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Quantum field theory from a quantum cellular automaton in one spatial dimension
and a no-go theorem in higher dimensions
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It has been shown that certain quantum walks give rise to relativistic wave equations, such as the Dirac and
Weyl equations, in their long-wavelength limits. This intriguing result raises the question of whether something
similar can happen in the multiparticle case. We construct a one-dimensional quantum cellular automaton (QCA)
model, which matches the quantum walk in the single particle case and which approaches the quantum field
theory of free fermions in the long-wavelength limit. However, we show that this class of constructions does
not generalize to higher spatial dimensions in any straightforward way and that no construction with similar
properties is possible in two or more spatial dimensions. This rules out the most common approaches based on
QCAs. We suggest possible methods to overcome this barrier while retaining locality.
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I. INTRODUCTION

At a conference at the Santa Fe Institute in the spring of
1989, Wheeler presented an idea he called “It from Bit,” in
which he proposed that information plays a significant role
in the foundation of physics [1]. The universe, he suggested,
may be fundamentally an information processing system
from which the apparent reality of matter somehow emerges.
Wheeler might have been led to his conjecture by a 1982 talk
by his former graduate student, Feynman, who also pondered
the connection between information and quantum physics [2].
In particular, Feynman discussed whether physics could be
simulated by a quantum computer, and suggested that all field
theories “can be simulated in every way, apparently, with
little latticeworks of spins and other things.” He suggested
that the appropriate quantum computer might be constructed
from what we would now call a quantum cellular automaton
(QCA): “every finite quantum mechanical system can be de-
scribed exactly, imitated exactly, by supposing that we have
another system such that at each point in space-time this
system has only two possible base states. Either that point is
occupied or unoccupied...”.

Recent work on the connection between quantum walks,
quantum cellular automata, and quantum field theory suggests
that Feynman and Wheeler may have been right. The qubit is
the fundamental unit of quantum information, and quantum
information processing is essentially the action of a string of
unitary quantum gates on some initial state of qubits. In quan-
tum field theory the time development of a quantum field is
given by the action of a unitary operator on a state describing
quantum particles, or the creation and annihilation operators
that correspond to them. Recent work suggests that systems of
the former type, in the continuum limit, yield familiar systems
of the latter type that we know from quantum field theory. If
this is so, it not only provides insight into the issues raised by
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Feynman and Wheeler, it offers a new way of understanding
quantum field theories. For example, such a QCA could repre-
sent an equivalent theory in discrete space-time that avoids the
infinities that plague quantum field theory. Whether discrete
space-time is to be taken literally would then be an inter-
esting question, and may be answerable through technology
of the near future, even for lattice spacings on the Planck
scale [3].

The first step in elucidating the QCA-QFT connection has
been to show that the Dirac equation, which describes the
one-particle sector of a field theory, arises as the continuum
limit of a quantum walk. Quantum walks [4–7] are unitary
analogs of classical random walks. They can be thought of
as discrete models of single-particle dynamics, in which a
particle can be located at any vertex of a graph, and at each
time step can move along an edge to a neighboring vertex.
This time evolution is a unitary transformation. Generically,
for this unitary transformation to allow nontrivial dynamics,
the particle must have an internal degree of freedom (or “coin”
space) as well as its position degree of freedom [8]. Quantum
walks have been widely studied both for their intrinsic interest
[9–15] and for their use in algorithms for quantum computers
[16–22].

It has been shown by a variety of researchers using a variety
of methods that quantum walks with particular properties on
particular lattices can give rise to relativistic wave equations
(like the Weyl and Dirac equations) in the long-wavelength
limit [23–46]. In one recent paper [42], for example, a 3D
quantum walk was defined as a product of three coined one-
dimensional quantum walks. It was shown, under some simple
assumptions such as locality and the absence of a preferred
lattice axis or direction, that the time development of the walk
leads to the necessity for a four-dimensional internal space
(which in the usual Dirac equation implies the existence of
antimatter), a natural maximum to the propagation speed of
particles, and a continuum limit that is Lorentz invariant and
corresponds to the 3D Dirac equation. That is typical of such
analyses: the long-wavelength limits obey the usual Lorentz
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symmetry, but this symmetry would be broken at short length
scales or high energy [3,47,48].

These results are highly suggestive, but leave open an im-
portant question. Relativistic single-particle wave equations
are only natural in a very limited sphere of application. The
more natural joining of quantum mechanics and relativity is
in quantum field theory [49]. Is it possible to introduce a
many-particle quantum theory on discrete space-time, which
recovers the quantum walk on the lattice in the single-
particle sector and reproduces the quantum field theory of free
fermions in the long-wavelength limit?

As Feynman suggested, cellular automata are the obvious
type of system to consider as the generalization of the quan-
tum walk to the many particle sector [2]. Just as quantum
walks are unitary analogs of random walks, QCAs are uni-
tary analogs of classical cellular automata [50–52]. A QCA
is a quantum system comprising a regular array of identical
subsystems. These subsystems evolve in discrete time steps
by a unitary transformation. The most subtle requirement—
which makes these systems analogous to classical cellular
automata—is that this evolution must be local, in the sense
that the state of a local subsystem after an evolution step
must depend only on its state before the step and the states
of its nearest neighbors. Satisfying both unitarity and locality
requires some care in how an QCA is defined [24,53–56].
Based on the results deriving relativistic wave equations from
quantum walks, there has been significant interest in finding
QCAs that give rise to quantum field theories for multiple
particles [35,40,57–60].

Constructing a QCA that recovers the quantum walk in
the one-particle limit can be done in two natural ways: by
constructing a quantum lattice gas, or by second quantization
[61,62]. In the quantum lattice gas formulation, particle po-
sitions form a lattice of points; a lattice point is a subsystem
with internal states representing the presence or absence of
particles associated with a lattice direction. Each time step has
two parts. In the first, particles jump from their initial lattice
point to a neighbor in the associated direction. Next, they in-
teract with the other particles at that new point, leading to new
assignments of direction. Models can allow multiple particles
of each type to be present, or only one particle; the latter case
will generally correspond to “hard core” bosons, but could
be used to model fermions as well. The quantum lattice gas
approach to the Dirac equation is taken in Refs. [63,64]. Here,
however, we shall employ the second quantization approach.

In this paper we “promote” the 1D quantum walk to derive
a 1D QCA that is manifestly both unitary and local. Impor-
tantly, our analysis reveals complications that stand in the way
of employing a similar straightforward technique to obtain
an analogous correspondence in higher dimensions, which is
the ultimate goal. In fact, we prove that, without some new
ingredient, a construction such as we have undertaken is not
possible in higher dimensions. The issue is another element
that Feynman foresaw in his talk. He said that although he
believed that bosons could be described as he proposed, he
was not sure about fermions.

Fermions present a challenge because they inherently in-
volve a certain kind of nonlocality: creation and annihilation
operators anticommute regardless of their spatial separation.
In quantum field theories this does not lead to any physical

nonlocality because observables are always sums of products
of pairs of creation and annihilation operators, which means
that the operators corresponding to observables in separated
regions of space commute. But a QCA is written in terms of
qubits or spins with local couplings, so the issue is how to
account for the nonlocality of the creation and annihilation
operators when representing this local system as fermions.
In one dimension that can be done using the Jordan-Wigner
transformation [65], but we prove that no such remedy is
possible in higher dimensions.

In 1D, the phase acquired by commuting operators past
each other can be produced by an actual physical phase shift,
representing a short-range interaction. But in higher dimen-
sions we show that this does not work for any QCA satisfying
a set of reasonable requirements unless the interaction can
act at unlimited range. This is the most important conclusion
of this paper. We discuss possible workaround strategies that
can evade this restriction, but all of them require starting with
quite different assumptions.

As we were completing the work described in this paper,
we became aware of a very interesting recent paper by Ar-
righi, Bény, and Farrelly [66] that constructs a 1D QCA that
also yields a quantum field theory of free fermions in the
long-wavelength limit. That paper also incorporates a local
“gauge” field to produce a theory with manifest gauge sym-
metry and considers extensions to the interacting theory. To
include interactions is a key goal of this research program;
however, based on the no-go result in our current paper, we
believe it will be difficult to generalize these constructions to
higher dimensions without a significant change in approach,
as we discuss in our conclusions. The same restriction will
apply to lattice gas models like those in [63,64].

II. QUANTUM WALK IN 1D

A. Quantum walks

The cellular automaton model that we study in this paper
reproduces the behavior of a quantum walk in the one-particle
excitation sector. The quantum walk model in one dimension
is given by a particle on a one-dimensional lattice of points |x〉
spaced a distance �x apart from each other [42]. The particle
also has an internal degree of freedom, or “coin space.” The
Hilbert space has the form H = HX ⊗ HC . In the quantum
walk, time is discrete, with the time steps separated by �t ,
and the evolution from one time to the next is given by the
time-evolution unitary:

|ψt+�t 〉 = U |ψt 〉 = (I ⊗ C)

(∑
j=±

S j ⊗ Pj

)
|ψt 〉, (1)

where the {S j} are shift operators that move the particle from
its current position to its neighbor in the direction j. The {Pj}
are orthogonal projectors on the internal space; C is a unitary
that acts on the internal space, often called the “coin flip”
unitary.

The idea is that the walk proceeds by a process analogous
to a series of coin flips. The projectors {Pj} correspond to
different faces of the coin, which indicate which direction
to move (plus and minus or right and left); the unitary C
scrambles the faces, so that one does not constantly move in
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the same direction. But in the unitary case, unlike classical
random walks, the evolution is always invertible, and inter-
ference effects are very important. For the present we will
assume that the internal space is two-dimensional, spanned by
a basis {|R〉, |L〉}, indicating the directions “right” and “left,”
respectively; this could be generalized if necessary, but is
sufficient in 1D.

For the quantum walk on a 1D lattice [42], the time evolu-
tion operator takes the form

U = (I ⊗ C)(S ⊗ |R〉〈R| + S† ⊗ |L〉〈L|), (2)

where the shift operator acts as S|x〉 = |x + �x〉 and S†|x〉 =
|x − �x〉, and C is a 2×2 unitary matrix. We will generally
consider families of coin-flip unitaries, parametrized as rota-
tions in Hilbert space:

C(θ ) = e−iθQ, (3)

where Q is a Hermitian operator that acts on the internal
space. Q flips the R and L directions. We can, without loss
of generality, assume that Q2 = I and Tr{Q} = 0.

B. Momentum representation and continuous limit

As shown in [42] we can transform the position degree of
freedom to a momentum representation. The eigenvectors of
the shift operators take the form

|k〉 =
∞∑

j=−∞
e−ik j�x| j�x〉, −π < k�x � π, (4)

which have eigenvalues

S|k〉 = eik�x|k〉, S†|k〉 = e−ik�x|k〉. (5)

These momentum states {|k〉} are not normalizable, but it is
possible to write a normalizable wave function in terms of
these eigenstates using the inverse transform

|x〉 = 1

2π

∫ π

−π

dk eikx|k〉, (6)

where x = j�x for some integer −∞ < j < ∞.
Writing the evolution operator (2) in terms of momentum

yields a compact form:

U = e−iθQ(eik�xPR + e−ik�xPL )

= e−iθQ[cos(k�x)(PR + PL ) + i sin(k�x)(PR − PL )]

= e−iθQ[cos(k�x)I + i sin(k�x)�P]

= e−iθQek�x�P, (7)

where �P = PR − PL = |R〉〈R| − |L〉〈L|. We can straightfor-
wardly go to the continuum (long-wavelength) limit |k�x| �
1 and θ � 1. Suppose that the time between steps is �t . Then
we can expand the two exponentials and retain only terms
linear in k�x and θ :

∂t |ψ〉 ≡ |ψ (t + �t )〉 − |ψ (t )〉
�t

= i[(k�x/�t )�P − (θ/�t )Q]|ψ〉
= i

h̄

(
pc�P − mc2Q

)|ψ〉, (8)

where we have defined p ≡ h̄k, c ≡ �x/�t , and m ≡
h̄θ/c2�t . This is exactly the Dirac equation for one spatial
dimension in momentum form, where �P and Q play the role
of 2×2 gamma matrices (i.e., Pauli matrices).

III. 1D CELLULAR AUTOMATON MODEL

A. Many-particle Hilbert space

How do we generalize the quantum walk to multiple par-
ticles? The natural way to do this is with a quantum cellular
automaton model. Now, instead of describing a single particle
with a position degree of freedom and an internal degree of
freedom, we have many local subsystems, arranged in a 1D
lattice with spacing �x:

H = · · · ⊗ Hx−�x ⊗ Hx ⊗ Hx+�x ⊗ · · · . (9)

(This Hilbert space is nonseparable, but we consider only
the subspace with a finite number of particles, which is a
separable space). Each subsystem in the above equation (say
at location x) has a four-dimensional Hilbert space Hx with
basis states {| j−〉x− ⊗ | j+〉x+, where j± = 0, 1. These states
can be interpreted as 0 or 1 particles at location x with internal
state + or −. This means that the local Hilbert space further
factorizes into Hx = Hx,− ⊗ Hx,+, where Hx,± = C2 is the
Hilbert space of a single qubit.

For brevity, we can represent the local basis states of Hx

by two-bit strings: {|00〉, |01〉, |10〉, |11〉}. The basis vectors of
the entire lattice, then, can be written as long binary strings:

| · · · j−x j+x j−x+�x j+x+�x · · · 〉. (10)

If the total number of particles is finite—that is, the total
number of sites where j±x = 1 is finite—then we can use a
shorthand notation for basis states:

|x1,±; x2,±; . . . ; xn,±〉, (11)

where the values x1, . . . , xn are the locations of the n particles
and ± indicates the internal state. Our convention is that we
list the locations in ascending order from left to right, so x1 �
x2 � · · · � xn. If there are two particles at the same site (i.e.,
with the same value of x), our convention is that we list x,−
first and x,+ second. We write the vacuum (no particle) state
as |�〉 ≡ | · · · 000 · · · 〉.

In this paper we will consider the Fock space comprising
all states of n particles for all n = 0, 1, 2, . . .. The Fock space
decomposes into subspaces of different particle number:

HFock = H0 ⊕ H1 ⊕ H2 ⊕ · · · =
∞⊕

n=0

Hn,

where Hn is the subspace of all n-particle states.

B. Time evolution

How do states evolve in this model? Just as in the quantum
walk, time is discrete, and the unitary time evolution operator
is the product of two operators: an operator �̂ that shifts all
the + particles in the + direction and the − particles in the −
direction, and an operator Ĉ that rotates the internal state:

Û = Ĉ�̂. (12)
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We will define Ĉ and �̂ one at a time below. It is important to
emphasize that this evolution operator U acts locally: that is,
any observables acting on a site x after applying U can only
depend on observables at neighboring sites before applying U .
This locality is a requirement for a cellular automaton model.
We need to remember this, because in deriving quantum field
theory as a continuum limit, we will express the theory in
terms of creation and annihilation operators that are not lo-
cal in this sense. In spite of this representation in terms of
nonlocal operators, the underlying theory will be local.

To make this locality very clear, we will define the two
operators �̂ and Ĉ to each be the tensor product of operators
acting only on local subsystems. As can be seen in the def-
initions that follow, each on its own would give only trivial
evolution, in which particles cannot propagate; but by alter-
nating them, nontrivial propagation becomes possible. Also,
note that the vacuum state is invariant: Û |�〉 = |�〉.

1. Coin operator

The coin operator is a tensor product of unitary operators
acting on the local four-dimensional spaces Hx:

Ĉ = · · · ⊗ Cx−�x ⊗ Cx ⊗ Cx+�x ⊗ · · · , (13)

where each of these local unitaries Cx acts on the basis vectors
as follows:

C|00〉 = |00〉,
C|01〉 = cos(θ )|10〉 + sin(θ )|01〉,

(14)
C|10〉 = cos(θ )|01〉 − sin(θ )|10〉,
C|11〉 = −|11〉,

where θ is once again a dimensionless parameter that will be
assumed to be small. At θ = 0, the unitary C just switches the
basis vectors |01〉 ↔ |10〉 (corresponding to a single particle
at x in the + or − internal state) and applies a phase of
−1 to |11〉.

2. Shift operator

The shift operator can also be written as a tensor product
of unitaries acting on local subystems,

�̂ = · · · ⊗ Sx−�x ⊗ Sx ⊗ Sx+�x ⊗ · · · . (15)

But rather than acting on the local Hilbert space Hx = Hx,− ⊗
Hx,+, these unitaries Sx are offset, and act on the space Hx,+ ⊗
Hx+�x,−. On the basis vectors of this space, the local unitary
acts as follows:

S|00〉 = |00〉,
S|01〉 = |10〉,

(16)
S|10〉 = |01〉,
S|11〉 = −|11〉.

This is essentially the same action as the local coin-flip unitary
C for θ = 0, but offset. In that limit, the evolution Û of the
cellular automaton is very simple: particles in the internal state
|+〉 move to the right by �x at each time step, while particles
in the internal state |−〉 move to the left.

This way of defining the time evolution Û has three inter-
esting properties.

(1) The evolution operator Û is both unitary (since it is
the product of two unitaries Ĉ and �̂) and strictly local, as
required to be a cellular automaton.

(2) The single-particle sector of this cellular automaton
evolves like the 1D quantum walk defined above for �P = σ3

and Q = σ2 (as we will show below).
(3) The minus sign in the action of C and S on the |11〉

basis states means that when two particles pass each other,
the state acquires a phase of −1. This will allow us to define
creation and annihilation operators for this model that obey
Fermi statistics (as we will also show below).

C. One-particle sector and quantum walks

The basis states corresponding to a single particle are
|x,±〉 ∈ H1. Formally we can write this Hilbert space as a
tensor product of a position space and an internal (coin) space:

H1 = Hpos ⊗ Hcoin = C∞ ⊗ C2. (17)

The basis vectors of Hpos are {|x〉 ≡ | j�x〉} and the basis
vectors of Hcoin are |±〉, which we can identify with |R〉 and
|L〉 from Eq. (2).

Since both the shift operator �̂ and the coin operator Ĉ
conserve particle number, the evolving state will remain in
H1 at all times. How does this basis state evolve under Û?:

Û |x,±〉 = cos(θ )|x ± �x,±〉 ± sin(θ )|x ± �x,∓〉. (18)

It is quite straightforward to see that this is precisely how the
quantum walk given by Eq. (2) evolves if we choose Q =
i(|L〉〈R| − |R〉〈L|) ≡ σ2. Thus we see that the one-particle
sector of this quantum cellular automaton model reproduces
the results of the quantum walk on the 1D lattice.

D. Creation and annihilation operators

We will now define a set of creation and annihilation op-
erators {â†

x,ε} and {âx,ε} where x = j�x for some integer j
and ε = ±, which create (or destroy) particles at a particular
location x in the internal state ε. These operators will be
defined to obey the usual anticommutation relations and to
evolve under the time evolution unitary in a simple way.

1. Definition and ordering

First, in acting on the vacuum state the creation operator
gives

â†
x,ε|�〉 = |x, ε〉, (19)

and any annihilation operator gives âx,ε|�〉 = 0.
Acting with â†

x,ε on an n-particle basis state
|x1, ε1; · · · ; xn, εn〉 gives

â†
x,ε|x1, ε1; · · · ; xn, εn〉
= (−1)m|x1, ε1; · · · ; xm, εm; x, ε; · · · ; xn, εn〉, (20)

if the site x, ε is not already occupied in the original state; if it
is, then

â†
x,ε|x1, ε1; · · · ; xn, εn〉 = 0.
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The value m in Eq. (20) is determined by the ordering con-
vention from Eq. (11). With this definition, we can readily
see that

|x1, ε1; · · · ; xn, εn〉 = â†
x1,ε1

· · · â†
xn,εn

|�〉. (21)

The definition of the annihilation operator âx,ε, which is the
Hermitian conjugate of the creation operator, follows from
Eq. (19) and Eq. (20). Since these operators anticommute even
when they create (or destroy) particles that are far apart, they
act nontrivially throughout space. These creation and anni-
hilation operators therefore are highly nonlocal, even though
they create (or destroy) local excitations. This does not con-
tradict the locality of the theory, since the underlying QCA is
still local.

2. Anticommutation relations

From the definition above, we can see that on any basis
state |b〉

â†
x,εâ†

x′,ε′ |b〉 = −â†
x′,ε′ â†

x,ε|b〉, (22)

which implies that â†
x,ε and â†

x′,ε′ anticommute:

{â†
x,ε, â†

x′,ε′ } = 0.

This obviously immediately implies that {âx,ε, âx′,ε′ } = 0
as well.

The mixed anticommutation relation is slightly less obvi-
ous, but the standard relation still holds. For (x, ε) = (x′, ε′),
â†

x,ε and âx′,ε′ anticommute. When they are equal, we can see

that, for any basis state |b〉, either

â†
x,εâx,ε|b〉 = |b〉, âx,εâ†

x,ε|b〉 = 0,

if the site x, ε is occupied in |b〉, or

â†
x,εâx,ε|b〉 = 0, âx,εâ†

x,ε|b〉 = |b〉,
if it is not. Putting these all together gives us the final anti-
commutation relation:

{â†
x,ε, âx′,ε′ } = δxx′δεε′ I.

3. Time evolution

Based on the relationship in Eq. (21) between basis vec-
tors and creation operators, we can see how these creation
and annihilation operators evolve under the time-evolution
operator Û :

Û |x1, ε1; · · · ; xn, εn〉 = Û â†
x1,ε1

· · · â†
xn,εn

|�〉
= Û â†

x1,ε1
Û †Û · · · Û †Û â†

xn,εn
Û †Û |�〉

= (
Û â†

x1,ε1
Û †

) · · · (Û â†
xn,εn

Û †
)|�〉,

(23)

where the last step uses the invariance of the vacuum. Refer-
ring back to Eq. (14) and Eq. (16), we see that every time a pair
of particles passes each other the state acquires a phase of −1;
this matches the phase of −1 from reordering two creation
operators.

Here are some simple examples for n = 2. First, con-
sider two particles on neighboring sites moving in opposite
directions:

Û |x,+; x + �x,−〉
= − cos2(θ )|x,−; x + �x,+〉 − cos(θ ) sin(θ )|x,−; x + �x,−〉

+ cos(θ ) sin(θ )|x,+; x + �x,+〉 + sin2(θ )|x,+; x + �x,−〉
= − cos2(θ )â†

x,−â†
x+�x,+|�〉 − cos(θ ) sin(θ )â†

x,−â†
x+�x,−|�〉 + cos(θ ) sin(θ )â†

x,+â†
x+�x,+|�〉 + sin2(θ )â†

x,+â†
x+�x,−|�〉

= cos2(θ )â†
x+�x,+â†

x,−|�〉 + cos(θ ) sin(θ )â†
x+�x,−â†

x,−|�〉 − cos(θ ) sin(θ )â†
x+�x,+â†

x,+|�〉 − sin2(θ )â†
x+�x,−â†

x,+|�〉
= [cos(θ )â†

x+�x,+ + sin(θ )â†
x+�x,−][cos(θ )â†

x,− − sin(θ )â†
x,+]|�〉, (24)

where in the third equality we used the anticommutation of
creation operators. Now consider two particles moving onto
the same site from opposite directions:

Û |x − �x,+; x + �x,−〉
= −|x,−; x,+〉 = −â†

x,−â†
x,+|�〉

= −[cos2(θ ) + sin2(θ )]â†
x,−â†

x,+|�〉
= [cos2(θ )â†

x,+â†
x,− − sin2(θ )â†

x,−â†
x,+]|�〉

= [cos(θ )â†
x,++sin(θ )â†

x,−][cos(θ )â†
x,− − sin(θ )â†

x,+]|�〉,
(25)

where in the fourth equality we used anticommutation and in
the last we added and subtracted terms [or, alternatively, the
fact that (â†

x,ε )2 = 0].

Generalizing from Eqs. (23)–(25), and taking Hermitian
conjugates to get the results for annihilation operators, we see
that

Û â†
x,+Û † = cos(θ )â†

x+�x,+ + sin(θ )â†
x+�x,−,

Û â†
x,−Û † = cos(θ )â†

x−�x,− − sin(θ )â†
x−�x,+,

(26)
Û âx,+Û † = cos(θ )âx+�x,+ + sin(θ )âx+�x,−,

Û âx,−Û † = cos(θ )âx−�x,− − sin(θ )âx−�x,+.

So creation and annihilation operators evolve into simple lin-
ear combinations of themselves under the time evolution Û .
This is only true because of the dynamical phases introduced
in Eqs. (14) and (16) that flip the sign of the state when two
particles pass each other; without those phases, creation and
annihilation operators would not evolve into linear combina-
tions of themselves as in Eq. (26).

042211-5



LEONARD MLODINOW AND TODD A. BRUN PHYSICAL REVIEW A 102, 042211 (2020)

IV. MOMENTUM AND ENERGY REPRESENTATIONS
AND THE LONG-WAVELENGTH LIMIT

A. Momentum picture

Having defined creation and annihilation operators in po-
sition as above, we can define creation and annihilation
operators in the momentum picture straightforwardly:

a±k,± =
∞∑

j=−∞
ei jk�xâ j�x,±,

(27)

a†
±k,± =

∞∑
j=−∞

e−i jk�xâ†
j�x,±, − π

�x
< k � π

�x
.

From the anticommutation relations in the position represen-
tation, we can easily show that

{ak,ε, ak′,ε′ } = {a†
k,ε

, a†
k′,ε′ } = 0,

{a†
k,ε

, ak′,ε′ } = δε,ε′δ(k−k′)I,

where ε, ε′ = ±. In particular, this implies that (ak,ε )2 =
(a†

k,ε
)2 = 0. We can interpret this as implying that no more

than one particle can occupy a momentum state k, ε.
Drawing on the results from Eq. (26), we can see how these

operators transform under the cellular automaton evolution:

Ûa±k,±Û † =
∞∑

j=−∞
ei jk�xÛ â j�x,±Û †

=
∞∑

j=−∞
ei jk�x[cos(θ )â( j±1)�x,± ± sin(θ )â( j±1)�x,∓]

= e∓ik�x
∞∑

j=−∞
ei jk�x[cos(θ )â j�x,± ± sin(θ )â j�x,∓]

= e∓ik�x[cos(θ )a±k,± ± sin(θ )a∓k,∓], (28)

Ûa†
±k,±Û †

=
∞∑

j=−∞
e−i jk�xÛ â†

j�x,±Û †

=
∞∑

j=−∞
e−i jk�x[cos(θ )â†

( j±1)�x,± ± sin(θ )â†
( j±1)�x,∓]

= e±ik�x
∞∑

j=−∞
e−i jk�x[cos(θ )â†

j�x,± ± sin(θ )â†
j�x,∓]

= e±ik�x[cos(θ )a†
±k,± ± sin(θ )a†

∓k,∓]. (29)

B. Energy picture

In Eqs. (28) and (29) we observe an interesting differ-
ence between the momentum and position representations. In
position, the time evolution shifts creation and annihilation
operators to the left or right, so the ordering of a product of
operators can change. By contrast, in momentum, the time
evolution mixes the k,+ and −k,− states, but otherwise
leaves the momentum unchanged. In other words, Û acts

independently on particles of different momenta. Let us look
at how linear combinations of these operators transform:

Û (αak,+ + βa−k,−)Û †

= [e−ik�x cos(θ )α − eik�x sin(θ )β]ak,+
+ [eik�x cos(θ )β + e−ik�x sin(θ )α]a−k,−, (30)

⇒
(
α

β

)
−→

(
e−ik�x cos(θ ) −eik�x sin(θ )
e−ik�x sin(θ ) eik�x cos(θ )

)(
α

β

)
≡M

(
α

β

)
.

(31)

By diagonalizing the matrix M in Eq. (31) we can find a new
pair of operators that are invariant under Û up to a phase. The
eigenvalues of M are

λk,± ≡ e±iφk

= cos(θ ) cos(k�x) ± i
√

1 − cos2(θ ) cos2(k�x). (32)

Let the corresponding eigenvectors be

vk,± ≡
(
αk,±
βk,±

)

= 1

N±

(
sin(k�x) cos(θ ) ∓

√
1 − cos2(θ ) cos2(k�x)

i e−ik�x sin(θ )

)
,

(33)

where N± is a normalization factor. We can rewrite M as

M = cos(θ ) cos(k�x)I − i[sin(θ ) sin(k�x)σ1

+ sin(θ ) cos(k�x)σ2 + cos(θ ) sin(k�x)σ3]

≡ cos(φk )I − i sin(φk )n̂ · �σ , (34)

where n̂ is a real unit three-vector, and from Eq. (32)

φk = arccos [cos(θ ) cos(k�x)]. (35)

We can define a new set of creation and annihilation oper-
ators:

bk,± = αk,±ak,+ + βk,±ak,−, (36)

which obey the usual anticommutation relations

{bk,ε, bk′,ε′ } = {b†
k,ε

, b†
k′,ε′ } = 0,

{b†
k,ε

, bk′,ε′ } = δε,ε′δ(k − k′)I,

and which evolve in time just by a simple phase rotation:

Ûbk,±Û † = e±iφk bk,±. (37)

This trivial time evolution suggests a way of defining a set of
n-particle “energy” eigenstates:

|k1, ε1; k2, ε2; · · · ; kn, εn〉 ≡ b†
k1,ε1

· · · b†
kn,εn

|�〉, (38)

where εi = ±. We choose a simple ordering k1 � k2 �
· · · � kn. If both k,− and k,+ are present, we list
k,− first. It is quite easy to see that these (unnormal-
izable) basis states are orthogonal to each other, and
that any state can be written as an integral over them.
Moreover, they are eigenstates of the time evolution
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unitary:

Û |k1, ε1; k2, ε2; · · · ; kn, εn〉

= exp

(
i

n∑
j=1

ε jφk j

)
|k1, ε1; k2, ε2; · · · ; kn, εn〉. (39)

It is natural to relate these phases to energies. If the duration
of each time step is �t , then we can define the energy of a
particle by

±φk ≡ ∓Ek�t, (40)

where we are implicitly taking h̄ = 1. So this system includes
both positive and negative energy states.

C. Long-wavelength limit

In the quantum walk (single particle) case, we recovered
the Dirac equation in the long-wavelength limit, that is, when
|k�x| � 1 and also |θ | � 1. With the solutions above, this
limit takes a highly suggestive form. The eigenvalues to first
order become

λk,± ≡ e±iφk ≈ 1 ± i
√

θ2 + k2�x2, (41)

which gives us an expression for the energy

Ek ≈ 1

�t

√
θ2 + k2�x2 ≡

√
p2c2 + m2c4, (42)

where we have made the same identification as in [42] of the
speed of light c = �x/�t , momentum p = k, and particle
mass m = θ�t/�x2. This is the usual relativistic expres-
sion for the energy of a free particle with mass m and-
momentum p.

We can define a kind of Hamiltonian picture of the dynam-
ics using these energy states:

Û = exp{−iĤ�t}, (43)

where the operator Ĥ is

Ĥ = 1

�t

∫
dk Ek (b†

k,+bk,+ − b†
k,−bk,−). (44)

We can rewrite this in vector form:

Ĥ =
∫

dk(b†
k,+ b†

k,−)(Ek/�t )σ3

(bk,+
bk,−

)
. (45)

This can, in turn, be written in terms of the creation and
annihilation operators for momentum. If we orthogonally di-
agonalize the 2×2 matrix M in Eq. (31),

M = T
(

e−iφk 0
0 eiφk

)
T†, T = (vk,+ vk,−). (46)

We can then write the expression for Ĥ as

Ĥ =
∫

dk(a†
k,+ a†

k,−)T(Ek/�t )σ3T†
(ak,+

ak,−

)
. (47)

In the long-wavelength limit we can expand T(Ek/�t )σ3T† to
first order to get

Ĥ ≈
∫

dk(a†
k,+ a†

k,−)(pcσ3 + mc2σ2)
(ak,+

ak,−

)
, (48)

which is equivalent to the usual Dirac Hamiltonian for free
fermions in one spatial dimension.

D. Dirac sea

A concern about the QCA construction above is that it
includes negative energy states, and as �x → 0 the energy is
unbounded below. This is not surprising. A similar problem
arose in Dirac’s original work [67]. To match the universe
that we observe, one can invoke the same solution that Dirac
postulated: that the natural vacuum of the theory is not the
state |�〉 that contains no particles, but rather a vacuum |�′〉
corresponding to a “Dirac sea,” in which all positive energy
states are vacant, while all negative energy states are occupied.

The Hilbert space we considered above included only
states with a finite number N of particles, and therefore does
not include the state |�′〉. However, if we begin with such a
state |�′〉, we can follow the rest of the theory above fairly
closely. The new vacuum |�′〉 is the starting point. Construct-
ing the space of physical states is done by applying a finite set
of creation operators b†

k,+ (which create particles in positive
energy states) and annihilation operators bk,− (which destroy
particles in negative energy states) to the vacuum |�′〉 to
construct the basis states. If we define the energy of |�′〉 to
be zero, then all the physical states have positive energy. The
annihilation operators bk,− play the role of creation operators
for antiparticles, just as in the usual Dirac field.

V. HIGHER DIMENSIONS

The above construction shows that in one spatial dimension
a simple quantum cellular automaton can give rise to Dirac
fields in the long-wavelength limit. This is a very appealing
result; the one-particle sector of this QCA matches the single-
particle quantum walk which has already been shown to
give the single-particle Dirac equation in the long-wavelength
limit. This latter result also applies in two and three spatial
dimensions. Can we construct an analogous QCA in two and
three spatial dimensions that also gives rise to a Dirac field?

Though we believe that this can be done, the type of con-
struction used in the one-dimensional QCA presented in this
paper and in [66] does not generalize to higher spatial dimen-
sions. The problem of constructing such a QCA is closely
related to the problem of fermionization in higher spatial di-
mensions [68], because we must establish an ordering relation
between the different fermionic modes of the theory. We use
that ordering to define a relationship between the basis states
of the QCA and a set of anticommuting creation and anni-
hilation operators. These operators must evolve in a natural
way under the QCA dynamics. Unfortunately, as we shall see,
this is very difficult to do in more than one dimension unless
the underlying dynamics is nonlocal—that is, unless it is
not a QCA.

An intuition for this can be seen by looking at the evolution
operator in the 1D construction above. At each time step
a creation operator a†

x,ε should evolve to a linear combina-
tion of creation operators at x + �x and x − �x. That means
that two creation operators with a particular ordering, say
a†

x,ε1
a†

x+�x,ε2
, can evolve to have the opposite ordering. Be-

cause the creation operators anticommute, they should acquire
a phase of −1 in that case. In the 1D construction above
they do, because when particles pass each other they acquire
exactly that phase. That is, the anticommutation relations can
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be enforced by a local interaction between pairs of particles.
However, while in 1D particles must pass each other to change
order, in 2D or 3D the ordering may change even if two
particles are physically far apart from each other. This implies
that such a phase change arising from a physical interaction
would require that interaction to be nonlocal.

We now make this argument more precise. For simplicity
we will consider the case of two spatial dimensions, but the
argument is exactly the same in 3D.

A. Desirable properties for a QCA

We would like to generalize the above construction for 1D,
in a way analogous to how the 2D and 3D quantum walks
are generalized from the 1D quantum walk in [42]. As in the
1D construction above, we would like to be able to define
a set of creation and annihilation operators that are closely
related to the basis states of the QCA, that obey the usual
anticommutation relations, and that transform in a simple way
under the evolution operator Û . In 2D, we want to require the
following.

(i) The evolution operator takes the form

Û = Ĉ�̂y�̂x, (49)

where �̂x and �̂y shift particles in the ±X and ±Y directions,
depending on the internal states of the particles, and Ĉ trans-
forms the internal states.

(ii) There is a set of basis states for the QCA of the form

|x1, ε1; x2, ε2; · · · ; xn, εn〉
for an n-particle state, where the positions are given by a
vector xi = (xi, yi ), and εi is an internal state. We assume
that the internal state takes one of a finite set of values; in
2D, this can be just the two values ε = ±, while in 3D the
internal state is four dimensional. There can be no more than
one particle at a given location in a given internal state. To
avoid having multiple representations of the same basis state,
we must establish an ordering convention, so we can write
x1, ε1 < x2, ε2 < · · · < xn, εn.

In 1D it is easy to establish such an ordering, but it is
possible in any dimension. For example, in 2D we can say
x1, ε < x2, ε2 if (a) y1 < y2, or (b) y1 = y2 and x1 < x2, or
(c) x1 = x2 and ε1 < ε2 (according to some ordering of the
internal states).

(iii) The QCA evolution is local. Consider a given basis
vector |ψ〉. When we apply the evolution operator Û |ψ〉, we
get a superposition of basis vectors. If we look at a particular
location x on these basis vectors, the occupation of the states
at that location can depend only on the occupation of that
location and its neighboring sites in the original basis vector,
and not on the occupation of sites far away from x.

(iv) We define a set of creation operators a†
x,ε which obey

the usual anticommutation relations and which are related to
the basis states by

|x1, ε1; · · · ; xn, εn〉 = a†
x1,ε1

· · · a†
xn,εn

|�〉. (50)

This is clearly always possible, and we get the annihilation
operators as the Hermitian conjugates of the creation opera-
tors, plus the requirement that they take the vacuum state |�〉
to 0.

(v) We want these creation and annihilation operators to
evolve under Û into simple linear combinations of themselves.
That is,

Ûa(x,y),εÛ
† =

∑
c1=±1,c2=±1,ε′

αc1,c2,ε′a(x+c1�x,y+c2�x),ε′ , (51)

where the coefficients αc1,c2,ε′ depend on the original internal
state ε. [Generically we do not expect them to depend on the
position (x, y), since the QCA should be translation invariant].

(vi) The dynamics of the QCA are nontrivial in the fol-
lowing sense: the coefficients in Eq. (51) must be nonzero
for at least one internal state ε′ for each of the locations
(x ± �x, y ± �x). That is,

∀c1, c2 = ±1, ∃ε′ such that αc1,c2,ε′ = 0.

We can see that, in the 1D construction above, all of these
conditions are satisfied. But we will now show that in 2D
(or higher dimensions), it is impossible to satisfy all of these
requirements simultaneously.

B. No-go theorem

1. Definitions

We start by defining a few concepts that we will use in the
proof.

(i) We call the combination of a particular location x and
internal state ε a site. A site x′, ε′ is a neighbor of the site x, ε

if x = (x, y) and x′ = (x′, y′) = (x ± �x, y ± �x).
(ii) The footprint of a site x, ε is the set of neigh-

boring sites (x + c1�x, y + c2�x), ε′ such that αc1,c2,ε′ = 0
for c1, c2 = ±1.

(iii) Two sites x1, ε1 and x2, ε2 are connected if x2, ε2 lies in
the footprint, or the footprint of the footprint, or the footprint
of the footprint of the footprint, etc., of x1, ε1, or vice versa.
We call a chain of sites like this a path, where each site in the
path is in the footprint of the previous site.

Note that for two sites x1, ε1 and x2, ε2 to be connected,
if we write x1 = (x1, y1) = (i1�x, j1�x) and x2 = (x2, y2) =
(i2�x, j2�x), then i1 + j1 and i3 + j3 must either be both odd
or both even. (This is a necessary condition, but for some
nongeneric cases may not be sufficient.)

2. Contradiction

Choose three operators ax1,ε1 , ax2,ε2 , and ax3,ε3 , where xk =
(xk, yk ) = (ik�x, jk�x), which satisfy the following condi-
tions: (1) the locations x1 and x3 are both far from x2; (2) in the
canonical ordering of the basis states, x1, ε1 < x2, ε2 < x3, ε3;
(3) the sites x1, ε1 and x3, ε3 are connected by a path that is
everywhere far from x2, ε2.

We will use these conditions to establish a contradiction,
as follows. Consider the sites in the footprint of x2, ε2. If
any of these sites is < any of the sites in the footprint
of x1, ε1, then we immediately see that Û will map a ba-
sis vector where x1, ε1 and x2, ε2 are both occupied to a
superposition of basis states, at least one term of which
will acquire an extra phase of −1 because of the reorder-
ing of the anticommuting creation operators a†

x1,ε1
and a†

x2,ε2
.

This phase depends on the presence of a particle far away,
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which contradicts the assumption that the QCA evolution is
local.

Similarly, if any of the sites in the footprint of ax2,ε2 is >

any of the sites in the footprint of x3, ε3, then Û will map
a basis vector where x2, ε2 and x3, ε3 are both occupied to
a superposition of basis states, at least one term of which
will acquire an extra phase of −1, again contradicting the
assumption that the QCA evolution is local.

Suppose, then that the ordering of sites in the footprints of
x2, ε2 and x1, ε2 all retain the same ordering of the original
pair of sites (and similarly with x3, ε3). Then compare the
ordering of the sites in the footprint of x2, ε2 to those in
the footprint of the next site along the path from x1, ε1 to
x3, ε3. Because the sites at the endpoints of this path have
the opposite ordering with respect to x2, ε2, at some point
along this path there must be a site where the ordering is
flipped. By assumption (3) above, all sites along this path are
far from x2, ε2. So we again contradict the locality of the QCA
evolution.

This proves that a QCA construction satisfying all the
desired properties above is impossible in 2D. And it is clear
that an essentially identical argument will hold in 3D or higher
spatial dimensions.

3. Loopholes

Is there any way around this conclusion? The trickiest
assumption is assumption (3) above, that we can always find
two sites x1, ε1 and x3, ε3 that have opposite ordering with
respect to site x2, ε2, and which are connected by a path that
is everywhere far from x2, ε2. Our method above for deriving
Dirac field theory from a QCA was successful because in 1D
this assumption fails. In 1D, if the ordering of the sites largely
corresponds to their physical ordering, it is impossible to form
a path that is everywhere far from x2, ε2. And, indeed, it is
exactly this property of the 1D case that we exploit in the
construction earlier in this paper, where we add a local phase
to the evolution for particles passing each other.

In 2D or 3D we could make it impossible to find two such
connected sites generically by making the dynamics trivial: if
all particles move in the same direction, or there is no ampli-
tude for a particle moving in one direction to change direction,
then one could establish an ordering that is never changed
by the evolution Û . But this contradicts the assumption of
nontrivial dynamics.

Finally, if we let the internal space be very high-
dimensional (so there is a very large number of possible
internal states ε), then it might be that most pairs of sites are
not connected, and the argument is no longer obviously true.

But generically, a system with nontrivial dynamics and a
low-dimensional internal space will have pairs of sites that sat-
isfy assumption (3) above, and hence contradict the existence

of a QCA with our set of desired properties in two dimensions
or higher.

VI. DISCUSSION

It has been shown that a quantum walk with simple prop-
erties leads, in the long-wavelength limit, to the free Dirac
equation in 3 + 1 dimensions. Our aim is eventually to show
that there exists an analogous QCA that reproduces Dirac
field theory in 3 + 1 dimensions, along with interactions—
i.e., QED. Here we have taken the first step by showing that
in 1D it is possible to construct a QCA which corresponds to
a field theory for free fermions in the long-wavelength limit.
However, we have also shown that this type of construction
cannot be generalized to two or three spatial dimensions; a lo-
cal QCA with nontrivial dynamics does not generically allow
the existence of creation and annihilation operators that act
at local sites, that obey the usual anticommutation relations,
and that evolve under the QCA dynamics into simple linear
combinations of themselves.

Does this mean that it is impossible to find a QCA
model that gives a field theory for free fermions in the
long-wavelength limits? We believe not. We believe it is
possible to weaken the assumptions of the no-go theorem
to the point where it no longer holds. Several possibilities
suggest themselves. Perhaps the anticommutation relations
themselves only hold approximately in the long-wavelength
limit. Perhaps one can find a set of creation and annihilation
operators that do not act locally (in the sense assumed in this
paper), but rather are “smeared out” in space. That is true
in the usual continuous field theories; it might well be true
for QCA models as well. Or perhaps the assumption of a
low-dimensional internal space is flawed. Perhaps the QCA
model has local subsystems that are high dimensional, and the
usual low-dimensional theory only arises again in the long-
wavelength limit. Or some other strategy for increasing the
dimension of the Hilbert space might get around this result.
Given the striking success of single-particle quantum walk
theories, we are now considering these possibilities. Success
would fulfill Feynman and Wheeler’s vision of the material
universe as a giant quantum computer.
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