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Galilean covariance of quantum-classical hybrid systems of the Sudarshan type
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We revisit quantum-classical hybrid systems of the Sudarshan type under the light of Galilean covariance.
We show that these kinds of hybrids cannot be given as a unitary representation of the Galilei group and at the
same time conserve the total linear momentum unless the interaction term only depends on the relative canonical
velocities.
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I. INTRODUCTION

Symmetry considerations play a fundamental role in mod-
ern physics, among other things, they serve as guiding
principles for the development of new theories. It has been
argued that there is a possibility that mesoscopic systems
could be better described by a quantum-classical hybrid the-
ory, whether it is a known theory or a yet-to-be discovered
hybrid [1]. Such a theory might not be derivable as any limit of
pure quantum mechanics. Given that both nonrelativistic clas-
sical and quantum mechanics are Galilei covariant, it seems
natural to impose Galilei covariance to any hybrid quantum-
classical theory. In this paper, we investigate the consequences
of Galilei covariance on a specific kind of hybrid systems, the
sometimes called Sudarshan hybrids [2–5].

Motivated by the measurement problem of quantum me-
chanics, Sudarshan and co-workers used the operational
version of classical mechanics called the Koopman–von Neu-
mann theory [6,7] (hereafter abbreviated as the KvN theory)
to couple a classical system with a quantum one. The KvN
theory has the advantage of expressing classical mechanics
in the same mathematical formalism used for quantum me-
chanics, i.e., the mathematics of operators acting on a Hilbert
space. Sudarshan’s hybrid theory was initially aimed to study
the interaction of a quantum system with a classical measur-
ing object. Peres and Terno [8] and Terno [9] objected the
consistency of the hybrids of the Sudarshan type. Objections
to general hybrid systems in more general contexts have been
also stated [10,11]. The above criticisms presuppose that the
hybrid systems are a kind of partial classical limit of a fully
quantum situation. Barceló et al. [1] take the raised objections
as an opportunity for the development of new theories in the
mesoscopic level, theories that are not derivable from pure
quantum mechanics.

It is natural to posit that any new theory in the nonrela-
tivistic regime should be Galilei covariant. The covariance of
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physical theories under groups of space-time transformation is
the subject of too many publications to be listed here, we will
only cite a handful of them. Nonrelativistic quantum mechan-
ics can be obtained as a irreducible unitary representation of
the Galilei group [12–15] whereas the structure of relativistic
quantum field theories are determined by the properties of
the Poincaré group [16]. On the classical part, nonrelativistic
classical mechanics has been derived from the structure of the
Galilei group in the context of Lagrangian mechanics [12,17]
and as a canonical representation in terms of Poisson brackets
in Hamiltonian mechanics [18,19].

The differences in the approaches between the classical
and the quantum representations of the Galilei group (unitary
vs canonical representations) are due to the different mathe-
matical formalism in which each theory is usually expressed.
Nevertheless, the KvN theory and, hence, classical mechanics
can also be obtained by considering an irreducible unitary
representation of the Galilei group [20]. Thus, the Galilei co-
variance of the quantum and classical sectors of the Sudarshan
hybrids can both be studied within the context of unitary rep-
resentations of Lie groups. The quantum and classical unitary
representations of the Galilei group differ in several critical as-
pects that will be reviewed later in the main part of this paper.

The main purpose of this paper is to study the restrictions
imposed by Galilei covariance on the hybrids of the Sudar-
shan type, whether they are understood as a partial limit of a
quantum theory or a fully new theory on their own.

This paper is organized as follows. In Sec. II, a review of
the KvN formalism is given; only the most necessary concepts
are presented, but references are given for a more in depth
treatment of the theory.

In Sec. III, we present a review of the quantum and the
less-known classical unitary representation of the Galilei alge-
bra. Again, only the necessary tools required for the study of
Sudarshan hybrids are presented. For both cases, only spinless
particles are considered.

In Sec. IV, the Galilei algebra for the hybrid system
is constructed and the restriction imposed on the inter-
action Hamiltonian are studied. The main results of this
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paper are derived here. The results can be summarized
as follows:

(1) Under very natural assumptions, the Galilei covariance
of Sudarshan hybrids restricts the choices of interaction terms
between the quantum and the classical systems. A list of all
possible interaction terms is given.

(2) None but one of the possible interaction terms con-
serve the total (quantum + classical) linear momentum.

(3) Conservation of total momentum prevents any quan-
tum backreaction on the classical observable variables.

The Einstein summation convention is used through all this
paper.

II. THE KvN FORMALISM

In the KvN operational formulation of classical mechan-
ics of a point particle, the position and momentum (q̂, p̂)
are understood as Hermitian operators that commute with
each other, and, therefore, no uncertainty principle is present
between them. The theory also introduces two auxiliary Her-
mitian vector operators λ̂q and λ̂p that are understood to have
no direct physical meaning and are deemed as unobserv-
ables. These four operators obey the following commutation
relations:

[q̂i, q̂ j] = [ p̂i, p̂ j] = [q̂i, p̂ j] = [q̂i, λ̂p j ] = [ p̂i, λ̂q j ] = 0,

(1)

[q̂i, λ̂q j ] = [ p̂i, λ̂p j ] = iδi j . (2)

The operators of the classical system act on a Hilbert
space Hcl whose elements are vectors of the form |ψ〉 =∫ 〈q, p|ψ〉|q, p〉dq dp such that the complex wave-function
ψ (q, p) = 〈q, p|ψ〉 is square integrable. The wave-function
ψ (q, p) represents the probability amplitude of finding a par-
ticle in certain region of phase space, whereas the quantity
ρ = |ψ (q, p)|2 is the probability density in phase space used
in classical statistical mechanics. The kets |q, p〉 are eigen-
functions of q̂ and p̂,

q̂i|q, p〉 = qi|q, p〉,
p̂i|q, p〉 = pi|q, p〉, (3)

and they obey the orthonormality condition 〈q′, p′|q, p〉 =
δ(q − q′)δ(p − p′).

If the classical system is governed by a Hamiltonian
function Hc(q, p), then, the evolution of |ψ〉 is ruled by a
Schrödinger equation,

d

dt
|ψ (t )〉 = −iĤcl |ψ (t )〉, (4)

where Ĥcl , known as the Liouvillian operator, is given by

Ĥcl = ∇pHc · λ̂q − ∇qHc · λ̂p. (5)

For the typical classical Hamiltonian of a single particle
Hc = p2

2m + V (q),1 the Liouvillian operator takes the form

Ĥcl = 1

m
p̂ · λ̂q − ∇qV (q) · λ̂p. (6)

In the “wave mechanics” version of the theory, q̂ and p̂ act
as multiplicative operators on ψ (q, p), whereas λ̂q and λ̂p act
as derivatives,

λ̂q = −i∇q, λ̂p = −i∇p. (7)

In this version of the theory, the Liouvillian becomes a differ-
ential operator whose action on phase-space functions ψ (q, p)
is given by

Ĥclψ = −i{ψ, Hc}, (8)

where the above bracket is the Poisson bracket of Hamiltonian
mechanics.

The Schrödinger equation (4), then, reduces to

∂ψ

∂t
= −{ψ, Hc}. (9)

Since Ĥcl is linear in λ̂q and λ̂p, ρ obeys the same equation
as ψ ,

∂ρ

∂t
= −{ρ, Hc}. (10)

Equation (10) is the Liouville equation of classical statistical
mechanics, and it is the proof that the abstract formulation in
terms of operators of the KvN theory is equivalent to Hamil-
tonian mechanics.

Finally, let us mention that the operators of the set
{q̂, p̂, λ̂q, λ̂p} are self-andjoint on Hcl , this set is also irre-
ducible in this Hilbert space.2

III. REVIEW OF THE QUANTUM AND THE CLASSICAL
REPRESENTATIONS OF THE GALILEI ALGEBRA

The proper Galilei group is a ten parameter Lie group that
consists of space-time translations, rotations, and transforma-
tions to moving frames (boosts). The group elements are to be
realized by unitary transformation acting on the appropriated
Hilbert space. To each space-time transformation, there is
associated a Hermitian operator, the generator of the trans-
formation. The derivation of the Lie algebra associated with
the Galilei group can be found, for example, in Ref. [14].

Although both quantum and classical mechanics are asso-
ciated with the same bracket relations, the realization of the
Lie algebra generators is different in each case. In particular,
the classical unitary representation of the Galilei algebra has

1For simplicity and since the main interest is in the classical-
quantum coupling, we do not consider, here, the case where the
classical system interacts with an external force that have to be
handled with the introduction of a vector potential.

2There is a possibility of adding internal degrees of freedom to
the theory, |q, p, σ 〉, so {q̂, p̂, λ̂q, λ̂p} is not irreducible on Hcl . In
particular, σ may designate a classical spin for the classical point
particle. The Galilei algebra allows for such a classical spin, but,
here, we only consider spinless particles.
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only been recently considered [20], and it is less straight-
forward than the quantum representation (since the classical
case necessarily involves nonobservable operators). For the
above reasons, both representations will be reviewed sepa-
rately. Even if the reader is well versed in the Galilei group
and algebra, it is recommended to follow closely the next two
subsections as they fix the notation used later.

A. Quantum representation

The position and momentum operator for the quantum
system will be designated by r̂ and k̂, respectively. They, of
course, obey the Heisenberg commutation relation3 [r̂i, k̂ j] =
iδi j . The generators of the Galilei algebra for the quantum
sectors are as follows: the translation operator, in the quantum
case, it coincides with the momentum k̂; an operator for rota-
tions ĵ; the operator for the Galilean boosts ĝ; the Hamiltonian
ĤQ is the time-translation operator; and the central charge of
the algebra M (which will be considered, here, just as a real
number). The Galilei algebra is a set of commutator equations
that involves the generators of the space-time transformation,
these equations are

[k̂i, k̂ j] = [ĝi, ĝ j] = [ ĵi, ĤQ] = [k̂i, ĤQ] = 0,

[ ĵi, ĵ j] = iεi jk ĵi, [ ji, k̂ j] = iεi jk k̂k,

[ ĵi, ĝ j] = iεi jk ĝk, [k̂i, ĝ j] = iδi jM, [ĝi, ĤQ] = ik̂i. (11)

In the quantum case, the generators of the algebra have
well-established physical meaning. M is the mass (and for a
physical representation M is strictly a positive number), k̂ is
the momentum, ĵ is the angular momentum, ĤQ is the energy
(of a free particle), and ĝ is a physical quantity sometimes
called the dynamic mass moment.

For a single spinless particle, the momentum and position
form an irreducible set of operators. The generators of the
algebra are given in terms of r̂ and k̂ by

ĵ = r̂ × k̂, (12)

ĝ = M r̂ − t k̂, (13)

ĤQ = k̂2

2M
. (14)

For systems of several particles, the generators for individual
particles can be combined to give generators for the entire sys-
tems. For example, for two particles, the space translations are
generated by the total linear momentum k̂ = k̂1 + k̂2 whereas
rotations are generated by the total angular momentum ĵ =
ĵ1 + ĵ2. The total Hamiltonian is allowed to have an extra term
that account for the interaction between the two particles,

ĤQ = k̂2
1

2M1
+ k̂2

2

2M2
+ V. (15)

The Galilei algebra commutation relations not involving the
Hamiltonian are all identically satisfied. The remaining re-
lations give restrictions to the potential energy V . It can be

3Throughout all this paper, we set h̄ = 1.

shown that, in order for all the commutation equations to be
satisfied, V can only depend on scalar combinations of the
relative position r̂1 − r̂2 and the relative momentum k̂1 − k̂2

[14]. It follows that the allowed total Hamiltonian is such that
the total linear and angular momentum are constants of the
motion.

B. Classical representation

The KvN version of classical mechanics is most usu-
ally obtained starting from the Liouville equation, but it can
also be derived as an irreducible unitary representation of
the Galilei group where the operators of the algebra act
on the Hilbert space Hcl . To avoid confusion, when dealing
with the classical representation we perform the following
change in notation for the operators of the Galilei algebra:
Ĵ is the operator of rotations, Ĝ is associated with Galilean
boosts, the operator Ĥcl gives time translation, and λ̂q gives
space translations. We maintain the symbol M for the central
charge appearing in the commutation relation for λ̂q and Ĝ,

[
λ̂qi , Ĝ j

] = iδi jM. (16)

In terms of the irreducible set {q̂, p̂, λ̂q, λ̂p} the elements
of the Galilei algebra are given by

Ĵi = εi jk
(
q̂ j λ̂qk + p̂ j λ̂pk

)
,

Ĝi = −λ̂qi t − mλ̂pi , (17)

Ĥcl = 1

m
p̂iλ̂qi ,

where m is a positive number interpreted as the mass. Let us
stress, here, that the mass m should not be confused with the
central charge M. It can be checked by direct computation
that operators (18) obey with one notable exception the same
commutation relations as their quantum equivalents with the
following replacement:

k̂i → λ̂qi ,

ĵi → Ĵi,

ĝi → Ĝi,

ĤQ → Ĥcl . (18)

In the wave mechanics version of the KvN theory, Eqs. (7)
and (8) explain how to get the Liouvillian from the classi-
cal Hamiltonian function via the Poisson bracket. The time
translation operator appearing in (18) is obtained when the
Hamiltonian of a free particle is used Hc = p2

2m . The other
generators can be written as differential operators using the
Poisson brackets of phase space functions as follows: λ̂q =
−i{◦, p}, Ĵ = −i{◦, L} and Ĝ = −i{◦, g}, where L = r × p
is the angular momentum and g = mq − tp is the dynamic
mass moment.

The only difference between the quantum and classical rep-
resentations, albeit a remarkable one, comes from the central
charge. In the quantum case, M is to be a positive number in
order to have a physical representation of the group. However,
in the classical case, the only possible choice is M = 0, so
the central charge cannot be interpreted as the mass. In fact,
the mass m does not appear in the relations of in the Galilei
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algebra at all. The only different commutation relation, then,
reads

[
λ̂qi , Ĝ j

] = 0. (19)

Equation (19) can be derived without any use of results from
analytical dynamics [20], but it is also a direct consequence
of the way the KvN theory assigns operators to phase-space
functions. It can be checked that the differential operators
Ĵ = −i{◦, L} and Ĝ = −i{◦, g} commute.

The above is highly striking when compared to the quan-
tum case since quantum representations with vanishing M are
unphysical [12]. However, this situation is not a problem since
unlike the quantum case, in the classical representation of
the Galilei group, the elements of the algebra have no direct
physical meaning. For example, Ĵ is an operator of rotations
but not an angular momentum whereas Ĥcl generates time
translation, but its spectrum is not related to the energy of the
system. By the same token, M needs not to be related with the
mass, and it can vanish without causing any problem.

Just as in the quantum case, the Galilei algebra impose
restrictions on the interaction between classical particles. It
can be shown that the forces between the particles can only
depend on scalar combinations of the relative position and
the relative velocities, the conservation of the total linear mo-
mentum is closely related. The result just mentioned is known
from analytical mechanics [19], but it can also be obtained
from the classical unitary representation of the Galilei group
in the context of the KvN theory [20]. Let us take as an exam-
ple a system of only two particles with velocity-independent
interaction. For this system, the Liouvillian takes the form

Ĥcl = 1

m1
p̂1 · λ̂q1 + 1

m2
p̂2 · λ̂q2 − ∇q1V · λ̂p1 − ∇q2V · λ̂p2 .

(20)

Equation (20) can be obtained from symmetry principles, al-
though the procedure is somewhat convoluted [20]. A second
and simpler alternative consists in using the Poisson bracket
formula (8) with the classical Hamiltonian given by Hc =
p2

1
2m + p2

1
2m + V (q1 − q2) as follows:

Ĥcl = −i{·, Hc} = −i

m1
p1 · ∇q1 + −i

m2
p2 · ∇q2

+ i∇q1V · ∇p2 + i∇q2V · ∇p2 . (21)

Equation (20) is recovered by identifying the auxiliary
operators λ̂ in (21) with the use of the formulas given in (7).
Since the potential depends on q̂1 − q̂2, it follows that ∇q1V =
−∇q2V . The total linear momentum p̂1 + p̂2 is a conserved
quantity as it commutes with Ĥcl . Let us note that, although
related, the conservation of the total momentum should not
be confused with the conservation of the total translation
operator λ̂q1 + λ̂q2 .

IV. SUDARSHAN HYBRIDS

Having a formulation of classical mechanics in terms of
operators acting on a Hilbert space, the quantum and classical
sectors can be treated on the same footing. The Sudarshan
hybridization consists of coupling the quantum and classical
systems using a tensor product, just as pure quantum systems

are coupled in the standard quantum theory. The space of
states for the hybrid system is HT = HQ⊗Hcl . It follows from
its definition that, in the joint system, the quantum operators
commute with the classical ones.

Just as in pure quantum mechanics, the generators of space-
time transformation with purely geometrical interpretation
(space translation, rotations, and boosts) acting on the joint
space HT are performed by adding the corresponding opera-
tors for the individual systems,

P̂i = k̂i + λ̂qi ,

Ĝi = ĝi + Ĝi,

Ĵi = ĵi + Ĵi. (22)

It is worth noting that, althjough P̂ and Ĵ generate transla-
tions and rotations for the joint system, they are not the total
linear momentum nor the total angular momentum. When the
systems are noninteracting, the total momentum is given by
P̂t = k̂ + p̂, and it is a constant of the motion. It seems most
natural to keep P̂t as the total momentum when the interaction
is switched on.

The generator of time translation is allowed to have an
extra term that accounts for the interaction of the two systems,

ĤT = ĤQ + Ĥcl + Ĥint. (23)

All commutators of the Galilei algebra not involving ĤT are
identically satisfied. In particular, the mass of the quantum
system (and not the total mass) becomes again the central
charge of the coupled algebra,

[P̂i, Ĝi] = δi jM. (24)

On the other hand, the commutators involving ĤT restrict the
possible choices for Ĥint. From the commutation relations,

[Ĵi, ĤT] = [P̂i, ĤT] = 0, [Ĝi, ĤT ] = iP̂i,

it follows that the interaction term has to obey the following
conditions:

[P̂i, Ĥint] = 0, (25a)

[Ĝi, Ĥint] = 0, (25b)

[Ĵi, Ĥint] = 0. (25c)

Before studying the restriction imposed on Ĥint by the
above equations, let us discuss a further requirement that
comes solely from the classical sector. From the expres-
sion given for Hcl of a free particle (18) and the equation
p̂ = im[q̂, ĤT ], it is obtained that [q̂, Ĥint] = 0. The above
means the interaction term is independent of λ̂q. On the other
hand, the acceleration operator for the classical sector is re-
lated to the classical momentum by

â = i

m
[p̂, ĤT ] = i

m
[p̂, Ĥint]. (26)

If the acceleration is to be an observable, then it cannot depend
on the nonobservable operators λ̂q and λ̂p. Hence, from (26),
we find again that Ĥint has to be independent of λ̂q, and Ĥint

has to be at most linear on λ̂p.
Now, returning to the conditions from the Galilei algebra,

we have from Eq. (25a) that Ĥint can only be a function
of the relative position r̂ − q̂ since other combinations of r̂
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and q̂ do not commute with P̂i. By the same token, Eq. (25b)
implies that Ĥint can only be a function of the relative ve-
locity k̂

M − p̂
m . No equation from the algebra restricts the

dependence of Ĥint on λ̂p. Finally, Eq. (25c) can only be
satisfied if Ĥint is a scalar operator. Hence, the interaction term
can only be constructed from the following scalar combina-

tions: (r̂ − q̂)2, ( k̂
M − p̂

m )
2
, (r̂ − q̂) · ( k̂

M − p̂
m ), (r̂ − q̂) · λ̂p

and ( k̂
M − p̂

m ) · λ̂p .

Of the above, only ( k̂
M − p̂

m )
2

commutes with the total
linear momentum k̂ + p̂. Thus, in a Sudarshan hybrid, only
interactions that depend on the relative canonical velocity
conserve the total momentum. Moreover, only momentum
nonconserving interaction can have a quantum backreaction
on the classical observable variables since both q̂ and p̂ com-

mute with ( k̂
M − p̂

m )
2
.

V. DISCUSSION AND FINAL COMMENTS

The present paper does not tell whether a quantum-
classical hybrid theory is a good way to describe aspects of
the real world or not. What has been performed here is to find
what conditions a Sudarshan hybrid must fulfill in order to be
Galilei covariant.

It is worth noting that, in the literature, there can be found
interaction terms that do not respect the commutation relations
from the Galilei algebra for the total system (see, for example,
Eq. (13) in Ref. [1] or Eq. (18) in Ref [8]. See also Ref. [21]).
It was noted in Ref. [8] that a quantum-classical coupling
need not conserve the total energy, here, a more general result
was given since conditions for the conservation of the total
momentum were obtained.

The nonconservation of the total momentum for most of
the allowed interaction terms is a strange result. Galieli covari-
ance guarantee conservation of momentum in both quantum
and classical mechanics but the same Lie algebra has almost
the opposite result for Sudarshan hybrids.

Restricting the theory so only interaction depending on
the relative velocity is considered is very harsh and seems to
compromise any actual application to real situations. On the
other hand, allowing position-dependent interactions requires
the abandonment of a well tested conservation law in both
the classical and the quantum regimes. It is true that there are
new conserved quantities, such as the total translation operator
P̂ = k̂ + λ̂q. However, the possible physical meaning of P̂
is not clear as it depends on the classically unobservable λ̂q.
The results derived in this paper seem to put in serious doubt
the physical viability of Sudarshan hybrids as independent
(nonquantum derivable) theories.
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