PHYSICAL REVIEW A 102, 042212 (2020)

Defining a well-ordered Floquet basis by the average energy
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At the moment, the most efficient method to compute the state of a periodically driven quantum system is using
Floquet theory and the Floquet eigenbasis. The wide application of this basis set method is limited by a lack of
unique ordering of the Floquet eigenfunctions, an ambiguity in their definition at resonance, and an instability
against infinitesimal perturbation at resonance. We address these problems by redefining the eigenbasis using a
revised definition of the average energy as a quantum number. As a result of this redefinition, we also obtain a
Floquet-Ritz variational principle, and justify the truncation of the Hilbert space.
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I. INTRODUCTION

The works of Shirley [1] and Sambe [2] introducing Flo-
quet theory to quantum mechanics have enabled the efficient
calculation of the time-periodic Schrddinger equation and
kicked off renewed interest in periodically driven quantum
systems (Floquet systems). The Floquet method has since
become common place when studying model systems with
periodic driving [3-5]. Applications beyond model systems,
and towards realistic systems derived from first principles, are
still limited by a lack of a proper definition of the ground state
and a variational method which can derive it efficiently.

We condense the common problems of the Floquet method
in the left side of Fig. 1, along with an often disregarded yet
intuitive way to solve them in the right side of the figure. Just
like the energy levels of static systems, Floquet systems are
characterized by the quasienergies €, and their corresponding
Floquet eigenfunctions u,(?):

(A (1) = id,]|un(1)) = €nlun (1)), D

where H(t) = H(t + T') denotes the time-periodic Hamilto-
nian of the system we wish to study. Complications arise from
the appearance of countably infinite equivalent solutions to
Eq. (1), with quasienergies offset by a multiple of the driv-
ing frequency w = 27 /T, but representing the same physical
state, i.e., the same solution of the original Schrédinger equa-
tion. Thus it is impossible to label the eigenstates and define a
ground state by the quasienergy alone, as it is made apparent
in the left side of Fig. 1.

On the other hand we find hints of ordering when we
consider the eigenstate’s energy spectrum, as defined by

1 +o00 )
PX(E) = |5= [ " |, (1)) dt | )

27 J_o

We show this in the right side of Fig. 1 by varying the
width and opacity of the lines. The eigenstates in Fig. 1 are

*cristian.le@phys.s.u-tokyo.ac.jp

2469-9926/2020/102(4)/042212(17)

042212-1

chosen to depict three common features present in a typical
Floquet system. First, we can see that a ground state can be
uniquely defined (state W), given a robust enough criterion,
e.g., ordering by the average of the spectrum. Second, the
energy spectrum is plagued with near resonant states which
create an ambiguity in how to define the eigenstates. This
is similar to the degeneracy problem of static systems, e.g.,
the quantization axis of hydrogen’s 2p' states. In the Floquet
system here, resonant states W; and W, are not uniquely
defined from the solutions of Eq. (1). This ambiguity can
be resolved by using additional quantum numbers, and the
ones based on the energy spectrum are the most intuitive.
Lastly, there are numerous states W, with relatively similar
quasienergies but well-separated energy spectra compared to
the low-lying or active states. Such states should not af-
fect the physical system significantly and we can truncate
the Hilbert space and significantly simplify the calculations
needed.

In this paper we propose the average energy to be the
central parameter to label and define the Floquet eigenstates.
We show that this definition has a variational derivation, is
stable against infinitesimal perturbations, and allows for the
truncation of the Hilbert space. Before diving into this inves-
tigation, we present a short history of the problem of defining
a Floquet ground state in Sec. I A, where the reader can find
various alternatives that are currently used. We summarize the
potentially ambiguous notations in Sec. I B for the reader to
refer back to if the equations become unclear. At the begin-
ning of Sec. II we present the basic derivation of the Floquet
method with special emphasis on the problems concerning the
eigenstates definition. The infinite time-average energy and
its corresponding eigenstates are defined in Sec. II A. For
practical applications we derive the observed average energy
in Sec. IIT A, with the reasoning explained at the start of
Sec. III. Using that definition we derive an equivalent Ritz
variation method in Sec. III B. We use the two-level system
with a circularly polarized driving as the minimal example
system and exemplify the prior discussions in Secs. II B and
I cC.

©2020 American Physical Society
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FIG. 1. Quasienergies and full energy spectra [Egs. (1) and (2)]
of a typical Floquet system. The energy spectrum amplitude of each
state is depicted by varying thickness and opacity.

A. History of the problem

The Floquet method has been thoroughly studied for
decades and the problems of labeling the eigenstates and
defining a ground state have been known from the beginning
[1,2,6]. So far there have been three ways of solving this
problem, by labeling the eigenstates using a Floquet-Brillouin
zone in quasienergy space [2,4], an adiabatic continuation
[7-9], or a perturbation method [2,10—12]. These methods are
commonly applied to finite model systems where in principle
the full Hilbert space is accessible, and there is minimal need
to label the eigenstates. On the other hand, these methods fail
when applied to realistic systems, where the Hilbert space has
infinite degrees of freedom. The incompatibilities in the real-
istic system boil down to the resonance condition of infinitely
many eigenstates and their avoided crossing problem [8,13].
While there have been various adiabatic methods proposed
to overcome this problem [8,9,14], there is still a need for
eigenstate labeling methods which are efficient, do not rely
on an adiabatic continuation, and can be applied to realistic
systems.

Another common approach is to circumvent the need
to identify any particular eigenstate and extend the system
to an open quantum system [6,15—17]. This is analogous to
changing the problem from calculating the ground state to
calculating the thermal equilibrium, which in this case is
commonly referred to as the Floquet steady state. This is
often the most achievable and physically relevant state. Since
the steady state does not generally have a Gibbs distribution
[6,15,18-21], at the low-temperature limit the system does not
generally reduce to a pure ground state, which can dimin-
ish the significance of labeling the eigenstates and defining
a ground state. However, even here, the eigenstate labeling
problem is not fully circumvented, since there is still no cri-
terion for truncating the Hilbert space. Thus the computation
cost becomes unfeasible in realistic systems.

To give an example of the problems coming from the lack
of unique labeling, we look at the attempts of formulating

Floquet ab initio methods [22,23]. These methods were con-
structed to calculate a poorly defined ground state, for which
the Ritz variational principle is assumed. One of these meth-
ods, the Floquet density-functional theory [22], was shown to
be fundamentally flawed due to the ambiguous definition of
the ground state [24-26], an argument that can be extended to
the other variational based ab initio derivations as well. One
method that remains valid is the Floquet density-matrix renor-
malization group [27] and similar iterative methods. But even
there the solution and its convergence are dependent on the
selection criterion used at each iteration. A starting point for
reformulating these ab initio methods is to uniquely redefine
the ground state of a general Floquet system, particularly one
that is applicable to realistic Hamiltonians.

The potential usage of an average energy to label the eigen-
states has been considered before, either indirectly [13] for
selecting relevant adiabatic states or directly [28] for deriv-
ing an effective Gibbs distribution. It should be pointed that
the average energy definition there differs from the one we
propose in this paper. This usage is often disregarded since
other observables offer a better agreement, e.g., regular energy
[28]. However, this does not rule out the potential usage of
the average energy to approximate and select the significant
eigenstates for describing the steady-state solution or truncat-
ing the Hilbert space. Using the average energy definitions
from [28,29] can still be problematic as we will explain in
more detail later on. To resolve these problems we derive a
more robust definition of the average energy.

B. Notations

In this paper we use the following notations in order to keep
the equations more compact. The details are clarified through-
out the paper as they become relevant. Readers can skip this
section and come back if any notations appear unclear. These
notations are not in any particular order, so we just present
them below as is.

Floquet Hamiltonian:

A ()= H() - i3,. 3)

Fourier decomposition:

A
u® = —/ e* y(t)dt. ()
T Jo

Average expectation:

" 1 7 "
(w|O)r = ;/0 (W(OIO@)|W(t))dt. (5)

Energy difference:
Wmpl = €n — € + low. (6)

The time dependence will often be dropped, unless explicitly
needed for clarity. In general we reserve the superscripts to in-
dicate different variations of the functionals, eigenstates, etc.
These can often be mixed with each other. If the superscript
is missing any definition is applicable and/or the perturbed or
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untruncated definition is used, depending on the context:

E® Infinite time average energy, @)
E7  Observed average energy, ®)
E°  Unperturbed average energy, )
E'  Truncated average energy at step i. (10)

Subscripts are generally reserved to label the eigenstates,
eigenvalues, etc. We reserve the following subscript (or su-
perscript in the case of truncation) notations:

a,b,c,... Resonant states, (11
m,n, o, ... Ordered states, (12)
i, j,k,... Truncation step. (13)

U is reserved for the transformation matrix from an eigen-
state representation to an arbitrary basis, and is constructed
from the vector columns of the Floquet eigenfunction:

cao(®)  car(?)
Uiy = | co®) cnlt) ..., (14)

Hilbert spaces are denoted like IH, and the equivalent
eigenspace specific to each Hamiltonian H is Ey:

En = {E, V| HIW,) = E\|W,); (V| W) = 8} (15)

The Floquet interaction picture with respect to interaction
v (H = H° + v) is denoted by the subscript ;.
Noninteracting propagator:

0%) = 0°@, 0) = i o A'@dr

=Y e Ul ) (0)). (16)
Interaction picture propagator:
10, |uy (1)) = 07 (t)|uy (1)). )
Interaction picture operator:
O01(t) = U ()OO ). (18)

Finally we use the usual § notation to indicate functional
variation in arbitrary direction, derivative, etc., and we add
a constrained variation notation. The notation is generally
omitted if we consider the full Hilbert space:

50
8O[ullp = {/ ESM

II. EXACT FLOQUET SYSTEMS

Su GIH}. (19)

We start off with a thorough examination of the Flo-
quet theory in the closed quantum systems. Consider the
Schrodinger equation of a quantum system described by the
time-periodic Hamiltonian H(t + T) = H(t), with a corre-
sponding driving frequency w = 27 /T

i, 10 (t)) = H(t)|W(t)). (20)

Using Floquet theory we can solve this equation as an eigen-
problem resembling the solution of a static Hamiltonian:

[H(t) — id,1|un (1)) = €l (1))

From these eigenfunctions we can derive the propagator
and the wave function in Eq. (20) at arbitrary times. This is
analogous to the time-dependent wave-function solution of a
static Hamiltonian:

O6)=0(00=Y e u, (), 0)),  21)
(W) =D Coe ™ Jun (1)), (22)

Co = (u, (0)[\W(0)). (23)

Here C, is the usual overlap at a known time point t = 0, and
will be used throughout this paper. In order to preserve the
norm of the wave function, the summations in Egs. (21) and
(22) and further on are limited to different Floquet eigenstates,
which will be clarified shortly. It is important to note that the
quantum system and all of its observables are strictly deter-
mined by the wave function W(¢), and not by the solutions of
the Floquet Hamiltonian H” [Eq. (1)]:

O@t) = (¥(N)|O@)|W(t)) 24)
= (W(O)TT()O@)U ()1 ¥(0)). (25)

Unfortunately we cannot directly calculate this wave func-
tion W(¢) or propagator U (¢) efficiently. Instead we calculate
them indirectly through the eigenpair of quasienergy and
Floquet eigenfunction (€,;u,(¢)) as in Egs. (21) and (22).
Although these eigensolutions do not have a direct physical
meaning, they are computationally accessible, and sufficient
to describe arbitrary states. Deriving the Floquet eigenstates
is the only reliable and efficient way of describing the system
and it is thus the main objective of this paper

Early on, Sambe formalized the Floquet system’s extended
Hilbert space IIT > u(¢), upon which the Floquet Hamilto-
nian operates and defines the eigenspace £y [2]. This extended
Hilbert space is the tensor product of the original Hilbert space
H on which H (¢) operates at any given time, and the countably
infinite Fourier space T which guarantees the periodicity of
the Floquet functions, in accord with Floquet theory [30]. In
this extended Hilbert space, the Floquet Schrodinger equation
has a systematic block matrix form:

A Lol AV AO

A @) = j2 (S0 4o  go ,
A2 A O _ 1
(26)
@) = (.. [uCDye@ (u©®)y |udye-ier )
27

The Floquet eigenfunctions diagonalize this Hamiltonian, and
form an orthonormal complete basis set spanning HT":

(| H un)) 1 = €28, (28)

<<um|un>)T = (Smn' (29)
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Exactly diagonalizing the infinite matrix in Eq. (26) is
usually a difficult problem, even when the Hamiltonian’s
Hilbert space H is finite and discrete. Exact solutions are
limited to some of the well-known model systems: two-level
systems [1,31-33], harmonic oscillators [34,35], and free
electrons [36,37]. We can expand the solvable systems with
the use of perturbation methods, e.g., the weak interaction [2],
high-frequency [10,38,39], low-frequency [12], and continued
fraction expansions [35,40].

Sambe also showed that a variational principle on the
quasienergy is possible, with the stationary points correspond-
ing to the Floquet eigenfunctions:

Selu]l =0 = u(t) € {u,(t)}, 30)
elul = (ulH" |u))7. 31)

This variational principle offers an alternative method of
deriving the Floquet eigenfunctions, which is more com-
putationally efficient and necessary for many theoretical
formulations. From here on, we will assume that the exact
eigensolutions {¢,, u,(t)} are known.

The infinite dimension of the Floquet Hamiltonian in
Fourier space T suggests that there are a countable infinite
number of eigenpairs {€); u, (¢)}. These infinite solutions can
be grouped into subsets, with the solutions related to each
other by harmonic shifts [Eq. (32)], and describing the same
wave function W, (¢) [Eq. (33)]:

i) = [ )

€, =€, +lo VIeZ, (32)
(W) = W, (1)) = e Juy (1)), (33)
(Wi ()W, (F)) = S V1. (34)

We refer to the wave function W,(r) as the physical Flo-
quet eigenstate, to distinguish it from the ambiguous Floquet
eigenfunction u,(¢). The physical Floquet eigenstates form
a complete basis set and fully describe the propagator in
Eq. (22). These basis sets span the Hamiltonian’s Hilbert
space H instead of the extended one HT.

Because of this ambiguity, only a subset of the eigenfunc-
tions u,(t) are needed in summations like Eqs. (21) and (22) in
order to span the Hilbert space H and describe the propagation
of arbitrary wave functions. The choice of eigenfunctions is
arbitrary, as long as the Hilbert space H is fully spanned, or
equivalently there are no pairs related to each other by a har-
monic shift [Eq. (32)]. We refer to these choices in eigenbasis
as a choice of quasienergy shift. Any observable, interaction,
etc., is independent of this choice, except for the quasienergy
€ which is not a true observable according to Eq. (25). From
here on we assume that an arbitrary choice of quasienergy
shift is performed and labels m, n describe distinct physical
Floquet eigenstates.

Another important consequence of the expanded Hilbert
space is that the Floquet eigenfunctions are not uniquely de-
fined within the subspace of resonant eigenfunctions. That
is to say, we can rotate the basis {u,(¢)} within the resonant
subspace €, = €, = €, and obtain another orthonormalized

basis ((u,|u,))7 = 8a», Which is an equally valid eigenbasis
of the Floquet Hamiltonian H*:

i, (1)) =D Cpy lup(2)) Ve, =, (35)
b

Seu] = Se[uy] =0 Vi (1) € HT,  (36)

(A 1)) e = (upl B lup)yr = € Vul,(t) e HT,.  (37)

In this paper we reserve the labels a, b to describe reso-
nant Floquet eigenfunctions, and we assume that we have
selected the subset of eigenfunctions so that the resonant
eigenfunctions have the same quasienergy ¢, = €, = €. For
each resonant set with quasienergy €, HT, denotes the reso-
nant Hilbert subspace to which it belongs.

This ambiguity problem is analogous to the degeneracy
problem of static systems, where, for example, in the hydro-
gen 2p' degenerate space, we can arbitrarily choose the axis of
quantization, and any choice gives a valid Hamiltonian eigen-
basis. However, there are two caveats in the Floquet system
compared to the static case. First, the number or density of res-
onant Floquet eigenfunctions is practically infinite in realistic
systems, e.g., the Volkov states [37,41], while in general the
static system is finite, with the exception of flat band systems
which are still resolvable. Second, the energy spectrum as
defined in Eq. (2) differs between different resonant Floquet
eigenfunctions [Fig. 2(b)], and is dependent on our choice of
eigenbasis:

P{E)#PJE) Ya#b. (38)

A consequence of this energy spectrum difference is that,
if we include thermodynamic effects, resonant eigenstates
interact differently and are not equally distributed at equilib-
rium [42]. In the extreme case of a highly separated energy
spectrum, we can find a resonant eigenbasis where only a
few states are occupied in the steady state, so that we can
truncate the Hilbert space without affecting the description
of the steady state. If resonant eigenfunctions share the same
energy spectrum, these are indeed degenerate.

In the case of a static system, we can use an additional
quantum number or an adiabatic continuation to label the
eigenstates at and around the degeneracy point. In limited
cases [8], we can also use the adiabatic method to define the
Floquet eigenfunctions around the resonance [e.g., Fig. 2(a)].
On the other hand, defining the eigenstates using an additional
quantum number would be more efficient, so we aim to find an
appropriate parameter that would result in a reasonable and/or
truncatable eigenbasis (e.g., Fig. 1). The most natural choice
is one based on the energy spectrum, and the first possible
choice is the average energy.

A. Infinite time-average energy

We redefine the average energy as simply the time-
averaged expectation value of the Hamiltonian of an arbitrary
state or initial wave function up to some time 7T, to be clarified
later in the paper. This definition gives a proper observable
[Eqg. (25)], and as such it is independent of our choice of the
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FIG. 2. Exact energy spectrum P®(E) (solid line with varying intensity) and infinite time-average energy E* (thick dashed line) of
(a) adiabatically connected Floquet eigenstates [Eqgs. (69a) and (69b)], labeled from the undriven state V = 0 (W, higher red line; W_,
lower blue line) and (b) states at the first resonance point V = V;, with varying initial wave function W,(0) or mixing of resonant Floquet
eigenfunctions uy(¢) [Eq. (76)]. The energy spectrum of the state W_,(0) in panel (b) has been artificially shifted upwards for clarity. The
vertical lines in both plots correspond to the eigenstate solution at the the first resonance point V;, where both plots correspond to each other.

quasienergy shift:

ETIW(0)] = ((W|A W)

1 7 A
=?f0 (WOIU'OH@®U @)Y (0))dt.  (39)

This definition is closely related to the energy spectrum av-
erage [Eq. (40)], and can be adapted for various theoretical
formulations:

ET[w(0)] ~ /

—0Q

+o00

PT[W(0), E]JEdE, (40)

T 1 T iEt ¥y
P'[¥(0),E] = 2—/ U)W (0)) dr|.  (41)
T J-T

Before defining the averaging time 7, we will address the
previous definition of the average energy [28,29]. There the
average energy has been defined as the average energy expec-
tation value over a period 7, only of a Floquet eigenfunction
u,(t) [derived from Eq. (1)]:

&l = ((unlHlun))r = e+ Y kolu®P ). (@2)
k

This value is also independent of our choice of quasienergy
shift [Eq. (32)] and thus could be used for labeling the
eigenstates. An obvious flaw of this definition is that it is
not defined at resonance, since the Floquet eigenstate itself
is not uniquely defined there. Another problem is that the
generalization of this definition to arbitrary states [Eq. (43)] is
incompatible with the variational principle, and is not defined
by the Floquet eigenstate’s average energies &, (regardless of
their definition). Nevertheless, we refer to this generalization
as the effective average energy, to be used in later derivations:

1 T N
el = / WA Ol dr, 43)
0
8T [ul = 0 = u(t) € {u, (1)}, (44)
e [u] # |Cyl*&,. (45)

This suggests that we cannot use this average energy definition
to derive a Floquet eigenstate directly, and we need a different
average energy definition.

Coming back to the definition in Eq. (39), we can sim-
plify the equation by using the exact propagator [Eq. (21)]
expanded in an arbitrary choice of eigenfunctions:

ET = Z |Cn|2((un|ﬁ|un>)T

17 ,
+ZC;‘;C,,7—, /0 e~ (118 |uy)dt.  (46)

In this section we choose the averaging time 7 to be the
limit at infinity, and refer to the resulting average energy as the
infinite time-average energy, and equivalently the eigenstates
derived from it:

E®[¥(0)] = TlgnwET[W(O)]. (47)

For now we assume there are no resonant eigenfunctions
[mod(e, — €m, ) # 0]. The infinite time-average energy
functional trivially simplifies to the weighted sum of the
eigenstate average energies:

EXWO)] =) IGIeY ifPen=em,  (48)

where due to nonresonance the eigenstate average energies are
unambiguously defined as either the effective or infinite time
value €] = £*° = ¢,. Immediately we see the benefit of this
definition that we can derive the eigenstates from the variation
of the functional form. The variational principle in this case is
over the initial wave function W(0), as opposed to the previous
variations over the Floquet functions u(z):

SEX[W(0)] = 0= W(0) € {u,(0)}, E® € {&°}. (49)

n

In theory this variation is sufficient to define and find all
eigenpairs {€2°, W,,(0) = u,(0)}, which form a well-ordered
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eigenspace 50 with €5° < & < ...

EXY = {2, U, (0)|SE®[¥] =0} iffley=€n. (50)
The superscript in £ indicates that only the solutions att = 0
are calculated and the Hilbert space is limited to H, not to be
confused with the notation £5o. From these we can also derive
the time-dependent Floquet functions u,(¢) and quasienergies
€, from the Schrédinger equation, and subsequently the prop-
agator and any observable of arbitrary states at arbitrary times.

In practice, however, the exact propagator U (¢) in Eq. (39)
is inaccessible, and the variation with respect to the initial
wave function W(0) is computationally unfeasible. Fortu-
nately, as long as there are no resonance conditions, we can
use the quasienergy variation principle [Eq. (30)] to derive the
Floquet eigenstates and the effective average energy [Eq. (43)]
which coincide with the infinite time-average energy for the
nonresonant Floquet eigenstates:

e [un(1)] = E®[W,(0)] € {€” [u]|se[u] = 0. (51

Thus we can define a well-ordered eigentriplet
(en, €%, up(t)) with P <€ <..., up to a trivial
quasienergy shift. The correspondent eigenspace £5° spans
the extended Hilbert space HT [having included equivalent
solutions Eq. (32)], and the propagator is directly obtained
from Eq. (21):

Ex = {en &0 uy()|8e[u]l =0} ifBey =€m.  (52)

n

From these eigentriplets we can uniquely define the ground
state (e, €3°, ug(t)), up to a trivial quasienergy shift. This
ground state can be derived variationally through the initial
wave function W(0), through the Floquet function u(t), or
using a Lagrange minimization method:

& = rqgl(ior;Ec"’[\I/(O)], (53a)
&X = m(igl{ér[u]we[u] =0}, (53b)

Selu]
Su

€5° = min {ET[u] + A
u(t)

+ e({(ulu)) — 1)}. (53¢c)

The Lagrange multiplier A and functional derivative %

are vectors spanning the Hilbert-space dimensions, and guar-
antee the minimization in €7 [u] is taken over the Floquet
eigenfunctions. The Lagrange multiplier € guarantees the nor-
malization constraint is satisfied. Although this form is more
complicated with the addition of A, it can facilitate the deriva-
tion of other approximations, e.g., a Hartree-Fock variant, and
we include it here for future reference.

As for the resonant region, we cannot use the Floquet
eigenfunctions defined by Eq. (1) to simplify Eqgs. (46)—(48),
since the eigenfunctions themselves are not uniquely defined
in this region. This also means that the eigenstate average
energies are not well defined from Eq. (42), and we have to
redefine them here. We limit ourselves now to the resonant
Hilbert subspace HT.:

(wH \u))r =€ YueHT,, (54)

Selullur =0 Vu e HT.. (55)

Choosing an arbitrary orthonormal basis set in this subspace
((uqlup))T = Sap, the infinite time-average energy has the fol-
lowing form:

E®[V] =€+ Zc;c,, ka(u;k>|u§f>). (56)
a,b k
We point out that the effective average energy functional
e’ [Eq. (43)] is equivalent to the infinite time-average energy
functional £ [Eq. (56)] within the resonant Hilbert space,
which is why we refer to it as effective average energy:

E®[W,] =& [u,] Vua(t) € HT., (57)
SE®[Wollum, = 8¢ [ugllmm,  Vu,(r) € HTe.  (58)

Equation (56) can be represented in a matrix form, the
eigenvalues €° of which are independent of the basis set.
Diagonalizing this matrix we find a unique eigenbasis, from
which we uniquely define the eigentriplet (e, €.°, u,(¢)):

E¥ =e+CMC=)_|C,7&”, (59)
Mo =) kw(uffjl uy). (60)

k
|tn (1)) =) Can [ (1)), (61)
[9,(0)) = ) can [14a(0)) . (62)

a

The coefficients ¢, are the corresponding eigenvector projec-
tion onto the arbitrary basis {u,(t)}. We label the eigenstates
here with m, n as to indicate that the ambiguity coming from
the resonance is resolved and the eigenstate average energies
are defined from the diagonalization of Eq. (5§9). Considering
the relation to the energy spectrum, this diagonalization gives
us the basis set with the least overlap between their energy
spectra and maximally separated average energies [Fig. 2(b)].
The average energies themselves can have real and accidental
degeneracies, the latter of which has to be resolved. While this
accidental degeneracy will mostly occur in the nonresonant
case, which is resolved by the requirement that the Floquet
eigenstate is an eigenstate of the Floquet Hamiltonian H,
we cannot rule out the possibility of this occurring in the
resonant case. We suggest that this can be further resolved by
requiring the diagonalization of higher-order moments such
as the energy variance 6.° = \/(([H(t) — E°]2)) 5. We will
not be exploring this aspect in this paper due to the authors
not having found a model system with this feature, but we
encourage the reader to confirm this hypothesis if such an
accidental degeneracy is found.

Combining all of the resonant and nonresonant subspaces,
we can define the well-ordered eigenspace £y of an arbitrary
Hamiltonian H (¢). The theoretically sufficient eigenspace de-
fined from Eq. (50) remains unchanged upon the combination
of the Hilbert subspaces, where now the eigenstate average
energy €.° is uniquely defined by the infinite time-average
energy variation or diagonalization:

&° = E®[W,] € (E*[V]ISE*[V] = 0}, (63)

e’ ={&, v, (0)|SE® =0}. (64)

n >’
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As for a computationally accessible form, we have to rely
on the quasienergy variation. Since the infinite time-average
energy and effective average energy are equivalent in the reso-
nant space, we can derive the variational principle in two steps
over quasienergy and effective average energy functionals:

= {e[u]|se[u]|lpr = 0} = HT, (65a)
é°° = {€" [ua]18&" [ua]lmre, = O}, (65b)
& = e &7 un(0[delul = 0 — 8&"[ul| =0} (66)

We have to be careful of the order of the variations so as
to properly limit the variation space of the effective average
energy. The variation in Eq. (65b) is not valid in the full
extended Hilbert space.

Equivalently we can absorb these complications into a La-
grange multiplier, and extend the method in Eq. (53c):

delu]

€° = crit {ET[M] + A
u(t) Su

+ e(((ulu)) — 1)}, (67)

where crit indicates the search of a critical point, not only a
minimum.

So far we have a unique description of the Flo-
quet eigenbasis up to a trivial quasienergy shift £5° =
{en, €°, u,(t)}. This basis set describes the propagator
[Eq. (21)] uniquely, is compatible with the variational prin-
ciple, is well ordered through the average energy, and is
unambiguous at resonance.

B. Exact two-level system example

The simplest toy model that shows the properties discussed
above is the two-level system driven by a circularly polar-
ized interaction. The exact solutions can be found in various
textbooks [37], derived in a number of ways. We can arbitrar-
ily choose any Floquet representation, but for simplicity we
choose the most familiar one corresponding to the adiabati-
cally connected solution with varying driving strength:

@ %eftwt
A = [V o o ] (68)
2
o€t 29
|l[l+(t) \/Q»Be-ﬂwt s (693)
2Q
Q— (Se—twt
e it V 2@
W_(r)) = \/sTra ; (69b)
2Q
QL—-—w
€&x=7F ; (70)
2
Q=VV21+8 §=aw—w. an

Here the parameters wy, w, §, V, Q correspond to the natu-
ral oscillation frequency, driving frequency, detuning, driving
strength, and Rabi frequency, respectively. We choose a blue
detuning @ = 1.5@y, and we normalize all the parameters to
wo = 1. We plot the energy spectra and infinite time-average
energies of the Floquet eigenstates in Fig. 2. The correspond-

ing analytic formulas are as follows:

o Q+5 Q-3
PE(E) = =8 —ex) + ——3(E —ex F o), (72)

oo 1 Sw

In this example the eigentriplets {€, €, us(¢)} are de-
fined and labeled according to the adiabatic continuation with
respect to the driving strength V. Generally this would not be
available due to the ambiguous definition of adiabaticity [8,9].
For the sake of argument we assume that the eigentriplets are
still undetermined at the resonance points and we calculate
them using Eqs. (64) and (66). At the first resonance V =V,
(such that Q2 = w), we expand the infinite time-average energy
matrix in the basis of Egs. (69a) and (69b):

2w—wy we—iwt
2w 2w
A Cc- . (74)
— [ ptiot 20—wy
2w 2w

(@) 4 o

The infinite time-average energy matrix is already diag-
onalized, so the Floquet eigenbasis defined from Eq. (66)
coincides with the adiabatically connected one [Eqs. (69a) and
(69b)]. We can better see the effect of this diagonalization in
the eigenstate energy spectrum [Fig. 2(b)], where we vary the
definition of the Floquet eigenfunction by mixing the Floquet
eigenfunctions with quasienergy € = 0, or equivalently vary-
ing the initial wave function W(0) = u(0) in Eq. (74):

l46(0)) = (C.OS 9) u_g(0) = (_ Sm@). (76)

W) =

sin 6 cos b

The average energy minimum and maximum occur at the
eigenfunctions of the matrix Eq. (75), which are equivalent to
the adiabatically connected ones. We note that at these points
the spectra are maximally separated from each other.

III. INFINITESIMAL PERTURBATION PROBLEM

So far we have a method of defining and calculating the
Floquet eigenstates of an ideal Hamiltonian using the infinite
time-average energy, including the resonant region. However,
within this framework, the eigenstates, propagators, etc., are
sensitive to perturbations, particularly at and near resonance
(similar to the perturbation problem of static degenerate sys-
tems). As a result, we cannot confidently model real systems
because of the inevitable computational or modeling errors,
even though the infinitesimally small perturbations should not
have any measurable effects. Thus we have to refine the eigen-
state definition to reliably model the real systems regardless of
any infinitesimal perturbation.

In real experiments, one of the fundamental limitations
of any time-dependent quantum system is the observable
timescale, which we will use to quantitatively define and as-
sess the accuracy of the Floquet eigenstates. Associated with
this observable timescale is a minimum-energy resolution &,
which from here on is the desired degree of accuracy, and for
simplicity we imply its appropriate dimension transformations
in upcoming equations.
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To better understand the effect of the infinitesimal pertur-
bation, we assume that the real or unperturbed Hamiltonian
HO(t) is known, along with the eigenstates we wish to ap-
proximate {€°, €%, u0(¢)}:

[HO(t) — i9,] |u()) = €, |un(@)). (77)

A model or calculated Hamiltonian H(¢) is riddled with
infinitesimal undesired perturbations or errors v, and in prin-
ciple it is hard to distinguish between the perturbation and
the actual components of the real Hamiltonian H°. So the
only computationally accessible solutions would be these per-
turbed Floquet eigenstates {¢,, €,, u,(t)}, corresponding to the
following Floquet Schrodinger equation:

[HO(t) + 0(t) — i8] [un (1)) = €, |un(t)) . (78)

For simplicity, we will only consider the weak static per-
turbation |v| < & <« |H°|, w, although these methods can
be generalized for other perturbation methods, e.g., high-
frequency expansions [10,38].

At the near resonance regime [mod(e, — €p, w) < €], we
can use the degenerate perturbation theory method to derive
the perturbed eigenstates [39,43]. In this case the quasienergy
difference is bounded [|e — €°| = O(v)], while the eigen-
functions u(t), their energy spectrum P*°(E), and infinite
time-average energy € can differ drastically. Even when the
perturbation becomes infinitesimal |v| < &, these definition
differences can be beyond the acceptable resolution &. Thus
the infinite time-average energy method becomes unstable and
impractical for realistic applications, e.g., defining a ground
state.

On the other hand the perturbation has minimal observ-
able effects if we limit ourselves to small enough timescales
t <TU . Using the interaction picture we can quantify the
differences between the model or perturbed and real or un-
perturbed systems. The propagators U(¢) are sufficient to
characterize any observable difference, and the interaction
picture propagator U; () extracts this difference by definition:

U,it,00=1— i/ d(0)U;(z, 0)dt (79)
0

~1+0E) Vi<TY

max

(80)

We can ignore the effects of nonresonant elements
[mod(e, — €, w) > €], as the interaction picture propagator
does not diverge from unity at any timescales:

Upmn(®) = 8unl < O) Vi1 if Ble, —el <& (81)

As for the resonant part we can express it using the transfor-
mation matrix U(t):

9 Cam (t) Can (t)
Uw) = |:Chm(t) Cbn(t)]’ (82)
Ui(0) ~ am[g"“ Sﬂw}zfﬂ‘(m. (83)

In this form we can see that U;(¢) only starts to diverge from
unity at timescales ¢ = O(1/|v]), since the transformation
matrix is unitary at any given time 4" = 1. We can define
this as the timescale 7, , up to which any observables of the
model and real system are indistinguishable.

Thus the model can approximate the real system for weak
enough perturbations |v| < &, and we want to find an eigen-
state definition which can describe both systems within the
timescale limitations t < TY, . Since the infinite time method
goes beyond this limit, we have to choose a different quantum

number to describe the observable effects.

A. Observed average energy

We define the observed average energy as the average en-
ergy expectation value up to a finite time 7 [Eq. (39)], within
reasonable experimental timescales 7 < 7,0 . Our goal is to
find a definition of the average energy functional £7 which
closely approximates the real or unperturbed one E°7 within
a predefined acceptable accuracy range £. With this we can
trivially approximate the unperturbed eigenstates using a vari-
ational principle with tolerance &:

ET19(0)] = ((W(O)|OTHT|%(0))) T, (84)

IET[W] — EOT[W]| <& ¥ W(0). (85)

For simplicity we assume the real system does not have
near resonance pairs, only exact resonances and far from
resonance states. In this case the real system is well described
by the unperturbed infinite time eigenstates &5, and the un-
perturbed observed average energy quickly converges to the
infinite time one:

mod (e —eb, w) € {0,>> &} Vm,n, (86)

|ET W] — EO®[W]| <& VT > TE . (87)

Including near resonances in the real or unperturbed sys-
tem, the observed average energy and its eigenstates can still
be defined for the real system by reapplying the discussions
in this section, in which case the observed unperturbed eigen-
states £ 17;0 would be the target we wish to derive instead of the
infinite time solutions £75;. We explain more in Sec. IV, and
here we only concentrate on deriving the infinite time solu-
tions of the real or unperturbed system through the observed
average energy.

Decomposing the definition in Eq. (84) using the unper-
turbed eigenstates {€?, €9, u%(t)}, we find two timescale

boundaries 7.5 and T.E_ within which the observed average

energy satisfies

(88)

ET =3I +ok) VIE <T <TE,.
n

The derivation of these boundaries and related discussions are
presented in Sec. IV. Roughly these boundaries are related
to the timescale where the unperturbed eigenstates become
relevant 7 > TE | and the timescale before which the in-
finitesimal perturbations v can be ignored 7 < TY < TE .
These boundaries only become relevant in further theoreti-
cal derivations based on the Floquet average energy, and in
practice we are only concerned if a reasonable timescale can
be defined within these boundaries. Since for any averaging
time within this region we get an equally good approximation
to the exact average energy functional, we can choose an
arbitrary timescale to define the appropriate observed average
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energy functional, and in most cases 7 ~ 1/& would be a
good choice for this.

With this definition of observed average energy alone we
can derive a close approximation of the unperturbed eigenba-
sis 520 from its variational principle around the initial wave
function E7 [W(0)]:

&l = (ET[WO)ISET [¥] < &}, (89)
&y =&l W (0IBET W] < &£}, (90)

el =e&" 4 0()

n

W, (0)) = [W(0) + O). (91

As for the computationally accessible forms, we rely on
the observation that the effective average energy €’ [u] in the
near resonant subspace T, retains the same properties of
Egs. (57) and (58), up to the acceptable accuracy &:

le[u] — €| <& Jelullpr < & Yu(t) € ]HTGE, 92)
1€ [u,] — ET[W,]| <& Viuu(t) € HTe, (93)
168" [, — SET [Wallur. | <& Vuu(t) € HTee. (94)

The variational procedure is thus analogous to the one
presented in Sec. II A, but in a more extended search space:

€n = {e[ullde[ullar < &} = HT, (95a)

&) = (" [uall8e" [uallmr,. < £}, (95b)

& ={en & un(®)|delu) <& — e ul|yy, <&} (96)

where Eq. (95a) implies the quasienergy resonance is not
lifted if the difference is within the acceptable error £. This
accounts for the infinitesimal resonance lifting previously
presented, so that we get consistent solutions near the real
or unperturbed eigenstates {e°, €2, u9(¢)} for arbitrary weak
interaction |v| < &.

The equivalent Lagrange minimization method remains
roughly the same, but with appropriate change of Lagrangian
multiplier A¢ to account for the finite resolution of de:

)
EnT = crit {ET [u] + e €lul
Su

u(t)

+ e(((ulu)) = D¢ + O&).

D)

The same variational procedure is used when the real sys-
tem has infinitesimal near resonance (Sec. IV). We also point
out that, although in these derivations we have assumed we
know the exact or unperturbed average energy and eigenstates
we wish to approximate, in practice these are not necessary.
We can discuss whether the observed average energies and
their eigenstates of the model or perturbed system closely
approximate the real system by varying the timescale 7 or
equivalently the acceptable accuracy &, and observe the sta-
bility of these solutions.

Thus, we have a more robust description of the Floquet
eigenbasis Eg = {e€,, E,T , Uy (1)}, which has the same bene-
fits of the definition in Sec. II A, but also is robust against
infinitesimal perturbation. In this form unaccounted perturba-
tions or numerical errors will not break the definition of the
basis set.

B. Floquet-Ritz variation principle

The power of the Ritz variational principle is in the ap-
proximation of the ground state on a much smaller Hilbert
subspace. For this we have to investigate how the ground-state
approximation changes as we increase the Hilbert space.

First it should be noted that in the full extended Hilbert
space HT both the infinite time and observed average energies
are lower bounded by those of the ground states, €;° or EOT s
respectively. Thus at the limit of the Hilbert-space expansion,
we have a Ritz-like variation principle:

E¥ul = Y |CFer > & Vu), (98)

n

ET =Y |c]e] +0¢) 2] Yuw).  (99)

For the latter variation to be applicable, we assume that
the two lowest observed average energies are sufficiently
well separated EIT — ég > &, so that the global minimum
gives a good approximation of the ground state C] = 1 +
Olg/(E] —&])l.

In order to have a proper Ritz variational principle, we as-
sume we have a well-behaved expansion series of the Hilbert
space HT;, e.g., one derived from a Davidson algorithm
[44.,45], and we can find a lower bound in the expansion i that
closely approximates the exact solution. In other words, for a
given accuracy &, the ground state {e, &y, uo}|mT,, or equiv-
alently the average energy functional E[u]|gr,, evaluated in
the Hilbert subspace HT; is within the acceptable accuracy &
of its exact counterparts, and subsequent expansions will not
improve the accuracy more than that:

{€0, €0, uo}lmT, = {€0, €0, Uo}lmT + O(&), (100)

E[ullut, = Elullur + O(&).

In the simplest case we can model such a Hilbert space
expansion with a monotonic decrease in the coupling v’ be-
tween two Hilbert subspaces, HT; and its complement HT ,
corresponding to the Hamiltonians H' and H'*, respectively.
The Hilbert subspace HT; is where the current ground-state
approximation resides, and increases after each iteration. The
full Floquet Hamiltonian can thus be decomposed as follows
at any given step i in the expansion:

(101)

. AHL@1) () —i3, 0

F _ )\ t

H (t)_[f)”(t) gl Tlo | {19
107! < 19|, HTpy D HT;. (103)

Whether a given algorithm does yield such a property is
still up for debate. For now we are only concerned if such an
algorithm can yield a Ritz-like variational principle and what
ground-state definition it should follow.

First let us consider the behavior at a weak-coupling
threshold |v| < &. In this case we can use the previous ar-
guments in Sec. III A to find that the observed average energy
ground state of the full Hilbert space (] , €], u] )y € 5y is
closely approximated by the decoupled solution of Eq. (102):

ar o [H @) 0 —id, 0
H(t)~[0 ﬁi"(t)]+|:0 —ia,}’ (104)
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which in this case is the observed ground state
(€] . &) . u] )y, of the Hamiltonian H' (¢) in the limited
Hilbert space HT;, ,‘assuming the correct subspace is chosen.
Similarly all of the expansion points above this threshold
i > i. have the same property, as long as the expansion series
satisfies Eq. (103). We can simplify this statement using the
observed average energy functional evaluated in the truncated
Hilbert space HT;, compared to the exact one evaluated in
the full Hilbert space HT:

ET[ullgr, = E” [ullgr + O) VHT; > HT,. (105)

The same is not true for the infinite time ground-state
definition, where we can find cases where the asymptotic
limit does not correspond to the full Hilbert-space solution,
provided that such a limit can even be found:

E*[ullur, # ililgloEw[u]Imi # E®[u]lmr. (106)

Therefore a Floquet-Ritz variational principle can be for-
mulated based on the observed ground-state definition. The
conditions for the convergence and the Ritz inequality are as
follows:

Se[ul Nlur <& and SE7[u] |lur <&, (107

glele] +0@) =&l +0e).

The Floquet-Ritz method has similar properties to the static
method. If the initial guess is not good enough we risk conver-
gence to an excited state rather than the desired ground state
[Eq. (108)].

There is, however, a caveat to this method. The functional
used in evaluating the average energy E 7—|]qu[, at interme-
diate steps, namely, the effective average energy functional
ET[u]hHT,,, or the propagator U (¢)|gT,, does not necessarily
give a good approximation to the average energy functional in
the full Hilbert space E T|1qu. It is thus possible to find “av-
erage energies” well below the observed ground-state average
energy in the full Hilbert space:

HT, < & |gp +0©)}.

This does not contradict the Ritz variational principle in
Eq. (108), since the solutions at these points do not satisfy
Eq. (107) and are not convergent yet. However, this can still
create problems depending on the algorithm used to approach
the convergence. E.g., if we select the ground state at each
step to determine subsequent Hilbert spaces HT,, 1, it is pos-
sible to flip-flop between approximations of various different
eigenstates (¢, €/, u’), and even to converge to an excited
state despite starting from a good initial guess.

Nevertheless, in principle a Floquet-Ritz variational prin-
ciple is possible on limited Hilbert spaces HT}, as long as we
use the observed average energy labeling, either explicitly or
implicitly. This is the main point we want to state regarding a
possible Floquet-Ritz theory.

(108)

3| <ille]”

(109)

C. Perturbed two-level system

A minimal example including the perturbation effect pre-
sented above is the two-level system in Eq. (68) perturbed by
a weak static coupling. Physically this can be regarded as a

stray static electric-field contamination or computationally it
can be a numerical error:

R % v+ %efiwt
H(t) = V. tiot @ : (110)
v+ 56 -3

For consistency we consider the unperturbed Hamiltonian
[Eq. (68)] to be the real system and we project the perturbed
Floquet Hamiltonian on the unperturbed Floquet eigenfunc-
tions [Egs. (69a) and (69b)]:

. 0
ORI

€_
Y — ¥ coswt 28 _ g pmider .

. 1y

2 gbptider ¥ ocos wr
(111)

i ~ u t
We(t) = e eﬂu‘)(t)(u*it;), (112)

[2+s [28 ot

U@ =|V % 22 (113)

_ ]88 tior Q+s
2Q 2Q

We will focus on the first resonance point 2 = w. Using
a Brillouin-Wigner expansion [10] in this projected basis set,
we can derive the Floquet eigenstate expressions up to arbi-
trary order of the weak coupling v:

20—wy wo e*iwt
20 2w
— [ @0 ptiot 20—wy
2w 2w

+0(®),

|Wa(r)) = e’

(114)

2w

€y = ﬂ:v% + 0. (115)

These eigenstates correspond to the infinite time eigenstates
with the average energies almost coinciding with each other:

oo _ 4 20 —wy V? ] + 00
=ty — — 4+ D v?),
* 20 202 8Qw — wy)w?
(116)
(]
€] ~ v < €] = 70 (117)

Here we see the limitations of the infinite time-average
energy method. As we approach the limit v — 0, the infinite
time-average energies difference of the model or perturbed
systems vanishes €2° — €% — 0, while the real or unper-
turbed solution at v = 0 does not (Eg — &% = @y #0). Such
mismatch in energies does not occur in the static case and
is specific to the resonance of Floquet systems. We also see
that the eigenstates [Eq. (114)] do not change as we approach
the limit v — 0, even as they are defined by the infinite time-
average energy.

We plot the infinite time Floquet eigenstates and average
energies in Fig. 3 with the perturbation exaggerated to v =
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FIG. 3. Equivalent energy spectrum and infinite time-average energy plot to Fig. 2 for the perturbed two-level system. The eigenstates are
determined exactly from Eq. (114) and labeled adiabatically similar to Fig. 2. The vertical dashed lines correspond to the infinite time eigenstate
solutions at the first avoided crossing Vi, where both plots correspond to each other. The vertical solid lines are the eigenstate solutions of the
unperturbed system [Fig. 2(b)]. The energy spectrum of the state W_4(0) in panel (b) has been artificially shifted upwards for clarity.

10~*wy for clarity. This system is simple enough that we can
compute the exact propagators:

, (118)
@Wo iw [ 2w—wy
we+ ' 2w
t j S1 t
vo=wol 5 e oo
U°t) = U (U (0). (120)

As shown in Fig. 3(a), the infinite time eigenstates of the
perturbed system are closely approximating the unperturbed
eigensolutions [Fig. 2(a)] at all the nonresonant points, with
the exception of a trivial label swap caused by the difference
in the adiabatic continuations. However, at the resonance point
these solutions differ drastically, which is best seen in the res-
onance energy spectrum [Fig. 3(b)] plotted against the initial
wave function with the definition given in the previous exam-
ple [Eq. (76)]. Here we notice that the range of the average
energy variation is much smaller than that of the unperturbed
case [Fig. 2(b)]. Also, the eigenstates of the unperturbed and
perturbed systems correspond to different values of 6 (dashed
and continuous gray lines). Thus we confirm that the labeling
of the Floquet eigenstates by the infinite time-average energy
can be inconsistent with the inclusion of infinitesimal pertur-
bations.

Having shown the limitations of the infinite time approach,
now we compare it to the observed average energy method.
First we want to confirm that our original premise for deriving
the observed eigenstates is valid, i.e., any observable of the
perturbed and unperturbed system can be within an accept-
able error at some timescale. Since the exact propagators are
known at the first resonance point [Egs. (119) and (120)], we
can directly find the timescales 7 where propagators in the
real and model systems are equivalent, for arbitrarily chosen
accuracy &. For our purposes it is sufficient to expand the

model propagator U (¢) up to first order in v and derive the
relevant timescale 7 from there:

2w —

Go—ov, | ety < £
2w wo

2
FoqUu o2 &
2w — wp)v wy

U@)—U@t)| ~ (121)

(122)

As long as the observation timescale and the timescale
for determining the average energy are within this range, we
can conclude that the model or perturbed system does indeed
well approximate the real or unperturbed system. Here we
have used the dimension transformation of £ with the typi-
cal energy scale as wp. For the two-level system this rough
approximation is sufficient, especially since the most inter-
esting physical system is where all of the interactions are of
the same order O(w) = O(wy) = O(V) and the time-periodic
interactions are most prominent.

Within these timescales 7 and acceptable accuracies &, we
can derive the observed average energy functional E7 and its
resulting eigenstates directly from Eqs. (39) and (89). But first
we look at the observed average energies boundaries (%
and T£ ), which we have proposed to determine the region
where the model eigenstates approximate the real ones. Since
we know the exact Hamiltonians, we can directly derive them
from Egs. (A3) and (A6):

min w%_ max Q+8|€3_—€0_|U

We see here a good agreement between the two higher
bounds (T, and TV ), in accord with our derivation. The
lower boundary in this system assures that the observed aver-
age energy functional approximates the infinite time-average
energy of the unperturbed system, and not another functional
with different critical points, for example, the instantaneous
energy in this system.

In the limit of v — 0 we find the higher bounds diverge
to infinity, suggesting that at arbitrary timescales we would

~ TU
~ Tmax .

(123)
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FIG. 4. (a) Observed average energy landscape E7 of the perturbed two-level system. The three distinct regions correspond to the (I)
instantaneous energy, (II) unperturbed average energy, and (III) perturbed infinite time-average energy. The thick red (second) and blue (third)
inner vertical planes 7.5, and T;,_are the boundaries calculated from Eq. (123) where any state satisfies E7 = E° + O(&). The thin outer ones
(first and fourth) are the boundaries where the condition E7 = E° 4+ O(£) breaks down for the initial wave-function parametrization of the
current plot. The plots in panel (b) are taken with averaging times 7~ well within the defined regions (7qy = 1072, Tqr = 10%, Tany = 10'°
in order of decreasing amplitude £7). The lighter colored regions, particularly in the zoomed in plot, represent the acceptable error of the
unperturbed average energy E® 4 £. The vertical gray regions correspond to the acceptable deviation from the Floquet ground states defined
for each region with acceptable errors £ = 102wy for regions I and II, or £* = 10~2v for region IIL.

not be able to find an observable difference between the
model and real system, perfectly in accord with the physical
intuition. Comparing the lower and higher bounds (7.£ and

TE ), we find that for small perturbations v we can always
find an acceptable error &, up to which the model Hamiltonian
approximates the real one, although this is often too large for
practical applications:

TE > TE & &> 0/ ved —&°)) > v. (124)
For the sake of visibility, we consider the system with rel-
atively high perturbation v = 10~*wy, for which we assume
that the acceptable accuracy of & = 10 2w, is sufficient.
These parameters satisfy the condition in Eq. (124), and the
perturbation is large enough so that the exact propagator can
be calculated using various numerical and perturbation meth-
ods.

The effect of the averaging time 7 on the average en-
ergy definition £7 is best seen in Fig. 4, where the energy
functional E7 [W(0)] is evaluated for varying timescales 7
and varying initial wave functions |Ws(0)) = (cos 8, sin6)7.
Here we observe three distinct regions of the averaging time
T, where the energy functional E7 [¥(0)] approximates (I)
the instantaneous energy, (II) observed or unperturbed infinite
time-average energy, and (III) perturbed infinite time-average
energy:

EJW] ~ (W(0)|H(0)|W(0)), (1252)
EJ W] ~ E°[W] + 0(8), (125b)
Efy W] ~ E*®[¥]. (125¢)

Each of these regions is delimited by the boundaries Tlfm
and Tnfax [the red (leftmost) and blue (rightmost) vertical

planes in Fig. 4(a), respectively], derived from the procedures

in Sec. Il A and dependent on our definition of perturba-
tion and the acceptable accuracy £. Only the boundaries for
region II are shown in Fig. 4(a). The thick innermost bound-
aries are calculated using Eq. (123), which by the derivation
given in Sec. IV approximate the highest lower boundary
TE and lowest higher boundary T , where the observed
average energy E7 can be approximated by the unperturbed
average energy E°. The thin outermost boundaries are the
actual time-scale boundaries observed in the current plot,
where the approximation |[E7 — E|° < & breaks down. The
difference between these two sets of boundaries is a conse-
quence of the initial wave function parametrized by 6 not
spanning the full Hilbert space. A tighter agreement of the
boundaries calculated from Eq. (123) is seen in the state W,
of Fig. 5(a). However, the existence of these broader bound-
aries suggests that if we focus on a smaller section of the
Hilbert space, e.g., the states near the unperturbed Floquet
ground state, we can broaden the applicability of the Flo-
quet eigenstate classification and derivation using the average
energy.

We can see the good agreement between the calcu-
lated average energy landscapes and their convergent limits
[Egs. (125a)—(125¢)] in Fig. 4(b), where the averaging times
7?]) = 10_2/61)0, 7?[]) = 102/600, 7?][]) = 1010/600 were chosen
to be well within each region. The acceptable accuracies are
taken to be & = 102w for regions I and II, and £ = 10~
for region III. The calculated average energies remain within
the acceptable region E[W] 4 & at any state, which can be
seen in the zoomed-in portion of Fig. 4(b), where the lighter
colored regions correspond to the acceptable average energy
deviation E[W] = & for each region. More importantly we can
see that the minima of these landscapes [circles in Fig. 4(b)]
are a good approximation to the Floquet eigenstates (defined
by the vertical gray areas), and thus a good approximation can
be derived from the procedure in Eq. (97).
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FIG. 5. Convergence of the observed average energy E7 towards (a) the unperturbed average energy E° (region II) and (b) the
perturbed infinite time-average energy (region III), with acceptable accuracies of & = 1072w, and £%° = 10~2v, respectively. The plotted
states correspond to the ones with the following initial wave functions: |, (0)) = arg miny( £(0), |¥»(0)) = l/ﬁ |\IJ£)r 0)) + i/ﬂ [0 (0)),

[W3(0)) = [W(0)), [W4(0)) = |¥2(0)).

In Fig. 5 we can better see the time-dependent convergence
of the average energy E7 towards the unperturbed average
energy E° [Fig. 5(a)]. For the sake of completeness, we in-
clude here the convergence towards the infinite time-average
energy £ [Fig. 5(b)]. The time-dependent observed average
energies E7 are derived up to reasonable accuracy from the
Brillouin-Wigner expansion [10]. From these plots we point
out the state W,, not represented in Fig. 4(a), which has the
observed average energy E7 deviate the strongest from its
equivalent unperturbed average energy E°, yet still the con-
dition in Eq. (85) is satisfied with averaging timescales 7~
within the boundaries derived in Eq. (123). Accurate timescale
boundaries can be derived from Egs. (A8) and (A9), which
were used to derive the outer boundaries in Fig. 4(a).

Next we look at the derivation of the observed average
energies and the eigenstates. Using the unperturbed Floquet
basis, we can compute the exact quasienergy, observed aver-
age energy, and effective average energy at near resonance for
different Floquet functions uy(#), other than the eigenstates.
For the sake of simplifying the equation, the Floquet functions
are constructed by mixing the unperturbed Floquet eigenfunc-
tions, which we wish to derive:

lug (1)) = cos 0 [u’.(t)) + sin 6 [u® (1)), (126)
2 _
0y = 20O oo <& Ve, (127)
¥ o) Qw—wy)v
_T __ (cos@ —70 = cos 6
€)= <sin9> [W @« sinf )’ (128)
T w
~FT _fcosO\ | =% 0 [(cosd
E" [up] = (sin@) [0 %}(sin@ +0¢). (129)

We see that the effective average energy &7 is indeed a
close approximation to unperturbed average energy E° up to
the accuracy of £. Since the unperturbed average energies are
well separated E?r - Eg > £, and the quasienergies are rela-
tively stationary [Eq. (127)], we can get a close approximation
to the unperturbed basis set from the variation of Eq. (128).

We plot this observed average energy in Fig. 6, where we use
a numerical approximation of the energy spectrum [Eq. (41)]
with 7 = 1/& to simulate the limited observable accuracy &
and differentiate from the exact energy spectrum in Fig. 3(b):

T 1 T iEt
PT(E) = E/T eE (1)) dt . (130)

Including the finite accuracy effect on the energy spec-
trum, we find it to closely resemble the unperturbed spectrum
Fig. 2(b). The stationary point of the effective average energy
[Eq. (128)] as well as that of the spectrum average taken from
Fig. 6 closely agree with the unperturbed solution. We depict
the acceptable accuracy range calculated from Eq. (131), as
the vertical gray areas, with the innermost area corresponding
to an error of v instead of £. The error in the eigenstate wave
functions is normalized by the average energy difference as

T T
1.5 = | PT(E) ET=¢
| — -—— Uy
|| ———e W
05  Lem=es . |
= o2 \\s I ," S
. h e Sol Lt 9
—0.5 S~ - - ; REEEL .
—-1.5 ; e —
| |
—7/2 TY (0) 0 o(0) w/2

Initial wave function ¥g(0)

FIG. 6. Observed energy spectrum P7 (E) and average energy
ET7 per effective average energy &’ of the perturbed two-level system
with 7 = 10~2w,. The vertical gray regions are equivalent to the
ones in Fig. 4(b), and the dashed vertical line corresponds to the
infinite time eigenstate solutions. The energy spectrum of the state
W_,(0) has been artificially shifted upwards for clarity.
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follows:
W4 (0)) = [WL(0)) + 0<L> |¥9(0)) + 0( ; >
el e o

(131)

Finally we show the possibility of the Ritz variation princi-
ple by adapting the Davidson algorithm to the Floquet system,
similar to Sahoo et al. [45]. This example system is simple
enough that we can use this formulation directly, while more
complicated systems would require a more refined method to
take into account the average energy variation as well. Starting
from the initial guess of the undriven ground state u®, we
calculate the ground states u™ as defined in this paper and the
residue vector 7 at each step i,, which represent the current
approximation of the ground state and the convergence condi-
tion, respectively. We have executed the procedure equivalent
to [45] and we will not go into detail about this procedure.
We only note that we have changed the algorithm of selecting
the ground state and we focus on how the algorithm converges
and the corresponding solution:

) Zﬂa)t
ey =(7), 1) = (”* ¢ ) >E (132)

|u'" (1)) = |u IF'(t)) =0(v) <&.

The results converge to an error of £ within two steps, without
having to create the infinite matrix H". The convergent solu-
tion is also well within the accepted accuracy to the observed
ground state. If we disregard the acceptable accuracy & and in-
stead choose an accuracy < v, we would eventually converge
to the exact infinite time ground state.

*@)) + O(v), (133)

IV. CONCLUSION

In this paper we have proposed a robust method of defin-
ing the Floquet eigenstate in an ordered fashion using the
average energy. The main differences from the previous meth-
ods are the following: we are able to uniquely order the
eigenstates independent of the quasienergy shift; we can
uniquely define the eigenstates near resonance where it would
otherwise be ambiguous; the method is robust against in-
finitesimal perturbations; we can systematically cut off the
Hilbert space and retain the accuracy within a reasonable
timescale. Based on this definition we derived variational
methods of approximating the eigenstates, which in principle
are more computationally efficient. For this method additional
consideration has to be made to the physical timescale that we
wish to investigate.

The physical significance of the average energy was not
presented in the current paper. Some intuition can be found

J

=
ET=3% |c,9|2% [ ol ol

> e — T / e (1) id, |ul(0))d1

m;én

CO*COT/ el fm” um(t)|[f1(t)—i/[l-70(t), (01T |ul)(1))dt + O(v?).
0

by evaluating the steady state of the open-quantum system.
We conjecture that for reasonable systems this choice of basis
set gives a good approximation of the exact steady state, i.e.,
the density matrix is close to diagonal and occupied by a few
low-lying states in this eigenstate representation, even as the
Hilbert space is truncated.

While in this paper we have focused on the average en-
ergies and eigenstate definition of discrete systems, the same
procedure should apply to continuous systems as well. How-
ever, one has to be careful with the appearance of infinite
average energy states, such as the accelerator modes of the
kicked rotor system [46]. Further research is needed around
this topic, such as whether these states are Floquet eigenstates
under the proposed definition here, and how the finite-time
solutions behave. Nevertheless, since this method is aimed at
deriving the Floquet ground state and other low-lying eigen-
states, the current procedures would still be applicable for
well-behaved continuous systems with finite energy spectra.

Having a variational principle for deriving the ground
state, various methods such as Floquet Hartree-Fock could
be adapted to approximate the ground state. Since the ground
state is generally not sufficient to describe a physical steady
state, additional excited states are required, which can be
derived in a similar variational manner, with similar excited
Floquet Hartree-Fock. With sufficient calculations (estimated
from the resulting energy spectrum), the computation of the
physical Floquet steady state is relatively trivial, at which
point we have a good approximation of a real periodically
driven system at a long enough timescale to have equilibrated
with the environment.
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APPENDIX A: OBSERVED AVERAGE
ENERGY BOUNDARIES

We can find the exact boundaries 7.E and T;L_ where
the observed average energy functional of a model or per-
turbed Hamiltonian H (¢) approximates that of the unperturbed
Hamiltonian H%(¢), by decomposing Eq. (84) onto the unper-

turbed eigenbasis £y, and imposing the condition in Eq. (85):
(Ala)
(Alb)

(Alc)
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The first term [Eq. (Ala)] quickly converges to the un-
perturbed average energy E°[W] (regardless of its definition)
within a few cycles of the driving 7 > O(T'). This timescale
is much lower than the timescales we will be discussing and
will be ignored. Thus the goal is to find the timescale T
where the remaining terms [Eqgs. (A1lb) and (Alc)] vanish
for arbitrary initial wave function W(0), or in this expression
arbitrary coefficients {C°}.

From the second term [Eq. (Alb)], we obtain the lower
boundary TE which is independent of the perturbation v
of the model H(¢). Depending on which definition of the
average energy and eigenbasis we wish to approximate in the
unperturbed system (Sec. IV), the lower boundary TZ%  can
change. For simplicity we assume the unperturbed system has
no finite near resonances, so that we approximate the infinite
time solutions of the unperturbed system E7 [¥] ~ EO®°[W].
The lower boundary is thus obtained from

la)mn T
%ka WD) < & Y mon, 1, (A2)
mnl
2 Zk ka)( 21(k)|ug(k+l))
TE ~ max Ea : (A3)
mnl
Z IOl + o) VT >Th,. (A4)

Even when the unperturbed Hamiltonian has exact resonances
& w?rml = 0), the lower boundary remains finite due to the
diagonalized definition of the infinite time-average energy
[Eq. (59)] and the infinite time eigenstate definition. Similarly,
in the case of infinitesimally small but finite near resonance
3 |a)9nnl| XK &), the lower boundary can be within the ac-

ceptable timescale TE ~ 1/&, depending on whether
we treat these states as resonant states or not (Sec. IV).
We can further lower this boundary if we limit the average
energy functional approximation to a smaller Hilbert space,
e.g., only approximating the functional near the ground state,
C, =X 8,0+ O(§), or the parametrization used in Fig 4(a).
A rough physical understanding of the boundary Tk is the
timescale from where the weakest significant interaction or
avoided crossing can be resolved up to the accuracy &.

The higher boundary T is derived from the remaining
terms in Eq. (Alc), and are specific to each perturbation v.
We can safely ignore the perturbation effects on nonresonant
states and only consider the effects of resonant and near res-
onant states [mod(e, — €p, ) < &]. Calculating the condition
for Eq. (85) to be satisfied we get a form of the higher bound-
ary as follows:

T{e )l

- 57 <& Va,b, (A5)
_ 2§
E i
Co el A
T=Y | e v o6) YTE <T <TE. (AD
This higher boundary T.E  closely approximates 7.V, which

defines up to which timescale the propagator and any ob-

servable are closely approximated in the model or perturbed
system and the real or unperturbed one. So a rough physi-
cal intuition of this higher boundary is the timescale up to
which the effects of the infinitesimal resonance lifting can be
ignored.

These formulas are applicable for any initial wave function
W(0) or coefficients {C,?}, and offer a very rough estimation
of the highest lower bound and the lowest higher bound
for which the condition |E7 — E°| < & holds. By explicitly
including the coefficients {C,? }, we can define these bound-
aries explicitly for each quantum state. These would generally
lead to a wider range of acceptable timescales, and can be
particularly useful when the accessible Hilbert space is exper-
imentally limited:

23 keolu iy +0)

T, [W(0)] ~ max " ChCYl. (A8
mEn,l é—':a)mnl

O ~ 2% : A9

max[ (0)] Nm;? (gl(l)oo _ g()oo) 0(0) CO*CO (A9)

Depending on what we define to be the perturbation v,
and what the unperturbed elgenstates are, the lower and
higher boundaries could cross (T2, < TE ), in which case
we would not be able to find an average energy definition
that satisfies |E7 — E°7| < &, and the Floquet eigenstates of
the two systems could differ significantly for any observed
average energy definition. Different choices of perturbation
v or unperturbed eigenstate definition 5 could recover this
condition (e.g., Sec. IV). Otherwise it could simply be that the
perturbation v is not weak enough to be ignored and the model
does not closely approximate the real system.

APPENDIX B: REAL AVERAGE ENERGY
NEAR RESONANCE

In Sec. Il A we have assumed that the real system does
not have near resonance conditions so that the infinite time
eigenstates are the optimal basis set to describe the system
at reasonable timescales 7 < TV . But the real system can
have infinitesimal near resonance like the model system, in
which case the procedure presented in Sec. III A would not

approximate the infinite time eigenstates of the real system:

) < E&. B1)

We now consider the weak interaction v’(¢) which would
bring these near resonance pairs to exact resonance, so that
we have a Hamiltonian H'(z) with only exactly resonant and
far from resonant Floquet eigenstates which can be derived
from the procedures in Sec. IT A:

38 oo if EIO<mod(e —e

H'(t)=Ht)+ v (1), (B2)

mod (¢, — €, w) € {0,>> &} Vm,n. (B3)

Repeating the procedures in Secs. III A and IV, with an ex-
change of Hamiltonians, we can find the timescale boundaries
TE and T/E  where the observed average energy func-

tional and its eigenstates [derived from Eqgs. (96), (95a), and
(95b)] approximate the infinite time solutions of this model
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Hamiltonian H'(¢):

H@t)— H°t), H°(1t)— H' (), (B4)

EOT W] — E°[W]| <& VW), TelrE, TE] B5)

min® © max

&7 e+ 0(), VAV +0E).  (B6)

In this case the lower boundary T2 can be within accept-

<T ~1/& <TY . This is in contrast

max*

. E
able timescales T

with the lower boundary TE® required to resolve the in-
finitesimal but finite near resonance or coupling v’ in the real
system H(¢). For small enough interaction |v| < &, the up-

per boundary timescale is beyond experimental observations

1/§ <TY < TE , and we can define the observed eigen-
states of the real system £, = {€2, €07, u0(1)}. By following
Egs. (96), (95a), and (95b), we do not even have to find
the model Hamiltonian H'(¢) which it approximates, and we
calculate the observed eigenstates directly.

From the original discussion in Sec. III A, we have another
higher bound 7.Z_, beyond which the observed solutions &
of the model Hamiltonian H (¢) differ from the real ones £ ZI—O of
HO(t). In principle the infinitesimal perturbation or numerical
errors v in the model Hamiltonian H (f) would be larger than
the interaction v’. So in principle we do not need to consider
the higher boundaries of the real system 75, < TE | and the
observed eigenstate solutions of the model H (¢) are guaran-
teed to correspond to the ones of the real system H(t) for

T elTE ;TE 1.
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