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Solving quantum trajectories for systems with linear Heisenberg-picture dynamics
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Prahlad Warszawski,1 Howard M. Wiseman,2 and Andrew C. Doherty 1

1Centre for Engineered Quantum Systems, School of Physics, The University of Sydney, Sydney, NSW 2006, Australia
2Centre for Quantum Computation and Communication Technology, Centre for Quantum Dynamics,

Griffith University, Brisbane, Queensland 4111, Australia

(Received 8 April 2020; accepted 9 September 2020; published 12 October 2020)

We study solutions to the quantum trajectory evolution of N-mode open quantum systems possessing a time-
independent Hamiltonian, linear Heisenberg-picture dynamics, and Gaussian measurement noise. In terms of
the mode annihilation and creation operators, a system will have linear Heisenberg-picture dynamics under two
conditions. First, the Hamiltonian must be quadratic. Second, the Lindblad operators describing the coupling
to the environment (including those corresponding to the measurement) must be linear. In cases where we can
solve the 2N-degree polynomials that arise in our calculations, we provide an analytical solution for initial
states that are arbitrary (i.e., they are not required to have Gaussian Wigner functions). The solution takes the
form of an evolution operator, with the measurement-result dependence captured in 2N stochastic integrals over
these classical random signals. The solutions also allow the positive operator-valued measure (POVM), which
generates the probabilities of obtaining measurement outcomes, to be determined. To illustrate our results, we
solve some single-mode example systems, with the POVMs being of practical relevance to the inference of
an initial state, via quantum state tomography. Our key tool is the representation of mixed states of quantum
mechanical oscillators as state vectors rather than state matrices (albeit in a larger Hilbert space). Together
with methods from Lie algebra, this allows a more straightforward manipulation of the exponential operators
comprising the system evolution than is possible in the original Hilbert space.
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I. INTRODUCTION

The state of an open quantum system that is undergoing
continuous measurement follows a quantum trajectory and is
governed by a stochastic master equation (SME). Due to their
importance to emerging quantum technologies, such systems
have been studied extensively, both from a theoretical [1–13]
and, increasingly, experimental perspective [14–30]. In this
paper, we focus on a particular class of Markovian open
quantum systems: those with linear Heisenberg-picture (HP)
dynamics and Gaussian measurement noise, which are of wide
practical importance, as well as being amenable to analytic
techniques [31–43]. Physical systems that can be modeled
in such a way include multimodal light fields, optical and
optomechanical systems (including squeezing), microwave
resonators, and Bose-Einstein condensates. Further motiva-
tion for their study arises due to recent interest in the
control of such bosonic systems, potentially using feedback
[4,38,44–46]. Our specific research goal is to find an evolution
operator that can be applied to arbitrary (not necessarily Gaus-
sian) initial states; in other words, to solve this class of SMEs.

In our paper, we refer to a linear quantum system as being
one for which there exists a closed set of linear HP equa-
tions for a finite set of observables, in terms of which any
system operator may be expressed. A necessary requirement
for this to be true is that the observables have the real line
as their spectra and, consequently, describe bosonic modes.

A complete set of observables is provided by a canonically
conjugate pair of position and momentum observables, one
pair for each bosonic mode. Equivalently, an annihilation and
creation operator for each mode could be used instead.

In the absence of monitoring (or by ignoring the measure-
ment results), the dynamics of the system configuration will
be linear given two restrictions. First, the Hamiltonian evo-
lution must be at most quadratic in the bosonic annihilation
and creation operators. Although not necessary for the preser-
vation of linearity, in our paper we will take the quadratic
terms as being time independent (or made to be so by trans-
formation to a new frame), so analytic results are possible.
Second, the Lindblad operators describing the irreversible
evolution must be linear in the annihilation and creation
operators.

When measurement of the environment is included, fur-
ther restrictions must be placed to retain the linearity of the
evolution when conditioning upon the measurement results.
Specifically, the monitoring must be diffusive, by which we
mean that the measurement noise is Gaussian in nature, in
contrast to jumplike trajectories. The jump class of trajectories
arise when the measurement record is a point processes in
which a detector “click” is accompanied by a finite change in
the conditioned state matrix. The diffusive class, by contrast,
is one in which the stochasticity of the measurement results
is described by a Wiener increment and the conditioned state
evolves continuously (though nondifferentiably) in time.

2469-9926/2020/102(4)/042210(32) 042210-1 ©2020 American Physical Society

https://orcid.org/0000-0002-8069-7754
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.042210&domain=pdf&date_stamp=2020-10-12
https://doi.org/10.1103/PhysRevA.102.042210


WARSZAWSKI, WISEMAN, AND DOHERTY PHYSICAL REVIEW A 102, 042210 (2020)

The diffusive class of quantum trajectories is sufficient
to describe all systems undergoing Markovian non-jump-like
quantum evolution. The main examples of the diffusive class
of unravellings, whether in the optical or microwave setting,
are homodyne and heterodyne detection. For example, in the
optical regime, homodyne detection can be realized by co-
herently combining the light leaking out of an optical cavity
with a very strong local oscillator before detection. As almost
all detection events are due to the local oscillator, the effect
of each one on the system state becomes infinitesimal and a
continuous description arises. This can be understood from
the perspective of continuous state evolution occurring in the
limit that the number of detection events is very large in a
time period that is small compared to the system timescale.
In this limit, the Poissonian distributed photocount can be
replaced by a Gaussian photocurrent [4,47]. In this paper, we
will model the most general form of such dyne (diffusive)
unravelings [48].

Given the restriction to diffusively monitored linear quan-
tum systems with time-independent Hamiltonians, we will
achieve our goal of solving the SME if certain polynomials of
degree 2N can be solved, where N is the number of physical
modes. In the case where the polynomials cannot be solved,
our method of solution still provides a form amenable to
efficient numerical simulation. Our theory applies to systems
that include such features as squeezing, thermal or squeezed
reservoirs and, very importantly, general forms of continuous
(diffusive) measurement.

When dealing with linear systems subject to diffusive
monitorings, it is common to assume that the initial system
state is Gaussian. This is not assumed in our paper. We
treat completely arbitrary initial states. For initial Gaussian
states, the system solution is well known, being governed by
a Kalman filter. Therefore, the extension our paper provides
is that of a more general solution to linear quantum sys-
tems undergoing diffusive measurement-induced evolution,
being applicable to such initial non-Gaussian states as cat or
Fock states.

The solution to a SME naturally involves classical random
variables, as it represents the description of a particular quan-
tum trajectory. This is distinct from master equation (ME)
solutions which are deterministic and provide a description
that is inherently averaged over all possible trajectories. By
analytical solution of a SME, we therefore aim to find an ex-
pression for the system state at time t in terms of a stochastic
evolution operator that contains a finite number of stochastic
integrals; this evolution operator will be independent of the
initial state. That is, rather than defining the evolved system
state in terms of the infinity of numbers constituting the entire
continuous measurement record, we will show that the final
state is only dependent upon 2N complex-valued stochastic
integrals.

The solution of the SME, given as a function of a finite
number of stochastic integrals, has a number of uses, as we
now discuss.

A SME solution allows calculation of expectation values
conditional upon the measurement results which are, in gen-
eral, distinct from the values obtained from the average system
behavior (described by the master equation). Thus, a SME
solution will be essential in state-based feedback control [49],

by which knowledge of the system state is used for its accurate
future control.

Possessing the SME solution also means that we can an-
alyze what types of states are generated under measurement-
induced evolution. Notably, it will be found that the presence
of measurement causes more than just phase-space displace-
ments of the state. The SME solution will facilitate the
engineering of desired dissipative dynamics and, in particular,
conditional dynamics [50,51]. As an example, it could be
investigated whether a desired Gaussian operation upon the
state could be conditionally achieved [52].

Another benefit of the SME solution is that it allows a
characterization of the measurement by defining the relevant
positive operator-valued measure (POVM). The POVM and
related theoretical constructs, such as Bayesian inference, are
of use in many contexts. For example, they allow the opti-
mal inference of the input system state via state tomography
[53–55]. The motivation for solving the SME in Ref. [55]
was to know the POVMs relating to optomechanical position
measurement with parametric amplification. The method used
there can be turned into a general method of solving SMEs,
which is detailed in this paper. To make the link more explicit
to the previous work [55] and to provide more detail regarding
those calculations, we here consider the relevant optomechan-
ical system as a specific single-mode example.

A related use of the POVM is that it allows a calcula-
tion of the probability density of obtaining a measurement
sequence. In combination with the system solution, we there-
fore have knowledge of the types of states obtainable under
measurement and the probability distribution of such states.
This is extremely powerful: to simulate the system state at
some specific future time, one needs only to sample the state
distribution, rather than integrating the SME. We stress that
this applies to non-Gaussian initial states that cannot be fully
tracked by their first- and second-order moments. Potential
specific applications include facilitating the investigation of
the rate of decoherence of quantum superpositions [56] or
entanglement dynamics [57].

Before closing this Introduction, we briefly discuss the
methods that we use to obtain SME solutions. To make a
solution tractable, we use a linear SME [5,58,59], in which
some of the information concerning the probability of a mea-
surement sequence occurring is contained in the norm (trace)
of the density matrix. It is important to note that the SME
for the normalized quantum state is nonlinear, even when the
system belongs to the class of diffusively monitored linear
quantum systems which, by definition, possess linear quantum
Langevin equations for the system configuration. The use of
a linear SME removes the measurement-induced nonlinearity
and provides us with a pathway to calculate the POVM. Our
work in many regards generalizes that of Wiseman [5], and of
Jacobs et al. [7,59], which provided a general method of cal-
culating the evolution operator for the stochastic Schrödinger
equation (SSE). We extend the class of solutions to include
arbitrary dyne measurements in systems requiring a mixed
state description (that is, a SME rather than a SSE).

Also influential is the application of group theory methods
developed by such practitioners as Gilmore and Yuan [60–63].
Wilson et al. obtained analytic solutions to master equations
using Lie methods [64,65]. Much of the problem of obtaining
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a practicable SME solution is contained in operator disentan-
gling [66] and reordering tasks, which are both a function
of the operator commutation relations. Indeed, the ability to
perform these tasks is what separates a bosonic system that
is fully soluble (i.e., a linear quantum system with N � 2)
using our methods from one that is not (a nonlinear, or N > 2,
system). As we will see, the dynamics of the SME imposes a
structure upon the Lie group. For the systems that we consider,
this structure dictates the formation of subgroups that contain
either deterministic or stochastic elements, respectively.

A necessary, but not sufficient, requirement for SME solv-
ability is that the algebra defining the evolution closes under
commutation to form a finite-dimensional Lie algebra. As an
example, for the linear quantum systems that we consider,
the algebra will always close. However, when we form a
finite-dimensional matrix representation of the operators, it
will become crucial to solve polynomials of degree 2N to
proceed with our method of solution. Thus, algebra closure,
for N > 2, does not imply that we can find an SME solution.
There is a considerable literature devoted to these topics, for
example, Refs. [60,61,67–75].

The final method that will be mentioned here is that of
the thermo-entangled state representation (sometimes called
nonequilibrium thermo-field dynamics). This key technique
transforms the superoperators of the standard formulation
of the SME into operators acting in a larger Hilbert space
[76–83]. We can then utilize powerful group theoretic tools
to reorganize the infinite string of time-slice evolutions.

It is well known [76,84–86] that in the absence of mea-
surement, the solution of linear quantum systems is possible
via phase-space methods, but there has been considerable
interest in providing new methods of solution to the deter-
ministic Gaussian master equation [83,85–87], so we note
that our method of solution of the SME naturally subsumes
nonstochastic systems and does so at the very general level
described above.

Our paper is organized as follows. We begin by specifying,
mathematically, the system of interest. Next, in Sec. III, we
sketch the steps that will be followed to solve the linear
SME. These steps are then carried out in Sec. IV. In Sec. V,
the POVM pertaining to the compiled measurement of finite
duration is obtained. The adjoint equation approach to finding
the POVM is also discussed. In Sec. VI, our calculational
methods are condensed into a summary, for those wishing
to apply them to their own systems. In Sec. VII, we analyze
some example single-mode systems to further illustrate our
methods. The paper concludes with a discussion in Sec. VIII.
Many mathematical details are deferred to the Appendices to
improve the readability of the main text.

II. SYSTEM SPECIFICATION

An N-mode bosonic system undergoing linear HP dynam-
ics is subjected to an arbitrary number, L, of completely
general dyne measurements [48]. For illustrative purposes,
we note that homodyne- and heterodyne-type measurements
are two, experimentally prevalent, examples of dyne mea-
surement. We also reiterate that linear HP dynamics is a
completely distinct notion from that of the linearity, or other-
wise, of the SME. Linear HP dynamics will occur under two

conditions. First, that the Hamiltonian be at most a quadratic
function of the bosonic annihilation and creation operators.
Second, the L Lindblad operators, which we write in column
vector form as ĉ ≡ (ĉ1, ĉ2, . . . , ĉL )T, are likewise limited to
being arbitrary linear combinations of those operators.

The nonlinear SME, describing the conditional evolution
of the system density matrix in units where h̄ = 1, is given by
[88]

dρc(t ) = −i[Ĥ, ρ(t )]dt + D[ĉ]ρ(t )dt+dwT(t )H[M†ĉ]ρ(t ),

(1)

where the superoperators are defined by

D[ĉ] ≡
L∑

k=1

D[ĉk], D[ĉ]ρ ≡ ĉρĉ† − 1

2
ĉ†ĉρ − 1

2
ρĉ†ĉ (2)

and

H[ĉ]ρ ≡ ĉρ + ρĉ‡ − Tr[ĉρ + ρĉ‡]ρ, (3)

with ĉ‡ ≡ (ĉT)
†

and ĉ† = (ĉ†
1, ĉ†

2, . . . , ĉ†
L ). The subscript c of

dρc(t ) is used to indicate conditioning on the set of mea-
surement results at times up to and including t . Of course, if
measurement is ongoing then the density matrix on the right-
hand side (RHS) will also be a conditioned density matrix,
but we omit a subscript there for simplicity of display. The
SME presented in Eq. (1) is nonlinear (due to the action of the
superoperator H), despite it describing linear HP dynamics.
This is necessary for ρc to remain normalized.

The nonlinear SME is written in terms of the measurement
noise, dwT(t ), which is related to the 2L×1 column vector of
measurement results as

y(t )dt = 〈M†ĉ + MTĉ‡〉dt + dw(t ), (4)

where 〈· · · 〉 indicates a quantum expectation value. The length
of y(t ) is 2L because we allow for heterodyne-style measure-
ment currents that can be decomposed into two real-valued
components [we will often refer to y(t ) as a measurement
current].

The measurement noise, dw(t ), is a vector of independent
Wiener increments having statistics

E[dw(t )] = 0, (5)

E[dw(t )dwT(t )] = dw(t )dwT(t ) = 12Ldt, (6)

where E[· · · ] indicates a classical expectation value. Note that
Itô’s rule allows the removal of the averaging in Eq. (6) [89].
From Eq. (6), it can be seen that dw(t ) is typically of order√

dt .
The statistics of the L dyne measurement currents are also

Gaussian, as follows from Eqs. (4)–(6):

E[y(t )] = 〈M†ĉ + MTĉ‡〉, (7)

dtE[y(t )yT(t )] = dty(t )yT(t ) = 12L, (8)

Note that y(t )dt is also typically of order
√

dt .
The complex, time-independent matrix M, of size L×2L,

parameterizes the unraveling and defines the type of mea-
surements being conducted. It could be referred to as the
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measurement setting. One should not confuse the measure-
ment setting, M, with the measurement results themselves,
y(t ). The set of allowed M is identified by the constraint
MM† ∈ H where H is

H = {H = diag(η)| ∀k, ηk ∈ [0, 1]}. (9)

Note that H (capital η) is a diagonal matrix of detector ef-
ficiencies (not to be mistaken with the system Hamiltonian
operator, Ĥ ). The reader will observe that the matrix M gen-
eralizes the scalar detector efficiency factor

√
η that would

appear in a standard single channel homodyne nonlinear SME.
Equation (1) is known as the M representation of the nonlinear
SME [88].

As previously stated, the Hamiltonian, Ĥ , is quadratic at
most (in the bosonic annihilation and creation operators),
whilst the Lindblad operators, ĉ, are linear. It is standard pro-
cedure to write these operators in terms of pairs of canonically
conjugate quadrature operators, with a single pair for each
mode, q̂n, p̂n, having commutation relation [q̂n, p̂n] = i. Thus,
q̂n, p̂n are related to the annihilation and creation operator,
ân, â†

n, of each mode via(
q̂n

p̂n

)
= 1√

2

( 1 1
−i i

)( â

â†
n

)
, (10)

with [âm, â†
n] = δmn. A vector of operators

x̂ = (q̂1, p̂1, . . . , q̂N , p̂N )T (11)

is defined, so [x̂m, x̂n] = i�mn, where the 2N×2N symplectic
matrix is given by

� =
N⊕

n=1

( 0 1
−1 0

)
. (12)

For later use, we also define the column vector of annihilation
operators,

â = (â1, â2, . . . , âN )T, (13)

from which follows the definition of â†. Having laid the
notational groundwork, we can then state the quadratic
Hamiltonian as

Ĥ = 1
2 x̂TGx̂ − x̂T�Bu, (14)

with the 2N×2N matrix G real and symmetric, u a classical
drive, and a matrix, B, that is also real. To allow a formal
analytic solution to be derived later, we have here assumed a
time-independent Hamiltonian. By making a canonical trans-
formation, and then considering a shifted vacuum state, it
is possible to remove the linear Hamiltonian term and also
any constants in the Lindblad operators [85]. Consequently,
without further loss of generality, the Hamiltonian is taken to
be

Ĥ = 1
2 x̂TGx̂ (15)

and the vector of Lindblad operators is

ĉ = Cx̂ (16)

for the L×2N matrix C.
The evolution described by Eq. (1), with the specification

of a quadratic Hamiltonian and linear Lindblad operators, is

FIG. 1. The sequence of steps involved in solving the SME and
finding the POVM is schematically shown. Within the smaller poly-
gons, the mathematical object that most closely matches the outcome
of the process arrow labels is shown. Increasing side number of
the polygon (together with shape color progression) represents se-
quential process steps, starting with the nonlinear SME and moving
toward the twin goals of SME solution and obtaining the POVM.
The two larger, enveloping rectangles indicate whether the contained
objects reside in the original Hilbert space, H, or the enlarged Hilbert
space, H ⊗ H.

special in that it admits a Gaussian state as its solution. That is,
given an initial state possessing a Gaussian Wigner function,
the system Wigner function will remain Gaussian at all future
times. The evolution of the Gaussian state can be tracked just
with the first- and second-order moments of the quadrature
operators. The equations governing these moments are jointly
known as the generalized Kalman filter; the equation for the
covariance matrix is of the form of a Riccati differential equa-
tion. It is important to realize that in our work we go beyond
this and treat arbitrary (that is, possibly non-Gaussian) initial
states.

III. SOLUTION SKETCH

In this section, we describe the method used to solve for
the evolution of the quantum system. We focus upon the con-
ceptual steps involved, with more technical details deferred,
where appropriate, until later sections. For further clarity,
Fig. 1 schematically illustrates the process.

Given the task of solving the SME, one might initially
begin by hoping to obtain the dynamical mapping, in the form
of an evolution superoperator NY (t ), that evolves the initial
state of the system, ρ(0), to the final state, ρ(t ). The use
of the subscript Y (t ) is to indicate the set of measurement
results obtained over the finite interval [0, t], rather than the
instantaneous results obtained at time t [denoted by y(t )]. That
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is, we want to find

NY (t ) : ρc(t ) = NY (t )ρ(0). (17)

The mapping NY (t ) will be stochastic, due to its dependence
upon the measurement results. For ρc(t ) to be a normalized
density matrix, the mapping NY (t ) is, in general, nonlinear.
This makes the task of directly finding it intractable.

To avoid the nonlinearity imposed by Eq. (1), it is
necessary to consider the linear SME [5,58,59]. A linear
formulation being possible is a general feature of quantum
measurement theory, thus extending the linearity of the uncon-
ditioned ME. The cost of formulating measurement dynamics
in this manner is that the system state becomes unnormalized.
The state norm has meaning, as will be specified later in this
section. We term moving from the nonlinear to linear equation
as linearization of the SME and associate with it the traceful
incremental evolution d ρ̄c(t ). To be clear, linearization is not
an approximation in any sense; the linearized SME is as ac-
curate as the nonlinear SME. The normalized density matrix
is, of course, found from ρc(t ) = ρ̄c(t )/Tr[ρ̄c(t )]. The overbar
indicates an unnormalized state.

To deal with ordinary operators rather than superoperators,
step two of our solution method is to transform the linear
SME for the unnormalized density matrix, ρ̄(t ), into a linear
equation for a state vector, |ρ̄(t )〉 in a larger Hilbert space.
This vectorized equation in the larger Hilbert space would
consist of left-only matrix multiplication of the state vector.
For a finite-dimensional basis, this can be achieved simply by
column stacking the elements of ρ to form a vector. That it
can be achieved for infinite-dimensional bosonic modes, via
the thermo-entangled state representation [80–82] in a larger
Hilbert space H ⊗ H, will be discussed when the detailed so-
lution method is provided in the next section. For the moment,
we note that it is possible to recast the evolution d ρ̄c(t ), via
what we term vectorization, into d|ρ̄c(t )〉.

Our goal is to obtain the mapping from |ρ(0)〉 to |ρ̄c(t )〉. To
achieve this, we first need to obtain the mapping correspond-
ing to an infinitesimal time slice, dt ,

|ρ̄c(t + dt )〉 = d|ρ̄c(t )〉 + |ρ̄(t )〉, (18)

= V̂y(t )|ρ̄(t )〉, (19)

where V̂y(t ) represents nonunitary evolution. That V̂y(t ) can be
obtained from Eq. (18) is clear, given the linear form of the
SME. However, it is also useful to put V̂y(t ) in an exponential
form,

V̂y(t ) = ev̂y(t ) , (20)

for some operator v̂y(t ), as this allows contact with techniques
from Lie algebra. We refer to finding V̂y(t ), and obtaining its
desired form, as a process of factorization (see Fig. 1).

The next step in obtaining the evolution operator for a finite
time interval begins with the division of t into a very large
number, J , of time slices of length dt . The finite evolution is
given by

|ρ̄c(t )〉 = V̂y(Jdt ) · · · V̂y(2dt )V̂y(dt )|ρ(0)〉, (21)

≡ V̂Y (t )|ρ(0)〉. (22)

By finding the nonunitary evolution operator, V̂Y (t ), which
depends on the set, Y (t ), of all measurement results over the

interval [0, t], the evolution is solved. In the limit dt → 0,
V̂Y (t ) will contain integrals over the measurement record. The
process of finding V̂Y (t ), from the string of operators represent-
ing infinitesimal evolution, is termed composition.

If desired, the vectorization to form |ρ̄c(t )〉 can be unwound
to write the solution in terms of ρ̄c(t ). We refer to this unwind-
ing as matricization as we are moving from the state vector,
in the larger Hilbert space, back to the state matrix, in the
original Hilbert space. The density matrix SME solution, as
opposed to the state vector, is written in terms of a evolution
superoperator, VY (t ), analogous to the evolution operator:

ρ̄c(t ) = VY (t )ρ(0). (23)

Having sketched how to solve the SME, we now extend
a little further and indicate how the POVM is subse-
quently obtained. The POVM, which characterizes a quantum
measurement, is defined as the set of positive operators,
{ŴY (t ) : Y (t )}, such that for all (normalized) ρ(0),

℘Y (t ) = Tr[ŴY (t )ρ(0)], (24)

where ℘Y (t ) is the probability density for the measurement
record Y (t ) and ŴY (t ) is known as the effect operator.

As mentioned earlier, the norm of the system state vector,
‖|ρ̄c(t )〉‖, has meaning when an initially normalized state is
evolved using the linear SME. Specifically, the norm is related
to the probability of the measurement sequence, upon which
the state is conditioned, as per

℘Y (t ) = ‖|ρ̄c(t )〉‖℘ost (Y (t )). (25)

There is some flexibility in the linear SME, relating to the
choice of normalization. However, ℘Y (t ) is a fixed quantity, so
variations in ‖|ρ̄c(t )〉‖ must be compensated by the form of the
ostensible distribution, ℘ost (Y (t )) [4]. In this solution sketch,
the specification of the particular form of the linear SME and
ostensible distribution is not crucial, apart from noting that
an analytic form can be found for both, and is left until later
sections. The reader is invited to read Appendix A for a more
detailed discussion of the ostensible distribution.

The form of ŴY (t ) is fixed by ensuring that the two ex-
pressions for ℘Y (t ), given in Eqs. (24) and (25), are equal.
The effect operator is an operator in the original sized Hilbert
space, so it is necessary to revert from the larger Hilbert space,
via matricization, when determining ŴY (t ). As indicated by
Eq. (25), and shown in Fig. 1, we will find the POVM from
|ρ̄c(t )〉, the state vector form of the SME solution. However,
this is a matter of convenience; the POVM can, of course,
be found from the SME density matrix solution. The class of
systems that we consider (those with linear HP dynamics and
Gaussian measurement noise) will be found to have Gaussian
effect operators. A Gaussian operator is one which has a
Gaussian Wigner function.

IV. SOLVING THE STOCHASTIC MASTER EQUATION

A. Linearization

In Sec. III, a sequence of steps, that leads to the solution
of a SME, was identified. We now carry out these steps,
beginning with the linearizing of the nonlinear SME. The
nonlinear SME, for the system class of interest, has already
been provided in Eq. (1). As explained in Appendix A, the
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nonlinearity of the SME only affects the normalization of the
density matrix so one can faithfully propagate an unnormal-
ized system state, ρ̄(t ) using only linear terms, with what is
known as a linear SME [88],

d ρ̄(t ) = −i[Ĥ, ρ̄(t )]dt + D[ĉ]ρ̄(t )dt

+ yT(t )dtH̄[M†ĉ]ρ̄(t ), (26)

where a linear form of the superoperator, H, has been used:

H̄[ĉ]ρ ≡ ĉρ + ρĉ‡. (27)

The bar on d ρ̄(t ) is used to indicate a measurement-
conditioned, unnormalized state, with the subscript c dropped
for simplicity. Note that the linear SME is written directly
in terms of the measurement results y(t ), which have the
Gaussian statistics indicated by Eqs. (7) and (8).

B. Vectorization

The next step in the solution process is comprised of trans-
forming the linear SME for the unnormalized density matrix
into a vector form, in a larger Hilbert space. The thermo-
entangled state representation is now briefly reviewed before
being applied to the linear SME.

1. A brief introduction to the thermo-entangled
state representation

To work in the thermo-entangled state representation, for
a system consisting of N physical modes described by a
Hilbert space, H, an ancillary Hilbert space of equal di-
mension is introduced, H̃, which houses unphysical modes.
This representation is based on prior work by Takahashi and
Umezawa, relating to thermo-field dynamics [81,82,90], in
which a fictitious field is introduced to convert ensemble aver-
age calculations into equivalent pure state expressions. Here,
we focus on just the results that we require, and the interested
reader is referred to the available literature for more details
[76–83,87].

For an arbitrary operator Â acting on vectors of the Hilbert
space H, there is a tilde conjugate operator Ã that acts iden-
tically on vectors of the Hilbert space H̃. Without loss of
generality, we can define the relationship between tilde and
nontilde operators as [79]

Â = A(â, â†), Ã = A∗(ã, ã†). (28)

Note that ã = (ã1, ã2, . . . , ãN )T has been introduced, and that
taking the tilde conjugate of a matrix does not alter its di-
mensions. This generalizes to the case where the object to be
tilde-conjugated is itself a matrix of operators, Â = A(â, â†),
and the the matrix dimensions are left unaltered:

Ã = A∗(ã, ã†). (29)

The tilde and nontilde annihilation and creation operators
obey standard bosonic commutation relations:

[âm, ân] = [ãm, ãn] = 0, (30)

[âm, â
†

n] = [ãm, ã
†

n] = δmn, (31)

[âm, ãn] = [âm, ã
†

n] = 0, (32)

for m, n ∈ {1, . . . , N}.

From Eq. (28), and the requirement that (Ã)̃ = Â, the fol-
lowing tilde-conjugation rules may be inferred:

(z1Â1 + z2Â2 )̃ = z∗
1Ã1 + z∗

2Ã2,

(Â1Â2 )̃ = Ã1Ã2, (33)

(Â† )̃ = (Ã)†,

for complex numbers z1, z2.
Similar to multimode coherent states, the mixed-mode op-

erator

β̂ = â − ã‡ (34)

[recall our previous definition, applying equally to tilde oper-
ators, that â‡ ≡ (âT)

†
] may be defined, which has eigenstates

β̂|β〉 = β|β〉, β̂
†|β〉 = β†|β〉, β ∈ CN . (35)

Note the use of the nonoperator expression β† = (β∗)T, where
β is a vector of complex numbers. Like position or momen-
tum eigenstates, the states |β〉 are not normalizable. From
Eqs. (35), we deduce that

â|β = 0〉 = ã‡|β = 0〉, â‡|β = 0〉 = ã|β = 0〉. (36)

Going forward, the cumbersome notation of |β = 0〉, in-
dicating the zero eigenvector of β̂, will be dropped and
merely written as |0〉 ≡ |β = 0〉. To distinguish this zero-
valued eigenvector of β̂—which we will often refer to as the
thermo-entangled state vacuum—from the 2N-mode vacuum
state of the Hilbert space H ⊗ H̃, we will denote the latter by
|vac〉.

A useful consequence of Eqs. (36) is that for the arbitrary,
nontilde operator Â = A(â, â†) (which acts as the identity on
tilde modes):

Â|0〉 = Ã
‡|0〉. (37)

For the special case in which Â is Hermitian, this relation
simplifies further, to

Â|0〉 = Ã|0〉. (38)

It is shown in Ref. [80] that the thermo-entangled states are
given by

|β〉 = exp

(
−|β|2

2
+ â†β − β†ã‡ + â†ã‡

)
|vac〉. (39)

For later use, we note that the thermo-entangled state vacuum
is given in terms of the Hilbert space vacuum by

|0〉 ≡ |β = 0〉 = exp(â†ã‡)|vac〉, (40)

which follows directly from Eq. (39). As an aside, the thermo-
entangled states are precisely the common eigenstates of the
relative coordinate and total momentum of two particles,
which are central to the original Einstein, Podolsky, and Rosen
(EPR) scheme [91,92].

The thermo-entangled states allow us to represent an N-
mode system density matrix, ρ, by a vector, |ρ〉, in the larger
2N-mode Hilbert space, via

|ρ〉 ≡ ρ ⊗ 1̂|0〉, (41)

where the N-mode identity is acting on the unphysical modes.
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2. Application of the thermo-entangled state representation

As previously indicated, we will work in the thermo-
entangled state representation, whereby the state matrix is
vectorized according to |ρ̄〉 ≡ ρ̄ ⊗ 1̂|0〉. That is, Eq. (26)
is simply right multiplied by |0〉 and then the relations of
Eqs. (28)–(29) and Eqs. (36)–(38) are used. It is found that

d|ρ̄(t )〉 = [Ŝ[−iĤ ]dt + D̂[ĉ]dt + yT(t )dt Ŝ[M†ĉ]]|ρ̄(t )〉.
(42)

The operator D̂[ĉ] is defined to represent the unconditional
decoherence terms,

D̂[ĉ] = c̃Tĉ − 1
2 ĉ†ĉ − 1

2 (ĉ†ĉ)∼, (43)

and we have also introduced notation for the sum of an oper-
ator and its tilde conjugate:

Ŝ[M†ĉ] = M†ĉ + (M†ĉ)∼. (44)

The RHS of Eq. (42) being invariant under tilde conjugation
ensures that the Hermiticity of the density matrix is preserved.
The vectorization step of the SME solution is now complete.

C. Factorization

The next step is to factorize the evolution. From Eq. (42),
an expression for V̂y(t ), such that

|ρ̄(t + dt )〉 = V̂y(t )|ρ̄(t )〉 (45)

is trivially given by

V̂y(t ) = 1̂ + Ŝ[−iĤ]dt + D̂[ĉ]dt + yT(t )dt Ŝ[M†ĉ], (46)

with the 2N-mode identity operator acting on all modes of the
doubled Hilbert space.

To calculate an evolution operator using the techniques of
Lie algebra, an exponential operator form, V̂y(t ) = exp(v̂y(t ) ),
is required. An expression for v̂y(t ) that provides a V̂y(t ) accu-
rate to O(dt ) is formally achieved with

v̂y(t ) = Ŝ[−iĤ]dt + D̂[ĉ]dt − 1
2 {yT(t )dt Ŝ[M†ĉ]}2

+ yT(t )dt Ŝ[M†ĉ]. (47)

To verify Eq. (47), the exponential form of V̂y(t ) should be
expanded to first order in dt and compared with Eq. (46). This
requires the inclusion of the second-order contribution from
yT(t )dt Ŝ[M†ĉ], as it is of order

√
dt due to Itô’s rule [see

Eq. (8)]. The same reasoning implies that {yT(t )dt Ŝ[M†ĉ]}2

is actually deterministic and equal to (dt Ŝ[M†ĉ]
T
Ŝ[M†ĉ]), to

first order in dt . Despite being deterministic, this term results
from the presence of measurement.

The first three terms of v̂y(t ), written on the first line of
Eq. (47), are deterministic, as well as being quadratic in the
annihilation and creation operators. The final term of Eq. (47)
is stochastic. It is linear in the measurement results, and linear
in the annihilation and creation operators. This motivates the
simplifying expression

v̂y(t ) = Q̂dt + dL̂(t ), (48)

where Q̂ contains terms that are time independent and
quadratic, while dL̂ contains stochastic, linear terms. In sum-
mary, the dynamical map of Eq. (45) is achieved by the

nonunitary evolution operator

V̂y(t ) = exp[Q̂dt + dL̂(t )], (49)

with

Q̂ = Ŝ[−iĤ ] + D̂[ĉ] − 1
2 Ŝ[M†ĉ]TŜ[M†ĉ], (50)

dL̂(t ) = yT(t )dt Ŝ[M†ĉ]. (51)

D. Composition

Given the evolution operator, V̂y(t ), which evolves the state
vector forward a single time slice, the next task is to consider a
sequence of them that evolves the initial state forward a finite
duration:

|ρ̄(t )〉 = V̂y(Jdt ) · · · V̂y(2dt )V̂y(dt )|ρ(0)〉, (52)

=
J∏

j=1

exp[Q̂dt + dL̂( jdt )]|ρ(0)〉, (53)

= V̂Y (t )|ρ(0)〉. (54)

In the second expression, Eq. (53), in which the form of
Eq. (48) has been used, Jdt = t and the product is enumerated
with j increasing from right to left. Note that a normalized
initial state has been assumed. The goal of the composition
step is to find the finite evolution operator, V̂Y (t ). This ex-
pression for the state matrix (albeit in vectorized form) is
analogous to that for the state vector obtained in Ref. [59],
thus allowing a similar fundamental approach (but requiring
different techniques).

To derive a practicable expression for V̂Y (t ), the long se-
quence of J exponential operators must be reordered and
composed (which will involve integration for dt → 0) so as
to form a small number of terms. This is a task in bosonic
algebra and methods of Lie groups are used.

1. Lie algebra

To make contact with Lie algebra, note that v̂y(t ) is com-
prised of terms that are at most quadratic in the 2N-mode
annihilation and creation operators. This is ensured by the
assumption of linear HP dynamics (see Sec. II). Here is a list
of all (4N + 1)(2N + 1) such operators:{

1̂, âm, â†
m, ãm, ã

†

m, âmân, ãmãn, â†
mâ†

n, ã†
mã†

n,

âmãn, â†
mã†

n, âmã†
n, â†

mãn, â†
mân + 1

2δmn, ã†
mãn + 1

2δmn
}
,

(55)

for m, n ∈ {1, . . . , N}. It is important to emphasize that un-
physical tilde modes (represented by operators ã, ã†) are on
the same footing as physical modes (represented by operators
â, â†) in terms of bosonic algebra calculations.

The span over C of the operators is a subalgebra of the
symplectic algebra sp(4N + 2) [60,93]. The operator commu-
tator is the Lie bracket for the Lie algebra. The Lie algebra, g,
has an associated Lie group, G, that is formed by taking the
exponential map of g,

g = exp(X ), (56)

for X ∈ g and g ∈ G. It can be seen that v̂y(t ) ∈ g and it will
become clear that V̂Y (t ) ∈ G. It is important to be clear that g
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consists of arbitrary linear combinations of the operators listed
in Eq. (55).

Of central importance to us is that there are group-theoretic
calculations that are (1) only dependent upon the algebra’s
commutation relations and (2) are independent of the repre-
sentation that the calculations are carried out in, provided that
the representation respects the algebra’s commutation rela-
tions [61]. In particular, this holds for multiplication within
the group, and the related tasks of exponential operator disen-
tanglement and reordering. As V̂Y (t ) is formed through group
multiplication, it follows that V̂Y (t ) ∈ G.

In the context of a Lie group, disentanglement refers to the
splitting of an exponential operator, whose exponent consists
of multiple terms, into a product of exponential operators.
That is, for Z ∈ g we disentangle the exponential operator into
a product of n terms as per

eZ = eX1 . . . eXn , (57)

for X1, . . . , Xn ∈ g. To give an illustrative example, a simple,
but well-known disentanglement is the normal ordering of the
single-mode displacement operator

eαâ†−α∗â = eαâ†
e−α∗âe− 1

2 |α|2 (58)

for Z = αâ† − α∗â. This disentanglement follows directly
from the Zassenhaus formula [73],

eX+Y = eX eY e− 1
2 [X,Y ] · · · , (59)

with further terms in the product containing higher order
commutators, for example, [Y, [X,Y ]]. In the case of the dis-
placement operator, the higher order commutators evaluate to
zero. It is important to note that algebra described by Eq. (55)
is significantly more complicated than that of the subalgebra,
{1̂, â, â†}, relevant to the displacement operator, and we will
not in general use the Zassenhaus formula to evaluate disen-
tanglements. Despite this, the Zassenhaus formula highlights
that disentanglement is only dependent upon the commutation
relations of the algebra.

The second group-theoretic calculation of importance to us
is exponential operator reordering. Given the operator eX eY ,
we may wish to write an equivalent expression in which the
eY term appears to the left. That is,

eX eY = eY eZ , (60)

for known X,Y ∈ g and a to-be-determined Z = e−Y eX eY ∈
g. It is possible to give an expression for Z [94],

Z = X − [Y, X ] + 1

2!
[Y, [Y, X ]] + · · · , (61)

which makes it clear that operator reordering is a function of
the group commutation relations only.

Having established the central role that the commutator
plays in operator reordering and disentanglement, we are mo-
tivated to look at the commutator structure of the Lie algebra,
g. To do so, we define a number of partially overlapping
subalgebras. We define the subalgebra q as containing all the
quadratic (in annihilation and creation operators) elements of
g, together with the identity operator. Similarly, the subalgebra
l is defined as containing all linear elements of g, together with
the identity. Finally, we define i as the subalgebra consisting

only of the identity operator. Then, we note the following
useful facts:

[q, q] ∈ q, (62)

[l, g] ∈ l, (63)

[l, l] ∈ i, (64)

[l, [l, l]] = 0. (65)

That is, q forms a subalgebra of g, and l is an ideal of g.
Eq. (65) follows from Eq. (64) as the identity commutes with
every algebra element (it is the center of the algebra), but we
state it explicitly for the reader due to its frequent application.

The consequences of the algebraic facts of Eqs. (62) and
(63) at the group level are the following. Given Eq. (57) for
Z ∈ q, it is true that X1, . . . , Xn ∈ q. That is, the disentangle-
ment of the exponential of a quadratic operator is given by a
product of exponentials that do not involve any linear expo-
nents. Additionally, given Eq. (60) for X ∈ q and Y ∈ l, then
Z ∈ l. That is, when an exponential operator with quadratic
exponent is moved through an exponential with linear expo-
nent, the quadratic exponential is unchanged. The exponential
with linear exponent retains a linear exponent only, but one
that is changed according to Eq. (61).

As mentioned, we will not use the Zassenhaus formula,
or Eq. (61), to calculate operator disentanglements and re-
ordering for general elements g ∈ G. The algebra of g is, in
general, too complicated to make this feasible. Instead, we use
the fact that a representation of the algebra that upholds the
algebra’s commutation relations can be employed to perform
group calculations, with the results then abstracted back to the
level of the algebra. To make the representation-independent
calculations, it is beneficial to choose as simple as possi-
ble a representation that faithfully respects the algebra g.
The bosonic operators of g are typically represented in the
infinite-dimensional Fock basis, but this is an unnecessary
complication as far as group calculation is concerned. It is a
convenient fact that there exist faithful finite-dimensional ma-
trix representations of g. All such faithful finite-dimensional
matrix representations are known, with the smallest using
matrices of dimension (4N + 2)×(4N + 2) to represent the
2N-mode algebra, g, of Eq. (55) [60,95]. As a reminder, this
2N-mode algebra corresponds to N physical modes as well
as N unphysical modes that were introduced to facilitate the
vectorization of the SME.

Let us now assume, as will be true in practice, that we have
chosen the minimally sized (4N + 2) matrices to represent
the algebra g. This leads to the disentanglement and oper-
ator reordering equations, Eqs. (57)–(60), being represented
as matrix equations. In other words, to find the parameters
which describe the disentanglement and reordering, a finite
set of algebraic equations needs solving. To construct these
equations requires the exponentiation of symbolic matrices;
for our systems this involves solving polynomials of degree
2N . As no known general solution exists for polynomials of
degree higher than quartic, this approach has some intrinsic
limitations for greater than two physical modes. Despite this,
the Lie algebra facts detailed in this section will provide useful
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information regarding the form of the solution of the SME
for arbitrary N , as well as more explicit results for N � 2.
Finite-dimensional matrix representations and how they can
be utilized in our calculations are discussed further in Ap-
pendix B. We prefer to defer explicit finite-dimensional matrix
calculations to the Appendices to improve the readability of
the main text.

Having described the essential techniques of Lie algebra,
we can now return to the composition of the nonunitary
evolution operator, V̂Y (t ).

2. Evolution operator form

In the remainder of this section, we will be heuristic in our
calculations. The reason for this is that the details will likely
not add significantly to the conceptual understanding gained
by the reader. Despite this, the practical implementation of our
SME solutions is obviously important, so we provide a recipe
for their use in Sec. VI, as well as examples in Sec. VII. The
reader will also be referred to the Appendices as appropriate.
In this subsection, we obtain the form of the evolution opera-
tor V̂Y (t ).

Before reordering the product of exponential terms in
Eq. (53), we perform the simple disentanglement of splitting
the quadratic and linear terms that belong to each time slice.
That is,

V̂y(t ) = exp[Q̂dt + dL̂(t )], (66)

= exp[dL̂(t )] exp[Q̂dt], (67)

which is correct up to order dt . This can be seen from Eq. (59),
as the corrections involve commutators of the infinitesimal
operators. For example, [Q̂dt, dL̂(t )] = O(dt3/2).

The general strategy to find V̂Y (t ) begins with moving the
rightmost quadratic exponential through the linear exponen-
tial to its left [96]. After this is done, it is in contact with a
second quadratic exponential, with which it can be combined,

exp[Q̂dt] exp[Q̂dt] = exp[2Q̂dt], (68)

as the exponents obviously commute for our time-independent
Q̂. This combined quadratic exponential is then moved
through the next linear exponential to the left and com-
bined with a third quadratic exponential. After this has been
repeated j − 1 times, the task of reordering the combined
quadratic exponential with the next linear exponential is given
by

edL̂( jdt )
j∏

k=1

exp[Q̂dt] = edL̂(τ )eQ̂τ , (69)

= eQ̂τ edL̂′(τ ), (70)

with the interim time jdt labeled as τ . The reordering, per-
formed in Eq. (70), is an example of the reordering shown in
Eq. (60) for Y ∈ q and X ∈ l. As described in the previous
subsection, the quadratic exponential is left unchanged while
the linear exponential remains linear but is modified. The
use of the prime in Eq. (70), for the linear exponential, is
to indicate this modification. Following the movement of the
quadratic exponentials through all the linear exponentials, we

are left with

V̂Y (t ) = eQ̂t
J∏

j=1

exp[dL̂′( jdt )]. (71)

Next, we wish to combine all the linear exponentials. We
note that dL̂′( jdt ) ∈ l. Thus, according to Eq. (59), (64), and
(65), we can write

J∏
j=1

exp[dL̂′( jdt )] = exp

[
δY (t )1̂ +

J∑
j=1

dL̂′( jdt )

]
, (72)

with δY (t ) being a scalar that is a function of the stochastic
measurement record. From this point onward, the identity
operator is not explicitly written, due to its trivial action. For
convenience, we combine the linear term and that proportional
to the identity into a single operator as per

L̂′(t ) = δY (t ) +
∑
j=1

JdL̂′( jdt ), (73)

where L̂′(t ) is finite and will convert into a stochastic Itô
integral in the limit dt → 0. The δY (t ) term does not affect
the system state, but is relevant to the probability of obtaining
the measurement record [see Eq. (25)].

We can now give the form of V̂Y (t ) as

V̂Y (t ) = eQ̂t eL̂′(t ). (74)

As desired, the evolution operator has been composed into
a product of a finite number of exponentials (in this case
two). The first is deterministic and contains quadratic operator
terms. The second is linear and is a function of the measure-
ment record. When V̂Y (t ) is used in Eq. (54), the solution of
the SME,

|ρ̄(t )〉 = eQ̂t eL̂′(t )|ρ(0)〉, (75)

is obtained. Note that the invariance of V̂Y (t ) under tilde con-
jugation, V̂Y (t ) = ṼY (t ), ensures that ρ̄(t ) is Hermitian. In the
next two subsections, we will provide more detail concerning
L̂′(t ) and find a more convenient expression for eQ̂t .

3. Investigating eL̂′ (t )

In this subsection, we give expressions for eL̂′(t ) that will
be of later use, with calculational details deferred to the Ap-
pendices. For notational convenience and to emphasize that
unphysical tilde modes are on the same footing as physical
modes in terms of bosonic algebra calculations, the â and
ã column vectors are placed into a single column vector of
length 2N :

b̂ = (â; ã) = (â1, . . . , âN , ã1, . . . , ãN )T . (76)

We can now write Q̂ and dL̂(t ) in terms of the bosonic
vector b̂,

Q̂t = b̂
†
Rb̂

‡ + b̂
†
Db̂ + b̂

T
Lb̂, (77)

dL̂(t ) = b̂
†
dr + dl b̂, (78)

with the 2N×2N matrices R, D, L, the 2N×1 column vector,
dr, and the 1×2N row vector, dl , all constrained by Her-
miticity preservation of the evolved state matrix. Rather than
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use {r, l}, we have introduced {dr, dl} in the linear evolution
containing the measurement noise to emphasize that they are
infinitesimal and are of O(

√
dt ). The relationship between

the system description in Eq. (26) that is given in terms of
{G,C, M} and the parametrization of {R, D, L, dl, dr} of Eqs.
(77) and (78) is provided in Appendix C. Note that dL̂′(t )
is defined analogously to Eq. (78), in terms of {dr′, dl ′} [see
Eq. (B19)].

The explicit expression for L̂′(t ) is not difficult to de-
rive using a finite-dimensional representation of the algebra
sp(4N + 2) (see Appendix B for details of this calculation, in
particular Appendices B 3 a and B 3 b). In this section, we
state it as

eL̂′(t ) = eheb̂
†
r′

el ′b̂, (79)

with h being a scalar non-Gaussian complex-valued stochastic
integral and

r′(τ ) =
∫ τ

0
dr′(s), (80)

with equivalent notation for l ′(τ ). The explicit time depen-
dence of {h, l ′, r′} in Eq. (79) has been suppressed for display
purposes. The relevance (or lack thereof) of the presence of
the non-Gaussian random variable, h, will be discussed in
detail in relation to the POVM in Sec. V. For the moment,
we note that h has no effect upon the system state, as the
nonoperator multiplicative factor, eh, will be removed when
the state is normalized. In other words, rather than storing the
entire measurement record, Y (t ), it is sufficient to track only
{l ′, r′} to follow the system state. In closing this subsection,
we remind the reader that eL̂′(t ) is the only term in our SME
solution impacted explicitly by the measurement record.

4. Disentangling eQ̂t

To facilitate calculations, such as expectation values, it is
often convenient to use a disentangled exponential operator
with an ordering chosen to suit the calculation. In this sub-
section, we give the disentangled form of eQ̂t . This should be
understood in the context of Eq. (57) for Z, X1, . . . , Xn ∈ q.
That is, we split eQ̂t into a product of exponentials with
quadratic (and no linear) exponents. Once again, only the
heuristic form is provided in this section as the explicit results
are obtained from the finite dimensional representation of
sp(4N + 2) (see Appendix B, together with Sec. VI for details
and examples). Using the form of Q̂ given in Eq. (77), we state

eQ̂t = exp[b̂
†
Rb̂

‡ + b̂
†
Db̂ + b̂

T
Lb̂], (81)

= eδ′
exp[b̂

†
R′b̂

‡
] exp[b̂

†
Db̂] exp[b̂

T
L′b̂], (82)

= eδ′
exp[b̂

†
R′b̂

‡
](: exp[b̂

†
D′b̂] :) exp[b̂

T
L′b̂], (83)

with the primes and underline indicating different functions of
system parameters. Also, D′ = eD − 12N by a standard oper-
ator identity for normal ordering [97]. Note the appearance
of the scalar δ′, due to the disentanglement involving the
commutation of quadratic terms.

We have now solved the linear SME in the enlarged Hilbert
space, H ⊗ H̃. The solution is comprised of Eqs. (75), (79),
and (82), together with the explicit expressions for primed

variables contained in Appendix B. Some readers will object
to the presence of the unphysical tilde modes but we note that
there are advantages in the thermo-entangled state representa-
tion of the solution. For example, to find expectation values of
a system operator A(â, â†), we use [78]

Tr[A(â, â†)ρ̄(t )] = 〈0|A(â, â†)|ρ̄(t )〉. (84)

As the system state is mixed in general (that is, impure) we
cannot separately factorize the exponentials of physical and
unphysical mode operators. The conversion of the state vector,
|ρ̄(t )〉, to the state matrix, ρ̄(t ), will necessitate the use of
superoperators instead of operators or, alternatively, the power
series expansion of exponentials. Indeed, when finding the
POVM representing the composite measurement, we find it
more simple to use the |ρ̄(t )〉 solution. However, it is of clear
relevance to show that we can find ρ̄(t ), so this is performed
in the next subsection.

For completeness, we perform one final operator reorder-
ing, being that of normal ordering the full evolution operator.
That is,

V̂Y (t ) = eQ̂t eL̂′(t ), (85)

= eh+δ′
eb̂

†
r+b̂

†
R′b̂

‡

(: eb̂
†
D′b̂ :)eb̂

T
L′b̂+l b̂, (86)

where the reordering has lead to modification of the linear
terms from {l ′, r′} to {l, r}, as detailed in Appendix B 3 c.

E. Matricization

The solution |ρ̄(t )〉 is a vector in H ⊗ H̃ and contains
the unphysical mode operators ã and ã† (within the mixed

mode operators b̂ and b̂
†
). These can be removed in the fol-

lowing way. Recall that |ρ(0)〉 ≡ ρ(0) ⊗ 1̂|0〉, where ρ(0) is
the physical mode density matrix. All tilde-mode operators
commute through ρ(0) to act on |0〉, with the conversion to
physical mode operators as per Eq. (36).

To identify the tilde-mode operators, the compactifying no-
tation of the the b̂ operators is unwound. As should be evident
already, there are an endless number of operator orderings that
can be chosen, each with a parametrization. To avoid having
to repeat the definition, we note that for all {R, L, D, r, l}
matrices (including {R, L, D, r, l} and {R′, L′, D′, r′, l ′} or any
other disentanglement parameters), the following block form
will hold:

L =
[

L L̆
L̆ L∗

]
, (87)

R =
[

R R̆
R̆ R∗

]
, (88)

D =
[

D D̆
D̆∗ D∗

]
, (89)

with R̆ = R̆
† = R̆T and R = RT. The same respective proper-

ties hold for {L, L̆} but not necessarily for the block matrices
of D. The vectors {l, r} (and operator reordered variations) all
have the block form

l = [l l∗], (90)

r =
[ r
r∗
]
. (91)
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The requirement that evolution preserves state matrix Her-
miticity has been enforced for all parameters. Note that a
Roman font has been used to distinguish the N×N block
matrices from the full matrix (which is 2N×2N), and similarly
for the block vectors of length N rather than 2N . To give an
example to illustrate our notation, we have implied that the
block form of {R′, D′} is

R′ =
[

R′ R̆′

R̆′ R′∗

]
, (92)

D′ =
[

D′ D̆′

D̆′∗ D′∗

]
, (93)

with R̆′ = R̆′† = R̆′T and R′ = R′T.
By substituting the block form of Eqs. (87)–(91) into

Eq. (86), one can obtain an expression for V̂Y (t ) in terms of

{â, â
†
, ã†, ã†}, rather than {b̂, b̂

†}. This gives a lengthy but
useful aid for moving to the state matrix solution of the linear
SME:

V̂Y (t ) = exp[â
†
r + ã

†
r∗ + â

†
R′â‡ + ã

†
R′∗ã‡ + 2â

†
R̆′ã‡]

× eâ
†
D̆ã+ã

†
D̆

∗
âeâ

†
Dâeã

†
D∗ã

× exp[âTL′â + ãTL′∗ã + 2âTL̆′ã + lâ + l∗ã], (94)

which manifestly preserves state matrix Hermiticity. Note that

we choose to use the underlined operator ordering eb̂
†
Db̂ rather

than the primed normal ordering : eb̂
†
D′b̂ : for this purpose.

After the tilde operators are moved through ρ(0) to act on
|0〉, they become right-multiplying operators onto ρ(0).

Our first option for representing the state matrix solution,
ρ̄(t ), is to place it in superoperator form:

ρ̄(t ) = VY (t )ρ(0). (95)

We find it necessary to introduce new superoperators, as
well as clarifying how superoperator matrix-multiplication
functions. Our new superoperators, for an arbitrary vector of
operators, ĉ, and square matrix M (of the same length as ĉ),
are

J [ĉT]Mρ = ĉT
i Mi jρĉ

†

j, (96)

K[ĉT]Mρ = ĉT
i M i jρĉ j . (97)

Thus, although J [ĉT]M appears to be a row vector, when
acted upon an operator we define it so it produces a scalar
operator. This convention is used for all superoperators and
shows how the right-multiplying operator indices are summed
with the left-multiplying portion. We also use the superopera-
tor H̄ from Eq. (27). We can then write

VY (t ) = exp[H̄[â
†
r + â

†
R′â‡] + 2J [â

†
]R̆′]

× exp[K[â
†
]D̆ + K[âT]D̆

†

] exp[H̄[â
†
Dâ]]

× exp[H̄[lâ + âTL′â] + 2J [âT]L̆′]. (98)

Our second option for writing ρ̄(t ) is to use power series
expansions of the exponentials instead of superoperators. The
notation to represent the general multimode case in this way is
extremely cumbersome as one must link left-multiplying and
right-multipling factors with summations that are associated

with matrix multiplication. To avoid providing an expression
which is too complicated to be of value, we limit ourselves
to the single-mode case for which the vector notation is not
needed (no bold font required). Using the explicitly normal
ordered form of Eq. (83), we obtain

ρ̄(t ) =
∞∑

jkmn=0

(2L̆)′ jD̆′∗kD̆′m(2R̆′)n

j!k!m!n!
â

†n+kerâ
† +R′â†2

× (: eD′â†
â :)â j+meL′â2+lâρ(0)el∗â

† +L′∗â
†2

â
† j+k

× (: eD′∗â
†

â :)eR′∗â2+r∗âân+m, (99)

which is also fully normally ordered. The lack of explicit
Hermiticity is superficial; this can seen by writing ρ̄(t ) with
the dummy indices k ↔ m reversed and then halving the sum
of both expressions.

As a reminder, the feasibility of our method of solution
method depends upon being able to find the disentanglement
and reordering parameters, {R, L, D, R̆, L̆, D̆, r, l}. To do so,
2N×2N matrices must be characterized and manipulated, as
explained further in Appendix B which, for our systems,
turns out to involve solving polynomials of degree 2N . This
becomes insurmountable, in general, beyond N = 2. Later, in
Sec. VII, we will solve some example single-mode systems.

The SME solution, found in either Eq. (86), Eq. (98), or
Eq. (99) (as well as the differently operator ordered forms)
represents an important result of our paper. We now compli-
ment it by finding the probability density associated with the
measurement sequence upon which the system is conditioned.
That is, we find the POVM.

V. FINDING THE POVM

Given a normalized initial state, |ρ(0)〉 (that can be non-
Gaussian), we have shown how to find |ρ̄(t )〉. It has been
seen that there is a deterministic factor, eQ̂t , and, in addi-
tion, terms involving the stochastic integrals {h, l ′, r′}. Given
recorded measurement currents, the experimentalist can there-
fore follow the system state, which, when normalized, will
be independent of h. However, it is of interest to perform
calculations as to the expected characteristics of the system
evolution; for this, one requires the probability density of the
state at time t , given by℘(h, l ′, r′). For an arbitrary normalized
initial state, a POVM, {Ŵh,l ′,r′ : h, l ′, r′}, achieves this via

℘(h, l ′, r′|ρ(0)) = Tr[Ŵh,l ′,r′ρ(0)], (100)

= 〈0|eQ̂t eL̂′(t )|ρ(0)〉℘ost (h, l ′, r′), (101)

= 〈0|eQ̂t eb̂
†
r′

el ′b̂|ρ(0)〉eh℘ost (h, l ′, r′), (102)

where Eq. (84) has been used, with A(â, â†) = 1̂, and also
Eqs. (24) and (79). For clarity, we remind the reader that
the thermo-entangled state vacuum, |0〉, is the zero-valued
eigenvector of β̂ [see Eq. (34)], which differs from the mul-
timode ground state, |vac〉. It is important to note that the
POVM, {Ŵh,l ′,r′ : h, l ′, r′}, represents the compiled measure-
ment up until a time t . The reason for working with the
thermo-entangled state representation of the SME solution
when finding the POVM is that it allows us to use the powerful
Lie algebra methods described in Sec. IV D 1. In contrast,
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Eq. (99) involves nonexponentiated operators that are not
elements of the Lie group G.

The reader will note that in writing Eq. (102) we have
moved from considering the entire measurement record, Y (t ),
in Eq. (25), to only the relevant stochastic integrals, {h, l ′, r′},
in Eq. (100). That is, the information obtained relating to the
system at the initial time, t = 0, can be fully summarized
in terms of a finite number of integrals over the continuous
measurement record. Commensurate with this observation, a
change of variables has been performed from Y (t ) to {h, l ′, r′}.
However, despite ℘ost (Y (t )) having a known analytic form,
being that of Gaussian white noise [4] (see Appendix A), the
calculation of ℘ost (h, l ′, r′) is made difficult due to h being a
non-Gaussian random variable. This is addressed in the next
subsection, where it will be shown that the POVM can be
made independent of h, without loss of predictive (or retrod-
ictive) power with regard to measurement outcomes. Detailed
comments relating to an alternative method of calculating the
POVM independent of h, via the adjoint equation [98], will
also be given later.

For now, we proceed with the direct calculation of the
POVM, {Ŵh,l ′,r′ : h, l ′, r′}, in the thermo-entangled state rep-
resentation (which has been used elsewhere with regard to
retrodiction of the quantum state, see Ref. [99]). To obtain
the POVM from Eqs. (100)–(102), the operator eQ̂t eL̂′(t ) needs
to be converted into one that only contains physical-mode
operators. This can achieved by acting the tilde-mode op-
erators backward onto 〈0|, via Eq. (36): 〈0|ã = 〈0|â‡ and
〈0|ã‡ = 〈0|â. However, it is a nontrivial task to move all the
tilde operators into direct contact with 〈0| due to the non-
commutativity of the terms containing tilde-mode operators.
Additionally, once all the tilde mode operators are converted,
we will reorder the POVM toward normal order. These two
processes can lead to apparently very complex expressions for
the disentangling parameters that can be difficult to simplify.

To proceed with greater simplicity and elegance to the
POVM, we use the following calculational trick. Instead of
disentangling eQ̂t as per Eq. (82), we note that 〈0|eQ̂t is re-
quired for the POVM. As per Eq. (40), the thermo vacuum
can be expanded in terms of the standard coherent vacuum
(for which â|VAC〉 = ãT|VAC〉 = 0), giving [80]

〈0|eQ̂t = 〈VAC|eãT âeQ̂t . (103)

It is then clear that the disentanglement required is of
eãT âeQ̂t , which we choose to be ordered as

eãT âeQ̂t = exp[b̂
†
R′′b̂

‡
] exp[b̂

†
D′′b̂ + δ′′]

× exp[ãTâ] exp[b̂
T
L′′b̂], (104)

Double primes indicate that a different form [from the single
prime matrices of Eq. (82)] is expected due to the inclu-
sion and embedding of eãT â (appearing as the second last
exponential). As a reminder, the vector b̂ contains both tilde
and non-tilde operators, whilst â and ã are individually un-
mixed. The expression on the RHS of Eq. (104) achieves
a simultaneous disentangling and reordering of the prod-
uct of the two exponentials on the left-hand side (LHS)
of Eq. (104). The explicit form of it is once again found
by using the finite-dimensional representation of sp(4N + 2)

(see Appendix B 3 d). The advantage of this particular disen-
tanglement is that most of the terms annihilate against the
multimode coherent vacuum that appears in Eq. (103). This
simplifies the disentanglement procedure, as we only need to
solve for one of the parameters (L′′). It also removes the need
for the tedious and complexifying reordering of exponentials
when finding the POVM. Up to a constant factor, we are thus
left with

〈VAC| exp[ãTâ] exp[b̂
T
L′′b̂] = 〈0| exp[b̂

T
L′′b̂], (105)

where the thermo-entangled vacuum has been reconstituted on
the RHS.

To facilitate the POVM being written in terms of physical-
mode operators only, L′′ is now written in block form,
separating the physical and unphysical modes, as per the
convention of Eq. (87). This allows us to write

b̂
T
L′′b̂ = âTL′′â + 2ãTL̆′′â + ãTL′′∗ã, (106)

so we can act the tilde exponentials onto 〈0| and convert them
to physical-mode operators. The ordering of the (commuting)
exponential terms is chosen so the disentanglement parameter
matrices {L′′, L̆′′} are altered as little as possible when conver-
sion then takes place:

〈0|e2ãTL̆′′âeâTL′′âeãTL′′∗ã = 〈0|eâ†L′′∗â‡
(: e2â†L̆′′â :)eâTL′′â, (107)

= 〈0|eâ†L′′∗â‡
eâ† ln (1N +2L̆′′)âeâTL′′â,

(108)

with the last line obtained by application of the operator
identity, Eq. (B15).

The final task is to consider the linear component, eL̂′(t ),
of the POVM that is detailed in Eq. (79). First, {r′, l ′} are
broken into their nontilde and tilde components, according to
l ′ = (l′, l∗′) and r′ = (r′; r∗′), which leads to

b̂
†
r′ = â†r′ + ã‡r′∗, (109)

l ′b̂ = l′â + l′∗ã. (110)

Then the tilde terms must be brought into contact with 〈0|
(or |0〉, as they could be moved through the physical-mode
density operator) and converted. Finally, we perform a normal
reordering of the linear pieces using the finite-dimensional
matrix representation.

Finally, we arrive at the Hermitian POVM element,

Ŵh,l′,r′=e�eâ†d+â†L′′† â‡
eâ† ln (1N +2L̆′′)âeâTL′′â+d†âeh℘ost (h, l′, r′),

(111)

where e� collects all the constant terms (nonstochastic, non-
operator) that have been picked up along the path of our
derivation. We have also introduced the stochastic vector, d,
defined by

d = l′† + 2L′′†r′∗ + (1N + 2L̆′′)r′. (112)

The form of d is found using the finite-dimensional matrix
representation, which is explained further in Appendix B 3 d.
Examples of explicit POVMs will be given in Sec. VII.

There are two significant issues with the expression for the
POVM in Eq. (111). First, the joint ostensible distribution for
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℘ost (h, l′, r′) will be difficult to determine analytically due to
the non-Gaussian nature of h. Second, all calculations should
actually be independent of h as it does not affect the system
state. As an example, the system state is retrodicted via the
application of Bayes’ rule,

℘(ρ(0)|h, l′, r′) = ℘(h, l′, r′|ρ(0))℘(ρ(0))

℘(h, l′, r′)
, (113)

by which the scalar factor eh cancels from the numerator and
denominator, so the RHS in independent of h. In fact, we see
that the dependence of the RHS upon {l′, r′} is contained in the
single stochastic integral, d. In Ref. [59], the authors suggest
resorting to numeric calculation of the ostensible statistics
of h. Rather than take that approach, we now try to analyt-
ically determine the effect operator averaged over h, which
represents a minimalistic POVM that, nonetheless, contains
all relevant statistics.

A. A simplified POVM, Ŵd

The POVM with h absent is straightforward to formally
write

Ŵd =
∫

Ŵh,dd2h (114)

= e�eâ†d+â†L′′∗â‡
eâ† ln (1N +2L̆′′)âeâTL′′â+d†â,

×
∫

eh℘ost (h, d)d2h, (115)

however, the non-Gaussianity of h makes this difficult to eval-
uate. [Note that in writing Eq. (115) in terms of d rather than
{l′, r′} we have performed another change of variables.] It is
also obvious that the above POVM, when viewed only in a
mathematical sense, is capable of giving Gaussian statistics
for d. Despite this, given an initial Gaussian state, it would
be surprising if ℘(d|ρ(0)) was not Gaussian, as the SME
maps Gaussian states to Gaussian states. To explain further,
d is a linear integral of the measurement currents, as is clear
from Eq. (112). In turn, the statistics of the measurement
currents are given by Eqs. (7) and (8), which have white noise
added to linear functions of the first-order moments. It is a
well-known property of the Kalman filter that these currents
will have Gaussian statistics for initial Gaussian states. Given
conviction from physical arguments, in Appendix D we show
mathematically how

∫
eh℘ost (h, d)d2h does, in fact, provide

Gaussian statistics. The essence of the argument is that when
the integrals that define h are discretized, it can be seen that
h is a linear combination of chi-squared random variables.
The integral in Eq. (115) then reduces to Gaussian integrals,
which of course provide a Gaussian outcome. In what follows,
an explicit expression for the POVM will be found, without
having to calculate the integral over h directly.

To determine Ŵd, we will find its Q function, 〈α|Ŵd|α〉 =
℘(d|α). Here, |α〉 is the N-mode coherent state of amplitude α

(not to be confused with a 2N-mode thermo-entangled state).
As the Q function of an Hermitian operator is unique, finding
it will be sufficient to specify Ŵd. From Eq. (115), the α-
dependent factors of 〈α|Ŵd|α〉 are simple to to find. However,
there is d dependence arising from the integral over h, and this
prevents us immediately inferring the precise Gaussian form

of 〈α|Ŵd|α〉. Instead, we will use the fact that the α-dependent
factors are known to first find ℘(α|d). In turn, this will fix
℘(d|α) via an application of Bayes’ theorem:

℘(d|α) = ℘(α|d)℘(d)

℘(α)
. (116)

To be clear, in this section we are not ultimately interested
in performing retrodiction. The utilization of Bayes’ theorem
is as a mathematical tool to step from a quantity that we can
more easily to determine to the quantity that is desired.

To infer ℘(α|d), a normalized Gaussian distribution for
α, all that is needed is the mean, 〈α〉, covariance, �, and
pseudocovariance, ϒ. These can be determined by equating
the α-dependent pieces of 〈α|Ŵd|α〉 with the general form of
a multidimensional complex normal distribution [100],

℘(α|d) = N1 exp[−(α − 〈α〉d)†(P−1)∗(α − 〈α〉d)

+ Re((α − 〈α〉d)TQT(P−1)∗(α − 〈α〉d))], (117)

with Q = ϒ�−1, P = �∗ − Qϒ, and 〈α〉d being a function of
d. N1 is a normalization that depends only on Q,ϒ.

The α-dependent pieces of 〈α|Ŵd|α〉 are easily determined,
given that a normally ordered form is given in Eq. (115). Com-
paring Eq. (117) with Q function of the POVM in Eq. (115),
we find the relations for the distribution parameters,

1
2 (P−1)∗ = L̆′′, (118)

1
2 QT(P−1)∗ = L′′, (119)

2L̆′′〈α〉d − (L′′† + L′′)〈α〉∗d = d, (120)

and

N1 = (2/π )N
√

det(L̆′′ − L̆′′−1L′′†L′′)det(L̆′′), (121)

where Eqs. (120) and (121) have been simplified with the use
of Eqs. (118) and (119). As per the comments below Eq. (84),
the feasibility of obtaining explicit analytic expressions de-
pends on the ability of characterizing matrices; in this case it
is necessary to invert matrices to find 〈α〉d from Eq. (120). If
〈α〉d can be found, an analytic expression for ℘(α|d) results.
For a single mode, the matrices {L′′, L̆′′} are, of course, just
scalars.

Having found ℘(α|d), we now consider the two remaining
factors in Eq. (116) that are required to fix ℘(d|α): ℘(α) and
℘(d).

For simplicity, we assume no knowledge of α exists before
measurement begins; the prior distribution for α is flat and can
be represented by a (multidimensional) Gaussian of infinite
variance. In Eq. (116), ℘(α) can consequently be treated as a
constant factor independent of α.

The expression for ℘(d) [the final factor on the RHS of
Eq. (116) yet to be determined] is given by

℘(d) =
∫

℘(d|α)℘(α)d2α, (122)

where both ℘(d|α) and ℘(α) are Gaussian distributions, as we
have argued. As such, the integral over the N-dimensional
complex plane can be carried out analytically. The only aspect
of it that we need is that the resulting Gaussian, for ℘(d), will
have an infinite variance. This follows because if the mean of
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d is linearly dependent upon α, and α has a flat distribution,
then d itself will also have a flat distribution. This linear
relationship is inferred from Eq. (120). Consequently, ℘(d)
can be treated as a constant factor independent of d.

Using Eq. (116), we can draw together our knowledge of
℘(α|d), ℘(α), and ℘(d) to write

℘(d|α) = N2℘(α|d), (123)

with ℘(α|d) given by Eq. (117) and 〈α〉d expressed as a
function of d through Eq. (120). N2 is a new normalization
constant independent of {α, d}.

Having determined the Q function, 〈α|Ŵd|α〉, the operator
form can be inferred by inspection of Eq. (117). To explain
further, the operator dependence is determined from the α

terms, while the terms without powers of α provide the scalar
factors. We deduce that

Ŵd = N exp[−2〈α〉†
dL̆′′〈α〉d + 〈α〉T

dL′′〈α〉d

+〈α〉†
dL′′†〈α〉∗d] exp[â†d + â†L′′â‡]

× (: exp[2â†L̆′′â] :) exp[âTL′′†â + d†â], (124)

with N a function of {L′′, L̆′′} that is fixed by normalization
of ℘(d|α) with respect to d. The normal ordering could be
removed via Eq. (B15). Note the similarity of Eq. (124) to
Eq. (111); the operator factors have remained the same. How-
ever, more than just the normalization has been found (from
the perspective of d) as there is quadratic dependence upon d
contained in the exponent of the first exponential. This piece
originates from the integral over the non-Gaussian variable,∫

eh℘ost (h, l′, r′)d2h, that we have avoided evaluating directly.
If only the operator dependence of Ŵd had been found, then
the correct statistics of d would remain unknown.

An interesting aspect of Eq. (124) is that it implies that
the probability of obtaining a particular measurement record
depends only on the one stochastic integral d. In contrast, the
values of {l′, r′}, must both be known to determine the system
state. When examples are provided, we will see that there
do exist cases for which one of the two stochastic integrals,
{l′, r′}, is strictly zero. Thus, there is a natural classification
of systems subjected to dyne measurement: whether or not d
and, consequently, the POVM, is sufficient to determine the
evolution operator.

We conclude this subsection by noting that the POVM is of
a Gaussian form, yielding Gaussian statistics for d. Given that
a Gaussian operator can be characterized by a vector of means
and a covariance matrix, it is natural to wonder whether the
result could have been obtained by a more direct approach. In
the next subsection, we describe an existing method to obtain
the POVM that proceeds in such a manner.

B. Finding the POVM via the adjoint equation

In solving the linear SME, we worked in the Schrödinger
picture, whereby the system state evolves in time. An equiv-
alent pathway is to consider the evolution of an arbitrary
operator as defined by the adjoint to the SME. To explain
this approach, let us consider the evolution superoperator that
evolves the state forward by dt ,

Vy(t ) : ρ̄(t + dt ) = Vy(t )ρ̄(t ), (125)

with the mapping, Vy(t ), determined by the linear SME. As we
are interested in obtaining the POVM, we choose to illustrate
the adjoint ME for the effect operator. It is defined by the
adjoint mapping, V †

y(t ) such that [101]

Tr[ŴVy(t )[ρ̄(t )]] = Tr[V †

y(t )[Ŵ ]ρ̄(t )]. (126)

That is, the adjoint equation to the linear SME evolves the
effect operator (or any observable) and represents a quasi-HP.
It is not a true HP as the resultant operator equations of motion
will not preserve the operator algebra of the system [4]. So,
for example, in general V †

y(t )[Ŵ
2] �= (V †

y(t )[Ŵ ])2. To calculate
functions of an operator, care must be taken to reintegrate the
quasi-HP equation for the new operator. Nevertheless, when
this quasi-HP equation is integrated, we still obtain correct
expectation values of that particular operator [by definition,
from Eq. (126)]. To calculate functions of an operator, care
must be taken to reintegrate the quasi-HP equation for the new
operator.

The two pictures (Schrödinger and quasi-Heisenberg) rep-
resent two different ways to proceed; in particular, we could
have solved for the time evolution of the effect operator in
the quasi-HP to obtain the POVM. In the literature, the quasi-
HP approach to the POVM has been partially explored using
methods different to those of this paper [31,32,41,102] and we
now compare and contrast it with our current work.

1. Adjoint equation for the effect operator

A feature of the adjoint equation is that it leads to
backward-in-time evolution of operators—this can be seen
by considering two successive updates in Eq. (126) and then
using the cyclic properties of the trace operation to obtain the
adjoint mapping. Using the backward increment notation,

dŴ (t ) = Ŵ (t − dt ) − Ŵ (t ), (127)

with dt positive, it is straightforward to derive an adjoint
equation to the linear SME for the effect operator [98]:

dŴ (t ) = i[Ĥ,Ŵ (t )]dt + D†[ĉ]Ŵ (t )dt

+ yT(t − dt )dtH̄[MTĉ‡]Ŵ (t ). (128)

This generalizes the adjoint equation contained in Ref. [98]
by allowing for completely general measurement parametriza-
tions, M. To obtain the POVM element applicable to the entire
measurement record, the effect operator needs to be integrated
from the final (absolute) measurement time backward to the
time at which measurement is physically turned on, t0. (To
clarify, in our work we take the final condition for a backward-
in-time differential equation as referencing the starting point
for the integration and, consequently, the latest absolute time).
The superoperator D† is defined by

D†[ĉ] ≡
L∑

k=1

D†[ĉk], D†[ĉ]ρ ≡ ĉ†ρĉ − 1

2
ĉ†ĉρ − 1

2
ρĉ†ĉ.

(129)

Note that the adjoint equation for Ŵ , Eq. (128), is a linear
equation that preserves Hermiticity. That is, it is of the same
general form as the linear SME, Eq. (26). Consequently, the
methods we have described in our paper for solving the linear
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SME could be applied to solve the adjoint equation. Specif-
ically, by using a thermo-entangled state representation and
then applying techniques from Lie algebra. However, other
authors [31,32,41,102] have taken a different approach to
solving the adjoint equation that is designed to avoid much of
the complication that we have considered. Namely, they chose
to apply a phase-space representation of the effect operator,
which is characterized by its first- and second-order moments.
For these moments to be calculated correctly, a normalized
effect operator is required. As such, Eq. (128) can be put in an
explicitly trace-preserving form:

dŴ (t ) = i[Ĥ,Ŵ (t )]dt

+ (D†[ĉ]Ŵ (t ) + Tr[(ĉ†ĉ − ĉTĉ‡)Ŵ ]Ŵ )dt

+ dwT(t − dt )dtH[MTĉ‡]Ŵ (t ), (130)

where the nonlinear superoperator H, from Eq. (3), appears,
as does the measurement noise, dw.

Working with a normalized effect operator marks a sig-
nificant departure from our methods: it disregards the scalar
factor that depends on the measurement record. We know this
factor exists due to its presence in Eq. (124). To retrieve it,
the procedure described in Sec. V A could be undertaken. If it
is not retrieved, then the correct statistics are lost. This is not
quite as dire as it sounds because it is only a scalar factor; there
is no problem created for retrodiction of the prior quantum
state as the scalar norm of the effect operator is removed by
renormalization [see the discussion below Eq. (113)].

Tracking the effect operator by only its first- and second-
order moments is possible if the effect operator is Gaussian.
The duality between Eq. (130) and the nonlinear SME, means
that it does map Gaussian effect operators to Gaussian effect
operators [98]. Additionally, given that the adjoint equation
is backward in time, the appropriate final condition for Ŵ
is the identity operator, 1̂, as no measurement data has yet
been used in a mathematical sense. The identity operator can
be viewed as a Gaussian operator of infinite variance, mean-
ing that the evolution induced by Eq. (130) can be tracked
simply by following the mean, x = Tr[x̂Ŵ ], and variance,
V i j = 1

2 Tr[(x̂ix̂ j + x̂ j x̂i )Ŵ ] − Tr[x̂iŴ ]Tr[x̂ jŴ ], of Ŵ .
Using Eq. (130), it is straightforward to find dynamical

equations for x and V :

dx ≡ x(t − dt ) − x(t )

= −Axdt + (2V BT + ST)dw, (131)

dV
dt

≡ V (t − dt ) − V (t )

dt

= −AV − V AT + E − (2V BT + ST)(2V BT + ST)T,

(132)

for matrices A = �(G + Im{C†C}), B = Re{M†C}, S =
Im{M†C}�T and E = �Re{C†C}�T. Equations (131) and
(132) once again represent a generalization of Ref. [98] to
account for arbitrary dyne unravelings. Specifically, a diag-
onal matrix of detector efficiencies has been replaced by the
matrix M, the allowable form of which is dictated by Eq. (9).
This generalization also appears in Ref. [41], albeit using the
U representation [88] of diffusive monitorings. The U repre-

sentation is alternative but equivalent to the M representation
that is used in this paper [see discussion around Eq. (9)].

Given that we wish to assign a value of infinity to the vari-
ance as a starting point for the backward-in-time integration, it
is worth noting that this will lead to infinite kicks to the mean.
To perform the backward integration accurately [31,41] it is,
therefore, necessary to introduce a new variable, z = �x for
� = V −1. Both z and � have a starting value of zero [103].
The backward-in-time equation for z is

dz = [A + 2STB − (E − STS)�]Tzdt + (2BT + �ST)ydt .

(133)

For simplicity, it has been written in terms of ydt rather than
dw. In Sec. VII, Eq. (133) will be used to solve the adjoint
equation when investigating a single-mode example.

Equations (131) and (132) [or more conveniently
Eq. (133)] are Kalman filter equations and are amenable to an-
alytic solution, provided sufficiently small system dimension
or other simplifying features. It is clear that the derivation here
is much simpler than that which we used to obtain Eq. (124).
Consequently, we now wish to discuss whether we have ar-
rived at exactly the same object (that is, the POVM for the
compiled measurement) and, if not, whether it is of the same
utility.

First, to reiterate, it lacks the scalar factor that depends on
the measurement record in Eq. (124). This could be retrieved,
using the same procedure as Sec. V A to obtain the complete
POVM. Second, although the adjoint equation is dual to the
linear SME, such that it contains all the information of the
linear SME, some of this generality is lost when the final
condition of the identity operator is used. That is, even if the
scalar stochastic factor dependent upon d is regained, it is
not, in general, possible to infer the system state. This is due
to there not being a one-to-one correspondence between the
POVM and the final system state. In contrast to the identity
being used as the final condition, the reader is reminded that
when we solved the linear SME, nothing was assumed about
the initial state.

In summary, finding the POVM via a phase-space repre-
sentation of the adjoint equation provides a simple way to
obtain a great deal of information but it does not complete
the state-inclusive analysis of the compiled measurement.

VI. A BLACK BOX APPROACH TO SOLVING
THE SME AND FINDING THE POVM

In this section, we provide the reader with a minimalistic
description for finding both the SME solution and the POVM,
applicable to a compiled measurement up to a time t . In
prior sections, the methodology was first sketched and then
carried out in detail to provide a pedagogic pathway. Here, our
purpose is to summarize a black-box-type recipe for arriving
at the end result. For example, it is desired that a SME solution
could be obtained by the practitioner using straightforward
algebraic methods, without knowledge (or at least very little
knowledge) of the thermo-entangled state representation or
Lie groups.

To define our recipe, we need to clearly state what the
input and output from the black box will be, as there is
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some flexibility to this. First, let us consider the description
of the system. The system and dynamics are specified by
the nonlinear SME in Eq. (1). To complete this description,
the Hamiltonian, H , Lindblad operators, ĉ, and measure-
ment setting M must be provided. The matrix G of Eq. (15)
parameterizes the Hamiltonian, the matrix C of Eq. (16) pa-
rameterizes the Lindblad terms, while the matrix M itself
defines the measurement setting. It is common for a SME to
be given in terms of {â, â

†} instead of x̂. That is,

Ĥ = 1
2 (â

†

1, â1, . . . , â
†

N , âN )F(â1, â
†

1, . . . , âN , â
†

N )T, (134)

for Hermitian F, and

ĉ = Z(â1, â
†

1, . . . , âN , â
†

N )T. (135)

The conversion between the two representations can be simply
performed:

G = XFX
†
, (136)

C = ZX
†
, (137)

for

X =
N⊕

n=1

1√
2

[ 1 1
−i i

]
. (138)

In summary, the first step in obtaining an SME solution and
POVM is to write the matrices {G,C, M}, using Eqs. (136)
and (137) if necessary.

Having defined the system input, we now define the prod-
uct of our recipe. This is a solution to the linear SME,
specified either (depending on preference) in the enlarged
Hilbert space, H ⊗ H̃, appropriate for the vectorized solution,

|ρ̄(t )〉 = V̂Y (t )|ρ(0)〉, (139)

or the original Hilbert space, H, appropriate for the density
matrix solution

ρ̄(t ) = VY (t )ρ(0), (140)

with Y (t ) representing the set of all measurement results and
ρ̄(t ) being an unnormalized state. Obviously, the practitioner
not interested in the thermo-entangled state representation
would use the density matrix solution. Both the evolution
operator, V̂Y (t ), defined in Eq. (94) and evolution superoper-
ator, VY (t ), defined in Eq. (98), are parameterized by the N×N
matrices {R′, R̆′, L′, L̆′, D, D̆} and length N stochastic vectors
{r, l}. Additionally, the POVM describing the composite mea-
surement is found with our methods. It was found, in Sec. V,
that the probability of obtaining a sequence of measurement
results was only dependent upon the stochastic integral d. The
effect operator for the measurement result d, Ŵd, was defined
in Eq. (124). It is parameterized by {L′′, L̆′′, d, 〈α〉d}, where
〈α〉d is defined implicitly, in Eq. (120), through the other
parameters.

TABLE I. Matrix representation of bosonic operators.

Operator Matrix representationa

b̂
†
μb̂ν + 1

2 δμ,ν Mμν − M−ν−μ

b̂
†
μb̂

†
ν Mμ−ν + Mν−μ

b̂
†
μb̂

†
μ 2Mμ−μ

b̂μb̂ν −M−μν − M−νμ

b̂μb̂μ −2M−μμ

b̂
†
μ Mμ0 − M−0−μ

b̂μ −M−μ0 − M−0μ

1̂ −2M−00

aThe matrices, M (being completely unrelated to the matrix de-
scribing the measurement setting of the SME), are of dimension
(4N + 2)×(4N + 2) and have their rows and columns labeled from
0 to 2N and then from −2N to −0. Mμν denotes a matrix that has
only a single nonzero component, being equal to one, at the μth row
and νth column. Note that a sign correction to the table contained in
Ref. [60] has been made in the second row.

Consequently, our recipe for finding {|ρ̄(t )〉, ρ̄(t ),Ŵd}
must describe how to obtain the parameters

{R′, R̆′, L′, L̆′, D, D̆, r, l, L′′, L̆′′, d} (141)

from the inputs {G,C, M} (or {F, Z, M}). Rather than give a
series of extremely lengthy formulas for the solution parame-
ters in terms of {G,C, M}, we break the calculation into a few
steps.

Given inputs in the appropriate form, {G,C, M}, the first
step is to calculate the {R, D, L, dl, dr} parameters. Explicit
formulas are given for these parameters in Appendix C.

Next, the now-known matrices {R, D, L} are used to calcu-
late the finite dimensional matrix representation of eQ̂t . This
is done by substituting {R, D, L} into Eq. (77) and then using

the representation of {b̂†
, b̂} provided in Table I. The symbolic

matrix exponentiation will need to be carried out by software,
as it results in typically lengthy expressions for the block N
matrices of the LHS of Eq. (B8). The expression for eQ̂t can
then be equated with a desired disentanglement [for example,
Eq. (82)] with the parameterized disentanglement also put into
the finite dimensional representation in the same manner. The
parameters of the disentanglement, {R′, D, L′} are found by
solving these algebraic equations, with the obtained expres-
sions shown in Eqs. (B10)–(B12). From {R′, D, L′}, we obtain
{R′, R̆′, L′, L̆′, D, D̆} using the block form of Eqs. (87)–(89).

We now wish to calculate the linear parameters {r, l}. To
do so, the parameters {dl ′, dr′} must first be found from
Eq. (B18) and then integrated to give {l ′, r′}. Using the N
matrices and {l ′, r′} in Eqs. (B30) and (B31) gives {r, l}. We
have now found all the parameters that define the solution to
the SME. They can be substituted into, for example, Eq. (94)
to determine the evolution operator.

To find the POVM, an expression for L′′ is required. Af-
ter the transformation of Eq. (B50) is made to Eq. (B12),
L′′ is found directly in terms of already known parame-
ters. Upon using the block form of Eq. (87), one obtains
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{L′′, L̆′′}. The next POVM parameter, d, is calculated from
Eq. (112). Finally, we solve Eq. (120) for 〈α〉d. Substituting
{L′′, L̆′′, d, 〈α〉d} into Eq. (124) gives the POVM.

VII. SINGLE-MODE EXAMPLES

In the case of a single mode, much of the notational
complexity of our methods is removed, with the solution
parameters, of Eq. (141), being scalars. This allows a height-
ened focus on important conceptual aspects. Additionally,
many important examples are single modes. For these reasons,
single-mode examples will be used to illustrate the tech-
niques of prior sections. The reader is also invited to peruse
Appendix B 4, where the single-mode case is further dis-
cussed.

A. Homodyne detection in the presence of a thermal input bath

A simple but important example is a single mode subjected
to homodyne detection of the x quadrature, with an input bath
in a thermal state and no Hamiltonian evolution. We use the
linear SME for this system given in Ref. [4],

d ρ̄(t ) = γ (K + 1)D[â]ρ̄(t )dt + γ KD[â†]ρ̄(t )dt

+ y(t )dtH̄
[ √

γ η√
2K + 1

(
(K + 1)â − Kâ†

)]
ρ(t ),

(142)

where η is the detector efficiency, γ is the system decay rate,
and K describes the temperature of the thermal bath. This can
be put in a form consistent with the M representation given
in Eq. (26) via a two-component column vector of Lindblad
operators

ĉ = Cx̂ = Z
[

â

â†

]
, (143)

with Z being the 2×2 matrix

Z =
√

γ

2K + 1

[
K + 1 −K√

K (K + 1)
√

K (K + 1)

]
. (144)

From Z, it is straightforward to determine C = ZX
†
, via

Eq. (138). The form of the 2×4 M matrix also follows from
Eq. (142). We find

M =
[√

η 0 0 0

0 0 0 0

]
. (145)

Note that the measurement current of Eq. (26) is given by
yT(t ) = (y(t ), 0, 0, 0). Also, G = 0, as there is no Hamilto-
nian.

Having defined the input parameters {G,C, M}, we have
the choice of utilizing a black box approach, in which we
are only interested in obtaining the solution parameters of
Eq. (141), or we can follow the steps outlined in Sec. III to
build understanding of the solution method. In this subsection,
we take the time to explore some of the conceptual steps
involved in solving the SME in the context of our simple
example.

The first step is to vectorize the linear SME. This is done
by right multiplying d ρ̄(t ) by |0〉 and then using the usual

identities â|0〉 = ã†|0〉, â†|0〉 = ã|0〉. This gives

d|ρ̄(t )〉 =
(

γ (K + 1)dtD̂[â] + γ KdtD̂[â
†
]

+ y(t )dt

√
γ η

2K + 1
Ŝ[(K + 1)â − Kâ†]

)
ρ(t ),

(146)

where the operator functions D̂ and Ŝ are defined in Eqs. (43)
and (44).

The next step, which we call factorization, is to form
the exponential evolution operator, V̂y(t ), for the infinitesimal
time slice. This gives the updated density state vector as per
|ρ̄(t + dt )〉 = V̂y(t )|ρ̄(t )〉. We find

V̂y(t ) = exp[Q̂dt + dL̂(t )], (147)

with

Q̂ = γ (K + 1)D̂[â] + γ KD̂[â
†
]

− γ η

2(2K + 1)
Ŝ[(K + 1)â − Kâ†]2, (148)

dL̂(t ) = y(t )dt

√
γ η

2K + 1
Ŝ[(K + 1)â − Kâ†]. (149)

By equating the above expressions for Q̂ and dL̂(t )
with Eqs. (78) and (79), we can determine the matrices
{R, D, L, dl, dr}, such that we can express V̂y(t ) in a standard-
ized manner. We find

R = − γ ηK2

2(2K + 1)
, (150)

R̆ = γ K

2(2K + 1)
(2K + 1 − ηK ), (151)

L = −γ η(K + 1)2

2(2K + 1)
, (152)

L̆ = γ (K + 1)

2(2K + 1)
(2K + 1 − η(K + 1)), (153)

D = γ

2(2K + 1)

(
2ηK (K + 1) − (2K + 1)2), (154)

D̆ = γ ηK (K + 1)

2K + 1
, (155)

dr = −y(t )dtK

√
γ η

2K + 1
, (156)

dl = y(t )dt (K + 1)

√
γ η

2K + 1
, (157)

which form {R, D, L, dl, dr} via Eqs. (87)–(91). The parame-
ters {R, D, L} are sufficient to form eQ̂t .

To compose the infinite string of infinitesimal evolution op-
erators into a finite evolution operator, as per Eqs. (52)–(54),
all the quadratic exponential operators must be moved through
the linear exponential terms, as described in Sec. IV D 3.
To find a disentanglement of eQ̂t and the parameters {r′, l′}
that form eL̂′(t ), the finite-dimensional representation of eQ̂t is
required. Its form is specified by Eq. (B37), into which the
expressions for {R, R̆, L, L̆, D, D̆} from Eqs. (150)–(155) can
be substituted. Calculation of the exponential of the symbolic
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matrix is best done using software. Using the notation of the
RHS of Eq. (B37), we obtain

q = e−γ t/2 1 − K (η(K + 1) − 2K − 3)

2K + 1

+ eγ t/2 K (η + (η − 2)K − 1)

2K + 1
, (158)

s = 2ηK (K + 1) sinh (γ t/2)

2K + 1
, (159)

u = 2K (1 − (η − 2)K )

2K + 1
sinh

(
γ t

2

)
, (160)

v = − 2ηK2

2K + 1
sinh(

γ t

2
), (161)

w = 2(K + 1)(η + (η − 2)K − 1)

2K + 1
sinh

(
γ t

2

)
, (162)

x = 2η(K + 1)2

2K + 1
sinh

(
γ τ

2

)
, (163)

y = e−γ t/2 K (η + (η − 2)K − 1)

2K + 1

− eγ t/2 (K + 1)((η − 2)K − 1)

2K + 1
, (164)

z = −2ηK (K + 1)

2K + 1
sinh

(
γ t

2

)
. (165)

These parameters are the single-mode version of the N matri-
ces found in Appendix (B8). Noting that the representation
of Q̂ is completely real, we can calculate the disentangle-
ment parameters by substituting {q, s, u, v,w, x, y, z} into
Eqs. (B41)–(B46). Given their straightforward calculation, we
leave this task to the reader. Similarly, the parameters {r′, l′}
are obtained by integrating Eqs. (B47) and (B48). We note that
in the case of a zero-temperature (K = 0) thermal bath r′ = 0
and knowledge of the stochastic integral l′ that determines the
POVM effect through d is sufficient to specify the system state
at the end of the measurement period [see Eq. (79)].

Of interest are the POVM parameters {L′′, L̆′′, d}. They are
calculated from Eqs. (B45), (B46), and (B51), together with
the replacements of Eq. (B50). We find that

L̆′′ = L′′ = − (1 − e−γ t )η

2 + 4K[1 − η(1 − e−γ t )]
, (166)

d =
√

γ η(1 + 2K )

1 + 2K (1 − η(1 − e−γ t ))

∫ t

0
e− γ τ

2 y(τ )dτ, (167)

which are to be substituted into Eq. (B52) to obtain the POVM
element. We note that Ref. [104] provides a general dyne
POVM for the instantaneous measurement result, but here we
form the composite measurement up to a finite time t .

The POVM defined by Eqs. (166) and (167) can be com-
pared with the literature [5] in the limit that an initial pure
state is kept pure; that is, perfect efficiency detection and
a zero-temperature bath. In this scenario, a SSE rather than
SME is sufficient. For η = 1 and K = 0, the POVM simplifies

to

Ŵpure = exp

[√
γ

∫ t

0
e− 1

2 γ τ y(τ )dτ â† − 1

2
(1 − e−γ t )â†2

]
× exp[−γ â†ât]

× exp

[
−1

2
(1 − e−γ t )â2 + √

γ

∫ t

0
e− 1

2 γ τ y(τ )dτ â

]
,

(168)

which agrees with the result contained in Ref. [5].
We began this section by assuming that the x quadrature

was being measured, but it is easy to retrieve an arbitrary
quadrature from our results. Initially, a canonical transforma-
tion such as

â → âei� and â† → â†e−i�, (169)

together with the implied tilde conjugate transformation
[based on Eq. (33)], could have been made to absorb the
quadrature phase. This preserves the commutation relations
of â, â†, ã, ã

†
. As the disentanglement and reordering of the

group elements is a function only of the commutation re-
lations, this is permissible and is undone at the end of the
calculation. Thus, with the replacement â → âei� and â† →
â†e−i� in our POVM results (or SME solutions), measurement
of any quadrature can be analyzed.

1. Adjoint equation

The POVM can also be investigated via the adjoint equa-
tion, as per Sec. V B. We now take this approach for the case
of homodyne detection in the presence of a thermal input bath
[that is, the linear SME specified in Eq. (142)]. The matrices
A, B, S, and E that are defined below Eq. (132) follow from
knowledge of C, M, G. Using these matrices in Eqs. (131) and
(132) provides the backward-in-time equations of motion for
the phase-space representation of the effect operator:[dx

d p

]
= γ

2

[x
p

]
dτ

+
√

γ η

2(1 + 2K )

[
2Vxx + 1 + 2K

2Vpx

]
dw(τ ), (170)[

V̇xx V̇xp

V̇px V̇pp

]
= γ (1 + 2K )

2

[1 − η 0
0 1

]
+ γ

[
(1 − 2η)Vxx Vxp − ηVpx

(1 − η)Vpx Vpp

]
− 2γ

1 + 2K

[
ηV 2

xx ηVpxVxx

ηVpxVxx ηV 2
px

]
. (171)

For clarity, we will use a backward-in-time integration vari-
able τ , and a measurement completion time tm (so τ � tm).
After the backward-in-time integration has been performed,
we can set τ = 0 and tm = t to obtain the effect operator for
a measurement compiled over the same time frame [0, t] as
Eq. (167).

From Eq. (170), it can be seen that the equation for V̇xx is
decoupled. It can be solved using an infinite variance Gaus-
sian, having no x-p correlation, as the final condition (which
is a suitable approximation to the identity matrix for the effect
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operator). We obtain

Vxx = 1

2
(1 + 2K )

(
1

η(1 − e−γ (tm−τ ) )
− 1

)
. (172)

In contrast, Vpp does not become finite when it is integrated
backward in time, which is consistent with homodyne detec-
tion of the x quadrature, providing no information about the
p quadrature. By inspection, we also observe that the matrix
Riccati equation will not evolve the values of {Vxp,Vpx} away
from zero.

The solution of Eq. (169) for x is made problematic due
to the divergence of Vxx at τ = tm. Consequently, we use
Eq. (133) and instead work with wx = xv−1

xx . We do not need
to consider wp as it is decoupled from wx, given our final
condition together with Eq. (170). Using Eq. (133),

dwx = −γ

2
[(1 − 2η) + xx(1 − η)(1 + 2K )]wxdτ

+
√

2γ η

1 + 2K

(
1 + xx

2
(1 + 2K )

)
ydτ, (173)

where xx = V −1
xx and is determined by Eq. (171). After solv-

ing Eq. (172), using wx(tm) = 0 [103], we obtain

wx =
√

2γ η

1 + 2K

eγ τ/2

1 − η + ηe−γ (tm−τ )

∫ tm

τ

e−γ τ ′/2y(τ ′)dτ ′,

(174)

which can be verified by inspection. Together with Eq. (171),
this determines the x-quadrature mean of the POVM via x =
vxxwx. Before providing the expression for x, we extend the
integration back to τ = 0 and set the measurement turn-off
time to tm = t , as appropriate for considering the compiled
measurement from [0, t]. This leads to

x =
√

γ (1 + 2K )

2η

1

1 − e−γ t

∫ t

0
e−γ τ ′/2y(τ ′)dτ ′. (175)

The reader is invited to observe how Eq. (172) dramatically
simplifies for η → 1. It is therefore perhaps surprising that the
only manifestation of nonperfect efficiency detection in the
expression for x is in the scalar coefficient.

We can verify the accuracy of Eq. (174) by comparison
with the POVM obtained via the thermo-entangled state rep-
resentation. That is, Eq. (124) is used together with the POVM
parameters of Eq. (167). To perform the comparison we note
that Ŵd of Eq. (124) is most easily converted to a Q-phase
space function while the adjoint equation method here gives
the first and second moments of the Wigner function (result-
ing from a symmetric ordering of operators). The variances
of these distributions are related by the Q-function variance
being half a unit of vacuum noise larger than that of the
Wigner function. After this adjustment, the variances using
the two methods agree. We also find the mean values agree,
with 2

√
2x = −d/L′′.

This approach of using the adjoint equation reproduces the
mean and variance but does not directly reproduce the non-
operator stochastic dependence of the POVM. This is because
a normalized version of the adjoint equation, with a specific
final condition, is being treated. However, the nonoperator

dependence could be obtained via the methods of Sec. V A,
if desired.

B. Optomechanical position measurement with squeezing

In a recent work [55], two of the current authors ana-
lyzed optomechanical position measurement with a primary
focus on quantum state tomography of the initial state of the
mechanical oscillator. The authors worked, for example, in
the bad-cavity regime at both zero and blue detuning [105],
in which it is possible to obtain a SME for the mechanics
alone. By incorporating squeezing (parametric amplification)
alongside the measurement, it was found that effectively a
homodyne limited measurement can be performed on the
mechanical oscillator, despite operating in the weak measure-
ment regime. This is in contrast to the heterodyne limited
measurement performed in the absence of squeezing, as the
weak measurement does not allow localization of the me-
chanical position on the timescale of its period of motion.
The purpose of the current subsection is to use the theory
developed in this paper to obtain expressions describing the
quality of the optomechanical tomographic measurement in
the zero-detuned limit. To do so, we frame the problem in
terms of the generic solutions we have provided in this paper
and find the POVM. The reader is referred to Ref. [105] for
an optomechanical review, and to Ref. [55] for more specific
details relating to the system described here.

We will examine the optomechanical system in the zero-
detuned regime, which refers to the local oscillator being
on resonance with the cavity that it illuminates. The cavity
is then coupled via radiation pressure with the mechanical
oscillator (see Fig. 1(a) in [55]). We consider a measurement
strength μ, a thermal bath with coupling γ , thermal phonon
occupation Kth, and parametric amplification of strength χ

inducing squeezing in the quadrature defined by the angle θ .
The system Hamiltonian is therefore

Ĥ = iχ

4
(e−iθ â2 − eiθ â†2), (176)

with θ = 0 defining squeezing in the x quadrature. The ratio-
nale behind the introduction of squeezing is that it makes the
amplified (antisqueezed) system quadrature more visible. In
terms of tomography, measurement in the presence of squeez-
ing gives a better estimate of the antisqueezed quadrature of
the initial state. Our analysis will indicate that by varying
the squeezing angle over multiple trials and using standard
tomographic data analysis techniques [106], the full system
state can be determined in a more efficient manner than if
squeezing was absent.

The linear SME for the mechanical oscillator, after the
optical cavity has been adiabatically eliminated, is then
[107,108]

d ρ̄(t ) = χ

4
[e−iθ â2 − eiθ â†2, ρ̄(t )]dt

+ [γ (K + 1) + μ′]D[â]ρ̄(t )dt

+ (γ K + μ′)D[â†]ρ̄(t )dt +
√

μ′yx(t )dtH̄[x̂]ρ̄(t )

+
√

μ′yp(t )dtH̄[ŷ]ρ̄(t ). (177)
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Here μ′ = μη represents an effective measurement strength,
K = Kth + μ(1 − η)/γ is an effective bath temperature, x̂ =
(â + â†)/

√
2, p̂ = i(â† − â)/

√
2 are quadrature operators,

and {yx, yp} are real-valued stochastic quadrature measure-
ment results. The parameters {μ′, K} are introduced to
simplify resultant expressions.

Before proceeding with solving the SME, we perform the
canonical transformation of Eq. (168) with â′ = e−θ/2â. This
transformation will lead to a purely real representation of
Q̂ after the linear SME has been vectorized and factorized.
The transformed linear SME is (we suppress bosonic operator
primes for simplicity of display) is

d ρ̄(t ) = χ

4
[â2 − â†2, ρ̄(t )]dt + [γ (K + 1) + μ′]D[â]ρ̄(t )dt

+ (γ K + μ′)D[â†]ρ̄(t )dt +
√

μ′yx(t )dtH̄[x̂θ ]ρ̄(t )

+
√

μ′yp(t )dtH̄[ŷθ ]ρ̄(t ), (178)

with x̂θ = âeiθ/2 + â
†
e−iθ/2 and ŷθ = −iâeiθ/2 + iâ

†
e−iθ/2.

To place Eq. (177) in the M representation, we specify
the following three-component column vector of Lindblad
operators:

ĉ = Cx̂ =

⎡⎢⎣
√

γ K + μ′ 0
0

√
γ K + μ′√

γ

2 i
√

γ

2

⎤⎥⎦x̂

=
√

γ K + μ′

⎡⎢⎣ x̂
p̂√
γ

γ K+μ′ â

⎤⎥⎦. (179)

We associate with each of the Lindblads a potentially complex
valued measurement current. In our case, the current associ-
ated with the â Lindblad is not measured, and those associated
with x̂ and p̂ are both real. The vector measurement current
can, therefore, be written as y(t )T = (yx(t ), yp(t ), 0, 0, 0, 0).
The measurement setting, M, associated with the currents is
given by√

μ′

γ K + μ′

⎡⎣ cos(θ/2) sin(θ/2) 0 0 0 0
− sin(θ/2) cos(θ/2) 0 0 0 0

0 0 0 0 0 0

⎤⎦.

(180)

The Hamiltonian of Eq. (175) is in the form of Eq. (134), so
we convert using Eq. (136) to obtain

G = −χ

2

[0 1
1 0

]
. (181)

Given the matrices {C, M, G}, it is straightforward to de-
termine the parametrization of Q̂ and dL̂(t ), either by using
the formulas of Appendix C or by direct vectorization and
factorization. We obtain

L = χ/4, (182)

L̆ = γ (K + 1)/2, (183)

R = −χ/4, (184)

R̆ = γ K/2, (185)

D = −γ (2K + 1)/2 − 2μ′, (186)

D̆ = 0, (187)

dl =
√

μ′y∗dteiθ/2, (188)

dr =
√

μ′ydte−iθ/2, (189)

where we have formed the complex measurement current,
ydt = (yx + iyy)dt/

√
2, for convenience. Note that the pa-

rameters describing Q̂ are real.
To gauge the effectiveness of squeezing, as relates to to-

mography, we use an initial coherent state as a proxy that
allows analytic results to be obtained. That is, we wish to
determine the probability distribution, ℘(α|d) of the initial
coherent amplitude, α, given a measurement result d. From
Eq. (116), we know that this can be determined via the POVM.

To obtain the POVM, the expressions of Eqs. (181)–(186)
are used in the matrix that is exponentiated in Eq. (B37),
with the result being the matrix elements on the RHS of that
equation. As the representation of Q̂ is completely real, we
can calculate the disentanglement parameters by substituting
{q, s, u, v,w, x, y, z} into Eqs. (B41)–(B46). Similarly, the pa-
rameters {r′, l′} are obtained from integrating Eqs. (B47) and
(B48). The POVM then follows from Eqs. (B45), (B46), and
(B51), together with the replacements of Eq. (B50).

As the POVM is of direct utility in Ref. [55], we provide
the POVM parameters

L′′ = 2μ′
(

1

γ + 4μ′ − χ + �− coth [�−t/2]
− 1

γ + 4μ′ + χ + �+ coth [�+t/2]

)
, (190)

L̆′′ = 2μ′
(

1

γ + 4μ′ − χ + �− coth [�−t/2]
+ 1

γ + 4μ′ + χ + �+ coth [�+t/2]

)
, (191)

d =
√

μ′(γ − �+ + 4μ′ − χ + 4γ K )

2γ K − χ

∫ t

0
e−�+τ/2yx(τ )dτ

− i

√
μ′(γ − �− + 4μ′ + χ + 4γ K )

2γ K + χ

∫ t

0
e−�−τ/2yp(τ )dτ, (192)
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with rates �± =
√

(γ ± χ )2 + 8μ′γ (1 + 2K ) + 16μ′2. For
simplicity, d is provided in the large t limit, which represents
a measurement carried out until the final state is uncorrelated
with the initial state.

From the POVM, the variance in the retrodictive esti-
mates of the x and p quadratures for an initial coherent state,
which we denote as σ 2

x,p, can be found. Bearing in mind that
{L′′, L̆′′} ∈ R, it follows from Eq. (117) that

σ 2
x = 1

2(L̆′′ − L′′)
= 1

2
+ γ + χ + �+ coth(�+T/2)

8μ′ ,

σ 2
p = 1

2(L̆′′ + L′′)
= 1

2
+ γ − χ + �− coth(�−T/2)

8μ′ ,

(193)

which are the results used extensively in Ref. [55]. The vari-
ance σ 2

p is strictly smaller than σ 2
x , so the squeezing is having

the anticipated effect of making the antisqueezed quadrature
more visible.

VIII. DISCUSSION AND CONCLUSION

In this paper, we have shown how the evolution of con-
tinuously monitored quantum systems that possess linear
HP dynamics can be solved (provided they possess a time-
independent Hamiltonian and measurement setting, M). The
treatment of mixed quantum states represents a nontrivial
generalization of the previously existing literature [5,7,59],
which was limited to solving the SSE. As a corollary to
obtaining the SME solution, the deterministic ME (for linear
quantum systems) is also solved, using a non-phase-space
method. Our method of solution was to use the thermo-
entangled state representation together with techniques from
Lie algebra. The obtained SME solution is in the form of an
evolution superoperator that is dependent upon 2N complex-
valued measurement-dependent stochastic integrals (N being
the number of physical modes).

There are a number of uses for such an analytic solu-
tion, some of which we now detail. First, one can calculate
the possible states and their probability distribution result-
ing from combined Hamiltonian and measurement dynamics.
Likewise, a simple method to numerically simulate Lindbla-
dian evolution is obtained by sampling the distribution, in
contrast to integrating the SME in the infinite-dimensional
Hilbert space (where some form of truncation is required).
This should facilitate applications in quantum control, in par-
ticular state-based feedback control, as well as dissipative
quantum state engineering. Finally, the statistics of the com-
piled measurement record are captured in a POVM, which
is directly utilized in quantum state tomography, by which
the initial state is determined via the measurement record.
Given that there has been much experimental progress toward
manipulating quantum systems, verification of their states is
of paramount importance. One of the major techniques to
achieve this is homodyne tomography, so our POVM would
have direct application. It is worth noting that a SME POVM
has been investigated previously in the literature, using the
adjoint equation approach; we have shown that the two ap-
proaches agree for a simple case, as expected.

The reader may be curious as to why the multimode
SME was chosen as the starting point given that its analytic
tractability is limited in concert with the solubility of the
relevant higher order polynomials (which are found to be of
degree 2N for N physical modes). Apart from the symmetries
of particular higher degree systems leaving the possibility of
solution, a reason is that Eq. (53) may provide a very effi-
cient launching pad for numeric investigation of multimode
SME bosonic systems. In Ref. [60], the finite-dimensional
representation of multimode bosonic operators is given and
the benefits of numerical integration within the finite repre-
sentation of the group are detailed. The context in that work
is unitary evolution but there is no barrier preventing the ex-
tension to stochastic nonunitary dynamics. The alternative of
using a Fock space representation is not feasible since the size
of the space grows exponentially with the number of modes,
and even then an approximation must be made limiting the
evolution to a finite number of basis states (in, say, the energy
eigenbasis). By contrast, the proposed algebraic approach
avoids any energy cutoff and utilizes matrices that grow in size
only quadratically in N , specifically as (4N + 2)×(4N + 2).
In this context, it is worth noting the work by Galitski [64]
which explores Lie methods in multimode systems and em-
phasizes that a trajectory within a Lie algebra is in some ways
more natural than a Hilbert space representation.

Before considering other classes of systems that might be
analogously solved, it is important to reiterate why the meth-
ods we used were successful in solving the SME for linear
quantum systems. The thermo-entangled state representation
for fermions has been developed and is only a trivial extension
to the bosonic case [109], so this is not the critical ingredient
for success. Similarly, any nonlinear SME can be cast into
a linear SME form, so the specific system does not impact
upon this [4]. In fact, the only step in our solution method that
presents a potential stumbling block is that of composition, by
which exponential operators are reordered and reformed. We
now discuss this step in more detail.

For the case of linear quantum systems, the process of com-
position is facilitated by the fact that the operators contained
in the deterministic and stochastic pieces of the infinitesimal
evolution operator [see Eq. (48)] coincide with the subal-
gebras q (quadratic bosonic operators) and l (linear bosonic
operators), respectively. Because l is an ideal of the algebra
q ∪ l (so [l, q] ∈ l), we were able to reorder the linear and
quadratic exponential operators such that those that are strictly
quadratic remained deterministic. Additionally, the individual
closure of both q and l allowed the separation of the linear and
quadratic evolution pieces to be maintained when the operator
disentanglement (or re-entanglement) was performed. From
these comments, one sees that it is important to consider
the structure of the evolution operator imposed by the SME
dynamics as well as the commutation relations of the full
algebra. For the systems of this paper, this could be restated
as q and l being of individual relevance in addition to it being
important to study the algebra q ∪ l ⊂ sp(4N + 2).

As we have seen, the exponential evolution operator for lin-
ear quantum systems contains terms that are at most quadratic
in the annihilation and creation bosonic mode operators; con-
sequently, the algebra that they form closes. In contrast, cubic
operators (and beyond) give an algebra that expands under
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commutation, ultimately becoming infinite. However, it was
only for N � 2 that we were able to perform composition.
Consequently, operators closing under commutation is not
sufficient for composition to be possible in the way we have
described.

An obvious consideration for future work is whether the
same methods could be applied to other classes of single-
mode SMEs, such as for a spin- 1

2 particle. For example, the
Pauli operators provide an obvious representation to work
in. One complication is that the time-dependent evolutions
(e.g. measurement terms) are now present in a more com-
plex group, SU (2), than the Heisenberg-Weyl algebra. It is
interesting to note that there exist some analytic results in the
literature for qubits subjected to heterodyne detection [13,27].
Whether these bear any relation to our results could be inves-
tigated.

Another generalization that could be considered is photo
detection instead of dyne detection. With photo detection, the
evolution between detection events is deterministic so can be
solved similarly to a standard ME. For example, in Ref. [79],
the waiting time distribution is calculated utilizing a thermo-
entangled state approach for a particular system. In Ref. [85],
general deterministic evolution of a Lindblad form is treated,
but the evolution between detections is not of this type. A
final, presumably very restricted, generalization to consider
would be the possibility of time-dependent parameters for
the Hamiltonian or measurement setting. The latter would
encompass adaptive measurement schemes, which are of great
interest [110,111].

It has been noted that the adjoint equation to the SME
provides an alternative path for finding the POVM. It would be
of interest to perform a detailed comparison for higher dimen-
sional systems of the difficulty of solving the Kalman filter
as compared with using the finite-dimensional representation
to find the POVM parameters. This could be both from an
analytic and numeric perspective. Numerically, the Kalman
filter has efficient solution algorithms [112], which is perhaps
not surprising given that it also reduces the system to a finite
number of variables.

When using the adjoint equation, evolution is attributed to
the system operators rather than the system state, in analogy
to the Heisenberg and Schrödinger pictures. As a final consid-
eration for future work, we query whether the class of soluble
SMEs could be expanded (beyond quadratic Hamiltonian with
linear measurements) by moving to an interaction picture, for
which the evolution is split between operators and the state.
The purpose would be to isolate more simple Lie groups
that could be independently solved, before recombining the
evolution to obtain the system solution.
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APPENDIX A: OSTENSIBLE DISTRIBUTION

To explain the origin of the ostensible distribution,
℘ost (Y (t )), let us first introduce some concepts from quantum
measurement. A quantum operation, Oy(t ), is defined as con-
ditioning an a priori system state, ρ(t ), on a measurement
result y(t ), to give an a posteriori system state, ρc(t + dt ).
The subscript c has been used to indicate conditioning upon a
measurement result, consistent with the notation of Eq. (1).
The superoperator, Oy(t ), is a completely positive convex
linear map that is trace preserving or trace decreasing [4].
Under these constraints, the operation can represent a physical
process. To make contact with with the context of our work,
we have considered the measurement, y(t ), resulting from a
dyne measurement in an infinitesimal time slice, dt . However,
a quantum operation is a general concept applicable to an ar-
bitrary measurement over a possibly finite time. The operation
acts as follows:

ρc(t + dt ) = Oy(t )ρ(t ) =
∑

j

�̂y(t ), jρ(t )�̂†
y(t ), j, (A1)

for some set of Kraus operators {�̂y, j : j}, producing an
unnormalized density matrix, ρc(t + dt ), even if ρ(t ) is nor-
malized. The probability of obtaining the measurement result
y(t ) is given by

℘y(t ) = Tr[ρc(t + dt )] = Tr[Oy(t )ρ(t )], (A2)

which could be used to give a normalized state,
Oy(t )ρ(t )/Tr[Oy(t )ρ(t )], if desired.

Importantly, it is possible to formulate quantum mea-
surement theory slightly differently from that indicated by
Eq. (A1), by introducing an ostensible probability, ℘ost (y(t )),
for the result y(t ) [5]. This involves the use of a rescaled
operation Ōy(t ) = Oy(t )/℘ost (y(t )), so that the probability of
obtaining the result y(t ) becomes

℘y(t ) = Tr[ρ̄c(t + dt )]℘ost (y(t )), (A3)

where

ρ̄c(t + dt ) = Ōy(t )ρ(t ). (A4)

The bar over ρc is meant to alert the reader to the fact that the
norm of ρ̄c is not to be interpreted in the sense of Eq. (A2),
due to the introduction of ostensible statistics for y(t ). The
utility of such a formulation is that there is freedom of choice
regarding the ostensible distribution; this can be exploited so
as to make the linear equation for ρ̄c(t + dt ) as simple as
possible.

In Eq. (A4), a linear equation for an unnormalized state
has been obtained. However, for ρ̄c(t + dt ) to average to the
correct unconditioned state, ρ(t + dt ), that is determined by
unconditioned ME evolution, the result y(t ) needs to be cho-
sen according to the ostensible statistics, defined by℘ost (y(t )),
rather than its actual statistics.

Inspection of the nonlinear SME in Eq. (1) reveals that
that the nonlinear piece [contained in the H[M†ĉ]ρ(t ) term,
as seen from Eq. (3)] only affects the state normalization.
By dropping these linear terms, we can then immediately
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write a linear evolution equation for the density matrix that,
when normalized, produces the correct system state. However,
rather than continuing to work with the measurement noise,
dwT(t ), we use Eq. (4) to write the obtained linear equation
in terms of the current y(t ). Unfortunately, this spawns a
nonlinear term,

−〈M†ĉ + MTĉ‡〉dt
(
M†ĉρ̄(t ) + ρ̄(t )MTĉ‡

)
, (A5)

that would appear to do more than affect the state normal-
ization. Despite its appearance, the term in question can be
canceled by a pure rescaling of the density matrix:

ρ(t + dt ) → ρ(t + dt ) exp[dwT(t )〈M†ĉ + MTĉ‡〉]. (A6)

After this transformation, the nonlinear SME has been lin-
earized to become the SME of Eq. (26).

We have seen how to move to the particular linear SME that
we work with in our paper but this has not been a constructive
procedure in terms of obtaining ℘ost (y(t )). Rather than derive
it, it is sufficient to show that the ostensible distribution,

℘ost (y(t )) =
(

dt

2π

)L

exp

[
−1

2
dtyTy

]
, (A7)

allows reproduction of the deterministic ME and provides the
correct statistics for y(t )). The ostensible distribution for each
of the 2L components of y(t )) is equal to that of a zero-mean
Gaussian process with variance equal to 1/dt .

To show that the ME is reproduced, we need to average
the linear SME density matrix increment, d ρ̄c(t ), over the
ostensible distribution. This is particularly straightforward as
the measurement term in d ρ̄c(t ) is linearly dependent upon
the current and averages to zero. Removing the measurement
term from Eq. (26) leaves the ME, as expected.

The actual statistics for y(t )) are determined by Eq. (A3).
Assuming that the density matrix is normalized at time t , we
obtain for the prefactor

Tr[ρ̄c(t + dt )] = 1 + Tr[dρ̄c(t )], (A8)

= 1 + yT(t )dt〈M†ĉ + MTĉ‡〉 (A9)

= exp[yT(t )dt〈M†ĉ + MTĉ‡〉
− 1

2 〈M†ĉ + MTĉ‡〉T〈M†ĉ + MTĉ‡〉dt],

(A10)

where the last expression holds to order dt , as can be seen
when the Itôrule of Eq. (8) is remembered. The prefactor can
be combined with ℘ost (y(t )), as per Eq. (A3), to give

℘y(t ) =
(

dt

2π

)L

exp

[
−1

2
dt (y − 〈M†ĉ + MTĉ‡〉)T

× (y − 〈M†ĉ + MTĉ‡〉)

]
. (A11)

That is, we have shown that the linear SME of Eq. (26) to-
gether with the ostensible distribution of the form of Eq. (A7)
predicts statistics for y(t )) are those of a Gaussian process
having mean 〈M†ĉ + MTĉ‡〉 and variance 1/dt . This agrees
with the correct actual statistics given in Eqs. (7) and (8).
Thus, we have the correct ostensible distribution for our cho-
sen linear SME. The ostensible distribution for the finite time

is obtained simply as the product of the ostensible distribu-
tions for each of the J time slices,

℘ost (Y (t )) = ℘ost (y(dt ))℘ost (y(2dt )) · · · ℘ost (y(Jdt )), (A12)

with Jdt = t .

APPENDIX B: FINITE-DIMENSIONAL
REPRESENTATIONS OF LIE ALGEBRAS

In Sec. IV D 1, the algebra g, being a subalgebra of the
symplectic algebra sp(4N + 2) [60,93], was identified as be-
ing the algebra relevant to the solution of the SME for linear
quantum systems. Specifically, the evolution operator, belongs
to the Lie group, V̂Y (t ) ∈ G, that is associated with the Lie
algebra g, as per

V̂Y (t ) = eQ̂t eL̂′(t ), (B1)

= eX , (B2)

with {X, Q̂, L̂′(t )} ∈ g. It was explained that a finite-
dimensional matrix representation of g that respects the
algebra’s commutation relations could be used to perform
disentangling and reordering calculations. Results obtained
by explicit calculation in the representation can then be lifted
to the abstract level. Finite-dimensional representations have
long been understood as calculational tools in quantum optics
[60,62,113] and we refer the reader to Ref. [93] for a par-
ticularly authoritative review. In this Appendix, we describe
the operational details relating to finite dimensional repre-
sentations in the context of solving SMEs and obtaining the
associated POVMs.

From a Lie algebra perspective, the tilde bosonic operators
are on the same footing as nontilde (physical mode) operators.
As in Sec. IV D 3, we emphasize this by writing a combined,
mixed-mode annihilation operator:

b̂ = (â; ã) = (â1, . . . , âN , ã1, . . . , ãN )T . (B3)

We can then write the elements of the algebra g as{
1̂, b̂μ, b̂

†
μ, b̂μb̂ν, b̂

†
μb̂

†
ν, b̂

†
μb̂ν + 1

2δμ,ν

}
, (B4)

for μ, ν ∈ 1, . . . , 2N . The algebra of interest contains

further structure: {1̂, b̂μ, b̂
†
μ} form an ideal and {b̂†

μb̂
†
ν, b̂

†
μb̂ν +

1
2δμ,ν, b̂μb̂ν} a subalgebra. Also, note that {b̂†

μb̂ν + 1
2δμ,ν}

alone forms a closed algebra, u(2N ) [60].

1. Specifying the representation

The smallest faithful finite-dimensional representation of
sp(4N + 2) are square matrices of size (4N + 2). A smaller
representation would mean that we lose distinction between
some algebra elements and would not be faithful. In this paper,
the real valued, size (4N + 2), representation from Ref. [60] is
used. We reproduce it in Table I for the reader’s convenience.
This representation of the algebra has the property that each
element is either nilpotent (with index 2) or idempotent (when
columns and rows entirely of zeros are stripped away), thus
making the exponentiation, via a Taylor expansion, simple.

To help reduce confusion, we given an example opera-
tor matrix for N = 1. In this case, there are two creation
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operators, one each for the physical and unphysical modes.
Arbitrarily, we choose to display the representation of â†ã†,
which is given by

â†ã† =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (B5)

as can be determined from Table I.

2. Disentanglement of a general element of G

Disentanglement of an exponential operator, g ∈ G, refers
to its splitting into a product of exponential operators, as per
Eq. (57). There are, in general, many disentangled forms of
g, with the appropriate form dependent upon the calculation
being performed. We choose to illustrate disentanglement of

g, via the finite-dimensional matrix representation, for the nor-
mally ordered form. A general operator g ∈ G and its normally
ordered form are given by

g = exp[b̂
†
r + b̂

†
Rb̂

‡ + b̂
†
Db̂ + b̂

T
Lb̂ + l b̂], (B6)

= exp[b̂
†
r + b̂

†
R′b̂

‡
] exp[b̂

†
Db̂ + δ′] exp[b̂

T
L′b̂ + l b̂],

(B7)

where primes and underlines indicate that different functional
forms are anticipated.

Given a particular choice of finite-dimensional represen-
tation, g can now be calculated. We will make progress by
doing this somewhat heuristically in the multimode case and
then being more explicit in the case of a single mode (see
Appendix B 4). This is necessary as the multimode calculation
involves the solution of degree 2N polynomials and becomes
intractable for large N . The structure of g when expressed as
Eq. (B6) (LHS) and Eq. (B7) (RHS) in the chosen representa-
tion of Table I is

⎡⎢⎢⎢⎣
1 0 0 0

N10 N11 N1−1 0
N−10 N−11 N−1−1 0
N−00 N−01 N−0−1 1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 0 0 0

r − 2R′e−DT
lT eD − 4R′e−DT

L′ 2R′e−DT
J 0

−Je−DT
lT −2Je−DT

L′ Je−DT
J 0

−2�′ + rTe−DT
lT −l + 2rTe−DT

L′ −rTe−DT
J 1

⎤⎥⎥⎥⎦, (B8)

where on the LHS the row and column subscript symbols
±0 are unidimensional labels and the ±1 are 2N dimensional
[60]. That is, the N’s represent matrices, vectors, and a scalar
depending on the subscript labels (and should not be confused
with N , the number of physical modes). On the RHS, the
2N×2N matrix J has been used and is defined as

Jμν =
{

1, if μ + ν = n + 1
0, otherwise,

(B9)

which is a matrix of ones on the antidiagonal (and zeros else-
where). Note that our definitions of the matrices {R′, L′, r, l}
differ slightly from those of Refs. [60,93]. Specifically, our
matrices have elements distributed in the standard fashion, for
example, R′

i j is located in the ith row and jth column. The
RHS of Eq. (B8) follows from the Taylor expansion of each
of the three exponentials of Eq. (B7), which either terminate
at first order or are diagonal, in the chosen representation.

From Eq. (B8), the disentanglement parameters
{R′, L′, D, r, l, δ′} can easily be found in terms of the
N’s (by block matrix manipulation):

DT = −J ln N−1−1J, (B10)

2R′ = N1−1(N−1−1)−1J, (B11)

2L′ = −J(N−1−1)−1N−11, (B12)

lT = −J(N−1−1)−1N−10, (B13)

rT = −N−0−1(N−1−1)−1J. (B14)

As eQ̂t is an element of Sp(4N + 2), it has the same form
as g but with the linear pieces missing. This can be directly
seen from Eq. (77). Consequently, a disentanglement of eQ̂t

has been achieved in terms of the N block matrices. Note that
a normal ordering can be performed,

: exp[b̂
†
(eD − 12N )b̂] := exp[b̂

†
Db̂], (B15)

using an operator identity [97].

3. Reordering of exponential operators

a. edL̂(t )eQ̂t

Having disentangled arbitrary elements of the group, we
now move on to operator reordering. First, we consider the
reordering of an exponential operator having a strictly linear
exponent with that of an exponential operator having a strictly
quadratic exponent. Two operators that are sufficiently general
are eQ̂t and edL̂(t ), and we consider the reordering:

edL̂(t )eQ̂t = eQ̂t edL̂′(t ). (B16)

The ideal nature of dL̂(t ) is evidenced by the quadratic term
being unmodified when shifting through the linear term. We
can use the general form of Eq. (B8) for the finite-dimensional
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representation of the reordering:⎡⎢⎢⎢⎣
1 0 0 0
dr 1 0 0

−JdlT 0 1 0
dldr −dl −drT 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎣

1 0 0 0
0 N11 N1−1 0
0 N−11 N−1−1 0
0 0 0 1

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 0 0 0
0 N11 N1−1 0
0 N−11 N−1−1 0
0 0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1 0 0 0
dr′ 1 0 0

−Jdl ′T 0 1 0
dl ′dr′ −dl ′ −dr′T 1

⎤⎥⎥⎥⎦,

(B17)

where we have chosen to represent eQ̂t in terms of the blocks of its exponentiated form, rather than by its disentanglement
parameters [which can be calculated in terms of the former anyway, as per Eq. (B14)]. Note that the N’s are a function of t . The
primed variables can now be solved, giving

dl ′ =dlN11 + drTN−11, dr′ = NT
1−1dlT + NT

−1−1dr. (B18)

These form the increment dL̂′( jdt ) appearing in Eq. (70) as per

dL̂′(t ) = b̂
†
dr′ + dl ′b̂. (B19)

Note that there are redundant equations in Eq. (B17) from which the primed variables can be solved. This embodies the fact that
the N’s are interrelated.

b. Composition of eL̂′ (t )

Given dL̂′( jdt ) from Eq. (B19), we now wish to compose the product of linear exponentials,

eL̂′(t ) =
J∏

j=1

exp[dL̂′( jdt )], (B20)

that forms part of the evolution operator. The operators contained in dL̂′( jdt ) represent 2N copies of the Heisenberg-
Weyl algebra, {1̂, â, â†}, and the composition can be treated simply with the Zassennhaus formula, Eq. (59). To explain
further, the linear operators belong to l, meaning that commutators beyond first order are zero [see Eqs. (64) and (65)].
Note that the Zassennhaus formula is equivalent to the better-known Baker-Campbell-Hausdorff formula [114] for the
subalgebra l.

Similarly to how the rightmost quadratic exponential was moved to the left (explained in Sec. IV D 2), we wish to move the
rightmost term in the product of Eq. (B20) to the left, combining the linear exponentials at each time slice. Whenever two linear
exponentials operators are combined, an exponential with an exponent equal to the sum of the linear operators and a correction
proportional to the identity is obtained. This can be seen from Eq. (59), remembering that the exponents commutation relation
obeys Eq. (64). Consider now the product of the exponential operator obtained for j combined time slices, with that of the single
j + 1 time slice. This is given by

exp[b̂
†
dr′ j+1 + dl ′ j+1b̂] exp

[
δY (τ ) + b̂

†
j∑

k=1

dr′k +
j∑

k=1

dl ′k b̂

]
= exp

[
δY (τ+dt ) + b̂

†
j+1∑
k=1

dr′k +
j+1∑
k=1

dl ′k b̂

]
, (B21)

with τ = jdt and

δY (τ+dt ) − δY (τ ) = 1

2

j∑
k=1

(dl ′ j+1dr′k − dl ′kdr′ j+1). (B22)

Each time slice, when it is absorbed, spawns a term proportional to the identity, as this expression for δY (τ+dt ) indicates. Note
that δY (0) = 0.

To find eL̂′(t ) we have to sum the the contributions to δY (t ) over the index j, as well as extending the summations in Eq. (B21)
to k = J . As a final step, we choose to give a normally ordered expression, which involves a final elementary disentanglement.
This gives

eL̂′(t ) = exp

[
1

2

J∑
j=1

dl ′ jdr′ j +
J∑

j=1

j∑
k=1

dl ′ jdr′k
]

exp

[
b̂

†
J∑

j=1

dr′ j

]
exp

[
J∑

j=1

dl ′ j b̂

]
. (B23)

The single index summation that is quadratic in {dl ′ j, dr′ j} (thus quadratic in noise) will have contributing summands of
O(dt ) and be of a deterministic nature due to Itô’s rule. The double index summation will contain both stochastic (k �= j)
and deterministic summands (k = j), as will the sums attached to the operators.
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The summations of Eq. (B23) should be identified with integrals, but in converting them we need to take care in the case
where the summand will lead to an integrand that is itself a function of the noise. This is not the case for the single summations.
For the double summation, there are terms containing the product of correlated stochastic increments. To convert to Itô integrals
we must adapt the summand to separate these terms [89]. That is,

J∑
j=1

dl ′ j
j∑

k=1

dr′k =
J∑

j=1

dl ′ j

(
dr′ j +

j−1∑
k=1

dr′k
)

=
∫ t

0
dl ′(τ )dr′(τ ) +

∫ t

0
dl ′(τ )r′(τ ) (B24)

with

r′(τ ) =
∫ τ

0
dr′(s) (B25)

for notational convenience. By Itô’s rule dl ′(τ )dr′(τ ) is O(dτ ) so the first integral is deterministic, whilst the second term retains
its stochasticity.

For clarity, the complete linear component of Eq. (75) is

eL̂′(t ) = exp

[
3

2

∫ t

0
dl ′(τ )dr′(τ ) +

∫ t

0
dl ′(τ )r′(τ )

]
exp[b̂

†
r′(t )] exp[l ′(t )b̂], (B26)

= eh(t )eb̂
†
r′(t )el ′(t )b̂, (B27)

with h being a scalar non-Gaussian complex-valued stochastic integral. The explicit time dependence of {h, l ′, r′} in the main
text has been suppressed for display purposes.

c. eQ̂t eL̂′ (t )

To normally order the linear pieces of the evolution operator, and move from Eq. (85) to Eq. (86), the following reordering is
required:

eb̂
†
reQ̂t el b̂ = eQ̂t eb̂

†
r′

el ′b̂, (B28)

with {r, l} to be found. The matrix representation of this is⎡⎢⎢⎢⎣
1 0 0 0
r 1 0 0
0 0 1 0
0 0 −rT 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎣

1 0 0 0
0 N11 N1−1 0
0 N−11 N−1−1 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎢⎣

1 0 0 0
0 1 0 0

−JlT 0 1 0
0 −l 0 1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 0 0 0
0 N11 N1−1 0
0 N−11 N−1−1 0
0 0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1 0 0 0
r′ 1 0 0

−Jl ′T 0 1 0
l ′r′ −l ′ −r′T 1

⎤⎥⎥⎥⎦.

(B29)

Solving for {r, l} gives

l = l ′ − r′T(NT
−1−1

)−1
N−11, (B30)

r = (
NT

−1−1

)−1
r′. (B31)

d. POVM reorderings

We now move on to another example. In Sec. V, the finite-dimensional representation was also used to calculate a reordering
of eãT âeQ̂t , as per Eq. (104)), when obtaining the POVM. This reordering can be found from the disentanglement of of eQ̂t with

minimal work. If we write ãTâ = 1
2 b̂

T
Ī b̂ [see Eq. (C4) for Ī] then the finite-dimensional representation of eãT âeQ̂t is

eãT âeQ̂t =

⎡⎢⎢⎣
1 0 0 0
0 12N 0 0
0 −Ī 12N 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

1 0 0 0
0 N11 N1−1 0
0 N−11 N−1−1 0
0 0 0 1

⎤⎥⎥⎦,

=

⎡⎢⎢⎣
1 0 0 0
0 N11 N1−1 0
0 N−11 − ĪN11 N−1−1 − ĪN1−1 0
0 0 0 1

⎤⎥⎥⎦.
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The RHS of Eq. (104) actually has the same functional form as that of Eq. (82) as the eb̂
T

Ī b̂/2 term can be absorbed to give

eb̂
T

(L′′+Ī/2)b̂. Thus the reordering is the same as the disentanglement of Eq. (B14), but with the following replacements:

N−11 → N−11 − ĪN11, N−1−1 → N−1−1 − ĪN1−1, L′ → L′′ + Ī/2. (B33)

The calculation of d, which appears in Eqs. (111) and (112) is similarly done by solving a matrix equation. However,
there exists the simplification that the re-ordering is amongst physical-mode operators only, so Sp(2N + 2) elements need be
considered, rather than Sp(4N + 2).

4. Further details for a single mode

Reduction to a single physical mode, N = 1, will allow further clarification of our methods and facilitate the provision of
some single-mode examples.

For N = 1, the relevant algebra is the two-mode (one of which is unphysical) double (and single)-photon algebra, which is a
semisimple subalgebra of sp(6) [60,75]. It is 15-dimensional, consisting of the elements

{1̂, â, â†, â2, â†2, â†â, ã, ã†, ã2, ã†2, ã†ã, âã, â†ã†, âã†, â†ã}. (B34)

The single-mode versions of Eqs. (77) and (78) (tilde operators will be kept explicit rather than combined into a vector with
nontildes) are

Q̂t = Lâ2 + L∗ã2 + 2L̆âã + Râ†2 + R∗ã†2 + 2R̆â†ã† + Dâ†â + D∗ã†ã + D̆â†ã + D̆∗âã†, (B35)

dL̂(t ) = dlâ + dl∗ã + drâ† + dr∗ã†, (B36)

with the relationship of {R, R̆, L, L̆, D, D̆, dr, dl} to the system parameters of the SME given in Appendix C. Note that the
Hermiticity preservation conditions of the SME have been utilized; there is only one independent parameter in each of {dl, dr},
which we have written as {dl, dr}. That is, dl = dl1 and dl∗ = dl2. Similarly, we have set L = L11, L̆ = L12, together with
analogous assignments for {R, D}.

When eQ̂t is calculated in the real, finite (4N + 2)×(4N + 2)-dimensional representation of Ref. [60] (with N = 1), it has the
following symmetry (due to Hermiticity preservation of the evolution):

eQ̂τ = exp

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 D D̆ 2R̆ 2R 0

0 D̆∗ D∗ 2R∗ 2R̆ 0

0 −2L̆ −2L∗ −D∗ −D̆ 0

0 −2L −2L̆ −D̆ −D 0
−2C 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 q s u v 0
0 s∗ q∗ v∗ u∗ 0
0 w x y z 0
0 x∗ w∗ z∗ y∗ 0
c 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (B37)

The t-dependent matrix elements {q, s, u, v,w, x, y, z} [which
form the N matrices of Eq. (B8)] are inter-related and, in gen-
eral, have a complicated dependence upon {L, R, D}. There
is no difficulty in their accurate calculation with a symbolic
manipulator, although their length prohibits their display here.
From Eq. (B37), it can be seen that the calculation reduces
to the exponentiation of the inner 4×4 block. Further sim-
plifying matters is that the characteristic polynomial is a
depressed quartic (no cubic term). This is important as the
Cayley-Hamilton theorem states that a matrix satisfies its own
eigenvalue equation. The power series expansion for the ex-
ponential has no higher than cubic powers of the matrix. The
eigenvalues of the matrix define the timescales of the deter-
ministic evolution. As it will often prove useful to consider
the simplification that the representation of eQ̂t is real valued
(the system quadratic parameters being real), we provide the
eigenvalues for this case. The four eigenvalues (±λ±) of the
inner block of Q̂t are then defined by

λ± =
√

(D + D̆)2 − 4(L ± L̆)(R ± R̆). (B38)

The division of the four eigenvalues into two pairs illustrates
the Hermiticity symmetry which leads to the collapsing of the
4×4 matrix analysis into multiple 2×2 operations. This can be
made explicit, when Q̂t is real valued, by a unitary transform
of the representation of Q̂t to a 2×2 block diagonal form.

The single i.e.„ toward the normal-order form of eQ̂t is

eQ̂t = eδ′
exp[2R̆′â†ã† + R′â†2 + R′∗ã†2], (B39)

× exp[Dâã† + D∗â†ã + Dâ†â + D∗ã†ã]

× exp[2L̆′âã + L′â2 + L′∗ã2]. (B40)

In analogy to Eq. (B14), the disentanglement parameters can
be found,

D = −1

2
log(y2 − z2), (B41)

D̆ = 1

2
log

(
y − z

y + z

)
, (B42)
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R′ = vy − uz

2(y2 − z2)
, (B43)

R̆′ = uy − vz

2(y2 − z2)
, (B44)

L′ = wz − xy

2(y2 − z2)
, (B45)

L̆′ = xz − wy

2(y2 − z2)
, (B46)

where we have assumed that any complex parameters in Q̂ can
be made real by transformation (see the end of Sec. VII A).
This assumption is performed for simplicity of display, not
necessity.

Similarly, the single-mode version of Eq. (B18) can be
found after the linear exponentials, edL̂(t ) and edL̂′(t ), are cal-
culated in the finite-dimensional representation. This leads to

dl′ = qdl + s∗dl∗ + wdr + x∗dr∗, (B47)

dr′ = udl + v∗dl∗ + ydr + z∗dr∗, (B48)

together with dl′∗ = dl ′
2 and dr′∗ = dr′

2.
Parallel to the multimode case, the calculation of the

single-mode POVM requires the reordering of eãâeQ̂t , which
has the finite-dimensional representation:⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 q s u v 0
0 s∗ q∗ v∗ u∗ 0
0 w − q x − s y − u z − v 0
0 x∗ − s∗ w∗ − q∗ z∗ − v∗ y∗ − u∗ 0
c 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (B49)

The disentanglement order chosen in Eq. (104) allows the
eâã term to be absorbed into e2L̆′′âã to give e(2L̆′′+1)âã, so
the disentanglement is the same as in Eq. (B46) but with the
following replacements:

w → w − q, x → x − s, y → y − u,

z → z − v, L̆′ → L̆′′ + 1
2 . (B50)

This process provides the POVM parameters L′′, L̆′′. The final
POVM parameter,

d = l′∗ + 2L′′∗r′∗ + (1 + 2L̆′′)r′, (B51)

is also found using the finite dimensional representation
We can then show the single-mode POVM element,

Ŵd = N exp
[−2|〈α〉d|2L̆′′ + 〈α〉2

dL′′ + 〈α〉∗2
d L′′∗]

× exp[dâ†+L′′â†2] : exp[2L̆′′â†â] : exp[L′′∗â2 + d∗â],

(B52)

with the real and imaginary parts of 〈α〉d related to those of d
by

〈α〉d,R = dR
2(L̆′′ − L′′

R
)

(B53)

and

〈α〉d,I = dI
2(L̆′′ + L′′

R
)
. (B54)

APPENDIX C: SWITCHING BETWEEN {Ĥ, ĉ, M}
AND {R, D, L, dl, dr} SYSTEM DESCRIPTIONS

In this Appendix, we give the relationships between
{G,C, M} and {R, D, L, dl, dr}, with the former being the
initial parametrization of the linear SME given in Eq. (26) and
the latter set being a convenient parametrization used for its
solution in Eqs. (77) and (78).

To begin, we move to thermo-entangled state represen-
tation of Eq. (26), given in Eq. (45). Equating the RHS of
Eq. (47) with Eqs. (77) and (78) will allow the relationships
between {G,C, M} and {R, D, L, dl, dr} to be inferred. It is
clear that we first need to convert from the operator ĉ to

{b̂, b̂
†}. Assuming that we are given ĉ in the form ĉ = Cx̂, we

need to express x̂ in terms of {b̂, b̂
†}. To this end, we write

x̂ = Xb̂ + X∗b̂
‡
, (C1)

with X a 2N×2N matrix whose elements are defined by

√
2X mn =

⎧⎨⎩
1, if m = 2n − 1
−i, if m = 2n
0 otherwise,

(C2)

which, of course, gives

ĉ = C(Xb̂ + X∗b̂
‡
). (C3)

We have used the underline notation to differentiate X
from the similarly purposed X , that is defined differently in
Eq. (138). It is convenient to define the matrix

Ī =
[

0 1N

1N 0

]
, (C4)

such that

b̃ = Ī b̂. (C5)

For compactness, we also define

B = C†C, (C6)

F = CTM∗M†C, (C7)

K = CTM∗MTC∗, (C8)

and, for any matrix A [excluding A = I , for which the barring
expression is defined in Eq. (C4)],

AT = X TAX , (C9)

At = X TAX∗, (C10)

AD = X †AX , (C11)

Ad = X †AX∗, (C12)

Ā = ĪAĪ. (C13)
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Note that the order of operation is defined as superscript
first, then subscript, followed lastly by “baring,” so taking
the transpose Hermitian conjugate or complex conjugate will
only act on the A matrix and leave the X matrices unaffected.
Conjugation by Ī is performed as a final step. For example,
Ā†

T = ĪX TA†X Ī . It is then a straightforward task to express

Eq. (47) in terms of {b̂, b̂
†} and then collect terms in order to

compare with Eqs. (77) and (78). The results are

L = − i

2
(GT − Ḡd ) + ĪBD − 1

2 BT

− 1

2
(B̄∗

d + FT + K t Ī + ĪK∗
D + F̄†

d ), (C14)

R = − i

2
(Gd − ḠT) + ĪBt − 1

2 Bd

− 1

2
B̄∗

T + Fd + KD Ī + ĪK∗
t + F̄†

T, (C15)

D = −i(GD − Ḡt ) + ĪBT + B∗
d Ī

− 1

2
(BD + B∗

D + B̄t + B̄∗
t )

− FD − Kd Ī − ĪK∗
T − F̄†

t , (C16)

dl = yTdt (M†CX + MTC∗X∗ Ī ), (C17)

drT = yTdt (M†CX∗ + MTC∗X Ī ). (C18)

APPENDIX D: INTEGRATING OUT h LEAVES
GAUSSIAN STATISTICS FOR d

We wish to show that for an initial multimode coherent
state, d has Gaussian statistics. The reason for this choice of
initial state is that it evaluates the Q function of the POVM.
If the Q function is Gaussian, then the POVM is Gaussian by
definition. From Eq. (115), assuming ρ0 = |α0〉〈α0|,

℘(d|α0) = e�+α†
0d+α†

0L∗α‡
0+2α†

0L̆α0+αT
0 Lα0+d†α0

∫
eh℘ost (h, d)d2h.

(D1)

The first exponential contains terms that are linear in d, which
will shift the Gaussian mean of the distribution (provided that
the remaining factors are Gaussian, of course), and also terms
independent of d, which contribute to the normalization only.
Thus, it is sufficient to show that

℘′(d|α0) =
∫

eh℘ost (h, d)d2h (D2)

is Gaussian in d to prove that ℘(d|α0) is itself Gaussian in d.
Let us begin by writing the ostensible distribution for the

random variables {h, d} as an integral over all possible mea-
surement records,

℘ost (h, d) =
∫

℘ost (Y )δ2(h − hs)δ2(d − ds)Y dt, (D3)

where {hs, ds} are complex valued stochastic integrals, de-
tailed in Eq. (B26) (which defines hs) and Eq. (112). The
measurement record over all time is represented by Y , al-
though there has been a minor abuse of notation. In Eq. (D3),

we use Y dt to represent the product of the infinitesimal quan-
tities that compose the set Y dt . The bold font Dirac delta
function represents a product of delta functions, two for each
of the complex-valued vector argument’s components; for an
arbitrary vector v, of length N , it is given by

δ(v) = δ(v1)δ(v2), . . . , δ(vN ). (D4)

As can be seen from Eqs. (A7) and (A12), the expression for
℘ost (Y ) is given by the product of Gaussians,

℘ost (Y ) =
(

dt

2π

)JL

exp

[
−1

2

J∑
j=1

yT
j y jdt

]
, (D5)

where y j ≡ (y j,1y j,2...y j,2L )T is a column vector of measure-
ment results at the time jdt corresponding to the monitoring
of the L Lindblad channels.

Substituting Eq. (D3) into Eq. (D2), we see that the inte-
grals over h are collapsed by the Dirac delta functions. This
leaves

℘′(d|α0) =
∫

ehs℘ost (Y )δ2(d − ds)Y dt . (D6)

To progress, the integral is discretized into a very large
number, J , of time slices, such that t = Jdt . The stochastic
integrals {hs, ds} can also be discretized. We drop any deter-
ministic contributions to {hs, ds} that affect the normalization
of℘(d|α0) only (as opposed to its moments) and express them
as

hs =
J∑

j,k=1

yT
j dtH j,kykdt, (D7)

ds =
J∑

j=1

D jy jdt, (D8)

where the newly introduced H j,k and D j are matrices of di-
mension 2L×2L and N×2L, respectively (for each j, k).

From Eq. (D7), we see that hs is the sum of chi-squared
random variables. As we are only trying to prove that d has
Gaussian statistics and not find what the mean and variance
actually are, we do not try to specify {H j,k, D j}, apart from
noting that they are deterministic. The dimensions of H j,k , for
given j, k, are 2L×2L, while D j is an N×2L matrix.

The remaining 2N Dirac delta functions in Eq. (D6) can
be used to collapse a further 2N of the measurement record
integrals. For simplicity, we choose to collapse the first time
slice, corresponding to the integrals over y1, and also only
consider N = L, so all the y1 integrals are collapsed (and no
others). The case where N �= L presents only further nota-
tional difficulties. For simplicity, we assume that D1 has a left
inverse, so the Dirac delta functions collapse the integrals onto
the following value:

y1dt = D−1
1

(
d −

J∑
j=2

D jy jdt

)
. (D9)

The important point is that now y1 is set as a linear func-
tion of both d and the remaining measurement records. In
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Eqs. (D5) and (D7), there are terms that are, respectively,
linear and quadratic (and independent) in y1, which will lead
to terms that are linear and quadratic in d. Substituting for
y1 in Eqs. (D5) and (D7), and then placing these expressions
back into Eq. (D6), we obtain the following form:

℘′(d|α0) =
∫

exp

[
−1

2

J∑
j,k=2

yT
j dtU j,kykdt

+
J∑

j=2

vT
j (d)y jdt + w(d)

]
Y ′dt, (D10)

with Y ′ ≡ y2, . . . , yJ . The (here unspecified) {U j,k, v j (d),
w(d)} are independent of the measurement record, but
{v j (d),w(d)} do have dependence upon d. v j (d) will be at
most linear in d, while w(d) will be at most quadratic. To
make contact with standard multidimensional Gaussian inte-

grals, we re-express Eq. (D10) as

℘′(d|α0) =
∫

exp

[
−1

2
y′TdtU ′y′dt

+ v′T(d)y′dt + w(d)

]
Y ′dt, (D11)

where the dimensions of y′,U ′, v′ are, respectively, 2L(J −
1)×1, 2L(J − 1)×2L(J − 1), 1×2L(J − 1). The multidimen-
sional Gaussian integral in Eq. (D11) can be evaluated, giving

℘′(d|α0) =
√

(2π )2L(J−1)

det U ′

× exp

[
w(d) + 1

2
v′T(d)U ′−1v′(d)

]
. (D12)

Due to v′T(d) being linear in d and w(d) being quadratic in d,
℘′(d|α0) is a Gaussian distribution, which in turn, implies that
℘(d|α0) is also Gaussian in d.
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