qubit systems often play the role of a
quantum simulator [5,6]. From a technical point of view, the
matter is complicated by the difference in the methods used
to describe systems. Qubit systems are usually considered as
systems of artificial atoms, and conventional quantum optics
consideration is applied. It includes the techniques of the
density matrix, Langevin equations, and Fokker-Planck-type
equations for the probability of the coherent states and sim-
ilar functions, such as the Q function, Wigner function, etc.
(see, for example, Refs. [7,8]). At the same time, the theory
of strongly correlated systems whose behavior is studied by
analog quantum simulation uses the methods of path integral
representation, Green’s functions, renormalization group, and
others that make up the tools of quantum field theory (see
Ref. [9]). Thus, an important challenge is to construct an
approach that can describe both simulated and simulating
systems in a single way.

A significant obstacle to the application of the quantum
field methods to the analysis of spin (qubit) systems is the
non-Abelian nature of spin operators: the commutator of two
spin operators is also spin operator, but not a c number, as
it is in the case of bosons or fermions. Approaches to over-
coming this difficulty can be divided into two areas. First, one
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can use a version of the diagram technique for spin systems
(let us call it the spin diagram technique—SDT), within the
framework of which all the main results of the Ising and
Heisenberg models are reproduced and some new ones are
obtained [10–12]. The problem with using this technique is
that it is cumbersome and peculiar, which makes it practically
not applicable outside the framework of the Ising and Heisen-
berg models. Second, there are several transformations of spin
variables into fermionic and bosonic quantities: the Jordan-
Wigner transform [13], the Agranovich-Toshich formula [14],
the Holstein-Primakoff substitution [15], the Bravyi-Kitaev
transformation [16], the Majorana fermions [17], Abrikosov
fermions [18], the Popov-Fedotov semion substitution [19].
Recently, variants of Majorana fermions have been used
[20–22]. Some interesting results have been obtained in this
technique. In this paper we use semion substitution. This
substitution is not widely used and only a few results were
obtained in this way. This is the work of Popov and Fedotov
[19], where this substitution was introduced and it is shown
how this approach can be applied for the analysis of the Dicke,
Ising, and Heisenberg models. In addition, Kiselev and coau-
thors expanded the list of the this substitution applications to
a number of other models: the Hubbard model, the t-J model,
the Kondo problem, etc. [23–25].

Our work is also based on semion substitution. We intro-
duce a two-time complex quantum field, which average value
plays, in fact, the role of the Green’s function for the spin
variable. We use the path integral approach and a Hubbard-
Stratonovich transformation [26,27] as the most natural way
to construct this two-time object. The field thus introduced
allows us to develop a diagram technique in a standard way
and apply a well-known powerful method of summing infinite
sets of diagrams. We illustrate the applicability of this general
approach with an example of the spin-boson model [5,28]
with the linear coupling between the thermal reservoir and
the transverse component of the spin. This version of the
spin-boson model was actively studied in quantum optics and,
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on the other hand, it most easily describes the interaction of
a qubit with a microwave resonator. Also, this version of the
spin-boson model was considered in Ref. [22] as an example
of the application of the Majorana fermion technique, and
therefore it seems interesting to compare the two approaches
within the same model.

The effect of the environment on a spin system is a problem
of great interest, and many techniques have been proposed.
We do not list all of them here but mention the most popular
ones such as an assumption of temporal locality and using
Lindblad master equations [29], which is typical for quantum
optics. Another idea is to use Holstein-Primakoff substitu-
tion of spin operators for bosonic ones [30]. In general, the
assumptions and approximations of such a model may by
difficult to overcome and can lead to insufficient accuracy
when applied to a particular physical realization, such as de-
veloping fast quantum computer gates with high fidelity. Our
approach potentially allows us to solve similar problems by
using standard quantum field theory methods with controlled
accuracy.

The central idea of our study is to integrate out bosonic
degrees of freedom and obtain effective dissipative action
for a spin. This idea was developed by Caldeira and Leggett
[28,31], but the origin of the non-Gaussian behavior of the
effective action is different. In the original work, the action
of the system under consideration was non-Gaussian while its
interaction with the bath was described by a tunneling term
which is linear either in the system operators or in the oper-
ators of the bath. In contrast to this problem, in our case the
action related to the free spin is Gaussian but the interaction
of the spin with the environment includes three operators and,
thus, results in the non-Gaussian character of the effective
action.

It is rather natural to use Schwinger-Keldysh functional-
integral formalism to study the problem. Non-Markovian
dynamics of a quantum system, either bosonic or fermionic,
coupled to a reservoir has already been studied with the use
of this approach [32]. But a similar problem for a spin system
remains unsolved.

We show below how to calculate the characteristics of the
equilibrium spin coupled to the bosonic reservoir and to obtain
an equation governing the dynamics of the spin driven from
the state of thermodynamic equilibrium. We argue that this
equation has a substantially non-Markovian form. The transi-
tion to conventional equations of quantum optics is discussed.

II. POPOV-FEDOTOV SEMIONS

In this section, we briefly consider the Popov-Fedotov
semion substitution and introduce the notation used later.

The Hamiltonian of the isolated spin has the form

Ĥ0 = εŜz, (1)

where Ŝz = σ̂ z/2 is the projection operator of the spin on
the axis z, and ±ε/2 are the energies of the spin oriented
in the direction against and along the magnetic field. We
use the standard notation for Pauli matrices:

σ̂ x =
[0 1
1 0

]
, σ̂ y =

[0 −i
i 0

]
, σ̂ z =

[1 0
0 −1

]
. (2)

Abrikosov [18] introduced two fermions, described by de-
struction operators â and b̂, and made the substitution

σ̂ z = â†â − b̂†b̂, σ̂ x = â†b̂ + b̂†â, σ̂ y = iâ†â − ib̂†b̂. (3)

The transformed Hamiltonian

Ĥ0 = ε

2
(â†â − b̂†b̂) (4)

has four eigenstates |00〉, |11〉, |01〉, and |10〉, but only the
states |01〉 and |10〉 relate to a spin system. Two nonphysical
states |00〉 and |11〉 with the eigenvalue ε = 0 do not con-
tribute to the average of physical operators but break their
normalization due to a nonzero contribution to a value of the
statistical sum. To overcome this difficulty, Popov and Fedo-
tov [19] introduced the artificial imaginary chemical potential
μ = iπ/2β, where β = 1/kBT , T is the temperature, so that
the calculation of the partition function of a grand-canonical
ensemble should be produced with the operator

K̂0 = Ĥ0 − μN̂ = ε

2
(â†â − b̂†b̂) − iπ

2β
(â†â + b̂†b̂). (5)

For the partition function one gets

tr e−βK̂0 = tr e
−βε

2 (â†â−b̂†b̂)+ iπ
2 (â†â+b̂†b̂)

= 〈00| · · · |00〉 + 〈11| · · · |11〉 + 〈01| · · · |01〉
+ 〈10| · · · |10〉

= e0 + eiπ + e
βε

2 + iπ
2 + e− βε

2 + iπ
2 = i

(
e

βε

2 + e− βε

2
)
. (6)

This calculation demonstrates the cancellation of contri-
butions of nonphysical states, which is achieved by the
introduction of the imaginary chemical potential. Note the
coefficient i acquired by the statistical sum.

Analogously, we have

tr{e−βK̂0 Ŝz} = i

2

(−e
βε

2 + e− βε

2
)

(7)

and for the spin 〈Ŝz〉(0)
T at temperature T obtain

〈Ŝz〉(0)
T = tr{e−βK̂0 Ŝz}

tr{e−βK̂0} = −1

2
tanh

βε

2
. (8)

This calculation shows how the nonphysical coefficient i dis-
appears from a physically observed value.

On the other hand, 〈Ŝz〉(0)
T following (3) can be written as

〈Ŝz〉(0)
T = 1

2 (〈â†â〉T − 〈b̂†b̂〉T ) = 1
2 (na − nb). (9)

From the relation (8), at first glance, it follows that

ña = e− βε

2

e
βε

2 + e− βε

2

= 1

eβε + 1
,

(10)

ñb = e
βε

2

e
βε

2 + e− βε

2

= 1

e−βε + 1
,

i.e., we get the fermion distributions, but with the wrong
energy, which violates the Gibbs distribution. To resolve this
issue, we represent na and nb as the sum

1

h̄β

∞∑
m=−∞

G(0)(iωm) = n, (11)

042224-2



SEMION FORMALISM FOR SPIN AND QUBIT SYSTEMS: … PHYSICAL REVIEW A 102, 042224 (2020)

where G(0)(iωm) is the Matsubara Green’s function, and use
the well-known formula

lim
η→0

1

h̄β

∞∑
m=−∞

eiωmη

iωm − (ε − μ)/h̄
= 1

eβ(ε−μ) + 1
. (12)

Here the summation is made over the Matsubara fermionic
frequencies ωm = 2π (m + 1/2)/(h̄β ). This approach leads
to the following expressions for the bare Matsubara Green’s
functions of the fermions a and b:

G(0)
a (iωm) = 1

iωm − (ε/2 − μ)/h̄
,

(13)

G(0)
b (iωm) = 1

iωm − (−ε/2 − μ)/h̄
,

while their densities read

na = 1

−ieβε/2 + 1
, nb = 1

−ie−βε/2 + 1
. (14)

Here we use the above imaginary chemical potential μ =
iπ/2β, which leads to the expression eβ(ε−μ)/2 = −ieβε/2. In
expressions of type (13) we can include the imaginary chem-
ical potential into the Matsubara frequency. The summation
in Eq. (11) now should be carried out over frequencies ωm =
2π (m + 3/4)/(h̄β ), which are intermediate between bosonic
and fermionic frequencies. For this reason, fermions with
imaginary chemical potential were called semions.

It is easy to see that (na + nb)/2 with na and nb from
Eq. (14) matches Eq. (8). In expressions (14), the correct
energies are present, but the densities na and nb are complex
functions now. This illustrates the main difficulty of semion
formalism, which relates to the problem of constructing the
spin Green’s functions directly by using fields a and b. In the
next section, we present an approach that allows us to cir-
cumvent this difficulty, using, as an example, the spin-boson
model.

III. SPIN-BOSON MODEL

A. Action of the system

We consider a variant of the spin-boson model describ-
ing a spin in a boson reservoir with the linear coupling,
which is transverse relative to the eigenbasis of the perturbed
Hamiltonian (1):

Ĥ = εŜz + gX̂ Ŝx + HX , (15)

where HX is the Hamiltonian describing the boson reservoir
and the coupling constant g is explicitly introduced. In the
following calculations, we will derive series expansion with
respect to g, so we assume that g is small where it is important.

The action corresponding to the Hamiltonian (15) can be
represented as the sum

A = A0 + Aint + AX , (16)

where A0 is the action of the isolated spin which can be
expressed in terms of semion fields as

A0 =
∫ h̄β

0
dτ {ā(τ )(h̄∂τ + ε/2 − μ)a(τ )

+b̄(τ )(h̄∂τ − ε/2 − μ)b(τ )}, (17)

Aint is the action of the interaction between the spin and the
reservoir,

Aint =
∫ h̄β

0
dτg{ā(τ )b(τ ) + b̄(τ )a(τ )}X (τ ), (18)

and AX is the action of the reservoir

AX = −h̄
∫ h̄β

0
dτdτ ′X (τ )
−1(τ − τ ′)X (τ ′). (19)

Here 
−1(τ − τ ′) is the matrix inverse to the reser-
voir correlation function 
(τ − τ ′) = 〈Tτ [X (τ )X (τ ′)]〉. X =∑

j v j (c j + c+
j ) is the real operator. The reservoir correlation

function in the Matsubara representation can be written as


(iωm) =
∫ ∞

−∞

dx

π

ρ(|x|)sgn(x)

x − iωm
=

∫ ∞

0

dx

π
ρ(x)

2x

x2 + ω2
m

.

(20)

The results of this section are valid for arbitrary reservoir
spectral density ρ(x).

One can formally integrate out the reservoir degree of
freedom in a standard way so that the action becomes

A = A0 + g2

4h̄

∫ h̄β

0
dτdτ ′b̄(τ )a(τ )
(τ − τ ′)ā(τ ′)b(τ ′).

(21)
The rearrangement of the spin variables brings it to the form

A = A0 + g2

4h̄

∫ h̄β

0
dτdτ ′b(τ ′)b̄(τ )
(τ − τ ′)ā(τ ′)a(τ ).

(22)
The sign of the last term remains the same since an even
number of permutations of Grassmann variables were made.

B. Two-time fields

To eliminate the nonlinear term (22), we introduce complex
fields �a(τ, τ ′) and �b(τ, τ ′), which depend on two moments
of imaginary time, and apply the Hubbard-Stratonovich trans-
formation. As a result, we obtain

A =A0 + h̄
∫ h̄β

0
dτdτ ′

{
− h̄2

g2

�a(τ, τ ′)�b(τ ′, τ )


(τ − τ ′)

+b̄(τ )b(τ ′)�a(τ, τ ′) + ā(τ )a(τ ′)�b(τ, τ ′)
}
. (23)

Here we use the Hermiticity of the introduced fields by time
arguments �a,b(τ, τ ′) = �̄a,b(τ ′, τ ). They inherit this prop-
erty from the original matrices (āa)τ ′τ and (b̄b)τ ′τ , which obey
the chain of equalities (āa)τ ′τ = ā(τ ′)a(τ ) = ā(τ )a(τ ′) =
(āa)ττ ′ . The consequence of the Hermiticity is that the intro-
duced fields with matching time arguments are real numbers;
for example, �a(τ, τ ) = �̄a(τ, τ ).

As a result, the exponent of the path integral takes the form

−A
h̄

=
∫ h̄β

0
dτdτ ′

{
h̄2

g2

�a(τ, τ ′)�b(τ ′, τ )


(τ − τ ′)

+ ā(τ )
[(

G(0)
a

)−1
(τ, τ ′) − �b(τ, τ ′)

]
a(τ ′)

+b̄(τ )
[(

G(0)
b

)−1
(τ, τ ′) − �a(τ, τ ′)

]
b(τ ′)

}
, (24)
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where(
G(0)

a

)−1
(τ, τ ′) = −1

h̄
(h̄∂τ + ε/2 − μ)δ(τ − τ ′),

(25)(
G(0)

b

)−1
(τ, τ ′) = −1

h̄
(h̄∂τ − ε/2 − μ)δ(τ − τ ′).

Integrating over the fields a, ā, b, and b̄, we come to the
effective action of the system

−Aeff

h̄
=

∫ h̄β

0
dτdτ ′ h̄2

g2

�a(τ, τ ′)�b(τ ′, τ )


(τ − τ ′)

+ ln det [(G(0) )−1 − �]G(0). (26)

Here,

�ττ ′ =
[
�b(τ, τ ′) 0

0 �a(τ, τ ′)

]
,

(27)

G(0)
ττ ′ =

[
G(0)

a (τ − τ ′) 0
0 G(0)

b (τ − τ ′)

]
,

with

G(0)
a,b(τ − τ ′) = 1

h̄β

∑
n

e−iωn (τ−τ ′ )G(0)
a,b(iωn), (28)

where G(0)
a,b(iωn) = h̄(ih̄ωn ∓ ε/2 + μ)−1.

Equation (26) illustrates the difference to the Caldeira-
Leggett problem: in the last case the propagator of Hubbard-
Stratonovich fields is determined by the properties of the
system itself, but in our case, this propagator is determined
by the bath. In addition, in the Caldeira-Leggett model, the
self-energy term appears in the argument of ln det . . . while
in our problem this not the case, as one can see from Eq. (26).

Next, one can write

ln det [(G(0))−1 − �]G(0)

= tr ln (I − �G(0) )

= −
∞∑

k=1

1

k

[
tr
(
�bG(0)

a

)k + tr
(
�aG(0)

b

)k]
, (29)

where we assume that

trKk =
∫

dz1 · · · dzkK (z1, z2)K (z2, z3) · · · K (zk, z1). (30)

Now we find the relationship between the spin Sz and its
corresponding field �z. To do this, we add a term with the
source η(τ ) to the action (21):

A[η] = A − h̄
∫ h̄β

0
dτη(τ )Sz(τ )

= A − h̄
∫ h̄β

0
dτ

η(τ )

2
[ā(τ )a(τ ) − b̄(τ )b(τ )]. (31)

The average spin value can now be found as a variational
derivative

〈Sz(τ )〉 = δ

δη(τ )

∫
D�e−A[η]/h̄∫
D�e−A/h̄

∣∣∣∣
η=0

, (32)

while the Matsubara Green’s function is

〈Tτ Sz(τ )Sz(τ ′)〉 = δ2

δη(τ )δη(τ ′)

∫
D�e−A[η]/h̄∫
D�e−A/h̄

∣∣∣∣
η=0

. (33)

Here
∫

D� denotes the path integral taken over all fields
present in the action.

The action (26) is the main relation for the analysis of
the spin-boson model using the Green’s functions G(0)

a and
G(0)

b introduced in Ref. [19]. We can go further and intro-
duce variables which use the symmetry of the functions G(0)

a

and G(0)
b :

G(0)
b (iωn) = −Ḡ(0)

a (iωn), (34)

which leads to

G(0)
b (τ − τ ′) = −Ḡ(0)

a (τ ′ − τ ) = −(
G(0)

a

)∗
(τ − τ ′). (35)

Here, the asterisk stands for Hermitian conjugation. This
symmetry allows us to use further only the function G(0)

a =
G(0) and to replace initial fields �a and �b by the fields �z

and �̄z according to the relations

�a(τ, τ ′) = �z(τ, τ ′), �b(τ, τ ′) = −�̄z(τ, τ ′). (36)

The action (26) acquires the form

−Aeff

h̄
= −

∫ h̄β

0
dτdτ ′ h̄2

g2

�̄z(τ, τ ′)�z(τ ′, τ )


(τ − τ ′)

+ tr ln (I − �G(0) ), (37)

where

�ττ ′ =
[−�̄z(τ, τ ′) 0

0 �z(τ, τ ′)

]
,

(38)

G(0)
ττ ′ =

[
G(0)(τ − τ ′) 0

0 −(G(0) )∗(τ − τ ′)

]
.

Now, we represent the field �z(τ, τ ′) as a sum of the average
value and quantum fluctuations with zero average:

�z(τ, τ ′) = 〈�z(τ, τ ′)〉 + φz(τ, τ ′), 〈φz(τ, τ ′)〉 = 0. (39)

For the average spin we obtain

〈Sz(τ )〉 = 〈Sz〉T = h̄2

2g2

1


(0)
[〈�z(τ, τ )〉 + 〈�̄z(τ, τ )〉]. (40)

Detailed calculations are given in Appendix A.
The average spin 〈Ŝz〉T can be found as a power series in

the coupling constant g2 as follows: In the action (37), the
series expansion of tr ln(. . . ) according to Eq. (29) contains
the linear term (k = 1)∫ h̄β

0
dτ1dτ2[�̄z(τ1, τ2)G(0)(τ2, τ1) + �z(τ1, τ2)Ḡ(0)(τ2, τ1)].

(41)

This term can be omitted by a shift in the fields �z and �̄z.
Often we make such a shift, completing a square in an action.
In our case, the procedure is iterative. As a result, the series
expansion for 〈�z(τ, τ ′)〉 is obtained. The calculation process
is presented in Appendix C.
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FIG. 1. Power series in g2 for functions (a) 〈�z(τ1, τ2 )〉,
(b) 〈�̄z(τ1, τ2)〉, (c) 〈Sz(τ )〉.

To depict the resulting series expansion, we use the follow-
ing rules: The Green’s function G(0)(τ1 − τ2) is represented
by a solid line, the Green’s function Ḡ(0)(τ1 − τ2) is shown as
a crossed-out solid line, the reservoir correlator 
(τ1 − τ2)

is represented by a wavy line. The average values of the
two-time fields 〈�z(τ1, τ2)〉 and 〈�̄z(τ1, τ2)〉 are depicted by
vertically oriented ovals with arrows (normal and crossed-out,
respectively). The arrows are directed from the second argu-
ment to the first argument (see Fig. 1).

As follows from formula (40), the average spin relates to
the sum of the propagator 〈�z(τ1, τ2)〉 and its Hermitian con-
jugate 〈�̄z(τ1, τ2)〉, taken at a same time τ1 = τ2 = τ , so that
the average spin always remains a real number. For brevity,
it is convenient to omit the type of arrows assuming that a
Hermitian conjugate must be added to each diagram. We come
to the following rule to pass from the diagrams obtained for
fields a and b to the spin: one should consider either a or b
diagrams, connect the outer ends of each diagram, and also
discard the connecting wavy line, which, in turn, transforms
each into a closed loop equal to g2
(0)/h̄2. The final step is
to take a real part of the expression obtained. The resulting
series for the average spin is represented in Fig. 1(c).

The spin Matsubara Green’s function is connected with the
field �z(τ, τ ′) through the relation

〈Tτ Sz(τ )Sz(τ ′)〉 − 〈Sz〉2
T = − h̄2

2g2

1


(0)
δ2(τ − τ ′) + h̄4

4g4

1


2(0)
〈Tτ [φz(τ, τ ) + φ̄z(τ, τ )][φz(τ ′, τ ′) + φ̄z(τ ′, τ ′)]〉. (42)

To calculate 〈Ŝz(τ )Sz(τ ′)〉, we leave the action in only the quadratic terms with respect to fluctuations. The effective action
can be written in the matrix form

−A(II )
eff

h̄
= −

∫ h̄β

0
dτ1dτ2dτ3dτ4[φ̄z(τ1, τ2), φz(τ3, τ4)] · G−1 ·

[
φz(τ1, τ2)
φ̄z(τ3, τ4)

]
. (43)

Here, G−1 = G−1
0 − �, where

(
G−1

0

)
11 = (

G−1
0

)
22 = h̄2

2g2

δ(τ2 − τ3)δ(τ1 − τ4)


(τ1 − τ2)
,

(
G−1

0

)
12 = (

G−1
0

)
21 = 0, (44)

and

(�)11 = (�)22 = 0, (�)12 = (�)∗21 = − 1
2 G(0)(τ2 − τ3)G(0)(τ4 − τ1). (45)

So, we obtain

G = −
〈[

φz(τ1, τ2)
φ̄z(τ3, τ4)

]
· [φ̄z(τ1, τ2), φz(τ3, τ4)]

〉
. (46)

The expression (43) allows one to obtain the components of the Green’s function G as a perturbation series. To do this, we add
to the action A(II )

eff the sources J (τ, τ ′) and J̄ (τ, τ ′):

A(II )
eff [J, J̄] = A(II )

eff − h̄
∫ h̄β

0
dτdτ ′[J̄ (τ, τ ′)φz(τ, τ ′) + J (τ, τ ′)φ̄z(τ, τ ′)]. (47)

We can obtain the Green’s functions of the field φz(τ, τ ′) by taking the second variational derivative of the generating functional
with respect to the sources J , J̄:

〈φz(τ1, τ2)φ̄z(τ3, τ4)〉 = δ2

δJ̄ (τ1, τ2)δJ (τ3, τ4)

∫
D�e−A(II )

eff [J,J̄]/h̄∫
D�e−A(II )

eff /h̄

∣∣∣∣∣
J,J̄=0

, (48)

and analogously for 〈φ̄zφz〉, 〈φzφz〉, and 〈φ̄zφ̄z〉. We calculate
the Green’s function to second order in the coupling constant
g in Appendix B.

To graphically represent the result, we relate functions
of the type 〈φz(τ1, τ2)φ̄z(τ3, τ4)〉 to a rounded rectangle that

contains two vertical lines inside. The diagram shown in Fig. 2
depicts the sum 〈φz(τ1, τ2)φ̄z(τ3, τ4)〉 + 〈φ̄z(τ1, τ2)φz(τ3, τ4)〉
in accordance with the convention proposed above. As we
can see, this sum is given by the series of the ladder type.
We introduced an effective interaction (heavy wavy line), for
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FIG. 2. Power series in g2 for the function
〈φz(τ1, τ2)φ̄z(τ3, τ4)〉 + 〈φ̄z(τ1, τ2)φz(τ3, τ4)〉.

which the Bethe-Salpeter equation can be written in the stan-
dard way. Note that the resulting diagram series, of course, is
not complete, because we used the quadratic action (43), not
the full one (37).

The series expansion for the spin Green’s function
〈Tτ Sz(τ1)Sz(τ2)〉 − 〈Sz〉2

T can be obtained in accordance with
formula (42). It prescribes in each diagram to combine verti-
cally arranged external ends and discard arising wavy loops.
Also, the first term of the series must be discarded. As a
result, we obtain for the function 〈Tτ Sz(τ1)Sz(τ2)〉 − 〈Sz〉2

T the
diagrams shown in Fig. 3. We dressed the Green’s functions
according to Fig. 1.

Note that the circle with the point in the center shown
in Fig. 1 and the horizontally arranged oval with two points
inside shown in Fig. 3 are graphic elements of SDT [10–12].
Thus, we believe that the graphical elements, which we intro-
duced in Figs. 1 and 2, help to visualize the transition from
the conventional fermionic diagram technique to the spin one.

C. Spin embedded into an Ohmic reservoir

The Ohmic reservoir is characterized by a linear spectral
density

ρ(|x|) = λ0|x|�(ωD − |x|). (49)

Here ωD is the maximal frequency of the reservoir modes, for
example, the Debye frequency of phonons. It is convenient to
introduce the dimensionless constant λ̃ = g2λ0.

The lowest-order correction to the average spin is

〈Ŝz〉(1)
T ≈ λ̃

βε + sinh βε

4 cosh2 βε

2

ln ωD. (50)

We have calculated the correction to the retarded Green’s
function, �(R)(ω), in the second order of the perturbation
theory (see Appendix D). As it is described in Appendix D,
one can split �(R)(ω) into a sum of two terms. The first one
is “thermal” and vanishes at low temperatures. This term has
a trivial form of a δ function, so we will consider in detail
only the “quantum” one, which survives only at the low-
temperature limit and has less trivial behavior. In this limit,

= +
FIG. 3. Power series for the function 〈Tτ Sz(τ1)Sz(τ2)〉 − 〈Sz〉2

T .

FIG. 4. Function � (R)
q (ω)/g2 for β = 0.5ε (red dotted line), β =

ε (green dashed line), β = 2ε (blue solid line); ω is given in units
of ε/h̄. Inset shows functions � (R)(t )/g2 and � (R)

q (t )/g2 for the
same relations between β and ε, t is given in units of h̄/ε. One
can see the increase of a constant vertical shift �(R)(t )/g2 as the
temperature increases. This shift results from the “thermal” part of
the self-energy.

quantum term prevails:

�(R)
q (ω) = λ̃

ω2
tanh

(
βε

2

)
Re

{
2εψ (1)

(
iβε

2π

)

− (ε + h̄ω)ψ (1)

(
iβ(ε + h̄ω)

2π

)

−(ε − h̄ω)ψ (1)

(
iβ(ε − h̄ω)

2π

)}
, (51)

where ψ (n)(z) is the nth logarithmic derivative of the Gamma
function:

ψ (n)(z) = dn

dzn
ln [�(z)], �(z) =

∫ ∞

0
t z−1e−t dt . (52)

The function �(R)
q (ω) for several values of the ratio

ε/β is shown in Fig. 4. Functions �(R)(t ) and �(R)
q (t )

are obtained by the Fourier transformation: �(R)(t ) =∫ ∞
−∞ e−iωt�(R)(ω)dω/(2π ). In the vicinity of ω = 0, the func-

tion �(R)
q (ω) can be approximated by the Lorentzian, and the

Fourier transform integral can be calculated by using residues.
As a result, we obtain an expression asymptotically exact for
large t :

�(R)
q (t ) = − λ̃

2

√
m3

n
exp

(
−

√
m

n
t

)
, (53)

where

m = β tanh
(βε

2

)
Re

{
i

2π
ψ (1)

(
iβε

2π

)
− βε

8π2
ψ (2)

(
iβε

2π

)}
,

n = β3 tanh

(
βε

2

)
Re

{
i

48π3
ψ (3)

(
iβε

2π

)

− βε

384π4
ψ (4)

(
iβε

2π

)}
. (54)
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FIG. 5. Function � (R)
q (ω)/λ̃ for different values of β; ω is given

in units of ε/h̄. Inset shows the function �(R)
q (t )/λ̃ for the same

values of β; t is given in units of h̄/ε. In this temperature limit
� (R) ≈ � (R)

q .

In the high-temperature limit when β → 0, the decay time
of the function �(R)

q (t ) is given by
√

n/m = h̄β/(2
√

15), and
its maximal value is �(R)

q (0) � −0.144λ̃βε tanh(βε/2).
At low temperatures β � ε, the function �(R)

q (ω) has two
symmetric peaks at ω ≈ ±ε (see Fig. 5). In the limit β → ∞
the function �(R)

q (ω) is given by the simple expression (blue
line in Fig. 5)

�(R)
q (ω) = − λ̃ε

2ω2

{(
1 − ω

ε

)
ln

(∣∣∣1 − ω

ε

∣∣∣)
+

(
1 + ω

ε

)
ln

(∣∣∣1 + ω

ε

∣∣∣)}
. (55)

The inset in Fig. 5 illustrates that the Fourier transform of
the Eq. (55) exposes that the decay rate of the function �(R)

q (t )
is of order ε as well as its damped oscillation frequency.

Our consideration shows that, at a higher temperature, the
function �(R)

q (ω) vanishes and only the “thermal” term sur-
vives. This term has a form of the δ-function, indicating that
spin at different times does not correlate in this limit.

We can assume that the regimes of low and high tem-
peratures are separated by the relation β ∼ 5ε, at which
∂2�(R)(0)/∂ω2 = 0 (red dotted line in Fig. 5).

Markovian spin dynamics in the high-temperature limit
and non-Markovian behavior in the low-temperature limit
correlates with the results obtained for a similar system in
Ref. [33], where the dynamics of a two-level system coupled
to an Ohmic bath was studied.

D. Mathematical aspects of non-Markovian behavior

In this section, we illustrate within the framework of a
simple toy model how the results obtained above are reflected
in the spin dynamics.

As we have shown in the previous two sections, for many
physical systems the interaction with a thermal reservoir is de-
scribed by the function �(R)(t − t ′), whose low-temperature
behavior can be qualitatively described by the following ex-
pression:

�(R)(t − t ′) = −a e−λ(t−t ′ ) sin [ω(t − t ′) + α], (56)

where constants a, λ > 0 are determined by the parameters of
the original system.

Following standard rules, one can write the quantum
Langevin equation with random sources for the spin variable.
There is a well-known trick when one substitutes these ran-
dom sources by pumping at some probe frequency. We do not
provide here any details for these calculations, but it is natural
to assume that the dynamics of the spin will be determined by
�(R)(t − t ′) through the equation, as it follows from Eq. (56):

s(t ) = F (t ) − a
∫ t

−∞
e−λ(t−t ′ ) sin [ω(t − t ′) + α]s(t ′)dt ′,

(57)
where F (t ) is a pump that shifts the system from thermal
equilibrium s = 0. If the pump is constant in time, F (t ) =
const(t ) = F0, then the steady-state solution reads

s0 = F0
λ2 + ω2

λ2 + ω2 + a ω cos α + aλ sin α
. (58)

Suppose the pump was turned on at t = −∞ so that the
system reaches the solution (58) at t = 0 when we turn off the
pump. The system will migrate to a new stationary solution
s = 0 according to

s1(t ) = − a

�
F0e−kt

{(b − ck) sinh (�t ) + c � cosh (�t ) if D > 0
(b − ck) sin (�t ) + c � cos (�t ) if D < 0, (59)

where

k = λ + a

2
sin α, D = a2

4
−

(
ω + a

2
cos α

)2
,

� =
√

|D|, c = λ sin α + ω cos α

λ2 + ω2 + a ω cos α + aλ sin α
,

b = (λ2 − ω2) sin α + 2λω cos α

λ2 + ω2 + a ω cos α + aλ sin α
. (60)

This result can be easily obtained by using the Laplace trans-
formation. The expressions show that the oscillating kernel

of the integral Eq. (57) does not always lead to an oscillat-
ing solution. As follows from the expression (60) for D, the
oscillating regime occurs at

ω >
a

2
(1 − cos α). (61)

It is interesting to note that this condition does not include λ.
The kernel (56) becomes monotonically decreasing

�(R)(t − t ′) = −a e−λ(t−t ′ ) at ω = 0 and α = π/2. This case
relates to a spin at higher temperature when resonance peaks
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in �(R)(ω) disappear (see Fig. 5). The solution (59) turns into

s1(t ) = −a

λ
s0e−(λ+a)t , (62)

where s0 = λF0/(λ + a) is the steady-state solution under the
constant pump F0, and tr = (λ + a)−1 is the relaxation time of
the system.

In this case, the integral Eq. (57) can be approximated by
a differential one under an extra condition. By differentiating
the Eq. (57) with the monotonically decreasing kernel at t >

0, i.e., with the pump turned off, we get

∂s(t )

∂t
= −as(t ) + aλ

∫ t

−∞
e−λ(t−t ′ )s(t ′)dt ′. (63)

Substituting s(t ) for the function (62) turns this equation into
an identity. When λ � a, the integral term is small and Eq.
(63) transforms into

∂s(t )

∂t
= −as(t ). (64)

In the opposite case λ � a, the decay time of the integral
kernel is short, so the Markov approximation becomes valid∫ t

−∞
e−λ(t−t ′ )s(t ′)dt ′ ≈ s(t )

∫ t

−∞
e−λ(t−t ′ )dt ′ = −1

λ
s(t ).

(65)
As a result, we arrive at the equation

∂s(t )

∂t
= −2as(t ). (66)

Thus, the analysis performed shows that, in a wide range
of values of the parameter α, the integral Eq. (57) can be
effectively replaced by the differential one. However, this
approach does not work when a ≈ λ. In the case of the kernel
(56), the situation seems much more complicated and requires
further study in more detail.

We note in conclusion that our approach qualitatively re-
produces one of the main features of the spin-boson model,
namely, the crossover between coherent oscillations and inco-
herent relaxation [28].

E. Kinetics of the spin

In this section, we consider how the relations obtained
correlate with the equations conventionally used in quantum
optics in the analysis of two-level systems in an external field.

Let us introduce the notation

S̃z(τ ) = Sz(τ ) − 〈Sz〉T . (67)

We can write the spin Green’s function GS (τ − τ ′) =
〈S̃z(τ )S̃z(τ ′)〉 = 〈Sz(τ )Sz(τ ′)〉 − 〈Sz〉2

T as the sum

GS (τ − τ ′) = G(0)
S (τ − τ ′) + G(I )

S (τ − τ ′), (68)

where G(0)
S (τ − τ ′) is the bare Green’s function and G(I )

S (τ −
τ ′) is the total correction to the bare Green’s function arising
due to the interaction with the reservoir. The first term can be
easily calculated and is equal to

G(0)
S (τ − τ ′) = 1 − 4

(〈Sz〉(0)
T

)2 = 1

cosh2 (βε/2)
. (69)

The corresponding Matsubara components are related by

GS (iωn) = G(0)
S (iωn) + �(iωn). (70)

For the inverse Green’s function, we can write

G−1
S (iωn) = [

G(0)
S (iωn) + �(iωn)

]−1

= (
G(0)

S

)−1
(iωn) − �S (iωn), (71)

where

�S = �

G(0)
S

(
G(0)

S + �
) ≈ 1(

G(0)
S

)2 �. (72)

In Appendix D, we calculate the function � in the second
order of the perturbation theory for the coupling constant g.
An explicit expression (51) is given.

Returning to the time domain, we can write down the
fictitious action for the spin quantum field

−AS

h̄
=

∫ h̄β

0
dτdτ ′S̃z(τ )

[(
G(0)

S

)−1
(τ − τ ′) − �S (τ − τ ′)

]
× S̃z(τ ′). (73)

We called the action fictitious because it does not allow us to
construct a series expansion for the Green’s function GS . By
varying the action with respect to the field S̃z(τ ) we obtain the
equation of motion

S̃z(τ ) = cosh2 (βε/2)
∫ h̄β

0
dτ ′�S (τ − τ ′)S̃z(τ ′). (74)

The corresponding equation for the quantities analytically
continued to real time has the form

S̃z(t ) = cosh2 (βε/2)
∫ t

−∞
dt ′�(R)

S (t − t ′)S̃z(t ′) + noise. (75)

Here we wrote the term “noise” to emphasize that the correct
equation for the fluctuating quantum field S̃z(t ) must be of
the Langevin Eq. type [26]. Such an equation can be obtained
by considering the action (26) on the Schwinger-Keldysh con-
tour. The problem, however, is that at the moment the Keldysh
technique for two-time fields �(t, t ′) has not been developed.
On the other hand, we cannot consider the action (73) on
the Schwinger-Keldysh contour due to nontrivial statistics of
the field S̃z. We only note that, according to the fluctuation-
dissipation theorem, there is the relation between the Keldysh
Green’s function �

(K)
S (t, t ′) and the retarded Green’s function

�
(R)
S (t, t ′),

�
(K)
S (t, t ′) = 〈Sz〉T �

(R)
S (t, t ′). (76)

It is interesting that the Eq. (75) obtained for the spin is inte-
gral, and not integrodifferential, as for many other systems.
It suggests that the spin does not have its own dynamics.
Without interaction with the reservoir, the spin retains its
initial value, unlike, say, photons, which obey the Maxwell
equations for vacuum, i.e., have their own dynamics. The spin
dynamics is governed by the nonlocal in time integral term in
(75), which is consistent with the hysteresis behavior inherent
in magnetism. Nonlocality in time means the non-Markovian
nature of the system behavior, and the absence of intrinsic
dynamics makes this behavior substantially non-Markovian,
i.e., not reducible to the Markovian by dropping small terms.
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From the technical point of view, this result is a conse-
quence of the fact that the function (G(0)

S )−1(τ − τ ′) in the
action (73) does not have the form of the differential operator.
The same bare Green’s function arises when applying SDT
to Ising and Heisenberg models [10–12]. We conclude that
the approaches developed in the theory of strongly correlated
systems lead to the integral equations of motion, and hence
to essentially non-Markovian behavior of spin systems. This
conclusion contradicts the form of equations conventionally
used in considering quantum two-level systems coupled to
a thermal reservoir. The rest of the section is devoted to a
discussion of how to overcome this contradiction.

Note that a similar equation of the spin dynamics was
obtained in Ref. [34] for the spin-boson model with the linear
coupling between the thermal reservoir and the longitudinal
component of the spin.

We now differentiate Eq. (75):

1

cosh2 (βε/2)

∂〈S̃z(t )〉
∂t

= �
(R)
S (0)〈S̃z(t )〉

+
∫ t

−∞
dt ′ ∂�

(R)
S (t − t ′)

∂t
〈S̃z(t ′)〉.

(77)

As the previous consideration of the model problem shows,
if t−1

s � �
(R)
S (0), where ts is the decay time of the function

�
(R)
S (t ), we can neglect the integral term and, substituting

− cosh2(βε/2)�(R)
S (0) by γ , we obtain the equation

∂〈S̃z〉
∂t

= −γ 〈S̃z〉. (78)

This formula can be rewritten as a typical equation for two-
level systems in an external field

∂〈Sz〉
∂t

= −γ 〈Sz〉 − κ. (79)

Here, κ = −γ 〈Sz〉T . The Eq. (78) can be associated with the
equation for the Green’s function,( ∂

∂t
+ γ

)
Gs(t, t ′) = δ(t − t ′). (80)

For the frequency dependence of the imaginary part of the
retarded Green’s function we obtain in the standard way

ImG(R)
s (ω) = γ

ω2 + γ 2
. (81)

The Green’s function 〈S̃z(t )S̃z(t ′)〉(ω) for the isolated spin has
the form

〈S̃z(t )S̃z(t ′)〉(ω) = (
1 − 4〈Sz〉2

T

)
πδ(ω). (82)

In the case when the spin is coupled with the reservoir, this
function also obeys Eq. (78), so for the retarded Green’s
function we get

Im〈S̃z(t )S̃z(t ′)〉(R)
(ω) = 〈{S̃z(t ), S̃z(t ′)}〉(ω)

= (
1 − 4〈Sz〉2

T

) γ

ω2 + γ 2
, (83)

the relation turning into Eq. (82) in the limit γ → 0. This
expression can be rewritten in the form

2〈{Sz(t ), Sz(t ′)}〉(ω) = 4〈Sz〉2
T 2πδ(ω)

+ (
1 − 4〈Sz〉2

T

) 2γ

ω2 + γ 2
. (84)

The obtained relation reproduces the known Bloch-Redfield
result [35,36]. Bloch and Redfield got it for an Ohmic reser-
voir; however, our consideration shows that the relation is
universal in the low-frequency limit. Only the coefficient γ

depends on the type of reservoir. As we see, in our derivation,
the Bloch-Redfield formula is an elementary consequence of
Eq. (79), used in the theory of two-level systems, and the
expression (69) for the bare spin Green’s function used in
the theory of magnetism. Thus, the combination of the two
theories made it possible to easily obtain this classical result.

In conclusion, we note that, for the coefficient γ , the value
(λ̃ε/2) coth(βε/2) is most often used. This value can be ob-
tained if we make two assumptions [8]: (1) the interaction
between the system and the reservoir does not depend on the
state of the system, and (2) the system interacts only with
the resonant mode of the reservoir, ω0 = ε. As the discussion
in Sec. III C shows, both of these assumptions are far from
reality.

IV. DISCUSSION

We proposed a different approach to the analysis of
open quantum two-level systems by using the Popov-Fedotov
substitution. With the help of the Hubbard-Stratonovich trans-
formation, we introduced a two-time complex quantum field.
We showed how the average spin and its correlators are related
to it. This approach, at least in the spin-boson model that we
have analyzed, does not lead to the appearance of artifacts
and ambiguities, in contrast to the approach using Majorana
fermions [22].

We showed how to modify the standard diagram technique
for fermions to obtain SDT.

A possible transition to equations conventionally used in
quantum optics is discussed.

We obtained the Bloch-Redfield formula for the spin cor-
relator in the bosonic reservoir as an easy consequence of
the combination of two theories, the quantum-optical theory
of two-level systems and the theory of magnetism. Also, we
showed that this formula is universal for the entire class of
bosonic reservoirs, and the type of reservoir determines only
the damping rate present in the formula.

We examined a spin coupled to an Ohmic reservoir as an
example described by the spin-boson model. It was found that
the spin dynamics should be considered as nonlocal at times of
scale t � h̄β, which is 10−11 s for helium temperatures. With
the advent of experimental femtosecond spectroscopy, consid-
eration of quantum systems at such times is relevant [1]. We
showed that, at such times, the spin dynamics in the bosonic
reservoir is purely non-Markovian, i.e., the current state of the
spin is completely determined by the history of its states, and
the longer is the history, the lower is the temperature of the
system.
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The developed technique allows us to consider other sys-
tems. For example, the Ising model, where in addition to
the interspin interaction there is the interaction of each spin
with the phonon subsystem. Another example is an array of
superconducting qubits connected to a resonator, and one goes
to take into account both the interaction of qubits through
the resonator and the direct interaction of qubits (so-called

cross-talk). Further presentations will be devoted to these
questions.
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APPENDIX A

To calculate the average spin, we apply the relation (32) with the action A[η] from Eq. (31), where for A we take Eq. (37).
As a result, we again obtain the expression (37) with the only difference being that now � is meant by

�ττ ′ =
[−�̄(τ, τ ′) − η(τ, τ ′)/2 0

0 �(τ, τ ′) + η(τ, τ ′)/2

]
, (A1)

where η(τ, τ ′) = η(τ )δ(τ − τ ′). We perform a shift in the variables

�(τ, τ ′) + η(τ, τ ′)/2 → �(τ, τ ′), �̄(τ, τ ′) + η(τ, τ ′)/2 → �̄(τ, τ ′), (A2)

and come to the action

−Aeff[η]

h̄
=

∫ h̄β

0
dτdτ ′ h̄2

g2

1


(τ − τ ′)

[
�(τ, τ ′)�̄(τ ′, τ ) + η(τ, τ ′)

2
(�(τ, τ ′) + �̄(τ ′, τ )) − η2(τ, τ ′)

4

]

+ ln det ((G(0) )−1 − �)G(0), (A3)

where � is meant by the initial matrix (38).
Up to second-order terms in η, we can write

e−Aeff[η]/h̄ = e−Aeff/h̄

{
1 + h̄2

g2

∫ h̄β

0
dτ1dτ2

1


(τ1 − τ2)

[
η(τ1, τ2)

2
[�(τ1, τ2) + �̄(τ2, τ1)] − η2(τ1, τ2)

4

]

+ h̄4

2g4

∫ h̄β

0
dτ1dτ2dτ3dτ4

1


(τ1 − τ2)
(τ3 − τ4)

η(τ1, τ2) η(τ3, τ4)

4

× [�(τ1, τ2) + �̄(τ2, τ1)][�(τ3, τ4) + �̄(τ4, τ3)]

}
. (A4)

Using this expansion, we obtain for the average spin the expression (40). The relation (42) is obtained in a similar way.

APPENDIX B

We obtain the bare Green’s function, leaving in the action A(II)
eff only the term A(0):

〈φz(τ1, τ2)φ̄z(τ3, τ4)〉(0) = δ2

δJ̄ (τ1, τ2)δJ (τ3, τ4)

∫
D�e

− ∫ h̄β

0 dτdτ ′
[
φ̄z (τ,τ ′ ) h̄2

g2
(τ−τ ′ )
φz (τ ′,τ )+J̄ (τ,τ ′ )φz (τ,τ ′ )+J (τ,τ ′ )φ̄z (τ,τ ′ )

]
∫

D�e−A(0)/h̄

∣∣∣∣∣∣
J,J̄=0

= δ2

δJ (τ1, τ2)δJ (τ3, τ4)

∫
D�e

∫ h̄β

0 dτdτ ′ J̄ (τ,τ ′ ) g2
(τ−τ ′ )
h̄2 J (τ ′,τ )∫

D�e−A(0)/h̄

∣∣∣∣∣∣
J,J̄=0

= g2
(τ1 − τ2)

h̄2 δ(τ1 − τ4)δ(τ2 − τ3).

(B1)

Similarly, we obtain

〈φ̄z(τ1, τ2)φz(τ3, τ4)〉(0) = 〈φz(τ1, τ2)φ̄z(τ3, τ4)〉(0)
,

(B2)
〈φz(τ1, τ2)φz(τ3, τ4)〉(0) = 〈φ̄z(τ1, τ2)φ̄z(τ3, τ4)〉(0) = 0.
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We find corrections to the bare Green’s function by representing e−Aint/h̄ as the series expansion

e−Aint/h̄ =
∞∑

k=0

(−1)k

k!
(Aint/h̄)k (B3)

and replacing Aint by

Aint

[
δ

δJ
,

δ

δJ̄

]
= h̄

∫ h̄β

0
dτ1dτ2dτ3dτ4

{
δ

δJ̄ (τ1, τ2)

1

2
G(τ2 − τ2)G(τ4 − τ1)

δ

δJ̄ (τ3, τ4)

+ δ

δJ (τ1, τ2)

1

2
Ḡ(τ3 − τ2)Ḡ(τ1 − τ4)

δ

δJ (τ3, τ4)

}
. (B4)

For example,

〈φz(τ1, τ2)φz(τ3, τ4)〉(1)

= − δ2

δJ12δJ34

∫
D�

∫ h̄β

0 dτadτbdτcdτd
{

δ

δJ̄ab

1
2 Gb−cGd−a

δ

δJ̄cd
+ δ

δJab

1
2 Ḡc−bḠa−d

δ
δJcd

}
e
∫ h̄β

0 dτ5dτ6J56
g2
5−6

h̄2 J65∫
D�e−A(II)

eff /h̄

∣∣∣∣∣∣∣
J,J̄=0

= − g4

h̄4 
(τ2 − τ1)
(τ4 − τ3)G(τ1 − τ4)G(τ3 − τ2). (B5)

Here, for brevity, we replaced time arguments with indexes. Similarly,

〈φ̄z(τ1, τ2)φ̄z(τ3, τ4)〉(1) = − g4

h̄4 
(τ2 − τ1)
(τ4 − τ3)Ḡ(τ4 − τ1)Ḡ(τ2 − τ3),

〈φz(τ1, τ2)φ̄z(τ3, τ4)〉(1) = 〈φ̄z(τ1, τ2)φz(τ3, τ4)〉(1) = 0. (B6)

APPENDIX C

We take the action (37) and in the expansion of the log-
arithm (29) we leave for simplicity the first two terms. For
brevity, we write the action in the matrix form

A
h̄

= tr

{
�̄z�z



+ (Ḡ�z + �̄zG)

+ 1

2
(�̄zG�̄zG + Ḡ�zḠ�z )

}
. (C1)

We included the factor g2/h̄2 in 
. To exclude the linear
terms, we perform the field shift by introducing the field
�z

1 = �z + 
G. The action, up to the members independent
of �z and �̄z, takes the form

tr

{
�̄z

1�
z
1



− (

Ḡ
GḠ�z
1 + �̄z

1GḠ
G
)

+1

2

(
�̄z

1G�̄z
1G + Ḡ�z

1Ḡ�z
1

)}
. (C2)

As we see, this expression reproduces the structure of the
action (C1) up to the form of the linear terms. There is the
factor 
 in the linear terms; therefore, they have the order
of smallness g2 with respect to the original linear terms in
Eq. (C1). We can continue the iteration and go to the field
�z

2 = �z
1 + 
GḠ
G and so on. In the limit of an infinite

number of iterations, linear terms disappear and we obtain a
series in powers of g2 for the equilibrium spin 〈Sz〉T = tr{G +
Ḡ + GḠ
G + Ḡ
GḠ + · · · }, shown in Fig. 1(c). However,

this series is incomplete. To obtain a complete series, one
has to take into account other terms in the expansion (29),
in addition to the first two.

APPENDIX D

In the second order of the perturbation theory with respect
to the coupling constant g, the function �(R)(ω) is given by
the two diagrams depicted in Fig. 6. We calculate here only
the diagram a. Direct calculations show that the diagram b
has the same magnitude.

The corresponding to diagram a expression is

�(iω, x) = g2

(h̄β )2

∑
(ω0,ω1 )


(iω0, x)G(0)(iω1)G(0)(iω + iω1)

× Ḡ(0)(iω + iω1 − iω0)Ḡ(0)(iω1 − iω0). (D1)

+
a b

FIG. 6. Diagrammatic representation of the function �(R)(ω) in
the second order of the perturbation theory with respect to the cou-
pling constant g.
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Using the relations (13) and (34), we arrive at the expression

�(iω, x) = g2

(h̄β )2

∑
(ω0,ω1 )

1

iω0 − x

1

iω1 + (−ε/2 + μ)/h̄

1

iω + iω1 + (−ε/2 + μ)/h̄

× 1

iω + iω1 − iω0 + (ε/2 + μ)/h̄

1

iω1 − iω0 + (ε/2 + μ)/h̄
. (D2)

We first perform the summation over fermionic frequencies ω1. Decomposing fractions and summing up the resulting expression
according to the formula (12), we arrive at the result

�(iω, x) = g2

h̄β

∑
(ω0,ω1 )

1

iω0 − x

1

(iω0 − ε)2

( 1

iω0 + iω − ε
+ 1

iω0 − iω − ε

)
(na − nb). (D3)

First we find the sum ∑
ω0

1

iω0 − x

1

(iω0 − ε)2

1

iω0 + iω − ε
. (D4)

Decomposing fractions and summing over bosonic frequencies ω0, we get

− 1

iω

1

x − ε

{( 1

iω + x − ε
− 1

x − ε

)
[nB(x) − nB(ε)] +

∑
ω0

1

(iω0 − ε)2

}

= − 1

iω

1

x − ε

{( 1

iω + x − ε
− 1

x − ε

)
[nB(x) − nB(ε)] + 1

4sinh2(βε/2)

}

= 1

(x − ε)2

nB(x) − nB(ε)

iω + x − ε
− 1

iω

1

x − ε

1

4 sinh2 (βε/2)
. (D5)

To find the full sum, it is enough to add the same expression with the changed sign of ω. Finally, we get

�(iω, x) = g2 1

(x − ε)2

( 1

iω + x − ε
− 1

iω − x + ε

)
[nB(x) − nB(ε)](na − nb). (D6)

We obtain the retarded function �(R)(ω, x), analytically continuing the expression (D6) on the real axis iω → ω + iγ . Here
we introduced some effective dumping γ which relates to the reservoir:

�(R)(ω, x) = g2 1

(x − ε)2

(
1

ω + x − ε + iγ
− 1

ω − x + ε + iγ

)
[nB(x) − nB(ε)](na − nb). (D7)

As it was discussed in Sec. III B, we have to add the Hermitian conjugate diagram and obtain a real expression. Integrating it
over the frequencies x of the Ohmic reservoir, we obtain the result

�(R)(ω) =
∫ ∞

−∞

dx

π
ρ(|x|)sgn(x)�(R)(ω, x) =

∫ ∞

−∞

dx

π
λ0x�(R)(ω, x) = �(R)

q (ω) + �
(R)
T (ω), (D8)

�
(R)
T (ω) = Re

{
λ̃

(h̄ω + iγ )2 tanh
(βε

2

)[
iπ (ε + h̄ω + iγ )

(
coth

β(ε + h̄ω + iγ )

2
tanh

βε

2
− 1

)]}
, (D9)

�(R)
q (ω) = Re

{
λ̃

(h̄ω + iγ )2 tanh
(βε

2

)[
2εψ (1)

( iβε

2π

)
− (iγ + ε + h̄ω)ψ (1)

( iβ(ε + h̄ω + iγ )

2π

)

+ (iγ − ε + h̄ω)ψ (1)
( iβ(ε − h̄ω − iγ )

2π

)]}
. (D10)

Here ψ (1)(z) is the logarithmic derivative of the Gamma function (52). Typical behavior of �(R)
q (ω) and �

(R)
T (ω) is shown in

Fig. 7. The “thermal” term labeled as �
(R)
T (ω) results from the residue of the expression in braces in the right-hand side of

Eq. (D7). As one can see, x = ω is removable singularity and does not contribute to the integral. This term has form of a sharp
peak with the width γ located at ω = 0 and in the limit of high temperature this term reads

�
(R)
T (ω) ≈ −Re

πλ̃

γ − ih̄ω
, β → 0.

It is important to take it into account to ensure the condition 〈Sz(t )Sz(t ′)〉 → 〈Sz〉2 as |t − t ′| → ∞ and the identity 〈Sz(t )Sz(t )〉 =
1/4 for arbitrary t . This term vanishes at low temperature since, in the low-temperature limit, 〈Sz〉 → −1/2, and, hence,
〈Sz(t )Sz(t ′)〉 → 〈Sz〉2 for any t and t ′.
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FIG. 7. � (R)
q (ω)/λ̃ (left panel) and �

(R)
T (ω)/λ̃ (right panel) as functions of ω and β. ω and β are in units of ε. γ = 0.001ε.

The “quantum” term labeled as �(R)
q (ω) results from poles of nB(x) and describes quantum correlations between the value of

spin at different moments of time. This term disappears in high-temperature limit.
The behavior of �(R)

q (ω) for different β is illustrated in Figs. 4 and 5. The function �(R)
q (t − t ′) can be obtained by the Fourier

transformation.
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