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Continuous spontaneous localization reduction rate for rigid bodies
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In the context of spontaneous wave function collapse models, we investigate the properties of the continuous
spontaneous localization (CSL) collapse rate for rigid bodies in a superposition of two states located at different
places. By exploiting the Euler-Maclaurin formula, we show that for standard matter the rate for a continuous
mass distribution accurately reproduces the exact rate (i.e., the one for a discrete distribution). We compare the
exact rate with previous estimates in the literature and we asses their validity. We find that the reduction rate
displays a peculiar mass density difference effect, which we investigate and describe in detail. We show that the
recently proposed layering effect is a consequence of the mass density difference effect.
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I. INTRODUCTION

Spontaneous collapse models predict a breakdown of the
superposition principle in the macroscopic regime, though
retaining quantum properties for microscopic systems [1,2].
These models are based on a nonlinear and stochastic mod-
ification of the Schrödinger equation which gives very tiny
deviations from standard quantum theory for microscopic
systems, which become stronger for macroscopic objects,
eventually departing from quantum features and recovering
classical dynamics. The most studied collapse model is the
mass-proportional continuous spontaneous localization (CSL)
model [3,4], which is characterized by two parameters: the
collapse rate λ and the localization distance rC . Since the CSL
model (like all collapse models) makes different predictions
from quantum mechanics, it can be tested against it, allowing
to bound its parameters. In recent years experimental interest
has increased in this direction, and a steady improvement on
bounding its parameters has been achieved [5–12].

Previous investigations found that the CSL effects on the
wave functions of rigid bodies display an important contri-
bution from the geometry of the object [13–15]. However,
how exactly the CSL collapse rate depends on the geometry
of the body and on the superposition distance has not been
fully analyzed. Furthermore, in the literature a continuous
mass distribution is often implicitly assumed, but the validity
of this assumption has been marginally investigated. Indeed,
since the mass of a body is concentrated in the nucleons and
these have a negligible dimension, the exact mass distribution
is a lattice of pointlike masses. This paper aims at clarifying
these issues, providing a complete analysis of the properties
of the CSL collapse rate for the wave functions of rigid bodies
in superpositions of two states located at different places. In
the following we will be speaking of a body collapse rate,
always meaning that the rate refers to the collapse of the wave
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function. We will mainly work in the position space, denoting
space vectors with u and v in order to avoid confusion with
the spatial components of each vector, denoted by (x, y, z).
Since calculations in the momentum space are nonetheless
instructive, we report them in Appendix A. In our estimates
we make use of the following values for the CSL parameters:
rC = 10−7 m and λ = 10−8 s−1 [16].

The paper is organized as follows: In Sec. II we review
the literature on the CSL collapse rate and we discuss the
estimates proposed by Ghirardi, Pearle, and Rimini (�GPR) [4]
and Adler (�A) [16]. In Sec. III we investigate the conditions
under which the exact CSL reduction rate (�D), i.e., the one
for a discrete mass distribution, is accurately approximated
by the rate for a continuous mass distribution (�C). We find
that for standard matter such an approximation is always very
accurate; therefore in Sec. IV we analyze the properties �C,
and we compare it with �GPR and �A. We further discuss the
mass difference effect, and we show that this is a peculiar
feature of continuous mass distributions, which for discrete
distributions takes place only under special conditions. In
Sec. V we consider an object made of layers of different mass
densities and show that the recently proposed layering effect
is a consequence of the mass difference effect. In Sec. VI we
eventually draw our conclusions.

II. LITERATURE ON THE CSL COLLAPSE RATE

The master equation describing the evolution of the density
matrix according to the CSL model in the position space reads
[1,2,4]

d

dt
ρ̂(t ) = − i

h̄
[Ĥ , ρ̂(t )] − λ

2π3/2r3
Cm2

N

∫
d3u

×
∫

d3v e
− (u−v)2

4r2
C [μ̂(u), [μ̂(v), ρ̂(t )]], (1)

where Ĥ is the free Hamiltonian and rC is a parameter of the
model. For N pointlike particles the mass density operator
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μ̂(u) is

μ̂(u) ≡
N∑
i

mi δ(u − q̂i ), (2)

where mi is the ith particle mass and q̂i its position operator.
The center of mass (c.o.m.) master equation can be obtained
by replacing Eq. (2) in Eq. (1) and rewriting each particle
position operator in terms of the c.o.m. (Q̂) and relative (r̂i)
position operators: q̂i = Q̂ + r̂i. Under the assumption of a
rigid body, according to which the relative coordinates are
sharply localized (with respect to rC) around the classical
positions ri, i.e., 〈(r̂i − ri )2〉 � rC , one finds

d

dt
ρ̂CM(t ) = − i

h̄
[ĤCM, ρ̂CM(t )] − λ

2π3/2r3
C

N∑
i, j=1

mimj

×
∫

d3u
[
e
− (Q̂+ri−u)2

2r2
C ,

[
e
− (Q̂+r j −u)2

2r2
C , ρ̂CM(t )

]]
,

(3)

where ρ̂CM and ĤCM respectively denote the density matrix
and the Hamiltonian of the center of mass. While Eq. (1)
describes the evolution of the whole body (i.e., of all its
particles), Eq. (3) describes the evolution of the c.o.m. only.

Most often in experimental situations the displacements �

involved are such that � � rC . Under this limit it is possible
to expand the master equation (3) over Q̂ and rewrite it as
follows [17]:

d

dt
ρ̂CM(t ) = − i

h̄
[ĤCM, ρ̂CM(t )]

−
∑
α,β

ηαβ[Q̂α, [Q̂β, ρ̂CM(t )]], (4)

where α, β = x, y, z denote the vector components, and the
coefficients ηαβ read

ηαα = λ

8r4
Cm2

N

N∑
i, j=1

mimje
− (ri−r j )2

4r2
C

[
2r2

C − (
rα

i − rα
j

)2]
, (5)

ηαβ = λ

8r4
Cm2

N

N∑
i, j=1

mimje
− (ri−r j )2

4r2
C

[(
rα

i − rα
j

) (
rβ

i − rβ
j

)]
. (6)

These diffusion coefficients are determined by the geome-
try of the body and for simple geometries can be computed
exactly [13–15]. In the literature, the diffusion coefficients
are most often estimated in the momentum space [9,13,15,18]
(see Appendix A).

Coming back to Eq. (1), we introduce the vector |qL〉,
where qL = {qL

i }N
i=1 is the set of particle positions qL

i =
(xL

i , yL
i , zL

i ), and we focus on the superposition |ψ〉 = (|ψL〉 +
|ψR〉)/

√
2, where |ψL〉 (|ψR〉) is a very well-localized wave

function around the position L (R). Since we are interested to
the collapse properties of the body, we consider the evolution
of the off-diagonal elements of the density matrix associated
to |ψ〉. We thus neglect the free evolution, and we take the
matrix element 〈qL| · |qR〉 of Eq. (1), obtaining

〈qL|ρ̂(t )|qR〉 = e−�(qL,qR ) t 〈qL|ρ̂(0)|qR〉, (7)

with

�(qL, qR) = λ

2m2
N

∫
d3u

∫
d3v e

− (u−v)2

4r2
C

× (μL(u) − μR(u))(μL(v) − μR(v)), (8)

where μL(u) ≡ ∑N
i mi δ(u − qL

i ) [a similar definition holds
for μR(u)]. We thus see that the collapse rate �(qL, qR) de-
pends on the specific mass distributions μL(u), μR(u) and in
general needs to be computed case by case. In the following
we will drop the explicit dependence on the sets of positions
qL, qR and denote the reduction rate simply by �. We will fur-
ther assume the vector |qR〉 to be a rigid displacement of |qL〉
by a vector �, i.e., that the ith position of the state |qR〉 is qR

i =
qL

i + �. In order to simplify the treatment, we will consider a
displacement oriented in the z direction: � = (0, 0,�). The
extension of our results to a general � is straightforward.
Furthermore, one can show that the total reduction rate defined
in Eq. (8) coincides with the c.o.m. reduction rate: taking the
matrix element 〈QL| · |QR〉 of the c.o.m. master equation (3)
(where |QR〉 is a rigid displacement by an amount � of |QL〉)
leads to the desired result. Equation (8) is the main formula of
the paper, and it will be used to calculate the reduction rate of
rigid bodies for different mass distributions. For the following
discussion, it is important to stress that the double integral in
Eq. (8) measures the correlation of the difference of the mass
distributions over a Gaussian distribution with spread

√
2rC .

This feature is a direct consequence of the double commutator
displayed by the master equation (1) and, as we will see, plays
a crucial role in defining the properties of the collapse rate.

A first estimate of the c.o.m. collapse rate was provided
by Ghirardi et al. [4], who considered a homogeneous mass
density distribution in the limit rC → 0, that corresponds to an
extremely sharped localization Gaussian (essentially a Dirac
δ). They found

�GPR = 6
√

π λ n NOUT, (9)

where n is the number of nucleons contained by a sphere of
radius rC . NOUT is the number of nucleons in the volume of the
body in a state |QL〉 that do not lie in the volume when the state
is |QR〉. We remark that the limit rC → 0 essentially coincides
with the requirement that both � and the body dimension must
be much larger than rC .

Later, Adler considered a body with discrete mass distribu-
tion and a displacement � such that the states do not overlap
(“large superposition”). He showed that the nucleons in a
volume of size � rC contribute quadratically to the rate, while
volumes distant � rC from each other contribute linearly [16].
He then ideally divided the considered body in N spheres
of radius rC , each containing n nucleons (NTOT = n N being
the total number of nucleons in the body), and evaluated the
collapse rate as

�A = λ n2N

{
�2

2r2
C

if � � rC

1 if � � rC
. (10)

We remark that this idealized division of the body (N spheres
of radius rC close to each other) does not meet Adler’s as-
sumptions (volumes of size � rC , distant from each other
� rC), and thus Eq. (10) should be considered as an estimate
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TABLE I. Regimes of validity of �GPR and �A in terms of body
size (R), superposition distance (�), and localization distance (rC).
�GPR is defined for R and � both much larger than rC , and for any
ratio between R and �. �A is defined for � much larger or much
smaller than rC , and for any R, provided that � > 2R.

R vs rC � vs rC R vs �

�GPR R � rC � � rC any R/�

�A any R/rC � � rC or � � rC � > 2R

of the rate. We thus see that �GPR takes into account the mass
density difference between the two states of the superposition
for which the rate is evaluated. This is true also for �A, but
this is less evident since this rate is defined only for large
superpositions, in which case the mass density difference co-
incides with the mass density of the body. As we will see, the
mass density difference plays an important role for correctly
evaluating the CSL collapse rate. The regimes of validity of
�GPR and �A are summarized in Table I.

III. DISCRETE VS CONTINUOUS MASS DISTRIBUTION

The mass of a body is mainly concentrated in the nuclei,
so its mass density is a discrete distribution of spheres of
nuclear size. Since nuclei are extremely small with respect
to other distances involved in the collapse process, the mass
distribution can be considered as discrete, thus explaining the
definition in Eq. (2). Remembering that qR

i = qL
i + �, one

finds that the collapse rate of Eq. (8) for such a discrete mass
distribution becomes

�D = λ

m2
N

N∑
i, j=1

mimj
(
e
− (qi−q j )2

4r2
C − e

− (qi−q j −�)2

4r2
C

)
, (11)

where we have dropped the superscript L for notational con-
venience. In the literature the collapse rate is often calculated
by relaxing the definition (2) and by implicitly assuming a
continuous mass distribution [13–15], although the range of
validity of this assumption has never been investigated. For a
continuous mass distribution Eq. (8) becomes

�C = λ

m2
N

∫
d3u

∫
d3vμ(u)μ(v)

(
e
− (u−v)2

4r2
C − e

− (u−v−�)2

4r2
C

)
,

(12)
which in the limit of small displacement � � rC reduces to

�C = λ

m2
N

�2

4r2
C

∫
d3u

∫
d3vμ(u)μ(v)

×
[

1 − (uz − vz )2

2r2
C

]
e
− (u−v)2

4r2
C

≡ �2ηzz, (13)

where ηzz is simply the continuous version of Eq. (5) for
α = β = z. Obviously, if one replaces the discrete mass dis-
tribution μ(u) = ∑

i mi δ(u − qi ) in Eq. (12) one recovers
Eq. (11).

In order to investigate the validity of the “continuous mass
density” assumption, we start from �D and we consider a
cuboidal body of sides Lx, Ly, Lz, which we model as a cubic

crystal of lattice constant l , with NS sites each having an atom
with nA nucleons. This geometry is particularly convenient
for two reasons: it allows one to simplify significantly the
sums in Eq. (11) (the square distance between two sites is
always a multiple of l2), and more importantly, it allows one to
exploit the Euler-Maclaurin (EM) formula [19–22] to estimate
the error that is made when approximating a discrete sum
by an integral. For a generic continuous function f (x) with
a (2p + 1)-th continuous derivative, the EM formula reads

N∑
i=1

f (i) =
∫ N

0
dx f (x) + 1

2
[ f (N ) − f (0)]

+
p∑

k=1

B2k

2k!

[
f (2k−1)(N ) − f (2k−1)(0)

] + Rp, (14)

where Bk is the kth Bernoulli number and f (k) is the kth
derivative of f (x). The value of p sets the order of approxima-
tion of the error estimate and can be chosen in such a way to
minimize the remainder Rp. We refer the reader to Appendix B
for a more mathematical statement of the formula. In order to
apply this formula to �D, we decompose the double sum of
Eq. (11) in a product of three double sums, two for each spatial
direction. Equation (11) can thus be rewritten as follows:

�D = λn2
A

(
Nx∑

ix, jx=1

e
− l2 (ix− jx )2

4r2
C

)⎛
⎝ Ny∑

iy, jy=1

e
− l2 (iy− jy )2

4r2
C

⎞
⎠

×
(

Nz∑
iz, jz=1

e
− l2 (iz− jz )2

4r2
C − e

− l2 (iz− jz−δ)2

4r2
C

)
, (15)

where δ = �/l , Nα = Lα/l (α = x, y, z) is the number of sites
in each direction, and

∏
α Nα = NS. Although the original EM

formula involves single sums, it is possible to extend it to
double sums, as shown in Appendix B. At lowest order of
the EM formula, one can show that the second term of the
double sum in the z direction can be approximated by a double
integral as follows:

Nz∑
iz, jz=1

e
− l2 (iz− jz−δ)2

4r2
C = N2

z g�(Lz )

+ 1

3

(
e
− �2

4r2
C − 1

2
e
− (Lz−�)2

4r2
C − 1

2
e
− (Lz+�)2

4r2
C

)
+ O

(
l2

2r2
C

)
, (16)

where we have introduced the function

g�(Lz ) ≡ 1

L2
z

∫ Lz

0
duz

∫ Lz

0
dvz e

− (uz−vz−�)2

4r2
C . (17)

The term O(l2/2r2
C ) denotes the fact that the contributions

coming from Eq. (14) not displayed in Eq. (16) are at least
of the order l2/2r2

C (see Appendix B for a more detailed
discussion). Working with a cuboid also has the advantage that
Eq. (17) can be integrated exactly, leading to

g�(Lz ) = 1

2
g(Lz − �) + 1

2
g(Lz + �) − g(�), (18)
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with

g(x) ≡ g� = 0(x) = 4r2
C

x2

(
e
− x2

4r2
C − 1 + √

π
x

2rC
erf

[
x

2rC

])
.

(19)

All other double sums contributing to �D can be rewritten as
double integrals simply by setting � = 0 in Eq. (16). We re-
place Eq. (16), together with the similar expressions obtained
for the series in the x and y directions, in Eq. (15), obtaining

�D = λ N2
TOT g(Lx )g(Ly)[g(Lz ) − g�(Lz )] + E, (20)

where NTOT = nA NS is the total number of nucleons in the
body, and E collects all the remaining terms of the product of
the three double series. One can easily recognize that the first
term of the right-hand side of Eq. (20) is nothing but Eq. (12)
for a cuboidal homogeneous mass distribution with density
� = NTOT mN/(LxLyLz ), i.e.,

�C = λ N2
TOT g(Lx )g(Ly)[g(Lz ) − g�(Lz )]. (21)

We can thus rewrite Eq. (20) as follows:

�D = �C + E, (22)

where E can be understood as the error made when approx-
imating �D with �C. In order to measure how good such an
approximation is, we introduce the relative error ER = E/�C

and we estimate it for two different experimental scenarios:
� � rC and Lα � rC , relevant for noninterferometric exper-
iments (typical resonator size is of the order of 10−5 m [9]);
� � rC and Lα � rC , relevant for molecular interferometry
(typical macromolecule size is of the order of 10−9 m [23]).
In the first case, one can show that the leading contribution to
the error is

E = N2
x g(Lx ) N2

y g(Ly)
�2

12 r2
C

+ O

(
Lx rC �2

l4

)
, (23)

where for simplicity we have set Ly = Lx, and the relative
error is

ER = l2

6 r2
C

+ O

(
l2

rC Lx

)
. (24)

We thus see that the accuracy of the approximation (22) de-
pends only on the ratio l/rC . A similar result is obtained in
the case Lα � rC : the leading contribution to the error is

E = L2
x

6 r2
C

N2
x g(Lx ) N2

z [g(Lz ) − g�(Lz )] + O

(
L2

x L2
y L2

z �2

r6
C l2

)
,

(25)

and the relative error becomes

ER = l2

3 r2
C

+ O

(
l4

r4
C

)
. (26)

We thus see that also when the number of nucleons involved
is very small, the accuracy of the description given by �C

depends only on the ratio l/rC . Accordingly, �C accurately
approximates �D for any l �

√
2rC , i.e., whenever the last

term of Eq. (16) is negligible. For a standard piece of matter
with l = 10−10 m, �C gives an extremely precise description
of the exact reduction rate. However, there are experimental

situations, e.g., with cold atoms [24–26], where the average
distance among particles can be larger than

√
2rC . As previ-

ously mentioned, Eq. (16) clearly shows that in this case the
description provided by �C is not accurate, and one needs to
compute �D.

Physically, we can understand the fact that �C accurately
approximates �D only for l �

√
2rC as follows: The reduc-

tion rate �D in its form (15) can be understood as if there
is a Gaussian function of width

√
2rC sitting at each parti-

cle’s position. The discrete mass distribution is thus “spread”
by the Gaussians over a distance

√
2rC . Whenever the dis-

tance among the particles is smaller than
√

2rC , the Gaussian
significantly overlaps and the mass distribution results are
effectively continuous. When l >

√
2rC the Gaussians essen-

tially do not overlap and the continuous picture fails. In the
light of the above results, in what follows we will consider �C

for evaluating the collapse rate.

IV. PROPERTIES OF THE CSL COLLAPSE RATE

In this section we investigate in detail the features of the
reduction rate for bodies with cuboidal geometry. It is clear
from the definition (8) that the collapse rate depends on the
difference of the mass densities of the two states onto which
the rate is evaluated. However, how this practically influences
the behavior of the reduction rate has not been investigated.
We start our analysis by considering a homogeneous cubic
body of side L, and we compare the exact reduction rate �C of
Eq. (21) with the estimates �GPR and �A of Eqs. (9) and (10)
respectively. These rates are represented by solid lines in their
regime of validity (see Table I); dashed lines denote their func-
tional dependence on L/rC outside their regime of validity.
Figure 1 displays these rates as a function of L for two values
of displacement: � = 10−3 rC (top panel) and � = 103 rC

(bottom panel). We first observe that the rate grows with L:
the larger the object, the more mass comes into play, the faster
the collapse. �C (red line) displays a change of slope at around
L 	 √

2 rC . This is due to the fact that when L >
√

2 rC the
collapse Gaussian gives smaller contributions and the rate
grows slower. A further decrease of slope is displayed in
the bottom panel for L = �. This is where the states start
overlapping and less mass contributes to the rate. A detailed
explanation of these behaviors is given in Sec. VI A.

In the top panel one sees that �A (dashed blue line) gives
a good approximation of the rate for lower values of L, while
for larger L it grows faster than �C, eventually departing from
it. Thus the larger the object the worse the approximation
given by �A. This is expected because for values of L larger
than � the states overlap, while �A does not hold in this
regime. We recall that the definition of �GPR holds only for
� � rC , thus not for the value of � used in the top panel of
Fig. 1. We show it anyway because �GPR (dashed green line)
grasps the correct asymptotic behavior of �C. We will come
back on this issue later.

When � is much larger than rC (bottom panel), �A gives a
good approximation of �C up to L 	 rC , and it has an offset
of about two orders of magnitude for rC � L � �. For larger
values of L, �A departs more and more from �C, but this is not
an issue because �A is not applicable in this regime (dashed
line). �GPR instead gives a good approximation of the exact
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FIG. 1. Log-log plot of the reduction rate (s−1) of a cube as a
function of the side L in units of rC for � = 10−3 rC (top panel) and
� = 103 rC (bottom panel). The lines correspond to exact reduction
rate �C of Eq. (21) (red line), �GPR of Eq. (9) (green line), and
�A of Eq. (10) (blue line). These rates are represented by solid
lines in their regime of validity; dashed lines denote their functional
dependence on L/rC outside their regime of validity. Body density
is 1030 nucleons/m3, rC = 10−7 m, and λ = 10−8 s−1. Yellow square
represents the state |qL〉, blue square represents |qR〉. In the top panel,
the range of L is such that the two states always overlap. In the
bottom panel, the dashed line separates the region where the states
do not overlap (left) from the region where they do so (right); the red
line overlaps with the green line for L/rc � 10 and with the blue
line for L/rc � 1. In both panels the change of slope of �C (red
line) at around L 	 √

2 rC is due to the fact that when L is larger
than this value the collapse Gaussian gives smaller contributions (see
Sec. VI A for further discussion).

rate when the body size is L � rC (the only range where
�GPR is defined). We remark that, in both panels, the actual
distances of �GPR and �A from �C depend on the values of �

and of the mass density.
Let us now focus on the reduction rate of a cuboidal body

with a square face Lx = Ly = d and length Lz = L. Figure 2
compares �C, �GPR, and �A as a function of the cuboid length
L for � = 10−3 rC (top panel) and � = 103 rC (bottom panel).
We first observe that the exact rate �C (red line) displays a
remarkably different behavior than the one for a cubic body
(Fig. 1). While the reduction rate for the cube grows with
the length of its side, that for the cuboid saturates to a con-
stant value, no matter how long the cuboid is, provided that
L � 3

√
2 rC (see Fig. 4 for further discussion). The top panel

FIG. 2. Reduction rate (s−1) of a cuboidal body as a function
of its length L in units of rC for � = 10−3 rC (top panel) and
� = 103 rC (bottom panel). The lines correspond to exact reduction
rate �C of Eq. (21) (red line), �GPR of Eq. (9) (green line), and
�A of Eq. (10) (blue line). These rates are represented by solid
lines in their regime of validity; dashed lines denote their functional
dependence on L/rC outside their regime of validity. In the top panel
�GPR has been divided by 104 in order to fit the plot. Body density
is 1030 nucleons/m3, rC = 10−7 m, λ = 10−8 s−1, and d = 10 rC .
The yellow rectangle represents the state |qL〉, the blue rectangle
represents |qR〉. In the top panel, the range of L is such that the two
states always overlap. In the bottom panel the dashed line separates
the region where the states do not overlap (left) from the region where
they do so (right). A detailed explanation of the behavior of �C (red
line) is given in Fig. 4.

shows that both �GPR (dashed green line) and �A (dashed blue
line) are far from �C (red line). We recall that neither Eq. (9)
for �GPR nor Eq. (10) for �A are valid in the considered range
of values for � and L. In the bottom panel �GPR (green line)
overestimates the exact rate, while �A (blue line) underesti-
mates it (for L � �). While �GPR saturates to a constant value
like �C, �A eventually departs from �C for large values of L.
This is again explained by the fact that the definition of �A

does not hold for L > �.

A. Mass density difference effect

Although the saturation of �C might seem surprising, its
origin can be understood by investigating the mathematical
properties of the collapse rate. A first important remark is
that the collapse rate depends on the difference of the mass
distributions of the two states onto which the rate is evaluated,
as clearly displayed by the definition (8). This is a direct
consequence of the double commutator in the CSL master
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FIG. 3. Physical explanation of the mass density difference be-
havior. The yellow cuboid represents the state |qL〉, and the blue
cuboid represents |qR〉. In the region where the two states overlap
(left figure) the mass density difference is zero. The bottom figure
shows the mass regions that actually contribute towards the collapse
rate, which corresponds to a cuboid of length � with superposition
distance L.

equation (1). The mass density difference effect was first
discussed, with a different terminology, by Diosi in [29].

The mass density difference effect is taken into account by
the definition of �GPR in Eq. (9), which indeed displays the
correct asymptotic behavior both in Figs. 1 and 2 (green line),
also in the regime � � rC where it is not defined. On the
other side, �A is defined only where the states do not overlap,
i.e., it considers only the total mass of the body. This explains
why for L > � (where the states overlap) �A keeps growing
linearly with L (blue line), thus diverging from �C.

FIG. 4. Physical explanation of the cuboid reduction rate. Top:
�C for a cuboidal body as a function of its length in units of rC

(red line in the top panel of Fig. 2). Bottom: States contributing to
the collapse rate in the respective regimes. The yellow rectangle
corresponds to |qL〉, the blue rectangle to |qR〉. The region where
the two states overlap does not contribute because the mass density
difference is zero (see Fig. 3).

In order to show that the dependence on the mass den-
sity difference is responsible for the saturation of the rate
displayed in Fig. 2, we consider Eq. (21) and we isolate
the integrals in the direction of displacement, i.e., the term
g(Lz ) − g�(Lz ). By observing that the function g(x) defined
in Eq. (19) is even, one can easily check that

g(Lz ) − g�(Lz ) = g(�) − gLz (�). (27)

The important consequence of this relation is that we can have
two equivalent interpretations of the reduction rate in Eq. (21),
which can be understood either as given by the superposition
of two bodies of length Lz at distance �, or equivalently,
as given by the superposition of two bodies of length � at
distance Lz. Interestingly, a relation equivalent to Eq. (27) can
be proven for a discrete mass distribution, i.e. for the series
in the z direction of �D in Eq. (15). Figure 3 gives a physical
explanation of Eq. (27). When � < Lz, in the region where
the two states overlap the mass density difference is zero; thus
the effective contribution to the rate is the same as that of
two bodies of width � at distance Lz. As a consequence, in
the region Lz � rC , even if Lz grows this contribution to the
collapse rate stays constant because it depends only on the
slice of width �. This fact is manifest in the cuboidal collapse
rate of Fig. 2, because in Eq. (21) the term g(Lz ) − g�(Lz ) of
�C is multiplied by a constant factor g(d )2. Conversely, in the
reduction rate for a cubic body this behavior is hidden by the
fact that the term g(L)2 in �C grows with L.

We are now ready to give a physical interpretation of �C

by analyzing the red line in the top panel of Fig. 2 in light
of Eq. (12). We distinguish three regimes (Fig. 4). (a) L �
� � rC : The cuboid length L is smaller than the superposition
distance �, and thus the mass density difference effect does
not take place. Since the distance � is much smaller than
the variance of the collapse Gaussian (

√
2 rC), the Gaussian is

essentially flat in this region and the rate grows quadratically
with L. Nonetheless, L is very small in this region; only a tiny
amount of mass is involved in the collapse process and the
reduction rate is very small. (b) � � L � 3

√
2rC : The cuboid

length L is larger than the superposition distance �. The mass
density difference effect takes place, and thus effectively, the
cuboid length is fixed (�) and the superposition distance
changes (L). The rate grows because the collapse Gaussian
correlates the two terms of the superposition. This happens
as long as L is smaller than (about) three standard deviations
(3

√
2rC). The larger the L, the smaller the contribution of

the collapse Gaussian, which explains the flattening of the
curve. (c) L � 3

√
2rC : Also in this region the mass density

difference effect takes place. The cuboid length is �, and the
superposition distance is L. This is larger than the collapse
Gaussian, which in this region is essentially zero. Accord-
ingly, no further contribution is added to the rate, which thus
stays constant.

Another consequence of the mass density difference effect
is displayed in Fig. 5, which shows the collapse rate for a
cuboid of fixed dimension (L = 20 rC , d = 10 rC) as a func-
tion of the displacement �. We first observe that �C displays
the same behavior as in Figs. 2 and 4. This is explained by the
symmetry (27), according to which the roles of � and L can
be interchanged. The reduction rate grows with �, because
the region where the states overlap decreases and more mass
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FIG. 5. Reduction rate (s−1) of a cuboidal body of fixed length
L = 20 rC as a function of the displacement � in units of rC . The
lines correspond to exact reduction rate �C of Eq. (21) (red line),
�GPR of Eq. (9) (green line), and �A of Eq. (10) (blue line). These
rates are represented by solid lines in their regime of validity; dashed
lines denote their functional dependence on �/rC outside their
regime of validity. Body density is 1030 nucleons/m3, rC = 10−7 m,
λ = 10−8 s−1, d = 10 rC . The yellow rectangle represents the state
|qL〉, and the blue rectangle represents |qR〉. The dashed line separates
the region where the states do overlap (� � L) from the region where
they do not (� > L).

contributes to the rate. When the displacement exceeds the
body length (� > L), the rate stays constant because it is pro-
portional to the total mass of the body (no overlap between the
states). Both �GPR (defined for �/rC � 1) and �A (defined for
� > L) well agree with �C (besides the numerical factor).

To further understand the meaning of the mass density
difference effect, it is worthwhile to go back to the results of
Sec. III and investigate it for a discrete mass distribution. We
recall that when the lattice distance is larger than

√
2rC , the

continuous mass approximation is not valid and one needs to
use �D in place of �C (see Sec. III and Appendix B). Figure 6
displays the collapse rate for a cuboidal body with lattice
constant l = 102 rC , side d = 102 rC , and length L = 103 rC

as a function of the displacement �. The range of � is chosen

FIG. 6. Reduction rate �D (s−1, black solid line) as a function
of the displacement � in units of rC . The cuboid is a body of side
d = 102 rC , length L = 103 rC , and lattice constant l = 102 rC . The
red dashed line passes through the local minima of �D. Body density
is 1015 nucleons/m3, rC = 10−7 m, λ = 10−8 s−1.

in such a way that � � L. In this regime for a continuous
mass density one has the physical picture of Fig. 3: the two
states overlap, the mass density difference effect takes place,
and �C grows with �. Figure 6 clearly shows that in the
discrete case this does not happen and �D (black solid line)
essentially stays constant. This happens because in general
the sites of the state |qL〉 do not overlap with those of the state
|qR〉: the mass density difference is always nonzero, and all the
sites contribute to the collapse rate, which thus stays constant.
However, interestingly, the reduction rate experiences sudden
drops when the displacement � is an integer multiple of the
lattice constant. This is where the mass density difference
effect takes place for a discrete mass distribution and where
one can have a physical picture similar that depicted in Fig. 3,
where the sites of the state |qL〉 that exactly overlap those of
the state |qR〉 do not contribute to the rate because the mass
density difference is zero. Accordingly, only the sites in the
regions that do not overlap contribute, and the reduction rate is
proportional to the volume of such regions. This is confirmed
by the fact that the local minima grow linearly with �, as
shown by the red dashed line in Fig. 6.

B. Other geometries

As we have mentioned in the previous section, the cuboidal
geometry offers many advantages, both for the mathematical
analysis of the collapse rate and for its physical understanding.
Nonetheless, the results obtained in this section hold also for
other simple geometries, like spheres and cylinders. In order
to show this, we focus on the experimentally relevant regime
� � rC in which case the collapse rate (21) for a cuboid
reduces to

�C = λ N2
TOT g(Lx )g(Ly)

�2

L2
z

(
1 − e

− L2
z

4r2
C

)
. (28)

In this same regime, the collapse rates for a cylindric body and
for a sphere respectively read [13]

�cyl = λN2
TOT

4r2
C

R2
cyl

�2

L2
z

(
1 − e

− L2
z

4r2
C

)

×
[

1 − e
− R2

cyl

2r2
C

(
I0

[
R2

cyl

2r2
C

]
+ I1

[
R2

cyl

2r2
C

])]
,

�sph = λ N2
TOT

3r4
C

R6
sph

[
e
− R2

sph

r2
C − 1 + R2

sph

2r2
C

(
e
− R2

sph

r2
C + 1

)]
�2.

Figure 7 compares the reduction rates for a cuboid with
square face of side d and length L with that for a cylinder
with radius Rcyl = d/

√
π and length L (top panel), and the

rate for a cube of side L with the one for a sphere or radius
Rsph = L(3/4π )1/3 (bottom panel). The radii of the cylinder
and of the sphere are chosen in such a way that their vol-
umes match those of the cuboid and of the cube, respectively.
The plots clearly show that the cubic and cuboidal collapse
rates very well respectively describe the rates for spheric and
cylindric geometries. This is helpful in the scenario when the
average distance among particles is such that �C is not a good
description of �D. One thus needs to resort to a numerical
evaluation of �D, which can be performed quite easily for
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FIG. 7. Comparison among collapse rates obtained with different
geometries that have the same volume. Top panel: Log-log plot of
the collapse rate (s−1) for a cube (red solid line) vs sphere (green
dashed line). Bottom panel: Linear plot of the rate (s−1) for a cuboid
(blue solid line) vs cylinder (magenta dashed line). Body density
is 1030 nucleons/m3, rC = 10−7 m, λ = 10−8 s−1, d = 10 rC , � =
10−3 rC .

a cuboidal geometry, but it is rather cumbersome for other
geometries.

V. LAYERING EFFECT

In a recent paper [27] the idea was put forward that a body
with a multilayer structure has larger diffusion coefficients (5)
than a uniform one, and few case studies were numerically
analyzed. Later this idea was exploited in a cantilever experi-
ment to improve the bounds on the collapse parameters [28].
In this section we investigate such a layering effect, and we
show that this is a consequence of the mass density differ-
ence effect previously discussed. Both for simplicity and to
allow for a comparison with the above-mentioned papers,
we consider a cuboidal mass distribution with sides Lx, Ly,
Lz and average density �. Let us first consider the master
equation (4), and let us focus on the diffusion coefficient along
the z direction defined in Eq. (13) that we report here in a
slightly different version:

ηzz = λ

2 m2
N

∫
d3u

∫
d3v μ(u)μ(v)

∂

∂uz

∂

∂vz

(
e
− (u−v)2

4r2
C

)
.

(29)

In order to understand the physical meaning of this diffu-
sion coefficient, we integrate by parts along the z direction,
obtaining

ηzz = λ

2 m2
N

∫
d3u

∫
d3v ν(u)ν(v)e

− (u−v)2

4r2
C , (30)

where

ν(u) = 2[δ(uz ) − δ(uz − Lz )]μ(u) + ∂μ(u)

∂uz
. (31)

We then see that ηzz measures the correlation of the variation
of the mass density along the z direction, averaged by a Gaus-
sian distribution of width

√
2 rC . The first term of Eq. (31) is

a boundary contribution that measures the mass variation at
the body’s boundaries. The last term depends on the variation
of the mass density along the body: when this is uniform, this
term does not contribute; when the internal distribution is not
uniform, like in the multilayered case, this term gives further
contributions, thus increasing the diffusion coefficient.

We stress once more that this is a property that belongs to
the master equation (4), thus affecting both the fluctuations of
the dynamics (measured, e.g., by the density noise spectrum,
like in cantilever experiments [28]) and the reduction rate,
which summarizes the evolution of the off-diagonal elements
of the density matrix. As we showed in Sec. II [see Eq. (13)],
when the distance between the off-diagonal elements is � �
rC , the collapse rate is related to the diffusion coefficient by
the formula �C = ηzz�2. In this regime the collapse rate thus
measures the correlation of the mass density difference of the
two states onto which it is evaluated. The bottom panel of
Fig. 8 gives a physical intuition of the terms contributing to
the reduction rate for a layered object. Besides the boundary
contributions (proportional to �2

o and �2
e ), there are additional

terms that are proportional to the mass density difference
among the layers. These terms are not present for a uniform
body since the mass density difference inside the body is
zero. The former analysis gives physical context to the elegant
proof in terms surface tensors given by Diosi in [29], who
showed that the diffusion factor ηzz encodes a surface effect.
In the remainder of this section we further give a quantitative
estimate of this effect.

We are now ready to consider a layered cuboidal body with
square faces of side d (x-y plane) and length L (top panel of
Fig. 8). The body has 2N layers in the z direction, all having
a different uniform density �i and different thickness li, in
such a way that

∑2N
i=1 li = L. We start from the definition in

Eq. (13), which we factorize in the three directions:

ηzz = λ d4

4r2
C m2

N

g(d )2
∫

duz

∫
dvz μ(uz )μ(vz ) (32)

×
[

1 − (uz − vz )2

2r2
C

]
e
− (uz−vz )2

4r2
C , (33)

where g(x) is defined in Eq. (19),

μ(uz ) =
2N∑
i=1

�i �(uz − li−1) �(li − uz ), (34)
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FIG. 8. Top panel: Special case of a layered object with 2N lay-
ers all having the same thickness and two different mass densities: �o

(yellow layer) and �e (blue layer). The layering effect is proportional
to the number of interfaces (2N − 1), each of which contributes with
the square of the mass density difference between two consecutive
layers (bottom panel).

l0 = 0, and �(x) = 1 if x � 0, and zero elsewhere. The dou-
ble integral in Eq. (32) can be performed exactly, giving

ηzz = λ d4

2 m2
N

g(d )2
2N∑

i, j=1

�i � j
(
e
− (li−l j )2

4r2
C − e

− (li−l j−1 )2

4r2
C

− e
− (li−1−l j )2

4r2
C + e

− (li−1−l j−1 )2

4r2
C

)
. (35)

In order to simplify the analysis, we consider two types of
layers that alternate in the body: layers with odd index have
thickness lo and density �o, layers with even index are respec-
tively characterized by le and �e. This allows us to rewrite the
previous equation as follows:

ηzz = λ d4

2 m2
N

g(d )2

[
�2

o + �2
e − 2�o�ee

− L2

4r2
C

+��2
2N−1∑
i, j=0

(−1)i− je
− (li−l j )2

4r2
C − ��2

]
, (36)

where �� ≡ (−1)i+1(�i − �i+1) is the density difference be-
tween two consecutive layers. We thus see that this equation
has the same structure as Eqs. (30) and (31): the first term
inside the square brackets corresponds to the contribution
from the boundary, while the other two terms measure the
variation of mass density inside the body. It is evident that
when the body has uniform density (�� = 0) these terms
vanish. Another important remark is that the leading order
(i = j) of the sum in Eq. (36) does not depend on the thickness
of the layers. This comes as no surprise, since ηzz depends
the derivative of the mass density (i.e., its variation over an
infinitesimal distance) at the interface between two layers;
thus the layers’ thickness plays no major role. We specialize
to the case where all layers have the same thickness l , which
allows to write the leading (|i − j| = 0) and first (|i − j| = 1)
orders of ηzz, respectively, as follows:

ηzz
(0) = λ d4

2 m2
N

g(d )2
[
(2N − 1) ��2 + �2

o + �2
e

]
, (37)

ηzz
(1) = λ d4

2 m2
N

g(d )2
[−2(2N − 1) ��2 e

− l2

4r2
C

]
. (38)

Equation (37) shows that the main contribution of having
a layered object is given by the difference of mass density
�� at the 2N − 1 interfaces between the layers. In order to
maximize ηzz one should choose �� and N to be as large as
possible. The first order (38) has the tendency to decrease ηzz

(negative sign), and therefore the layer thickness should be
chosen to be l � rC in order to minimize the first order. In
general, the larger the l value the better, but in experimental
situations where the total size of the body is limited, one
should choose l compatibly with the fact of having as many
layers as possible. Higher orders are negligible because they
decay faster than ηzz

(1).
In order to estimate when it is convenient to exploit a

layered object instead of a uniform one, we consider a layered
body whose layer thickness l is such that Eq. (38) gives a
negligible contribution, and the diffusion coefficient ηzz

lay for
such a body is given by Eq. (37). In order to make a fair
comparison, we consider a uniform object that has the same
mass and volume as the layered one, i.e., with uniform mass
density �uni = (�o + �e)/2. By replacing this in Eq. (37) one
finds that

ηzz
lay

ηzz
uni

= 1 + (4N − 1) ��2

(�o + �e)2
, (39)

according to which ηzz
lay is appreciably larger than ηzz

uni when
N � (�o + �e)2/4 ��2.

Since the layering effect depends linearly on the number of
layers, the larger the body, the more one can benefit from the
layering effect. For example, we analyze the cantilever exper-
iment performed in [28] using a test mass with the following
features: 24 layers of WO3 (�o 	 7.2 × 103 kg/m3) alter-
nated with 23 layers of SiO2 (�e 	 2.2 × 103 kg/m3), mean
layer thickness l 	 3.7 × 10−7 m, sides Lx 	 1.1 × 10−4 m,
and Ly 	 8.2 × 10−5 m. A uniform test body of same size
and mass as the layered one must have a uniform density
of about �uni 	 4.8 × 103 kg/m3. One can then estimate that
ηzz

lay/η
zz
uni 	 2.8 × 10, i.e., that the layered geometry of the res-

onator is responsible for about one order of magnitude of the
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overall improvement on the bound of the collapse parameters
obtained in [28]. Nonetheless, one can estimate that gravita-
tional waves experiments would benefit from a much larger
improvement thanks to the layered geometry. The Advanced
LIGO interferometer involves a silica cylinder of length L =
2 × 10−1 m and density � = 2.2 × 103 kg/m3 [30]. If one
considers a layered cylinder with N = 105 layers of thick-
ness l = 2 × 10−6 m and �� = 5 × 103, one finds that ηzz

lay 	
105 ηzz

uni. The LISA Pathfinder involves a cubic alloy of AuPt
(� 	 2 × 103 kg/m3) of side L = 4.6 × 10−2 m [31]. The
corresponding layered object would fit N = 2.3 × 104 layers,
and assuming the same �� one finds that ηzz

lay 	 104 ηzz
uni.

We thus see that in both experiments the layered structure
would largely improve the sensitivity of these experiments of
collapse effects.

VI. CONCLUSIONS

We have investigated the properties of the CSL collapse
rate for rigid bodies. By exploiting the Euler-Maclaurin for-
mula, we showed that the rate computed for a continuous
mass distribution accurately reproduces the exact rate (i.e., the
one for a discrete distribution) whenever the average particle
distance l is smaller than the width of the collapse Gaus-
sian (

√
2 rC). For standard matter where l is of the order of

10−10 m, the continuous description is extremely accurate.
We then focused on the reduction rate for cuboidal bodies

and compared the exact rate �C with the estimates proposed
by Ghirardi et al. (�GPR) [4] and by Adler (�A) [16]. We found
that, in its range of definition, �GPR qualitatively approximates
the exact rate. Also, �A is generally close to �C, although
for some values of the parameters the two rates can differ
by a few orders of magnitude (see bottom panel of Fig. 1).
This becomes relevant when computing the collapse rate for
specific experimental situations. We further showed that the
behavior of the reduction rate strongly depends on the mass
density difference effect, namely, the fact that rate depends on
the mass density difference of the two states onto which it is
evaluated. This peculiar feature of the collapse rate originates
from the fundamental properties of the CSL model [4]: the
identity of particles, the collapse operator proportional to the
mass density, and the double commutator in the CSL master
equations (1) and (3). We remark that when we expand the
c.o.m. master equation (3) for small c.o.m. displacements to
obtain Eq. (4), the mass density difference effect becomes a
mass density variation effect (i.e., a difference over an in-
finitesimal distance). This is fully encoded in the diffusion
coefficients of Eq. (4), as explained in Sec. V.

To complete our analysis of the collapse rate, we showed
that for discrete mass distributions the mass density differ-
ence effect takes place only when the displacement among
the states is an integer multiple of the lattice constant. We
also showed that our results do not strictly depend on the
cuboidal geometry and hold also for spherical and cylindrical
geometries.

We then investigated the collapse rate for a layered object.
We showed that a geometry of this kind benefits of the mass
density difference effect in a way that is proportional to the
number of layers and to the square of the mass density differ-
ence between consecutive layers. This is an intrinsic property

of the diffusion coefficient ηzz displayed by the master equa-
tion (4), which measures the variation of the mass density
along the direction of layering (z). Our analysis gives a more
solid ground to the idea put forward by Diosi in [29] that the
diffusion factor is a surface effect.
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APPENDIX A: REDUCTION RATE IN THE MOMENTUM
SPACE

In this Appendix we repeat the analysis of Sec. II and
we provide the formulas in the momentum space. The CSL
master equation in the momentum space reads

d

dt
ρ̂(t ) = − i

h̄
[Ĥ, ρ̂(t )]

− λr3
C

2π3/2m2
N

∫
d3k e−r2

C k2

[μ̂(k), [μ̂(−k), ρ̂(t )]],

(A1)

where we have introduced the Fourier transform of the mass
density operator:

μ̂(k) ≡
∫

d3x e−ik·xμ̂(x) =
∑

i

mi e−ik·q̂i . (A2)

Equation (A1) allows us to rewrite the collapse rate (8) as
follows:

�(qL, qR) = λr3
C

2π3/2m2
N

∫
d3k e−r2

C k2

× (μL(k) − μR(k))(μL(−k) − μR(−k)).

(A3)

We rewrite the particles’ position operators in terms of the
c.o.m. and relative coordinates (q̂i = Q̂ + r̂i). Under the as-
sumption of a rigid body, according to which the relative
coordinates are sharply localized (with respect to rC) around
the classical positions ri, i.e., 〈(r̂i − ri )2〉 � rC , one finds that
the c.o.m. master equation reads

d

dt
ρ̂CM(t )

= − i

h̄
[ĤCM, ρ̂CM(t )] − λr3

C

2π3/2m2
N

N∑
i, j=1

mimj

×
∫

d3k e−r2
C k2

e−ik·(ri−r j )[e−ik·Q̂, [eik·Q̂, ρ̂CM(t )]],

(A4)

where ρ̂CM and ĤCM respectively denote the density matrix
and the Hamiltonian of the c.o.m.. By expanding the exponen-
tials for small Q̂ and exploiting the relation μ(−k) = μ∗(k)
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one finds
d

dt
ρ̂CM(t ) = − i

h̄
[ĤCM, ρ̂CM(t )]

− λr3
C

2π3/2m2
N

∫
d3ke−r2

C k2 |μ(k)|2

× [k · Q̂, [k · Q̂, ρ̂CM(t )]], (A5)

which eventually leads to Eq. (4) with the diffusion coeffi-
cients

ηαβ = λr3
C

2π3/2m2
N

∫
d3k e−r2

C k2 |μ(k)|2 kαkβ. (A6)

These formulas are those most often used in the literature on
the topic [9,13,15,18].

APPENDIX B: EULER-MACLAURIN FORMULA

In this Appendix we show how the Euler-Maclaurin (EM)
formula (14) allows one to estimate the error made when one
estimates the reduction rate with �C instead of �D. We start
with a more mathematical definition of the EM formula [22]:

Theorem. For any function f (x) with a continuous deriva-
tive of order 2p + 1 on the interval [0, N], the following
identity holds:

N∑
i=1

f (i) =
∫ N

0
dx f (x) + 1

2
[ f (N ) − f (0)]

+
p∑

k=1

B2k

2k!
[ f (2k−1)(N ) − f (2k−1)(0)] + Rp,

(B1)

where Bk is the kth Bernoulli number and f (k) is the kth
derivative of f (x). The remainder Rp is defined as follows:

Rp ≡ 1

(2p + 1)!

∫ N

0
dx P2p+1(x) f (2p+1)(x), (B2)

where Pk (x) is the periodic Bernoulli function of the kth order.
Equation (B1) holds for any integer p � 0, which sets the

order of approximation of the error estimate and can be chosen
in such a way as to minimize the remainder Rp. However, we
remark that choosing a larger p does not necessarily corre-
spond to a better error estimate, i.e., to a smaller Rp.

Since Eq. (15) involves doubles sums, we need to adapt the
EM formula to this case. We start by considering the double
sum of a generic function of the difference of two variables,
which satisfies the conditions of the previous theorem. By
applying the EM formula to it (e.g., to the sum over j) we
find

N∑
i, j=1

f (i − j) =
N∑

i=1

(∫ N

0
dv f (i − v) + 1

2
[ f (i − N ) − f (i)]

+
p∑

k=1

B2k

2k!

[
∂ (2k−1)
v f (i − v)

∣∣∣v=N

v=0

]
+ Rp

)
,

where ∂ (n)
v denotes the nth partial derivative with respect to the

variable v. By applying the EM formula to
∑N

i=1

∫ N
0 dv f (i −

FIG. 9. Discrete (�D, red dots) and continuous (�C, black line)
reduction rates (s−1) for a cube as a function of its side L in units
of rC . Top panel: l = rC , � = 1021 nucleons/m3; bottom panel:
l = 10 rC , � = 1018 nucleons/m3. The other parameters are set as
follows: rC = 10−7 m, λ = 10−8 s−1, � = 10−3 rC .

v), one can rewrite the previous equation as follows:

N∑
i, j=1

f (i − j) =
∫ N

0
du

∫ N

0
dv f (u − v) + 1

2
[ f (0) − f (N )]

+
p∑

k=1

B2k

2k!

∫ N

0
dv

[
∂ (2k−1)

u f (u − v)
∣∣u=N

u=0

]

+
N∑

i=1

p∑
k=1

B2k

2k!

[
∂ (2k−1)
v f (i − v)

∣∣v=N

v=0

] + R̃p,

where R̃p collects all the remainder terms. We now apply this
equation to our case of interest, i.e., a function of the type
f (i − j) = exp[−l2(i − j)2/4r2

C]. After some manipulation
we obtain

N∑
i, j=1

e
− l2 (i− j)2

4r2
C =

∫ N

0
du

∫ N

0
dv e

− l2 (u−v)2

4r2
C

+
(

1

2
− B2

)[
1 − e

− l2N2

4r2
C

] + R̃p

+ 2
p∑

k=1

B2k+2

(2k + 2)!

[
∂ (2k)
v f (N ) − ∂ (2k)

v f (0)

− 1

2
∂ (2k−1)
v f (N )

]
, (B3)
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where we have exploited the fact that ∂ (n)
u f (u − v) =

(−1)n ∂ (n)
v f (u − v). Since the nth derivative of a Gaussian

function is an Hermite polynomial of order n times the orig-
inal Gaussian, one finds that the sum in the second line of
Eq. (B3) and the remainder R̃p are polynomials in l2/2r2

C ,
respectively of order 2p and 2p + 1. When l �

√
2rC , the

leading term of these polynomials is l2/2r2
C and higher orders

are negligible: whatever value of p is chosen in Eq. (B3), the

error is of the order l2/2r2
C . When l �

√
2rC , it is convenient

to consider p = 0 in Eq. (B3), because this is the value of
p that minimizes the remainder R̃p, which thus results in the
order l2/2r2

C (this is an example of when choosing larger p
does not improve the error estimate). We thus see that, for any
value of the ratio l/

√
2 rC , the error made by neglecting the

second line of Eq. (B3) is of the order l2/2r2
C . Accordingly,

Eq. (B3) can be rewritten as follows:

N∑
i, j=1

e
− l2 (i− j)2

4r2
C =

∫ N

0
du

∫ N

0
dv e

− l2 (u−v)2

4r2
C + 1

3

[
1 − e

− L2

4r2
C

] + O

(
l2

2r2
C

)
, (B4)

which with the help of Eq. (18) eventually allows recovery
of Eq. (16). Figure 9 shows the discrete (�D, red dots) and
continuous (�C, black line) collapse rates for a cube as a
function of its side L. In the top panel a lattice constant l = rC

is taken, and as expected, the difference between �D and

�C is very small. For smaller values of l the two lines are
indistinguishable. The bottom panel shows �D and �C for a
larger lattice constant l = 10 rC : the two rates differ by about
four orders of magnitude, thus showing that for l >

√
2rC the

approximation given by �C is not good.
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