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Negative contributions to entropy production induced by quantum coherences
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The entropy production in dissipative processes is the essence of the arrow of time and the second law
of thermodynamics. For dissipation of quantum systems, it was recently shown that the entropy production
contains indeed two contributions: a classical one and a quantum one. Here we show that for degenerate (or
near-degenerate) quantum systems there are additional quantum contributions which, remarkably, can become
negative. Furthermore, such negative contributions are related to significant changes in the ongoing thermo-
dynamics. This includes phenomena such as generation of coherences between degenerate energy levels (called
horizontal coherences), alteration of energy exchanges, and, last but not least, reversal of the natural convergence
of the populations toward the thermal equilibrium state. Going further, we establish a complementarity relation
between horizontal coherences and population convergence, which is particularly enlightening for understanding
heat flow reversals. Conservation laws of the different types of coherences are derived. Some consequences for
thermal machines and resource theory of coherence are suggested.
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I. INTRODUCTION

The study of entropy production is of paramount impor-
tance due to its intimate relation with the second law of
thermodynamics [1–3], the emergence of irreversibility, and
the arrow of time in classical and quantum systems [4–10]. It
is also related to other fundamental problems like reduction
of performances in thermodynamic operations and thermal
machines [11–18]. As a recent remarkable development, for
quantum systems undergoing dissipative processes (described
either by Markovian evolutions or thermal operations), it
was pointed out [8,19,20] that the entropy production can be
split in two contributions, an incoherent one (stemming from
populations) and a coherent one (stemming from quantum
coherences).

Inspired by the above insight, by intriguing questions
around reductions of entropy production in the presence of de-
generate systems [21], and by the special role of “horizontal”
coherences (coherences between degenerate energy levels)
in heat exchanges [22–30], we uncover additional quantum
contributions to the entropy production.

We show that these extra quantum contributions, stem-
ming from horizontal coherences and degenerate transitions,
affect dramatically the ongoing thermodynamics. This in-
cludes the surprising possibility of reversing the natural
convergence of the populations toward the equilibrium dis-
tribution. Furthermore, this phenomenon is associated to a
negative contribution to the entropy production. Addition-
ally, a second negative contribution can emerge, related to
generation of horizontal coherences, which is indeed the
underlying mechanism of well-known phenomena such as
super-radiance [31–35] and bath-induced entanglement (or
dissipative generation of entanglement) [36–41], and affects
heat exchanges. A complementary relation between horizontal

coherences and reversal of the population’s convergence is
established: The consumption of one fuels the other, and vice
versa. It appears to be particularly insightful for heat flow
reversals [30].

The above results are first derived in the context of Marko-
vian bath-driven dissipation. This viewpoint is extended by
the end of the paper to include thermal operations [42] (and
even some athermal operations). Near-degenerate systems
are addressed in Appendix A. Finally, whereas coherences
between energy levels of different energy are globally con-
served, horizontal coherences are not. Still, a conservation
law for horizontal coherences together with population con-
vergence can be established.

These negative contributions are in contrast with the
always-positive quantum and classical contributions reported
in Refs. [8,19,20]. Then, in addition to the above changes
in the ongoing thermodynamics, one might expect further
consequences in thermal machines and resource theory of
coherence.

II. ENTROPY PRODUCTION

Throughout this paper, we consider a system S of degen-
erate Hamiltonian HS = ∑

n

∑ln
i=1 en|n, i〉〈n, i| described by

eigenenergies en, eigenstates |n, i〉, and a degeneracy ln � 1
for each energy level n. The system S is assumed to undergo a
dynamics described by a completely positive trace-preserving
(CPTP) map [43,44] �t such that at all time t the density
operator ρt of S is given by ρt = �tρ0, where ρ0 denotes the
initial state of S. Furthermore, we consider that �t admits the
thermal state ρ th(β ) := Z (β )−1e−βHS as steady state [meaning
that �tρ

th(β ) = ρ th(β )], where Z (β ) := Tre−βHS is the parti-
tion function and β is an inverse temperature. In the following,
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β will correspond to the underlying inverse temperature of the
system interacting with S. For now, keeping the discussion
more general, we only require a CPTP map and a thermal
steady state.

The rate of change of the von Neumann entropy of
S, defined by S(ρt ) := −Trρt ln ρt , can be split in two
terms [1–3,43,45,46],

dS(ρt )

dt
= −Trρ̇t ln ρt

= −Trρ̇t [ln ρt − ln ρ th(β )] − Trρ̇t ln ρ th(β ), (1)

where ρ̇t is the time derivative of ρt . The first term in (1) is
identified as the rate of entropy production [1–3,43,45,46],

� := −Trρ̇t [ln ρt − ln ρ th(β )], (2)

and is always positive (due to the contraction of the rela-
tive entropy under completely positive and trace-preserving
maps [43,47]; see more details in the following). The second
term in (1), of arbitrary sign, is the rate of entropy flow � :=
−Trρ̇t ln ρ th(β ) = βĖS and is identified as heat exchanges,
with the internal energy of S defined as ES (t ) := Trρt HS .

III. THE THREE CONTRIBUTIONS TO ENTROPY
PRODUCTION

We denote by ρt |D the diagonal matrix obtained by
canceling all nondiagonal elements of ρt when written
in the energy eigenbasis |n, i〉. Then, we defined ρt |BD

as the block-diagonal matrix obtained by canceling only
coherences between levels of different energies. In other
words, ρt |D := ∑

n

∑ln
i=1〈n, i|ρt |n, i〉|n, i〉〈n, i| while ρt |BD :=∑

n πnρtπn, where πn := ∑ln
i=1 |n, i〉〈n, i|. In the remainder

of the paper, coherences between levels of same energy is
referred to as horizontal coherences. By contrast, coherences
between levels of different energies is called vertical coher-
ences. This is in reference to the respective position of the
different energy levels in an energy diagram (see Fig. 2). Note
that sometimes a different terminology is used (“energetic”
and “nonenergetic” coherences), but here we prefer to intro-
duce this terminology to avoid possible confusion with the
reference basis.

With the above definitions, we can decompose the entropy
production as

� = −Ċv − Ċh − Ḋth. (3)

The first term in the above identity is the time derivative
of the relative entropy of vertical coherence which we de-
fined as Cv(t ) := S(ρt |BD ) − S(ρt ) (equivalent to the definition
in [48] for nondegenerate systems). The quantity Cv(t ) is a
measure of vertical coherences contained in ρt [48]. Note
that this quantity was already introduced under the name of
relative entropy of asymmetry [49–51] in a context of re-
source theory. The second term in (3) is the time derivative
of the relative entropy of horizontal coherence that we de-
fine as Ch(t ) := S(ρt |D ) − S(ρt |BD ). In analogy with the first
term, the quantity Ch(t ) is a measure of horizontal coherences
contained in ρt . The last term −Ḋth is the time derivative
of −Dth(t ) := −S[ρt |D |ρ th(βB)] defined through the relative
entropy S(σ |ρ) := Trσ (ln σ − ln ρ) which establishes a mea-

FIG. 1. Illustration representing the tendency of horizontal co-
herences (coherences between levels of same energy) to reverse
the arrow of time. The entropy production can be associated to
the arrow of time [4–10]. Therefore, as seen throughout the paper,
vertical coherences (coherences between levels of different energy)
always strengthen the arrow of time (represented by the blue action),
whereas horizontal coherences can tend to its reversal (represented
by the orange action) due to their negative contributions to the en-
tropy production.

sure of distance between any two density operators σ and
ρ [52]. Therefore, S[ρt |D |ρ th(βB)] measures how far the popu-
lation distribution is from the thermal equilibrium distribution,
and −Ḋth is the rate—or velocity—to which the population
distribution converges to the thermal equilibrium distribu-
tion. Moreover, defining by FD(t ) := ES (t ) − S(ρt |D )/βB the
diagonal—or classical—free energy, we have the interesting
relation Ḋth = βBḞD. One should keep in mind that de-
generate Hamiltonians admit an infinite number of energy
eigenbasis. While Cv does not depend on the choice of the
energy eigenbasis, Ch and Dth do. This is not an issue as long
as one sticks to a given eigenbasis. Typically, one chooses
the “natural” basis, representing localized excitations, as, for
instance, the local basis of a many-body system.

FIG. 2. Energy level structure of S. Coherences between levels
of same energy are called horizontal coherences whereas coherences
between levels of different energy are called vertical coherences, in
a direct reference to their graphical representation. The green double
arrows represent degenerate transitions, playing a central role in the
emergence of negative contributions to entropy production.
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Note that thanks to the identities (B4) and (B8)
of Appendix B, the relative entropy of vertical
and horizontal coherences can be rewritten as
Cv(t ) = Trρt [ln ρt − ln ρt |BD ] = S(ρt |ρt |BD ) and Ch(t ) =
Trρt [ln ρt |BD − ln ρt |D ] = S(ρt |BD |ρt |D ). One can also verify the
following identities (see Appendix B),

Ċv = Trρ̇t [ln ρt − ln ρt |BD ],

Ċh = Trρ̇t [ln ρt |BD − ln ρt |D ],

Ḋth = Trρ̇t [ln ρt |D − ln ρ th(β )], (4)

leading to (3).
It is quite remarkable that the entropy production is related

to the rate at which vertical coherences are consumed [8],
corresponding to the term −Ċv, but additionally to the rate
at which horizontal coherences are consumed, expressed by
the term −Ċh, topped by the velocity of the population con-
vergence to the thermal equilibrium distribution, −Ḋth.

IV. BATH-DRIVEN DISSIPATION

In the following, we study the role and behavior of each
contribution for one of the most common situations in ther-
modynamics and quantum dynamics: interaction with a bath.
We will see that the presence of horizontal coherences has
interesting consequences. We consider that the system S is
interacting with a stationary bath B [26,53,54], meaning that
the bath state ρB commutes with its free Hamiltonian HB,
[ρB, HB] = 0.

We assume that the system-bath coupling is of the form
V = gASAB, where g corresponds to the effective coupling
strength, and AS and AB are observables of S and B, re-
spectively. More details regarding the physics behind of such
coupling and its relation with an underlying notion of indis-
tinguishability can be found in the Appendix C.

Under weak coupling, the Born and Markov approxi-
mations are legitimate [43,55] so that one can derive the
following master equation using the secular approxima-
tion [43,55] for the reduced dynamics of the system (in the
interaction picture)

ρ̇t = Lρt

:=
∑

ω


(ω)[A(ω)ρtA†(ω) − A†(ω)A(ω)ρt ] + H.c.

(5)

where 
(ω) = ∫ ∞
0 dseiωsTrρBAB(s)AB, and AB(s) is the bath

operator AB in the interaction picture (with respect to the
free Hamiltonian HB). The jump operators A(ω) are defined
by [43] A(ω) = ∑

en′−en=ω πnASπn′ . One equilibrium state of
the dynamics (5) is the thermal state ρ th(βB), where βB is the
bath inverse temperature (or apparent temperature [26,56] for
a nonthermal stationary state).

Finally, one important characteristic of the physics de-
scribed by (5) is the independence of the vertical coherences’
dynamics from the populations and the horizontal coherences,
whereas the horizontal coherences’ dynamics is coupled to
the populations (see Appendix C). This observation has deep
implications, as we will see in the following.

A. Negative contribution of −Ċh

For nondegenerate systems ρt |D = ρt |BD , so that Ch = 0 at
all times. Then, −Ċv and −Ḋth become equivalent to the
coherent and diagonal contributions introduced in Eq. (12)
of Ref. [8]. In Appendix D, we show a simple proof of their
positivity, which is similar to the following one for −Ċv in a
context of degenerate systems. Namely,

−Ċv = − d

dt
S(ρt |ρt |BD )

= − lim
dt→0

1

dt
[S(ρt+dt |ρt+dt |BD ) − S(ρt |ρt |BD )]

= − lim
dt→0

1

dt
[S(edtLρt |edtLρt |BD ) − S(ρt |ρt |BD )], (6)

which is always positive since the relative entropy is
contractive under completely positive and trace-preserving
maps [43,47] [the map generated by L defined in (5) being
completely positive and trace preserving]. The crucial step
in (6) is

ρt+dt |BD = edtLρt |BD , (7)

holding since, as mentioned above, the dynamics of the popu-
lations and horizontal coherences (both contained in ρt |BD ) are
independent from the vertical coherences (see Appendix C).
However, the dynamics of the populations and the horizontal
coherences are coupled, which implies

ρt+dt |D �= edtLρt |D . (8)

Then,

− Ċh = − lim
dt→0

1

dt
[S(ρt+dt |BD |ρt+dt |D ) − S(ρt |BD |ρt |D )]

�= − lim
dt→0

1

dt
[S(edtLρt |BD |edtLρt |D ) − S(ρt |BD |ρt |D )], (9)

breaking down the guarantee of positivity of −Ċh. Then, the
guarantee being broken, one can be sure the worst can happen:
−Ċh can become negative. An example of that in a quite
general situation follows.

Considering the dynamics described by (5), we assume for
instance that the system S is initially in a thermal state ρ0 =
ρ th(β0). The state of S at a later time is therefore given by (in
the interaction picture)

ρt = etLρ0 = ρ0 + tLρ0 + O(
2t2), (10)

where 
 := maxω|
(ω)| characterizes the dissipation rate ex-
perienced by S. Then, for times much smaller than 
−1, the
state of S is well approximated by the first two terms of (10).
Using the fact that S is initially in a thermal state at inverse
temperature β0 and the following identity A(ω)ρ th(β0) =
e−ωβ0ρ th(β0)A(ω), one obtains

ρt = ρ th(β0)

{
1 + t

∑
ω>0

G(ω)(e−ωβ0 − e−ωβB )

× [A(ω)A†(ω) − eωβ0A†(ω)A(ω)]

}

+ O(
2t2), (11)
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where G(ω) := 
(ω) + 
∗(ω) is related to the inverse bath
temperature (or apparent temperature [26,56]) βB through
the relation G(−ω)/G(ω) = e−ωβB . Denoting by {|n, i〉} the
chosen energy eigenbasis (for instance, the “natural” basis),
we will call degenerate a transition involving two degenerate
levels |n, i1〉, |n, i2〉, and a third level |n′, i′〉 (see Fig. 2), so that
〈n′, i′|AS|n, i1〉 �= 0 and 〈n′, i′|AS|n, i2〉 �= 0. Then, in the pres-
ence of degenerate transitions, one can show that the terms
A(ω)A†(ω) and A†(ω)A(ω) contain horizontal coherences.
Indeed, for ω = en′ − en,

〈n, i1|A(ω)A†(ω)|n, i2〉
=

∑
em′−em=ω

〈n, i1|πmAS�m′ASπm|n, i2〉

= 〈n, i1|ASπn′AS|n, i2〉 �= 0. (12)

Similarly, we have also 〈n, i1|A†(ω)A(ω)|n, i2〉 �= 0. This
implies 〈n, i1|ρt |n, i2〉 �= 0 when βB �= β0. In other words,
the presence of degenerate transitions generates horizontal
coherences in ρt . This is the underlying common mecha-
nism of bath-induced coherences in multilevel atoms [57–60],
crucial in super-radiance [31–35] and bath-induced entangle-
ment [36–41].

Therefore, since the presence of horizontal coherences im-
plies ρt |BD �= ρt |D , we have

−Ch(t ) = −S(ρt |BD |ρt |D ) < 0, (13)

leading to the negativity of −Ċh. In particular, a conclusion
of this paragraph is that the phenomenon of bath-induced co-
herences known in the diverse contexts just mentioned are all
associated with negative contribution to the entropy produc-
tion. Based on identifications of negative entropy production
as reversal of the arrow of time [61–64], one can interpret the
above result as a tendency of horizontal coherences to reverse
the arrow of time, while vertical coherences always re-enforce
it; see Fig. 1. Note that this is only a tendency since the total
entropy production remains positive.

1. Illustration: Reduction of irreversibility

Extending the conclusions of the previous paragraph, we
show in the following an illustration where horizontal coher-
ences reduce the irreversibility of dissipative processes. We
consider an ensemble of n spins of dimension s indistinguish-
able from the point of view of the bath and therefore following
a dynamics described by (5) (see also Appendix C). The ther-
modynamic properties emerging from the resulting collective
dissipation were studied in detail in Ref. [21]. Using some
results of Ref. [21], one can show (see Appendix E) that for an
ensemble initially in a thermal state at inverse temperature β0,
the contribution to the entropy production from the horizontal
coherences in the natural local basis is indeed negative and
equal to

−�∞Ch := −[Ch(∞) − Ch(0)]

=
h̄ω|β0|	1

−
ns∑

m=−ns

e−h̄ωmβB

Zns(βB)
ln Im < 0, (14)

where Zns(βB) := ∑ns
m=−ns e−mh̄ωβB , βB is the bath inverse

temperature, and Im is a growing function of n and s corre-
sponding to the degeneracy of the mth excited energy level.

FIG. 3. Ratio of the entropy production with and without gen-
eration of horizontal coherences. The dissipation process with no
generation of horizontal coherences corresponds to independent dis-
sipation of each spin. The ensemble reaches the thermal equilibrium
state ρ th (βB ). The associated entropy production is denoted by �th.
The dissipation process with generation of horizontal coherences
corresponds to collective dissipation of the spins. The ensemble
reaches the equilibrium state ρ∞

β0
(βB) (see Appendix E for the de-

tailed expression). The associated entropy production is denoted by
�col. The graph represents the plot of the ratio �th/�col as a function
of h̄ωβB for h̄ω|β0| 	 1 and for ensembles containing n = 2 (orange
curve), n = 4 (red curve), and n = 10 (purple curve) spins s = 1/2.
The associated dotted line emphasises the asymptotic value of each
curve, equal to n, the number of spins in the ensemble. The gray
dotted line indicates 1. The curves have been plotted using expression
derived in Ref. [21].

One could suspect that, on the other hand, such negative
contribution to the entropy production would be compen-
sated by an increase of the variation of −Dth, −�∞Dth :=
−[Dth(∞) − Dth(0)]. However, this is not the case. Indeed,
−�∞Dth is also reduced compared to independent dissipation
(see Appendix E).

Therefore, the negative contribution −�∞Ch promotes a
reduction of the entropy production and consequently of the
irreversibility of the process, re-enforced by the decrease of
−�∞Dth. This elucidates the origin of the reduction of en-
tropy production pointed out in [21]. As an illustration of the
importance of the reduction, Fig. 3 displays for h̄ω|β0| 	
1 the plots of the ratio �th/�col, where �th (�col) is the
entropy production without (with) generation of horizontal
coherences, which corresponds to independent (collective)
dissipation [21]. One can see that for h̄ωβB > 1, the entropy
production of the collective dissipation �col tends to be n
times smaller than �th (coinciding with the analytical results
derived in Ref. [21]).

As mentioned in the introduction, irreversibility is known
for degrading the performances of thermodynamic opera-
tions [11–18]. Therefore, the reduction of entropy production
and irreversibility presented here might become useful to
avoid such degradation.

B. Negative velocity of the population convergence

As mentioned above, −Ḋth corresponds to the velocity of
convergence of the population distribution toward the thermal
equilibrium distribution, and is also related to (minus) the time

042220-4



NEGATIVE CONTRIBUTIONS TO ENTROPY PRODUCTION … PHYSICAL REVIEW A 102, 042220 (2020)

FIG. 4. Illustration of reversal of population convergence. With-
out horizontal coherences, the populations naturally converge
monotonically to the thermal equilibrium distribution. The presence
of horizontal coherences can have an astonishing effect: reversal
of the population convergence, resulting in populations going away
from the thermal equilibrium distribution. Moreover, the “fuel” en-
abling this reversal of the natural population convergence is the
horizontal coherences themselves.

derivative of the diagonal free energy FD. For nondegenerate
systems, this velocity is always positive, corresponding the
the expected monotonic population convergence to the ther-
mal equilibrium distribution (or monotonic decrease of the
diagonal free energy). By contrast, for degenerate systems,
the coupled dynamics of the populations and horizontal co-
herences implies ρt+dt |D �= edtLρt |D , which breaks down the
guarantee of positivity of −Ḋth [as in (9) for −Ċh]. Strikingly,
this means that the population distribution can go away from
the thermal equilibrium distribution, as illustrated in Fig. 4,
or equivalently that the diagonal free energy can increase.
Furthermore, we will see that this phenomenon can indeed
be related to the heat flow reversal pointed out in Ref. [30],
illustrated in Fig. 5.

In the following, we present a situation exhibiting such
properties. We consider a system S following the dynamics (5)

FIG. 5. Illustration of heat flow reversal. The system S can gain
energy while interacting with a colder bath thanks to horizontal
coherences acting as a “fuel” for heat flow reversal. Conversely, the
system S can lose energy while interacting with a hotter bath, again
thanks to horizontal coherences.

and initially in a state of the form

ρ0 = ρ th(β0) + χ, (15)

where ρ th(β0) is the thermal state at inverse temperature β0

and χ is an arbitrary Hermitian matrix containing only off-
diagonal terms (vertical and horizontal coherences) in the
chosen basis {|n, i〉}, so that ρ0|D = ρ th(β0). Then, the velocity
of the population convergence at initial times (small with
respect to 
−1) is

−Ḋth = −Trρ̇t=0[ln ρ th(β0) − ln ρ th(βB)] = (β0 − βB)ĖS.

(16)

The heat flow ĖS can be written in the following form [26,56]
(see Appendix F):

ĖS =
∑
ω>0

ωG(ω)〈A(ω)A†(ω)〉ρt (e
−ωβB − e−ω/T (ω) ), (17)

where T (ω) := ω(ln 〈A(ω)A†(ω)〉ρt
〈A†(ω)A(ω)〉ρt

)
−1

is the apparent temper-
ature associated with the energy exchange ω [26,56]. In
particular, for initial states of the form (15), the inverse ap-
parent temperatures can be rewritten as

ω

T (ω)
= ωβ0 + ln

1 + c+

1 + c− , (18)

where c− := 〈A(ω)†A(ω)〉χ/〈A(ω)†A(ω)〉ρth (β0 ) and c+ :=
〈A(ω)A(ω)†〉χ/〈A(ω)A(ω)†〉ρth (β0 ) constitute the contri-
bution from the horizontal coherences, highlighted in
Refs. [26,30,56]. When χ do not contain horizontal coher-
ences, we have 〈A(ω)A†(ω)〉χ = 〈A†(ω)A(ω)〉χ = 0, imply-
ing T (ω) = 1/β0. Consequently, in the absence of horizontal
coherences, the population convergence velocity becomes

−Ḋth = (β0 − βB)
∑
ω>0

ωG(ω)〈A(ω)A†(ω)〉ρt

× (e−ωβB − e−ωβ0 ), (19)

which is always positive for any value of β0 and βB. However,
in the presence of horizontal coherences, the apparent temper-
atures T (ω) can be raised beyond or lowered below 1/βB [30],
inverting the roles of hottest and coldest systems and resulting
in changing the sign of the heat flow (17). Consequently,
from (16), the population convergence velocity −Ḋth becomes
negative. It is shown in Ref. [30] that such heat flow reversals
are always achievable for β0 not too far from βB. Note that the
total heat exchanged between the initial and final times (when
reaching the equilibrium state) can also be inverted, leading to
(β0 − βB)�ES � 0.

We just showed that the velocity of the population con-
vergence −Ḋth can become negative thanks to horizontal
coherences and that heat flow reversal is one of its observable
consequences. In the next paragraph, we go further: We show
formally that heat flow reversals are powered by horizontal
coherences (illustrated in Fig. 5).

C. Complementarity of horizontal coherences
and heat flow reversal

We showed that both −Ċh and −Ḋth can become negative.
However, there is a restriction: The sum of −Ċh and −Ḋth has
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to be always positive. Indeed, a variation of −Ch(t ) − Dth(t )
between instants of time t and t ′ > t gives

− �Ch − �Dth

= −[S(ρt ′|BD |ρ th(βB)) − S(ρt |BD |ρ th(βB))]

= −[S(e(t ′−t )Lρt |BD |e(t ′−t )Lρ th(βB)) − S(ρt |BD |ρ th(βB))]

� 0, (20)

where the identity (7) and the contractivity of the rela-
tive entropy under completely positive and trace-preserving
maps [43,47] were used in the third and fourth lines, respec-
tively. The above inequality implies in particular that the time
derivative of the sum is also always positive,

− Ċh − Ḋth � 0. (21)

The physical meaning of the inequality (20) appears after
rewriting the variation of Dth(t ) between the initial time t = 0
and any arbitrary later time t as

−�Dth = (β0 − βB)�ES − S(ρt |D |ρ0|D ), (22)

where �ES = TrHS (ρt − ρ0) is the associated variation of
energy of S. Note that (22) is valid for populations initially
thermally distributed, ρ0|D = ρ th(β0). Injecting (22) in the
inequality (20), one obtains

−�Ch + (β0 − βB)�ES − S(ρt |D |ρ0|D ) � 0. (23)

The quantity (β0 − βB)�ES is always positive for initial states
without horizontal coherences. However, as shown above and
in Ref. [30], the presence of initial horizontal coherences can
reverse the heat flow ĖS and the finite heat exchange �ES , im-
plying (β0 − βB)ĖS < 0 and (β0 − βB)�ES < 0. From (23), a
reversal of finite heat exchange implies

−�Ch � −(β0 − βB)�ES > 0, (24)

which means a strict consumption of horizontal coherences.
Conversely, when horizontal coherences are not consumed,
meaning that −�Ch = 0 (or even −�Ch < 0), one has nec-
essarily

(β0 − βB)�ES � S(ρt |D |ρ0|D ) � 0, (25)

so that no reversal of heat exchange can happen. This shows
explicitly that reversal of heat exchange is powered by hor-
izontal coherences (illustration in Fig. 5). Additionally, the
inequalities (20) and (23) can be seen as kind of Landauer
principles for horizontal coherences: They impose a lower
bound on the energetic cost of creation of horizontal co-
herences. Namely, the creation of horizontal coherences is
conditioned by

(β0 − βB)�ES � �Ch > 0, (26)

implying an energetic cost paid in the form of heat (or “natu-
ral” heat exchange).

Finally, it is also interesting to look at the time derivative
version of (23), giving at initial times (0 � t 
 
−1),

−Ċh + (β0 − βB)ĖS � 0. (27)

One can obtain straightforwardly the time-derivative analog of
the above inequalities (24), (25), and (26). The absence of the
term S(ρt |D |ρ0|D ) (equal to zero for 0 � t 
 
−1) in (27) pro-
vides the following insight: Initially, both heat flow reversal
and creation of horizontal coherences do not have extra costs
in horizontal coherences and energy, respectively. However, as

time passes, an extra cost corresponding to S(ρt |D |ρ0|D ) � 0 is
required, as shown by (24) and (26). In particular, this explains
why reversals of finite heat exchanges require larger amount
of initial coherences than heat flow reversals, as pointed out
and discussed in Ref. [30].

V. THERMAL AND ATHERMAL OPERATIONS

We now show that the above results are indeed valid in
a broader context. The following considerations are inspired
from Ref. [8], with additional results related to horizontal
coherences.

Let us consider the unitary interaction of our system of
interest S with another system B between two instant of times
ti and t f . Importantly, in the remainder of the paper B is not
restricted to baths but can be of any size, even an elementary
single quantum system. We denote by U the associated unitary
transformation (acting on both S and B), and by ρX,t the
density operator of the system X (standing for S, B, or SB)
at an arbitrary instant of time t . Note that in principle there is
also no restriction on the strength of the coupling between S
and B [not limited anymore to weak coupling as in (5)].

We call athermal those operations satisfying the conditions
of initial separability, energy conservation, and stationarity
of ρB,ti , expressed respectively by ρSB,ti = ρS,tiρB,ti , [U, HS +
HB] = 0, and [HB, ρB,ti ] = 0. If one asks additionally the
initial state ρB,ti to be thermal, the operation belongs to
the well-known set of thermal operations [42,65–68]. In-
terestingly, the only conditions defining athermal operations
guarantee the validity of most of the above results. More pre-
cisely, under the energy conservation condition, one can show
(see Appendix G) that the evolution of the vertical coherences
is closed (in the sense mentioned above). Thus, one can simply
repeat the argument (6) (slightly adapted to finite evolution,
see Appendix G) and show that the vertical coherences always
decrease,

−�Cv = −[Cv(t f ) − Cv(ti )] � 0. (28)

The are two key points. First is that �, denoting the reduced
evolution of S, is a completely positive trace-preserving map
(thanks to the initial separability and the unitarity of the global
evolution [43]), which guarantees the contraction of the rel-
ative entropy. Second is the closed evolution of the vertical
coherences, which guarantees

ρS,t f |BD = �ρS,ti|BD . (29)

By contrast, the mixing of the horizontal coherences’ dynam-
ics with the populations’ dynamics implies

ρS,t f |D �= �ρS,ti|D , (30)

which, repeating the argument in (9), breaks down the guar-
antee of positivity of −�Ch. In Appendix G, some explicit
conditions (relying on degenerate transitions, Fig. 2) are pin-
pointed in order to have effectively −�Ch < 0.

Assuming the existence of a thermal equilibrium state
ρ th

S (βB), which is guaranteed, for instance, when B is initially
in a thermal state, one can follow the definitions introduced
in the beginning of the paper for the entropy production �

and the measure of population distance to the equilibrium
distribution Dth. Then, for the same reason of nonclosure
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of the populations’ dynamics, the guarantee of positivity of
−�Dth is broken. Again, in Appendix H, some conditions are
mentioned for having divergence of the populations from the
equilibrium distribution, −�Dth < 0.

Furthermore, as above, one can show with the same argu-
ments used for vertical coherences that

−�Ch − �Dth � 0. (31)

As in the previous section, this can be thought as a kind
of Landauer principle for the horizontal coherences. Even
though in general −�Dth cannot be simply related to energy
exchanges as in (22), it is still associated to the variation of
diagonal free energy, −�Dth = −βB�FD, and still represents
the convergence of the populations toward the thermal equi-
librium distribution. Assuming, for instance, a situation where
U generates horizontal coherences, one obtains

−�Dth � �Ch > 0, (32)

which represents the necessary cost in “population gradient”
for creating horizontal coherences. In particular, ρS,ti|D has to
be far enough from ρ th

S (βB). Conversely, having −�Dth < 0,
meaning a reversal of the natural tendency of convergence of
the population to the thermal equilibrium distribution, neces-
sarily requires consumption of horizontal coherences,

−�Ch � �Dth > 0, (33)

and therefore initial states containing horizontal coherences.
This result is a generalization of (24) and of the heat flow
reversal [30].

Interestingly, the above inequalities can be extended
to equalities. Based on the observation that the opera-
tion of global block diagonalization commutes with U ,
UρSB,t |BDU † = (UρSB,tU †)|BD

(see Appendix H), where ρSB,t

stands for the density matrix of the ensemble SB, one can
show a conservation law of vertical coherences (already ob-
tained in Ref. [8] in a different form),

�CSB
v = 0. (34)

In the above conservation law, we defined CSB
v (t ) :=

S(ρSB,t |BD ) − S(ρSB,t ) as the extension of the relative entropy
of vertical coherences to the ensemble SB. The conservation
law can be alternatively written as

−�CS
v − �CB

v = CSB
c,v(t f ). (35)

The introduced superscripts S, B, or SB refer to the cor-
responding systems and CSB

c,v(t ) is the correlated vertical
coherences introduced in Ref. [69] as

CSB
c,v(t ) := CSB

v (t ) − CS
v (t ) − CB

v (t ) � 0. (36)

CSB
c,v(t ) represents the vertical coherences present in SB fruits

of correlations between S and B. Therefore, the conservation
law (35) implies in particular that the vertical coherences
consumed in S are either transferred to B or to correlated
vertical coherences CSB

c,v(t f ) between S and B. Indeed, this
conservation law is surprising from the perspective of deco-
herence theory in open quantum systems [43], which taught
us that coherences are destroyed by the bath. This is because
open quantum systems theory is mainly concerned about the
reduced system’s dynamics and therefore changes in the bath
state are mostly ignored.

By contrast, horizontal coherences are not conserved. This
is one more aspect of the fundamental difference between
vertical and horizontal coherences. However, one can derive
a conservation law for horizontal coherences when contribu-
tions from the population convergence is included. Namely,
one can show (see Appendix H)

�CSB
h + �DSB

th = 0, (37)

which establishes that, globally, the reversal of population
convergence is exactly equal to the consumption of horizontal
coherences. In the above identity, we introduced CSB

h (t ) :=
S(ρSB,t |D ) − S(ρSB,t |BD ) and −DSB

th (t ) := −S[ρSB,t |ρ th
SB(βB)],

where ρ th
SB(βB) is the global thermal state at inverse tem-

perature βB and is a steady state. Conversely, generation of
horizontal coherences (still globally) is exactly compensated
by population convergence (which inherently carries an en-
ergetic cost). Additionally, the conservation law (37) can be
used to show that the generation of horizontal coherences
affects the energy exchanges (see Appendix H), recovering
in a straightforward way observations of Refs. [21,28]. By
contrast, when no horizontal coherences are consumed or gen-
erated, one has necessarily �DSB

th = 0, implying that globally
the dynamics of the populations is restricted to a region of
equidistant points to the equilibrium distribution.

The conservation law (37) can alternatively be expanded
as

−�CS
h − �DS

th − �CB
h − �DB

th = CSB
c,h(t f ) + DSB

c,th(t f ), (38)

where the superscripts S, B, and SB refer to the corresponding
systems. The quantities CSB

c,h(t f ) and DSB
c,th(t f ) are respectively

the horizontal global coherences and the distance of the global
populations to the thermal equilibrium distribution ρ th

SB(βB)
stemming from correlations between S and B. Both CSB

c,h(t f )
and DSB

c,th(t f ) are defined in a similar way as in (36) and are
positive. The conservation laws (37) and (38) can be seen
as extensions of (31), (32), and (33) in form of equalities.
Equation (38) means that the horizontal coherences consumed
in S and B plus the steps toward ρ th

S (βB) = TrBρ th
SB(βB) and

ρ th
B (βB) = TrSρ

th
SB(βB) are recovered in the final correlated

horizontal coherences and distance to ρ th
SB(βB).

Note that the time derivative version of the results of this
section is valid only upon a divisibility property of U . Namely,
for any t ∈ [ti; t f ], U is divisible in two unitary evolutions Uti,t

and Ut,t f , which are both energy conservatives.

VI. CONCLUDING REMARKS

The entropy production of a degenerate system can be split
in three contributions. For bath-driven dissipation and thermal
(or athermal) operations, the first contributions is always pos-
itive and is related to the consumption of vertical coherences.
The second contribution stems from horizontal coherences.
Unlike the first one, it can be either positive or negative, which
is shown to be associated respectively to consumption or gen-
eration of horizontal coherences. In particular, this explains
the origin of the entropy reduction pointed out in Ref. [21].
Finally, the third contribution stems from the convergence of
the populations to the thermal equilibrium distribution and is
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related to the variation of the diagonal free energy. While this
contribution is always positive in the absence of horizontal
coherences, meaning that the populations always tend to the
thermal equilibrium distribution, this natural tendency can be
reversed thanks to horizontal coherences. This phenomenon is
associated to another negative contribution to the entropy pro-
duction and is the origin of the heat flow reversal introduced in
Ref. [30]. The cost for this inversion is paid in horizontal co-
herences. Conversely, the generation of horizontal coherences
is paid in heat or “population gradient.”

Finally, a global conservation law is recovered for ver-
tical coherences, whereas horizontal coherences are shown
not to be conserved. Nevertheless, the sum of the horizontal
coherences plus the population convergence rate is globally
conserved.

The phenomena pointed out in this paper rely on the degen-
eracy of S and the existence of degenerate transitions (Fig. 2).
In such conditions, the steady state of S is not unique and
therefore can be thought as not “fully thermalized,” which can
help to understand intuitively some of the above phenomena.
Regarding experimental implementations, degenerate tran-
sitions were realized in multilevel atoms, for instance, in
Ref. [70], and also appear in diverse contexts (super-radiance
and bath-induced entanglement) in ensembles of subsystems
collectively coupled to a common bath, with some experimen-
tal realisations for instance in Refs. [33,34,40,71]. Moreover,
the exact degeneracy of S is indeed not necessary. In
Appendix A, it is shown that energy gaps of order δ in the
system’s spectrum are initially not resolved by the bath when
δ is smaller than the dissipation decay rate. Then, at least for
times much smaller than δ−1, which can be still enough for
significant dissipation of S and even to reach a nonthermal
steady state, the system appears as degenerate from the point
of view of the bath, and the phenomena described throughout
the paper can take place. In particular, such situations in-
clude ensembles of noninteracting or even weakly interacting
subsystems with inhomogeneities smaller than the dissipative
rate, which can be achieved, for instance, with atomic cloud
in “bad” optical cavity [72,73].

Furthermore, motivating more research in this direction,
our results seem to indicate that, in the context of Markovian
bath dissipations and thermal operations, thermodynamics
departs from classical behavior thanks to horizontal
coherences and the associated negative contributions. An
interesting parallel can be made with a recent study [74],
where the authors establish that a statistics obtained from
measurements on a quantum system is genuinely quantum
(meaning that it does not admit classical description) if and
only if the underlying dynamics generates coherences which
can be subsequently turned into populations—precisely
the mechanism associated to the negative contributions to
entropy production. In addition, on top of the effects on the
ongoing thermodynamics already reported throughout the
paper, one can show that negative contributions to entropy
production can modify the performances of thermal machines
(see Appendix I). It is also interesting to note that, since
thermal operations can indeed generate horizontal coherences
out of incoherent states—contrary to what happens with
vertical coherences [75,76]—the resource theories of vertical
and horizontal coherences do not share the same set of free

operations. This emphasizes again the special statue of hori-
zontal coherences and suggests the possibility of introducing
a specific resource theory for horizontal coherences.

Beyond that, it would also be interesting to investigate
what could be the role of horizontal coherences in work
fluctuation reductions achieved through collective opera-
tions [77], violation of work fluctuation relations in processes
generating coherences [78], thermodynamic uncertainty re-
lations [11,12,15,16], and dissipated work in nonadiabatic
driving [19].
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APPENDIX A: DISSIPATION OF NEAR DEGENERATE
SYSTEMS

In the main text, we assume a perfectly degenerate system
S. In this paragraph, we show that this requirement can be
significantly relaxed. We consider that the Hamiltonian of S is
nondegenerate and of the form

HS =
∑

n

ln∑
i=1

en,i|n, i〉〈n, i|. (A1)

However, we assume that for all n and all i, i′, the energy
gap |en,i − en,i′ | is at most of the order of magnitude δ,
whereas for all n, m, i, and j, |en,i − em, j | is of the order
of magnitude ω, with ω 	 δ. In the following, we refer to
these properties as near degeneracy. Note that several systems,
from multilevel atoms containing some close energy levels to
ensembles of interacting subsystems with inhomogeneities,
are near degenerate. Indeed, in the later situation, one can
always decompose the Hamiltonian of the ensemble as HS =
H0 + Hinh + Hint, where H0 denotes the sum of the local free
Hamiltonians of each subsystem, Hinh corresponds to inhomo-
geneities representing potential small differences between the
subsystems (like different energy transitions), and Hint stands
for interaction between the subsystems. Using, for instance,
the degenerate perturbation theory [79], one can easily see
that HS can indeed be rewritten in the form (A1), satisfying
the near degeneracy criteria. In other words, near degeneracy
represents a more realistic situation since it is expected that
any perfectly degenerate system loses its perfect degeneracy
due to unavoidable interactions and perturbations from the
environment, as just shown.

For such a near degenerate system S, the Markovian master
equation is in principle different from (5) because the levels
|n, i〉, 1 � i � ln are not degenerate. Furthermore, the secular
approximation [43,55] is not valid anymore if δ is of the order
or smaller than g2τc, where τc denotes the bath coherence time
and g is the system-bath coupling strength. In the following,
we show that indeed one can recover a master equation of

042220-8



NEGATIVE CONTRIBUTIONS TO ENTROPY PRODUCTION … PHYSICAL REVIEW A 102, 042220 (2020)

the form (5) when δ 
 g2τc 
 ω. Starting from the Born
and Markov approximations (valid for gτc 
 1) [43,55], the

reduced dynamics of S before applying the secular approxi-
mation is

ρ̇t =
∫ ∞

0
duTrB[V (t − u)ρtρBV (t ) − V (t )V (t − u)ρtρB] + H.c.

=
∑

m,n,m′,n′

∑
i,i′, j, j′


(em, j − en,i ) e−i(em, j−en,i−em′, j′ +em, j )t An,i,m, jA
∗
n′,i′,m′, j′ (|n, i〉〈m, j|ρt |m′, j′〉〈n′, i′| − |m′, j′〉

× 〈n′, i′|n, i〉〈m, j|ρt ) + H.c., (A2)

where V (t ) is the coupling Hamiltonian in the interaction picture (with respect to HS), the coefficients An,i,m, j := 〈n, i|AS|m, j〉
are the amplitudes of transitions, and the sum

∑
i,i′, j, j′ is a short notation for

∑ln
i=1

∑ln′
i′=1

∑lm
j=1

∑lm′
j′=1. There are three kinds of

terms in the above sum (A2): terms such that |em, j − en,i − (em′, j′ − en′,i′ )| is of order ω, terms such that |em, j − en,i − (em′, j′ −
en′,i′ )| is of order δ, and terms such that em, j − en,i − (em′, j′ − en′,i′ ) = 0. For the first group of terms, assuming ω 	 g2τc, we
can apply the secular approximation: The phase e−i(em, j−en,i−em′ , j′ +en′ ,i′ )t evolves much more quickly than the evolution timescale
of ρt [of order (g2τc)−1] so that the average contribution of such terms is zero. The second and third groups of terms can be put
together as follows. For simplicity, we detail the procedure for a pair of transitions {|m, j〉, |m, j′〉} → {|n, i〉, |n, i′〉}, but this
can be extended straightforwardly to all remaining transitions. There are four terms associated with this pair of transitions:

e−i(em, j−en,i−em, j′ +en,i′ )t
(em, j − en,i )An,i,m, jA
∗
n,i′,m, j′ (|n, i〉〈m, j|ρt |m, j′〉〈n, i′| − |m, j′〉〈n, i′|n, i〉〈m, j|ρt ) + H.c.

+ e−i(em, j′ −en,i′−em, j+en,i )t
(em, j′ − en,i′ )An,i′,m, j′A
∗
n,i,m, j (|n, i′〉〈m, j′|ρt |m, j〉〈n, i| − |m, j〉〈n, i|n, i′〉〈m, j′|ρt ) + H.c.

+ 
(em, j − en,i )|An,i,m, j |2(|n, i〉〈m, j|ρt |m, j〉〈n, i| − |m, j〉〈n, i|n, i〉〈m, j|ρt ) + H.c.

+ 
(em, j′ − en,i′ )|An,i′,m, j′ |2(|n, i′〉〈m, j′|ρt |m, j′〉〈n, i′| − |m, j′〉〈n, i′|n, i′〉〈m, j′|ρt ) + H.c. (A3)

Assuming δτc 
 1 (which is automatically satisfied if δ 
 g2τc), we have the following relation,


(ω + δ) − 
(ω) =
∫ ∞

0
du(ei(ω+δ)u − eiωu)TrρBAB(u)AB

�
∫ τc

0
du(ei(ω+δ)u − eiωu)TrρBAB(u)AB

=
∫ τc

0
dueiωu

[
iδu + O

(
τ 2

c δ2
)]

TrρBAB(u)AB

= δ
∂
(ω)

∂ω
+ O

[
τ 2

c δ2|
(ω)|]. (A4)

The derivative of 
(ω) is of the order g2τ 2
c ,∣∣∣∂
(ω)

∂ω

∣∣∣ �
∫ τc

0
u|TrρBAB(u)AB|du ∼

∫ τc

0
ug2du = 1

2
g2τ 2

c . (A5)

Thus, all together we obtain |
(ω + δ) − 
(ω)| ∼ g2τ 2
c δ 
 g2τc ∼ |
(ω)|. Furthermore, considering times t such that δt 
 1,

one can approximate the above phases by 1, e−i(em, j−en,i−em, j′ +en,i′ )t � 1. Then, the sum (A3) of the four terms factorizes in the
following form:

(A3) = 
(em, j − en,i )[(An,i,m, j |n, i〉〈m, j| + An,i′,m′ j′ |n, i′〉〈m, j′|)ρt (A
∗
n,i,m, j |m, j〉〈n, i| + A∗

n,i′,m, j′ |m, j′〉〈n, i′|) −
− (A∗

n,i,m, j |m, j〉〈n, i| + A∗
n,i′,m, j′ |m, j′〉〈n, i′|)(An,i,m, j |n, i〉〈m, j| + An,i′,m′ j′ |n, i′〉〈m, j′|)ρt ] + H.c.. (A6)

Repeating this procedure for all the transitions |m, j〉 → |n, i〉
such that |em, j − en,i − ω| � δ, we can extend the above pro-
cedure and express the resulting sum in terms of the following
operator,

A(ω) :=
∑

m,n,i, j;|em, j−en,i−ω|�δ

An,i,m, j |n, i〉〈m, j|. (A7)

With such operator, for all times t such that (g2τc)−1 � t 

δ−1, the above master equation (A2) can be rewritten as

ρ̇t =
∑

ω


(ω)[A(ω)ρtA†(ω) − A†)ω)A(ω)ρt ] + H.c.,

(A8)

which coincides with the form of the master equation (C3).
Note that the condition t � (g2τc)−1 is the usual condition
for the validity of the secular approximation. The additional
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condition here is t 
 δ−1, which requires δ−1 	 (g2τc)−1 due
to the previous condition. Since the decay rates are of the order
|
(ω)| ∼ g2τc, we can conclude that the order of magnitude of
the inhomogeneities or interactions has to be smaller than the
decay rate in order to have a reduced dynamics of the form (5).
This regime can be achieved, for instance, with atomic ensem-
bles in an optical cavity in the limit of bad cavity [73], already
realizable in some experimental platforms [71,72].

This also means that the bath does not resolve energy
differences of order δ until t ∼ δ−1. In other words, the diverse
effects mentioned in the main text can go on in principle over
a period of time of the order of δ−1.

APPENDIX B: TIME DERIVATIVES OF Cv, Ch, and Dth

While it is well known that the time derivative of the von
Neumann entropy is −Trρ̇t ln ρt , it is not straightforward that
similar relations hold for Cv, Ch, and Dth. In order to prove the
identities (4) of the main text, we only need to show

d

dt
Trρt ln ρt |D = Trρ̇t ln ρt |D (B1)

and

d

dt
Trρt ln ρt |BD = Trρ̇t ln ρt |BD . (B2)

Starting with the first equality (B1), from the definition of
ρt |D we have ρt |D = ∑

n

∑ln
i=1 pn,i|n, i〉〈n, i|, where pn,i :=

〈n, i|ρt |n, i〉. Thus, ln ρt |D = ∑
n

∑ln
i=1 |n, i〉〈n, i| ln pn,i so that

Trρt ln ρt |D =
∑

n

ln∑
i=1

pn,i ln pn,i. (B3)

Note that the above equations show

Trρt ln ρt |D = Trρt |D ln ρt |D . (B4)

Denoting by ṗn,i := 〈n, i|ρ̇t |n, i〉 the time derivative of the
populations pn,i, one obtains

d

dt
Trρt ln ρt |D =

∑
n

ln∑
i=1

ṗn,i ln pn,i +
∑

n

ln∑
i=1

ṗn,i

= Trρ̇t ln ρt |D (B5)

since
∑

n

∑ln
i=1 ṗn,i = Trρ̇t = 0.

For the second equality (B2), we can proceed in a similar
way. Using the definition of ρt |BD we have

ρt |BD =
∑

n

πnρtπn =
∑

n

∑
i,i′

|n, i〉〈n, i|ρt |n, i′〉〈n, i′|.

(B6)

which is diagonal per block (corresponding to each
eigenspace). Denoting by {|en,i〉}1�i�ln a basis diag-
onalizing ρt |BD on each eigenspace, we have ρt |BD =∑

n

∑ln
i=1 qn,i|en,i〉〈en,i|, where qn,i := 〈en,i|ρt |en,i〉. It is

important to keep in mind that first this basis is time dependent
and second, due to the block-diagonal structure of ρt |BD , each
|en,i〉 is a linear combination of exclusively the eigenvectors
{|n, i〉}1�i�ln (spanning the eigenspace n). These two

observations will be crucial in the following. As previously,
we have

Trρt ln ρt |BD =
∑

n

ln∑
i=1

qn,i ln qn,i, (B7)

which also shows

Trρt ln ρt |BD = Trρt |BD ln ρt |BD . (B8)

Unlike the previous situation, the diagonalization basis
{|en, j〉}1� j�ln is time dependent. This implies

q̇n,i = d

dt
(〈en,i|)ρt |en,i〉 + 〈en,i|ρ̇t |en,i〉 + 〈en,i|ρt

d

dt
(|en,i〉).

(B9)
Then,

d

dt
Trρt ln ρt |BD =

∑
n

ln∑
i=1

[q̇n,i ln qn,i + q̇n,i], (B10)

where q̇n,i is given by the above expression (B9). We have

∑
n

ln∑
i=1

q̇n,i = d

dt

∑
n

ln∑
i=1

〈en,i|ρt |en,i〉

= d

dt
Trρt

= 0. (B11)

The second term is slightly more involved,

∑
n

ln∑
i=1

q̇n,i ln qn,i =
∑

n

ln∑
i=1

〈en,i|ρ̇t |en,i〉 ln qn,i

+
∑

n

ln∑
i=1

d

dt
(〈en,i|)ρt |en,i〉 ln qn,i

+
∑

n

ln∑
i=1

ln qn,i〈en,i|ρt
d

dt
(|en,i〉).

(B12)

Using the identity |en,i〉 ln qn,i = ln ρt |BD |en,i〉, the first term is
equal to

∑
n

ln∑
i=1

〈en,i|ρ̇t |en,i〉 ln qn,i = Trρ̇t ln ρt |BD . (B13)

The last two terms sum up to zero. This can be shown, for
instance, by introducing the decomposition of the identity
1 = ∑

n πn on both sides of ρt in each term. Importantly,
as mentioned previously, since each vector |en,i〉 is a linear
combination of exclusively the eigenvectors {|n, i〉}1�i�ln , its
time derivative d

dt |en,i〉 belongs to the eigenspace n (spanned
by the vectors {|n, i〉}1�i�ln ). This implies in particular that
πm

d
dt |en,i〉 = 0 if n �= m. We obtain

∑
n

ln∑
i=1

d

dt
(〈en,i|)ρt |en,i〉 ln qn,i

=
∑

n

ln∑
i=1

d

dt
(〈en,i|)

∑
m

πmρt

∑
m′

πm′ |en,i〉 ln qn,i
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=
∑

n

ln∑
i=1

d

dt
(〈en,i|)πnρtπn|en,i〉 ln qn,i

=
∑

n

ln∑
i=1

d

dt
(〈en,i|)ρt |BD |en,i〉 ln qn,i

=
∑

n

ln∑
i=1

d

dt
(〈en,i|)|en,i〉qn,i ln qn,i. (B14)

Proceeding in a way similar to that for the term∑
n

∑ln
i=1 ln qn,i〈en,i|ρt

d
dt (|en,i〉), one finally obtains

+
∑

n

ln∑
i=1

d

dt
(〈en,i|)ρt |en,i〉 ln qn,i

+
∑

n

ln∑
i=1

ln qn,i〈en,i|ρt
d

dt
(|en,i〉)

=
∑

n

ln∑
i=1

[ d

dt
(〈en,i|)|en,i〉 + 〈en,i| d

dt
(|en,i〉)

]
qn,i ln qn,i

=
∑

n

ln∑
i=1

qn,i ln qn,i
d

dt
[〈en,i|en,i〉] = 0. (B15)

Then, all together we have shown what we announced above,
Eqs. (B1) and (B2), completing the demonstration of the
identities (4) in the main text.

APPENDIX C: COLLECTIVE COUPLING
AND INDISTINGUISHABILITY

The most general coupling between S and B is of the form

V = g
∑

α

AS,αAB,α, (C1)

where g corresponds to the effective coupling strength, AS,α

observables of S and AB,α observables of the bath. When
two different bath observables AB,α and AB,α′ are independent
such that TrρBAB,αAB,α′ = 0, each observable give rise to an
independent dissipation channel, as if AB,α and AB,α′ were ob-
servables of two distinct and independent baths. Contrasting
with such independent dissipation, we assume in this paper a
situation where the system-bath coupling give rise to a single
dissipation channel only, which corresponds to a coupling of
the alternative following form:

V = gASAB. (C2)

It means that all energy transitions are collectively coupled to
the same bath observable AB. In particular, an absorption of
a bath excitation can activate any resonant transition, ending
up in any corresponding excited state. Thus, the bath does
not “know” which transition was activated: It cannot dis-
tinguish two (or several) different resonant transitions. This
interpretation provides some insights regarding the underly-
ing conditions for collective coupling (C2), namely, that the
transitions should be indistinguishable from the point of view
of the bath. Depending on the system, this might require
some experimental arrangements. For instance, for a multi-

level atom, one needs parallel transition dipole moments [80],
realized experimentally in Ref. [70], or optical cavity to make
the atomic transitions indistinguishable (from the point of
view of the outside bath) [57,81]. Conversely, if S is made
of an ensemble of smaller subsystems, each subsystem should
be placed at spatial locations which are indistinguishable, or
indiscernible, from the point of view of bath [28,35] (with an
example of experimental realizations in Refs. [34,40]). Alter-
natively, the indistinguishability from the bath’s point of view
can be achieved also by adding an ancillary system between S
and the bath, like an optical cavity in the situations of atomic
clouds [82–85], with examples of experimental realizations in
Refs. [33,73].

The reduced dynamics of S can be obtained using the
Born and Markov approximations, valid for weak bath cou-
pling [43,55], leading to the following master equation
[Eq. (5) of the main text] thanks to the additional secular
approximation

ρ̇t = Lρt

:=
∑

ω


(ω)[A(ω)ρtA†(ω) − A†(ω)A(ω)ρt ] + H.c.,

(C3)

recalling the notations 
(ω) := ∫ ∞
0 dseiωsTrρBAB(s)AB,

AB(s) is the bath operator AB in the interaction picture (with
respect to the free Hamiltonian HB), and the jump operators
A(ω) are defined by [43] A(ω) = ∑

en′−en=ω πnASπn′ .
We now emphasize the structure imposed by the master
equation (C3) on the dynamics of the populations, vertical
coherences, and horizontal coherences. From (C3), the
dynamics of the matrix element 〈n, i|ρS|n′, i′〉 is

d

dt
〈n, i|ρS|n′, i′〉 =

∑
ω


(ω)[〈n, i|A(ω)ρtA†(ω)|n′, i′〉

− 〈n, i|A†(ω)A(ω)ρt |n′, i′〉] + c.c.

(C4)

Then, if n = n′, the states A†(ω)|n′, i′〉 and A(ω)|n, i〉 lay in
the eigenspace of energy en′ + ω = en + ω, so that the terms
〈n, i|A(ω)ρtA†(ω)|n′, i′〉 correspond to horizontal coherences
and populations. The state A†(ω)A(ω)|n, i〉 belongs to the
eigenspace of energy en so that 〈n, i|A†(ω)A(ω)ρt |n′, i′〉 also
corresponds to horizontal coherences or populations (still
when n = n′). In other words, the dynamics of the populations
and horizontal coherences are coupled. By contrast, if n �= n′,
one can see that only vertical coherences appear on the right-
hand side of (C4), so that the dynamics of vertical coherences
is not coupled neither to the populations nor to the horizontal
coherences.

APPENDIX D: ENTROPY PRODUCTION
IN NON-DEGENERATE SYSTEMS

For nondegenerate systems, ρt |D = ρt |BD , so that Ch = 0 at
all times. Moreover, −Ċv and −Ḋth become equivalent to the
coherent and diagonal contributions introduced in Eq. (15)
of Ref. [8]. One can also show that this two remaining
contributions to the entropy production are always positive.
Considering the time derivative of the relative entropy of
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coherences, one obtains

−Ċv = − d

dt
S(ρt |ρt |BD ) = − d

dt
S(ρt |ρt |D )

= − lim
dt→0

1

dt
[S(ρt+dt |ρt+dt |D ) − S(ρt |ρt |D )]

= − lim
dt→0

1

dt
[S(edtLρt |edtLρt |D ) − S(ρt |ρt |D )], (D1)

which is always positive since the relative entropy is
contractive under completely positive and trace-preserving
maps [43,47] [the map generated by L defined in (C3) be-
ing completely positive and trace preserving]. Similarly, one
can show that velocity of the population convergence to the
thermal equilibrium distribution −Ḋth is, as expected, always
positive, recovering the results of Ref. [8]. The above result
relies on the following crucial step,

ρt+dt |D = edtLρt |D , (D2)

which means that the dynamics of the populations depends
only on the populations themselves (remembering that we
are considering nondegenerate systems). In other words, the
presence of coherences does not influence the future values
of the populations. This is a fundamental difference with
degenerate systems, as shown in the main text. Equation (D2)
is also equivalent to the Pauli equation [8,43] (which gives
the dynamics of the populations in terms of themselves), and
to (C4) applied to nondegenerate systems.

APPENDIX E: REDUCTION OF IRREVERSIBILITY
IN SPIN ENSEMBLES

In this paragraph, we recall some properties of spin ensem-
bles and theory of addition of angular momentum. We also
recall the expression of the equilibrium state reached by a spin
ensemble when collective interacting with a bath [as described
for instance by Eq. (5) of the main text]. Considering an
ensemble containing n spins of size s, we denote by jz,k the
z component of the angular momentum operator associated to
the spin k ∈ [1; n], and by {|s, mk〉k}−s�mk�s the local eigenba-
sis of jz,k , so that jz,k|s, mk〉k = h̄mk|s, mk〉k . Then, a natural
basis to describe the spin ensemble is

|m1, m2, ..., mn〉 := ⊗n
k=1|s, mk〉k, (E1)

resulting from the tensor products of the local eigenbasis. One
important property from the theory of addition of angular
momenta [86] is that the spin ensemble can be described
alternatively by a basis obtained from the eigenvectors of the
global observables Jz and J 2 := J2

x + J2
y + J2

z , where Jz :=∑n
k=1 jz,k (and similar definitions for the x and y components).

These eigenvectors are traditionally denoted by |J, m〉i in ref-
erence to their eigenvalues,

J 2|J, m〉i = h̄J (J + 1)|J, m〉i, Jz|J, m〉i = h̄m|J, m〉i,

(E2)

with −J � m � J and J ∈ [J0; ns], where J0 = 0 if s � 1
and J0 = 1/2 if s = 1/2 and n odd. The index i belongs to
the interval [1; lJ ], where lJ denotes the degeneracy of the
eigenspace associated to the eigenvalue J of the total spin
operator J 2.

The equilibrium state reached by the spin ensemble ini-
tially in a thermal state at inverse temperature β0 and
interacting collectively with a bath at inverse temperature βB

is given by [21]

ρ∞
β0

(βB) :=
ns∑

J=J0

pJ (β0)
lJ∑

i=1

ρ th
J,i(βB), (E3)

where pJ (β0) := ZJ (β0)/Z (β0), ZJ (β0) :=∑J
m=−J e−mh̄ωβ0 , Z (β0) := [Zs(β0)]n, and ρ th

J,i(βB) :=
ZJ (βB)−1 ∑J

m=−J e−mh̄ωβB |J, m〉i〈J, m|.
The details of the expression (E3) are not essential here.

What is important, however, is that ρ∞
β0

(βB) contains hor-
izontal coherences (in the natural basis |m1, m2, ..., mn〉)
whenever β0 �= ±βB. This can be seen by the following
considerations. First, note that there is a unique equilib-
rium state which is diagonal (in the natural basis). The
reason is because any diagonal equilibrium state should
satisfy the detailed balance, but there is only one diago-
nal state satisfying it: ρ th(βB), the thermal state of inverse
temperature βB. This thermal state is reached for β0 =
±βB. When β0 �= ±βB, the energy of ρ∞

β0
(βB) is different

from the thermal energy of ρ th(βB) [21]. Therefore, for any
β0 �= ±βB, the equilibrium state cannot be equal to ρ th(βB)
and consequently cannot be a diagonal state. Moreover,
ρ∞

β0
(βB) does not contain any vertical coherences since it

is made up of statistical mixtures of collective spin states
|J, m〉i〈J, m|, themselves containing no vertical coherences,
〈m1, ..., mn|J, m〉i〈J, m|m′

1, ..., m′
n〉 = 0 if m1 + · · · + mn �=

m′
1 + · · · + m′

n. Consequently, ρ∞
β0

(βB) necessarily contains
horizontal coherences, implying ρ∞

β0
(βB)|D �= ρ∞

β0
(βB)|BD =

ρ∞
β0

(βB) so that −Ch(∞) = −S[ρ∞
β0

(βB)|BD |ρ∞
β0

(βB)|D ] < 0.
Thus, since the ensemble is initially in a thermal state (with

zero horizontal coherences), we have creation of horizon-
tal coherences which corresponds to −�∞Ch = −[Ch(∞) −
Ch(0)] = −Ch(∞) < 0, promoting a reduction of the entropy
production. We can even show that the value of �∞Ch in-
creases logarithmically with the number of degenerate levels
(growing with n and s), at least in the limit ω|β0| 	 1.
From (E3), one can obtain the following expression for the
diagonal cut [21],

ρ∞
β0

(βB)|D =
h̄ω|β0|	1

Z−1
ns (βB)

ns∑
m=−ns

∑
m1+...+mn=m

× e−h̄ωmβB

Im
|m1, ..., mn〉〈m1, ..., mn|, (E4)

where Im := ∑ns
J=|m| lJ is the total number of eigenstates of Jz

of eigenvalue h̄m. One can deduce from (E4) the expression
for the variation of horizontal coherences,

−�∞Ch =−Ch(∞) =
h̄ω|β0|	1

−
ns∑

m=−ns

e−h̄ωmβB

Zns(βB)
ln Im, (E5)

so that �∞Ch grows logarithmically with the number of de-
generate levels Im (itself a growing function of n and S).

Beyond that, the variation of −Dth, −�∞Dth :=
−[Dth(∞) − Dth(0)], is also reduced (compared to
independent dissipation). This is can be seen simply as
follows. Since the equilibrium state energy is different
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from the thermal equilibrium energy [21], we have
necessarily ρ∞

β0
(βB)|D �= ρ th(βB). Consequently, the

measure of distance to the thermal distribution ρ th(βB)
does not tend to zero but to a strictly positive value,
Dth(∞)|col = S[ρ∞

β0
(βB)|D |ρ th(βB)] > 0. By comparison, for

independent dissipation, the ensemble reaches the equilibrium
thermal state ρ th(βB) so that Dth(∞)|ind = 0. This makes the
variation −�∞Dth strictly smaller for collective dissipation
than for independent dissipation.

APPENDIX F: EXPRESSION OF THE HEAT FLOW

The heat flow between the system and the bath is defined
by [3]

ĖS := Trρ̇t HS. (F1)

Using the dynamics described by (C3) as the time derivative
of ρt , one obtains

ĖS =
∑

ω


(ω)Tr(A(ω)ρtA†(ω) − A†(ω)A(ω)ρt )HS +c.c.

=
∑

ω


(ω)TrA(ω)ρt [A†(ω), HS] + c.c.

= −
∑

ω

ω
(ω)TrA(ω)ρtA†(ω) + c.c.

= −
∑

ω

ωG(ω)〈A†(ω)A(ω)〉ρt , (F2)

where 〈O〉ρt := TrρtO stands for the expectation value of
any operator O taken in the state ρt . Furthermore, we used
in the second line the invariance of the trace under cyclic
permutations, in the third line the commutation relation of the
eigenoperators [A†(ω), HS] = −ωA†(ω), and in the fourth
line the definition G(ω) := 
(ω) + 
∗(ω) already introduced
previously. We can rewrite the above expression in an insight-
ful way by explicitly including the negative frequencies,

ĖS = −
∑
ω>0

ω
(
G(ω)〈A†(ω)A(ω)〉ρt − G(−ω)〈A(ω)A†(ω)〉ρt

)

=
∑
ω>0

ωG(ω)〈A(ω)A†(ω)〉ρt

(
e−ωβB − e−ω/T (ω)

)
, (F3)

where T (ω) := ω(ln 〈A(ω)A†(ω)〉ρt
〈A†(ω)A(ω)〉ρt

)
−1

is the apparent tempera-
ture associated with the energy exchange ω [26,56], and the
bath inverse temperature βB can be defined through e−βω :=
G(−ω)/G(ω) [26,53,54]. In particular, when the population

of the state ρt follows a thermal distribution, as for ρ0 in
Eq. (19) of the main text, one can express the inverse apparent
temperature as

ω

T (ω)
= ωβ0 + ln

1 + c+

1 + c− , (F4)

where β0 is the inverse temperature associated with
the thermal distribution of the populations, and
c− := 〈A(ω)†A(ω)〉χ/〈A(ω)†A(ω)〉ρth (β0 ) and c+ :=
〈A(ω)A(ω)†〉χ/〈A(ω)A(ω)†〉ρth (β0 ) constitute the contri-
butions from the horizontal coherences, highlighted in
Refs. [26,30,56]. Indeed, since A(ω)A†(ω) and A†(ω)A(ω)
commute with HS , their expectation values do not pick
up contributions from vertical coherences. In other
words, when χ do not contain horizontal coherences
one has 〈A(ω)A†(ω)〉χ = 〈A†(ω)A(ω)〉χ = 0, implying
T (ω) = 1/β0.

APPENDIX G: THERMAL OPERATIONS AND BEYOND

Positivity of −�Cv and positivity break down for Ch andDth.
In this section, we show that the simple conditions of energy
conservation, initial separability, and initial stationarity of B
([HB, ρB,ti ] = 0) have rich consequences. As introduced in
the main text, we consider that the systems S and B interact
unitarily through U from ti to t f . The reduced dynamics for S
is given by

ρS,t f = �ρS,ti := TrBUρSB,tiU
† =

∑
ν,μ

Mμ,νρS,ti M
†
μ,ν, (G1)

where Mμ,ν := √
pν〈ψμ|U |ψν〉, pν := 〈ψν |ρB,ti |ψν〉, and the

eigenstates and eigenenergies of B are denoted respectively
by |ψν〉 and Eν . We also denote by HS,n the eigenspace of
S associated with the energy en. Since the initial state of B
is assumed to be stationary it can be written in the form
ρB,ti = ∑

ν pν |ψν〉〈ψν |. Note that we include the possibility of
B being degenerate, but in order to simplify the notation we do
not explicit write an extra index representing the degeneracy.
It means that several Eν and pν can have the same value. The
system B can also have an unbounded discrete spectrum or
even a continuous spectrum (if we think of an infinite bath).
In this later situation, one should express HB and ρB through
integrals. For simplicity again, we maintain the discrete sum
notations but one should bear in mind that the following re-
sults can be extended to continuous spectrum. From the above
notations, the final (at time t f ) vertical coherences between the
state |n, i〉 and |m, j〉 can be expressed as

〈n, i|ρS,t f |m, j〉 =
∑
μ,ν

〈n, i|Mμ,νρS,ti M
†
μ,ν |m, j〉

=
∑

μ,ν,q,r

〈n, i|Mμ,νπqρS,tiπrM†
μ,ν |m, j〉. (G2)

“Sandwiching” the conservation energy relation [U, HS +
HB] = 0 between 〈n, i|〈ψμ| and |q, l〉|ψν〉, we obtain

〈n, i|Mμ,ν |q, l〉(eq + Eν − en − Eμ) = 0. (G3)

This implies in (G2) that if q is such that eq �= en + Eμ −
Eν , we must have 〈n, i|Mμ,νπq = 0, and similarly for the
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term πrM†
μ,ν |m, j〉. One may conclude that the only term

contributing to (G2) are such that eq = en + Eμ − Eν and
er = em + Eμ − Eν so that if en �= em, we have necessarily
eq �= er . Consequently, only vertical coherences contribute to
the sum (G2): The dynamics of vertical coherences depends
only on vertical coherences. By contrast, if en = em, we have
necessarily eq = er (and finally q = r), so that only horizontal
coherences and populations contribute to (G2). In other words,
the dynamics of the populations and horizontal coherences
are coupled, but both are decoupled from the dynamics of
the vertical coherences. Consequently, the following identity
holds:

ρS,t f |BD = �ρS,ti|BD , (G4)

whereas

ρS,t f |D �= �ρS,ti|D . (G5)

Then, one can repeat the argument in Eq. (6) of the main text
to show that the variation of −Cv(t ) between ti and t f is always
positive (meaning that vertical coherences are consumed).
Namely,

−�Cv = −[Cv(t f ) − Cv(ti )]

= −[S(ρS,t f |ρS,t f |BD ) − S(ρS,ti |ρS,ti|BD )]

= −[S(�ρS,ti |�ρS,ti|BD ) − S(ρS,ti |ρS,ti|BD )] � 0,

(G6)

where the positivity comes from the contractivity of the rel-
ative entropy under completely positive and trace-preserving
maps (of which � belongs since we assume S and B initially
uncorrelated [43]). By contrast, since ρS,t f |D �= �ρS,ti|D , the
guarantee of positivity breaks down for −�Ch and −�Dth,
where Dth(t ) is defined assuming the existence of a ther-
mal equilibrium state ρ th

S (βB). Note that this is guaranteed
at least when B is initially in a thermal state at inverse
temperature βB (thanks to energy conservation, S always
admits the thermal state ρ th

S (βB) as equilibrium state). In
such situation, U corresponds to the well-known thermal
operations [42].

On the other hand, the sum of −�Ch and −�Dth always
remains positive,

− �Ch − �Dth

= −[Ch(t f ) + Dth(t f ) − Ch(ti ) − Dth(ti)]

= −{S[ρS,t f |BD |ρ th
S (βB)] − S[ρS,ti|BD |ρ th

S (βB)]}
= −{S[�ρS,ti|BD |�ρ th

S (βB)] − S[ρS,ti|BD |ρ th
S (βB)]} � 0,

(G7)

as announced in the main text.
Similarly to what has been done in the main text for the

bath-driven dissipation, one can pinpoint explicit situations
where −�Ch < 0. When we denote by |ψν〉 and Eν the (pos-
sibly degenerate) eigenstates and eigenenergies of B, one
consequence of the energy conservation is that the transition
〈n, i|〈ψν |U |m, j〉|ψμ〉 is equal to zero unless en + Eν − em −
Eμ = 0. In particular, one can have degenerate transitions

from one state |m, j〉|ψμ〉 to two degenerate states |n, i〉|ψν〉
and |n, i′〉|ψν〉, expressed by 〈n, i|〈ψν |U |m, j〉|ψμ〉 �= 0 and
〈n, i′|〈ψν |U |m, j〉|ψμ〉 �= 0. Then, if for instance SB is ini-
tialized in the state |m, j〉|ψμ〉, such a unitary evolution U
definitively generates horizontal coherences and a negative
contribution to the entropy production, −�Ch < 0. This is a
mechanism analogous to the one mentioned for bath-driven
dissipation in the main text relying on degenerate transitions
(illustrated in Fig. 2). Importantly, let us consider now the
same above double transition but instead of having the final
degenerate states |n, i〉 and |n, i′〉, we take two nondegenerate
states |n, i〉 and |n′, i′〉. The energy conservation implies that
the second final state of B has to be changed from |ψν〉 to
|ψν ′ 〉 such that Eν ′ = em − en′ + Eμ. Consequently, the co-
herent superposition generated by U disappears after tracing
out B (since 〈ψν ′ |ψν〉 = 0). Thus, interestingly, the energy
conservation intrinsically prohibits the generation of vertical
coherences whereas the generation of horizontal coherences
is allowed.

APPENDIX H: CONSERVATION LAWS

The first step to show the conservation laws is the com-
mutation of the global unitary evolution U with the operation
of global block-diagonalization. We denote by �HS+HB such
operation. We also denote by {εk}k the different energy levels
of the ensemble SB, and define

�k :=
∑

m,μ;em+Eμ=εk

πS
mπB

μ, (H1)

the projector onto the eigenspace of energy εk , where πS
m (πB

μ )
is itself the projector onto the eigenspace of energy em of S
(Eμ of B). Then, the global block-diagonalizing operation can
be expressed as

ρSB,t |BD = �HS+HBρSB,t =
∑

k

�kρSB,t�k. (H2)

Importantly, note that �HS+HB �= �HS �HB , where �HS de-
notes the local block-diagonalizing operations, �HS ρS,t =∑

m πS
mρS,tπ

S
m (and similarly for B). From these considera-

tions, one can conclude that U commutes with �HS+HB if
and only if U commutes with �k , for all k. Due to energy
conservation, we indeed have [U,�k] = 0, whereas in general
[U, πS

m] �= 0 and [U, πB
μ ] �= 0. Therefore, we obtain that U

commutes with �HS+HB while in general this is not true for
�HS and �HB . This leads to the following important identity,

S(ρSB,t f |BD ) = S(ρSB,ti |BD ) (H3)

(where S(ρ) := −Trρ ln ρ denotes the von Neumann en-
tropy). This equality implies in particular the global conser-
vation of vertical coherences,

�CSB
v = 0, (H4)

042220-14



NEGATIVE CONTRIBUTIONS TO ENTROPY PRODUCTION … PHYSICAL REVIEW A 102, 042220 (2020)

as announced in Eq. (34) of the main text. Furthermore, thanks
to the initial separability of S and B, we have

ρSB,ti |BD =
∑

k

�kρS,tiρB,ti�k

=
∑

k

∑
m,μ;em+Eμ=εk

∑
m′,μ′;em′ +Eμ′ =εk

πS
mρS,tiπ

S
m′

×πB
μρB,tiπ

B
μ′

=
∑

k

∑
m,μ;em+Eμ=εk

πS
mρS,tiπ

S
mπB

μρB,tiπ
B
μ

=
∑

m

∑
μ

πS
mρS,tiπ

S
mπB

μρB,tiπ
B
μ

= ρS,ti|BDρB,ti|BD (= ρS,ti|BDρB,ti ), (H5)

where we used πB
μρB,tiπ

B
μ′ = δμ,μ′πB

μρB,tiπ
B
μ since we assumed

that ρB,ti is a stationary state, [HB, ρB,ti ] = 0. Without this
condition, ρSB,ti |BD �= ρS,ti|BDρB,ti|BD . In other words, when any
of the two systems S and B is in a stationary state, the
global and local block-diagonalizing operations are identical,
�HS+HB = �HS �HB . This leads to

S(ρSB,t f |BD ) = S(ρSB,ti |BD ) = S(ρS,ti|BD ) + S(ρB,ti|BD ). (H6)

Note that one can prove similarly the following identity,
TrB�HS+HBρSB = �HS ρS , valid for any state ρSB. Together
with (H5) and the commutation of U and �HS+HB , one can
formally prove (G4) [corresponding to Eq. (29) of the main
text].

The above identity (H6) can be used to refine the conser-
vation law of vertical coherences. The final relative entropy of
vertical coherences of SB can be rewritten as

CSB
v (t f ) = S(ρSB,t f |BD ) − S(ρSB,t f )

= S(ρS,ti|BD ) + S(ρB,ti|BD ) − S(ρS,ti ) − S(ρB,ti )

= CS
v (ti ) + CB

v (ti )

= CS
v (ti ), (H7)

where we used (H6), the initial separability of S and B, and the
stationarity of the initial state of B, which implies CB

v (ti ) = 0.
Note that this result was already derived in Ref. [8]. It means
in particular that all the vertical coherences present initially in
ρS,ti end up in SR. This can be made even more precise: The
consumption of vertical coherences in S and in B is equal to
the final correlated vertical coherences,

−�CS
v − �CB

v = CSB
c,v(t f ), (H8)

where

CSB
c,v(t f ) := CSB

v (t f ) − CS
v (t f ) − CB

v (t f ) � 0 (H9)

quantifies the portion of vertical coherences contained in SB
due to correlations between S and B [69]. Equation (H8) is
obtained by subtracting CS

v (t f ) and CB
v (t f ) on both sides of

Eq. (H7).
Still based on (H6), a similar conservation law can be

obtained for horizontal coherences when adding contributions
from population convergence. The relative entropy of horizon-
tal coherences CSB

h (t f ) and the measure of distance DSB
th (t f ) to

a global thermal equilibrium state ρ th
SB(βB) are defined in the

same way as for S. Note that due to the energy conservation,
any global thermal state is a steady state of SB (valid indepen-
dently of the initial state of B). Then, we have

CSB
h (t f ) + DSB

th (t f )

= TrρSB,t f

[
ln ρSB,t f |BD − ln ρ th

SB(βB)
]

= −S(ρSB,t f |BD)−TrρSB,t f ln ρ th
SB(βB)

= −S(ρS,ti|BD ) − S(ρB,ti|BD ) − TrρSB,ti ln ρ th
SB(βB)

= −S(ρS,ti|BD ) − S(ρB,ti|BD ) − TrρS,ti ln ρ th
S (βB)

− TrρB,ti ln ρ th
B (βB)

= CS
h (ti ) + DS

th(ti) + CB
h (ti ) + DB

th(ti ). (H10)

Since S and B are initially uncorrelated, the identity (H10)
implies the following conservation law

�CSB
h + �DSB

th = 0. (H11)

Defining concepts of correlated horizontal coherences,

CSB
c,h(t ) := CSB

h (t ) − CS
h (t ) − CB

h (t f ) � 0, (H12)

and correlated population distance to the thermal equilibrium
state,

DSB
c,th(t ) := DSB

th (t ) − DS
th(t ) − DB

th(t ) � 0, (H13)

in a similar way as (H9), one can obtain a refined statement in
the same form as (H8),

−�CS
h −�CB

h −�DS
th−�DB

th = CSB
c,h(t f ) + DSB

c,th(t f ).

(H14)

The above identity means that the consumption of horizontal
coherences in S and B plus the population convergence to
the local equilibrium state is equal to the final correlated
horizontal coherences plus correlated distance. As a corol-
lary, horizontal coherences are not conserved, as expected.
Quite curiously, (H11) and (H14) can be established using
any global thermal state as steady state. Thus, even though
ρ th

S (βB) = TrBρ th
SB(βB) might not be an equilibrium state of S

for � (since � and its equilibrium states depend on the initial
state of B), still, the conservation laws hold.

Considering a situation analogous to Sec. IV C of the main
text, one can explicitly obtain a situation with −�DS

th < 0.
More precisely, one can take B initially in a thermal state
at inverse temperature βB and S initially in a state ρS,0 =
ρ th

S (βB) + χ composed of populations thermally distributed at
the same inverse temperature βB and χ containing horizontal
coherences (remembering that vertical coherences have no
effect here). Defining the entropy production from the ther-
mal equilibrium state ρ th

S (βB), one has initially DS
th(0) = 0,

whereas DS
th(t = +∞) > 0 since S gains (loses) energy if

the horizontal coherences contained in χ are such that c+ >

c− (c+ < c−); see Eq. (18) of the main text. Consequently,
−�DS

th < 0. Using the above conservation law (H11) (cor-
responding to Eq. (37) of the main text) one can also see
that the presence of initial horizontal coherences can lead
to −�DSB

th < 0, corresponding to a global divergence of the
populations from the thermal equilibrium distribution.

Finally, using (H11), we can show explicitly that the gen-
eration of horizontal coherences affect the energy exchanges.
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This can be seen as follows. Considering B in a thermal
state, an inverse temperature βB, and defining the population
convergence with respect to the global thermal state at inverse
temperature βB, we have the following identity: −�DSB

th =
−βBFSB

D . From the energy conservation and using (H11), one
can rewrite the final diagonal entropy as

S(ρSB,t f |D) = S(ρSB,ti |D) + �CSB
h . (H15)

Then, one can see that the final global diagonal entropy is
strictly increased in a scenario where horizontal coherences
are generated when compared to a situation where no horizon-
tal coherences is generated. It means that the final populations
(of S or B, or both) are necessarily altered by the generation of
horizontal coherences, implying that both the final energy and
the energy exchange are altered. Thus, through the conserva-
tion laws, one recovers the observation made in Refs. [21,28]:
Bath-induced coherences affect the energy exchanges.

APPENDIX I: EFFECTS IN THERMAL MACHINES
PERFORMANCES

In this paragraph, we look at a cyclic thermal machine with
a working medium S containing degenerate energy levels. The
working medium S is successively in contact with a cold bath
at temperature Tc and a hot bath at temperature Th. Because of
the degeneracy of S, the coupling with each bath might involve
degenerate transitions (see Fig. 2 of the main text), resulting
in coupled dynamics of the horizontal coherences and popu-
lations. As seen in the main text, this might lead to negative
contributions to the entropy production. Conversely, one can
imagine a situation where the coupling with the baths involves
no degenerate transitions (and therefore no negative contri-
bution to the entropy production). As a result, the two kinds
of dynamics might result in different entropy production (as,
for instance, in the illustration in Sec. IV A of the main text).
The aim of this paragraph is to compare the performances of
the “coherent” thermal machine (when horizontal coherences
and populations are coupled) to the performances of the “in-
coherent” thermal machine (when horizontal coherences and
populations are not coupled). To simplify the discussion, we
consider a simple Otto cycle [87,88] composed of the usual
succession of one adiabatic stroke, one isochoric stroke in
contact with the cold bath, one adiabatic stroke (which can be
the reverse of the first one), and finally one isochoric stroke
in contact with the hot bath. For the incoherent machine, we
denote by Qc, Qh, and � the heat exchanged per cycle with the
cold bath (i.e., during the isochore with the cold bath), the hot
bath, and the entropy production per cycle, respectively. For
the coherent one, we denote the corresponding quantities by
Q∗

c , Q∗
h, and �∗. During one full cycle, the entropy variation

�S of S is null and the second law can be expressed as

0 = �S = � + Qc

Tc
+ Qh

Th
. (I1)

Similarly, for the coherent machine, we have 0 = �S = �∗ +
Q∗

c
Tc

+ Q∗
h

Th
= 0. Then, assuming � �= �∗ (as a result of neg-

ative contributions to the entropy production) and defining
�Qc := Q∗

c − Qc and �Qh := Q∗
h − Qh, we have necessar-

ily �Qc�Qh �= 0. Considering the work extraction operating
mode of the machine, we denote by W = −Qc − Qh � 0
the work extracted per cycle, and by η = |W |

Qh
the associated

efficiency (for the incoherent machine). For the coherent ma-
chine, the corresponding quantities are denoted by W ∗ and η∗.

Even though �Qc�Qh �= 0, we might have W = W ∗. If so,
one can show that the efficiency is necessarily different. More
precisely, some simple manipulations give

η∗ = η + �Qh
W

QhQ∗
h

. (I2)

In particular, still assuming work extraction, we have η∗ > η

if and only if �∗ < �.
Conversely, even though �Qc�Qh �= 0, we might have

η = η∗. Similarly, we can show that such situation implies

|W ∗| = |W | +
(

1 + Qc

Qh

)
�Qh. (I3)

In particular, one has |W ∗| > |W | if and only if �∗ > �.
Then, we can draw the conclusion that any change in the

entropy production per cycle inevitably affects (positively or
negatively) the power or efficiency (or both) of the machine.
Therefore, the alteration of the entropy production described
throughout the paper can have important implications for ther-
mal machines. As an illustration, taking for S an ensemble
of spins, one can show that η∗ = η always holds and that
�∗ > � for adequately chosen values of Tc and Th. This
implies that |W ∗| > |W |, recovering the results of Ref. [21].
For bad choices of Tc and Th, �∗ < � and the extracted work
per cycle is degraded.

Note that this analysis fails for vertical coherences because
they break the cycle: If vertical coherences are introduced at
the beginning of the cycle, they are not recovered at the end
of the cycle (at least when considering adiabatic strokes). By
contrast, horizontal coherences do not need to be introduced;
they are induced by the bath through collective coupling (or
degenerate transitions). Considering more complex cycles by
introducing nonadiabatic strokes, vertical coherences (in the
eigenbasis of the instantaneous Hamiltonian of the working
medium) can be generated by the external driving [20], so
that one has the possibility to cyclically recover vertical co-
herences, and an analysis similar to the above one may apply.
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