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Magnetic-moment probability distribution of a quantum charged particle
in thermodynamic equilibrium

V. V. Dodonov * and A. V. Dodonov †

Instituto de Física, Universidade de Brasília, Caixa Postal 04455, CEP 70919-970 Brasília, DF, Brazil
and International Centre of Physics, University of Brasilia, 70297-400 Brasilia, Federal District, Brazil

(Received 19 June 2020; accepted 21 September 2020; published 16 October 2020)

We consider a quantum charged particle moving in the xy plane under the action of a uniform perpendicular
constant magnetic field, in the presence of a parabolic binding potential. The magnetic-moment operator has a
continuous spectrum, and its eigenfunctions in the momentum representation are expressed in terms of modified
Bessel functions. The probability distribution of the magnetic moment in the thermodynamic equilibrium state
is calculated. At zero temperature, it has a simple exponential form in the diamagnetic region, with a sharp
jump to zero at the origin. With an increase of temperature, a paramagnetic wing of the distribution becomes
more and more pronounced. In the high-temperature regime, the diamagnetic and paramagnetic wings of the
distribution have almost identical forms, described with a high precision by simple exponential functions with
very large extensions. Therefore, diamagnetic and paramagnetic contributions almost cancel each other. The
remaining non-zero diamagnetic value is due to a small asymmetry of the distribution nearby the origin, where
some nonexponential fine structure is observed. The total width of the distribution function strongly depends
on the strength of the binding potential. Strong fluctuations of the magnetic moment (described in terms of the
variance) are discovered in all temperature regimes.
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I. INTRODUCTION

The magnetic properties of (quasi-)free-charged particles
in the thermodynamic equilibrium state have attracted the
attention of many researchers for more than a century, since
Bohr understood that the diamagnetic effect due to the circular
motion of classical particles can be totally compensated by the
surface currents [1]. A more rigorous proof of the absence of
magnetism in classical thermodynamically equilibrium states
was given in the frameworks of the Hamiltonian mechanics
in the famous work by van Leeuwen [2]. The first calcula-
tions resulting in a nonzero mean magnetic moment in the
quantum equilibrium state of a free charged particle in a
homogeneous magnetic field were performed in the famous
paper by Landau [3]. However, he had used some “trick,” in
order to obtain the finite value of the statistical sum, despite
the infinite degeneracy of the quantized energy levels. Also,
he had confined himself with the case of a weak magnetic
field. A more rigorous derivation was given by Darwin [4],
who considered the charged particle confined by an isotropic
harmonic potential. Then, the infinite degeneracy is removed
and the motion of the particle becomes finite, so that the
statistical sum can be calculated without problems. After this
has been done, the limit transition to zero frequency of the
binding potential yields the following formula for the mean
magnetic moment of a spinless particle with mass M and
charge e in the homogeneous magnetic field B (we use the
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Gauss system of units),

M = μ
[
(μBβ )−1 − coth(μBβ )

]
, (1)

where μ = eh̄/(2Mc) is the Bohr magneton and β the
inverse temperature. In particular, M = −μ in the low-
temperature limit μBβ � 1, whereas M = −μ2Bβ/3 in the
high-temperature limit μBβ � 1, which was the result ob-
tained by Landau.

The Landau-Darwin problem continued to attract the at-
tention of numerous researchers during subsequent decades.
For example, Sondheimer and Wilson [5] showed how to
calculate the equilibrium statistical sum without any previous
knowledge of the energy spectrum, using the density matrix
formalism. The Wigner function was used for this purpose
in Refs. [6,7]. Feldman and Kahn [8] derived formula (1),
using the continuous basis of coherent states in a uniform
magnetic field, introduced by Malkin and Man’ko [9]. Other
applications of coherent states in a uniform magnetic field
were considered in Ref. [10]. For further developments of
the model of free electrons, bounded by a harmonic potential
and obeying the Fermi-Dirac statistics, one can consult, e.g.,
Refs. [11–13] and references therein. The relation between the
Fisher information and Landau diamagnetism was established
in Ref. [14]. Recently, a comparison of classical and quantum
approaches was made in Refs. [15,16].

The authors of the cited papers calculated the mean mag-
netization only, having in mind extrapolations to macroscopic
species, where fluctuations of thermodynamic quantities can
be neglected, as soon as the relative fluctuations of addi-
tive quantities decay as N−1/2 in ideal gases consisting of
N particles. However, fluctuations can be rather strong in
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mesoscopic systems. This fact was noticed and investigated,
e.g., in Refs. [11,17–19].

We consider a single-particle system, having in mind that
the properties of such systems can be verified nowadays ex-
perimentally in various electron or ion traps. Our initial goal
was to find an answer to the following question: Why is
the mean magnetic moment so small in the high-temperature
regime? The known thermodynamical answer is as follows.
At zero temperature, when the quantum system is pure, the
mean magnetic moment equals M = −∂E/∂B, where E is
the mean energy. Hence, the lowest Landau energy μB yields
M = −μ. But the high-temperature quantum state is highly
mixed, with a huge entropy. In this case, one must calculate
the derivative over the magnetic field not of the energy E , but
of the free energy F = E − S/β, so that the big value of the
product of entropy S by the absolute temperature β−1 almost
cancels the contribution of the total energy E .

In the following sections, we show the existence of another
answer, which can be considered as complementary to the
known ones. Namely, we demonstrate that the equilibrium
state is characterized by a wide magnetic-moment probability
distribution. This distribution is asymmetric with respect to
zero value in the low-temperature case. However, it becomes
extremely wide and almost symmetric in the high-temperature
regime. Therefore, the mean value of the magnetic moment
is small in the high-temperature case, because positive and
negative values of the moment almost compensate each other.
However, the fluctuations of the magnetic moment of a single
particle are very strong. This is the second main result of
our study.

II. EIGENSTATES OF THE HAMILTONIAN AND
MAGNETIC-MOMENT OPERATOR

To avoid problems with the normalization and degeneracy
of the energy levels, we assume, following Darwin [4], that
the particle motion is confined by means of the isotropic
harmonic potential V (x, y) = Mg2(x2 + y2)/2. Therefore, in
the presence of a magnetic field, directed along the z axis, the
motion in the xy plane is governed by the Hamiltonian

Ĥ = π̂2/(2M ) + Mg2
(
x2 + y2

)
/2, π = p − eA/c, (2)

where A(x, y) is the vector potential of the magnetic field.
We discard the motion along the magnetic field vector, since
this motion is independent from the motion in the xy plane
in the nonrelativistic approximation. In addition, we discard
the effects of spin, since they are also independent from the
orbital motion effects within the same approximation.

A. Energy spectrum and wave functions

The stationary Schrödinger equation Ĥψ = Eψ with
Hamiltonian (2) and A = B(−y, x)/2 was solved in polar co-
ordinates by Fock [20],

ψ̃nr m(r, ϕ) =
√

κ̃gnr!

π (nr + |m|)!
(
κ̃gr2

)|m|/2
L(|m|)

nr

(
κ̃gr2

)
× exp

(−κ̃gr2/2 + imϕ
)
, (3)

Enr m = h̄ωg(1 + |m| + 2nr ) − h̄ωm, (4)

where m = 0,±1,±2, . . ., nr = 0, 1, 2, . . .,

ωg =
√

ω2 + g2, κ̃g = Mωg/h̄.

Function L(α)
n (z) is the generalized Laguerre polynomial,

defined as [21,22]

L(α)
n (z) = 1

n!
ezz−α dn

dzn
(e−zzα+n).

We shall need the energy eigenfunctions in the momentum
space. The two-dimensional Fourier transform of function (3)
can be calculated with the aid of the known integral represen-
tation of the Bessel function [21,22],∫ 2π

0
dx exp[−iz cos(x) + imx] = (−i)|m|2πJ|m|(z),

and the integral (7.422.4) from Ref. [22],∫ ∞

0
xν+1e−βx2

L(ν)
n (αx2)Jν (xy)

= (β − α)nyν

(2β )ν+1βn
e−y2/(4β )L(ν)

n

(
αy2

4β(α − β

)
. (5)

The result is similar to (3), except for the phase factor,

ψnr m(p, ϕ) = (−i)|m|(−1)nr

√
κgnr!

π (nr + |m|)!
(
κgp2

)|m|/2

×L(|m|)
nr

(
κgp2

)
exp

(−κgp2/2 + imϕ
)
, (6)

where κg = (Mh̄ωg)−1 and p =
√

p2
x + p2

y.

B. Eigenstates of the magnetic-moment operator

To introduce the magnetic-moment operator, we use the
definition of the classical magnetic moment [23,24]

M = 1

2c

∫
dV [r × j]. (7)

Then, using the expression for the quantum probability current
density in the presence of a magnetic field,

j = ieh̄(ψ∇ψ∗ − ψ∗∇ψ )/(2m) − e2Aψ∗ψ/(mc), (8)

one can write the right-hand side of (7) as the mean value of
the operator

M̂ = (x̂π̂y − ŷπ̂x )e/(2mc). (9)

This form of the magnetic-moment operator was justified
from different points of view in Refs. [7,11,25–30]. Using the
“circular” gauge of the vector potential, A = B(−y, x)/2, we
can write

M̂ = [
x̂ p̂y − ŷ p̂x − Mω

(
x̂2 + ŷ2

)]
e/(2mc) ≡ μ�̂. (10)

Here, ω = eB/(2Mc) is the Larmor frequency, so that μB =
h̄ω. We assume that the direction of the magnetic field is
chosen in such a way that ω > 0. The spectrum of the dimen-
sionless operator �̂ is continuous. In order to avoid troubles
with delta functions in the coordinate representation, it seems
reasonable to look for eigenfunctions of �̂ in the momentum
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representation. Using the polar coordinates in the momentum
plane, px = p cos(ϕ), py = p sin(ϕ), we arrive at the equation[

−i
∂

∂ϕ
+ Mh̄ω

(
∂2

∂ p2
+ 1

p

∂

∂ p
+ 1

p2

∂2

∂ϕ2

)]
ψ = �ψ,

whose solutions are obviously expressed in terms of the
Bessel functions [21,22],

��,m(p, ϕ) = (κ/4π )1/2eimϕJ|m|(γm p), (11)

m = 0,±1,±2, . . . , γm =
√

κ (m − �), κ = (Mh̄ω)−1.

For each value of the discrete parameter m, the continuous
parameter � must satisfy the restriction −∞ < � � m. Oth-
erwise, the Bessel function will turn into the modified Bessel
function, which grows exponentially at p → ∞, so that it
cannot be normalized. Functions (11) satisfy the necessary
continuous normalization condition∫ 2π

0
dϕ

∫ ∞

0
pd p�∗

�,m��′,m′ = δmm′δ(� − �′), (12)

which can be verified (following the standard quantum me-
chanical scheme [31]) with the aid of the known asymptotics
of the Bessel function [21,22],

Jm(γ p) ≈ (πγ p/2)−1/2 cos(γ p − mπ/2 − π/4), p → ∞,

and the known formulas for the delta function,∫ ∞

−∞
exp[i(γ − γ ′)p]d p = 2πδ(γ − γ ′),

δ(ax) = |a|−1δ(x).

III. MAGNETIC-MOMENT PROBABILITY DISTRIBUTION
IN THE THERMAL STATES

A. The case of zero temperature

At zero temperature, the particle is in the pure ground
state with nr = m = 0, described by the wave function
ψ̃00(r) = √

κ̃g/π exp (−κ̃gr2/2). The corresponding wave
function in the momentum representation reads ψ00(p) =√

κg/π exp (−κgp2/2). The only nonzero projection of this
state on the magnetic-momentum eigenstates (11) exists for
m = 0 and � � 0,

A(�) = 〈��,0|ψ00〉 = √
κκg

∫ ∞

0
pd pJ0(γ0 p)e−κg p2/2

= √
q exp[−|�|q/2], q = ωg/ω.

Here, we used formula 7.7(24) from Ref. [21],∫ ∞

0
Jm(at )e−b2t2

tm+1dt = am exp [−a2/(4b2)]

(2b2)m+1
. (13)

Consequently, the magnetic-moment distribution function in
the ground state equals

P (�) ≡ |A(�)|2 =
{q exp (−|�|q), � � 0,

0, � > 0.
(14)

This function is correctly normalized:
∫ ∞
−∞ P (�)d� = 1. Its

mean value equals 〈�〉 = ∫ ∞
−∞ �P (�)d� = −ω/ωg, result-

ing in the magnetic-moment mean value M = −μ in the

limit case of g → 0. The distribution width is characterized
by the variance σ� ≡ 〈�2〉 − 〈�〉2. Since 〈�2〉 = 2(ω/ωg)2

for the distribution (14), the variance is rather big in this case:
σ� = (ω/ωg)2 = 〈�〉2.

B. Nonzero temperatures

The scalar product 〈��,m′ |ψnr m〉 is nonzero if m′ = m. The
corresponding integral again has the form (5). Thus, we obtain
the following magnetic-moment probability distribution in the
general Fock state,

Pnr m(�) = nr!q

(nr + |m|)!ξ
|m|
m e−ξm

[
L(|m|)

nr
(ξm)

]2
, (15)

where ξm = q(m − �) � 0. If � > m, then Pnr m(�) = 0.
The normalization

∫ m
−∞ Pnr m(�)d� = 1 is merely the stan-

dard normalization of the Laguerre polynomials: See formula
(8.980) in Ref. [22]. The magnetic-moment probability den-
sity in the equilibrium state can be calculated as

P (�) =
∑
nr ,m

Pnr m(�) exp (−βEnr m)/Z (β ), (16)

where Z (β ) = ∑
nr ,m

e−βEnr m is the statistical sum, which can
be easily calculated [4], due to the linear nature of the spec-
trum (4) (see also Refs. [7,32] for other approaches). Useful
formulas are

(2Z )−1 = cosh(ηg) − cosh(η) = 2 sinh(η+) sinh(η−), (17)

η = h̄βω, ηg = qη, η± = η(q ± 1)/2. (18)

The summation over nr in (16) can be performed with the aid
of formula (8.976.1) from Ref. [22], connecting the Laguerre
polynomials with the modified Bessel function Iα (z),

∞∑
n=0

n!znL(α)
n (x)L(α)

n (y)

�(n + α + 1)

= (xyz)−α/2

1 − z
exp

[
−z

x + y

1 − z

]
Iα

(
2
√

xyz

1 − z

)
. (19)

The result is

P (�) =
∑
m>�

Pm(�), (20)

Pm(�) = qG exp [mη − ξm coth(ηg)]I|m|

[
ξm

sinh(ηg)

]
, (21)

G = 2 sinh(η+) sinh(η−)/ sinh(ηg). (22)

Formula (21) holds for m > �, otherwise Pm(�) = 0. The
relative contribution of each term in the series (20) is given
by the integral Pm = ∫ m

−∞ Pm(�)d�, which can be calculated
with the aid of formula (6.611.4) from Ref. [22],

A0 =
∫ ∞

0
e−axIν (bx)dx =

(
a − √

a2 − b2
)ν

bν
√

a2 − b2
, (23)

so that

Pm = G exp [η(m − |m|q)]. (24)

We see a great asymmetry with respect to positive and neg-
ative values of the canonical angular momentum m in the

042216-3



V. V. DODONOV AND A. V. DODONOV PHYSICAL REVIEW A 102, 042216 (2020)

low-temperature case (η � 1), which almost disappears in
the high-temperature case η � 1. The total contributions of
positive and nonpositive values of m are given by simple sums,

P+ =
∞∑

m=1

Pm = exp(η) − exp(−ηg)

2 sinh (ηg)
, (25)

P− =
−∞∑
m=0

Pm = exp(ηg) − exp(η)

2 sinh (ηg)
. (26)

Therefore, we have the correct normalization

P+ + P− =
∫ ∞

−∞
P (�)d� = 1. (27)

IV. MEAN VALUES AND VARIANCES

To calculate the mean value 〈�〉 = ∫ ∞
−∞ �P (�)d�, we

need the integral

A1 =
∫ ∞

0
xe−axIν (bx)dx = −∂A0/∂a

=
(
a − √

a2 − b2
)ν

bν (a2 − b2)3/2

(
a + ν

√
a2 − b2

)
. (28)

Again, we can write 〈�〉 = ∑∞
m=−∞〈�〉m, with

〈�〉m = Pm{m − r[|m| + coth(ηg)]}, r = ω/ωg. (29)

Hence,

〈�〉 = ω− sinh(η+)

ωg sinh(η−) sinh(ηg)
− ω

ωg
coth(ηg)

− ω+ sinh(η−)

ωg sinh(η+) sinh(ηg)
, (30)

where ω± = (ωg ± ω)/2. This expression is another form of
the result obtained in Refs. [7,26,32] with the aid of the
density matrix formalism. It goes to the Darwin formula (1),
if g → 0.

To calculate the second-order mean value,

〈�2〉 =
∫ ∞

−∞
�2P (�)d� =

∞∑
m=−∞

〈�2〉m, (31)

we need the integral

A2 =
∫ ∞

0
x2e−axIν (bx)dx = −∂A1

∂a
=

(
a − √

a2 − b2
)ν

bν (a2 − b2)5/2

×[
3a

(
a + ν

√
a2 − b2

) + (
ν2 − 1

)(
a2 − b2

)]
. (32)

Then,

〈�2〉m = Pm
{
(m − r|m|)2 + r coth(ηg)(3r|m| − 2m)

+r2
[
3 coth2(ηg) − 1

]}
. (33)

Performing separate summations in (31) over positive and
negative values of m, we obtain

〈�2〉 = r2
[
3 coth2(ηg) − 1

] + [2 sinh(ηg)]−1

{
(1 − r)2

sinh2(η−)
D cosh(η−) sinh(η+) + (1 + r)2

sinh2(η+)
cosh(η+) sinh(η−)

+r coth(ηg)

[
(3r + 2)

sinh(η−)

sinh(η+)
+ (3r − 2)

sinh(η+)

sinh(η−)

]}
. (34)

The last term in this expression diverges for g → 0, when
η− ≈ ηg2/(4ω2) → 0. Therefore, we arrive at the formula

〈�2〉g→0 = 3 coth2(η) − 1 + 2

η2
+ 2ω2 coth(η)

g2η
. (35)

The variance σ� equals in this limit

σ� = 2 coth2(η) − 1 + 2

η2
+ 2 coth(η)

η

(
1 + ω2

g2

)
. (36)

At zero temperature (η = ∞), this formula yields the value
σ� = 1, in accordance with Sec. III A. Note, however, that the
simple relation η � 1 is not sufficient to say that the system
has achieved the zero-temperature regime: A stronger inequal-
ity η � (ω/g)2 must be satisfied. But the variance becomes
extremely large in the high-temperature limit,

σ� ≈ 2ω2/(g2η2), η � 1. (37)

V. NUMERICAL STUDY OF THE DISTRIBUTION
FUNCTION

Unfortunately, it seems that the series (20) cannot be cal-
culated analytically. Therefore, we had to perform numerical
calculations. Figures 1–3 show the function P (�) in the
logarithmic scale (with details in the usual scale) for η =
10, 1, 1/10, with ω/g = 5 and ω/g = 9.

We summed numerically the terms Pm(�) for m � 104,
which guaranteed the convergence of the sum. The modified
Bessel functions were generated via recurrence relations ei-
ther for In(z) or e−zIn(z) (when z � 1), using the Miller’s
algorithm to avoid overflows. For ω/g = 5, 9 the absolute
error in the normalization (27) was smaller than 10−4 and
7 × 10−3, respectively. Another figure of merit is the relative
error between the numeric value of 〈�2〉 and Eq. (34), found
to be smaller than 10−4 and 4 × 10−2 for ω/g = 5 and 9,
respectively.

We see that the upper parts of all three figures look quite
similar. However, a significant difference is in the horizontal
and vertical scales. A striking feature is the discontinuity at
� = 0. But the explanation is quite simple: When one goes
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FIG. 1. Function P (�) for η = 10.

from � = 0 to � > 0 in series (20), then the term with m = 0
disappears. Therefore, the jump in the probability distribution
equals exactly P0(0) = qG. The discontinuity of the deriva-
tive at � = 1 is connected with the disappearance of the
contribution of the term with m = 1, which is proportional
to the first modified Bessel function I1(z). The jumps of the
derivatives at small integral values � are even more pro-
nounced for small values of η, as one can see in Fig. 3 for
η = 1/10.

All three figures show the linear exponential decrease of
P (�), when |�| is not too small. For big values of η, the

FIG. 2. Function P (�) for η = 1.

FIG. 3. Function P (�) for η = 1/10.

coefficients of the left and right exponential functions are
different, as one can see clearly in Fig. 1. But if η � 1, then
the distribution becomes practically symmetrical, and it can be
described (outside the small initial region) by the approximate
formula

Pap(�) = (b/2) exp(−b|�|), b = gη/ω, (38)

where coefficient b is chosen in accordance with Eq. (37)
for 〈�2〉. Of course, the approximate formula (38) cannot
explain the small nonzero mean value 〈�〉, which is deter-
mined by the “fine structure” of P (�) nearby the origin. But
it shows that the width of the distribution is very large, being
proportional to b−1.

VI. CONCLUSION

Our results shed light on the properties of such an
intricate physical quantity as the magnetic moment of a quasi-
free-charged particle in a uniform magnetic field. We have
calculated eigenfunctions of the magnetic-moment operator in
the momentum representation, as well as their scalar products
with the energy eigenstates of an isotropic harmonic oscillator,
placed in the magnetic field, using the circular gauge of the
vector potential. Then, using the Boltzmann weights of energy
levels, we have succeeded to calculate the magnetic moment
probability distribution in the thermal state. This distribution
is totally asymmetric in the case of zero absolute temperature.
However, the asymmetry becomes weaker and weaker with
an increase in temperature, so that contributions of positive
and negative values of the magnetic moment practically can-
cel each other in the high-temperature case, resulting in the
small remaining mean magnetic moment, which is inversely
proportional to the absolute temperature. At the same time,
the contributions of the positive and negative wings of the
probability distribution to the mean square of the magnetic
moment do not cancel. This results in the huge variance of the
magnetic moment in the high-temperature case. Such a huge
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value is a consequence of an extremely large extension of the
distribution function. Moreover, this extension appears to be
very sensitive to the strength of the confining potential (and
its shape in the general case). This can be explained, qualita-
tively, by the nature of the magnetic-moment operator (10). It
is not proportional to the canonical angular momentum, but it
has the second part, describing the extension of the system
in the coordinate space. In a certain sense, this division in
two parts reflects the initial Bohr’s ideas concerning opposite
contributions of the “bulk” rotating currents (corresponding
to the angular momentum part Lz) and “surface” currents
(roughly described by the second term) to the total magnetic
moment (see, e.g., Ref. [33] about the qualitative description
of these two contributions).

In conclusion, let us rewrite formula (37) in terms of the
variance of the magnetic moment in the high-temperature
regime,

σM = 2μ2σ� = 1
2 (Mcgβ/e)−2. (39)

It does not contain the Planck’s constant (nor the magnetic
field B). This strong result causes us to conclude that the clas-
sical limit of the equilibrium magnetic properties of charged
particles in the high-temperature case is not so simple as,
probably, it was thought before. Namely, not all magnetism
disappears in this limit, but its thermodynamic mean value
only, while huge fluctuations of the magnetic moment survive
even if h̄ → 0. Perhaps it would be interesting to verify our
results in experiments with single electrons or ions in traps.
In addition, it could be interesting to generalize our results
to the case of a Fermi-Dirac probability distribution (instead
of the Boltzmann one) and to the case of anisotropic binding
potentials.
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